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Figure 1: We optimize a 2048×2048 roughness texture from (a) a single view of the Chalice, reusing samples across optimization

iterations to (b) reduce derivative error in equal-time compared to Mitsuba 3. This leads to (d) faster inverse rendering

convergence, and (c) images that more closely match our target. Scene adapted from Chalice, goblet, cup ©SusanKing, Bistro

©Amazon Lumberyard, and Ballroom ©Sergej Majboroda.

ABSTRACT

Differentiable rendering is frequently used in gradient descent-
based inverse rendering pipelines to solve for scene parameters –
such as reflectance or lighting properties – from target image inputs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0159-7/23/08.
https://doi.org/10.1145/3588432.3591512

Efficient computation of accurate, low variance gradients is criti-
cal for rapid convergence. While many methods employ variance
reduction strategies, they operate independently on each gradient
descent iteration, requiring large sample counts and computation.
Gradients may however vary slowly between iterations, leading to
unexplored potential benefits when reusing sample information to
exploit this coherence. We develop an algorithm to reuse Monte
Carlo gradient samples between gradient iterations, motivated by
reservoir-based temporal importance resampling in forward ren-
dering. Direct application of this method is not feasible, as we are
computingmany derivative estimates (i.e., one per optimization pa-
rameter) instead of a single pixel intensity estimate; moreover, each
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of these gradient estimates can affect multiple pixels, and gradients
can take on negative values. We address these challenges by refor-
mulating differential rendering integrals in parameter space, devel-
oping a new resampling estimator that treats negative functions,
and combining these ideas into a reuse algorithm for inverse texture
optimization. We significantly reduce gradient error compared to
baselines, and demonstrate faster inverse rendering convergence
in settings involving complex direct lighting and material textures.
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1 INTRODUCTION

Efficiently computing accurate derivatives of an image loss with
respect to scene parameters is a topic of growing importance in
inverse rendering. Modern differentiable rendering algorithms esti-
mate these derivatives via Monte Carlo integration, and excessive
variance in derivative estimation leads to inefficient optimization
in its application to inverse rendering. While some work has ad-
dressed the efficiency of differentiable rendering [Zhao et al. 2021,
2020], to our knowledge, all existing methods exclusively treat a

single image at a time during optimization.
Iterative optimization updates the target image estimate by step-

ping along the estimated gradient of the loss function. Since the
image changes slowly between iterations, it is likely wasteful to
completely discard samples from previous iterations when comput-
ing the current iteration’s gradients. We present an efficient method
to reuse samples across iterations and demonstrate its benefits in the
inverse rendering setting.

We are motivated by the recent ReSTIR work in forward render-
ing [Bitterli et al. 2020; Lin et al. 2022], which reuses samples across
frames (temporal reuse) and from neighboring pixels (spatial reuse),
to greatly boost the effective number of samples at each pixel.

We devise a novel adaptation of the temporal reuse in ReSTIR to
enable sample reuse across gradient descent iterations in inverse
rendering. An efficient application of ReSTIR to gradient-descent
iterations is not immediately evident: first, each pixel needs estima-
tion of a large number of derivatives and storing many reservoirs
per pixel leads to both an intractable memory footprint and com-
putation time; second, unlike forward rendering where integrands
are non-negative, gradient estimates can yield negative values, and
ReSTIR can only handle non-negative integrands. To rectify these
limitations, we make the following contributions:
• Parameter-Space Differentiable Rendering (Sec. 2): Forward ren-
dering outputs pixel intensities whereas differentiable rendering
computes vector-valued derivatives of a loss function with respect

to parameters, i.e., the loss gradient in parameter space. We show
how this discrepancy in output spaces (i.e., images versus param-
eters) necessitates a reformulation of the underlying integrals to
adapt ReSTIR to differentiable rendering.
• Resampling with Positive and Negative Functions (Sec. 3): We
extend generalized resampled importance sampling (GRIS) [Lin
et al. 2022] to functions that may be both positive and negative,
introducing a positivization technique for resampling.
• Application to Inverse Rendering with Textures (Sec. 4 and 5): Fi-
nally, we develop a ReSTIR-based differentiable rendering al-
gorithm that reuses samples across gradient descent iterations
(Sec. 4), and demonstrate its effectiveness for optimizing textures
that modulate Disney’s principled BSDF [Burley 2012].

We demonstrate our method on challenging scenarios of single
image inverse rendering with complex direct lighting and high-
resolution material textures. Our results in Fig. 1 and Sec. 5 show
substantial reductions in gradient error and faster convergence
compared to the baseline implementation.

1.1 Relation to Previous Work

Much of existing work in differentiable rendering treat the problem
of discontinuities [Bangaru et al. 2020; Li et al. 2018; Loper and
Black 2014; Loubet et al. 2019; Zhang et al. 2020], whereas we focus
on the piecewise continuous portion of the rendering integrand
and leave combination with these methods to future work.

Zeltner et al. [2021] addressed the intricacies behind developing
Monte Carlo derivative estimators, and Zhang et al. [2021] and
Yu et al. [2022] applied antithetic sampling to exploit symmetries
in these derivatives. Our work addresses the reuse of information
across gradient descent iterations, and is orthogonal to these works.

Conventional automatic differentiation applied to path tracing
results in memory usage that is linear in the number of scattering
events, and so radiative and path replay backpropagation [Nimier-
David et al. 2020; Vicini et al. 2021] address this by recomputing
required information instead of caching it at path vertices. We focus
on direct lighting and so memory is less of an issue, but it is possible
to combine our method with these approaches to extend to indirect
illumination [Lin et al. 2022; Ouyang et al. 2021].

Nimier-David et al. [2021] proposed a texture-space sampling
method that converges more uniformly in applications of material
reconstruction from video. Our parameter-space formulation is
relevant here, but with the different goal of reusing samples across
gradient descent iterations. Consequently, we require a mathemat-
ical reformulation of derivative computations to define a target
function suitable for resampling.

2 PARAMETER-SPACE DIFFERENTIABLE

RENDERING

Physically-based differentiable rendering techniques typically esti-
mate derivatives of the rendering integral per pixel in image space,
as this approach allows for straightforward computation of an im-
age loss for inverse optimization. We show that this approach is not
necessarily suitable in combination with a ReSTIR-like algorithm,
and we instead propose to directly estimate derivatives in parameter

space, which enables intuitive and efficient sample reuse.
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Figure 2: Overview. We aim to recover parameters such as the color texture of the chalice. Since multiple texels may be visible

through each pixel (e.g. the texel touched by the green path and the texel touched by the dashed blue path in (a), among others),

direct application of ReSTIR to differentiable rendering would result in many reservoirs per pixel, each corresponding to the

derivative of the pixel intensity with respect to each texel. We therefore reformulate differentiable rendering in parameter

space, which allows us to instead store one reservoir for each parameter, or texel, which accumulates derivative estimates from

all relevant pixels. Our algorithm first (a) generates paths from the camera, and resamples these candidates in each texel’s

reservoir. We then (b) reuse samples at each texel across gradient descent iterations. For example, if we draw an occluded

sample (dashed green path) at iteration 𝑣 + 1, we can still obtain an unoccluded sample by reusing the sample from iteration 𝑣

(red path). Finally, we use each final sample to compute the derivatives at the texel.

2.1 Forward and differentiable rendering

Forward rendering techniques synthesize images by estimating
intensities 𝐼 𝑗 for pixels 𝑗 = 1, . . . , 𝑛 with integrals [Kajiya 1986;
Veach 1998] of the form

𝐼 𝑗 (𝝅) =
∫
Ω
ℎ 𝑗 (x) 𝑓𝑐 (x, 𝝅) d𝜇 (x), (1)

where Ω is the space of light paths, x is an individual path, ℎ 𝑗
is the filter for pixel 𝑗 , and 𝑓𝑐 is the measurement contribution
function. We use 𝝅 to denote the set of scene parameters and
assume that the filter ℎ 𝑗 is independent of 𝝅 . We refer to the space
spanned by the parameters 𝝅 as the parameter space. Monte Carlo
rendering algorithms typically output an image by estimating the
above integral per pixel 𝑗 .

Differentiable rendering techniques estimate partial derivatives
of these integrals with respect to individual parameters 𝜋𝑖 (e.g.
texels in a texture) for parameter indices 𝑖 = 1, . . . , ℓ,

𝜕𝜋𝑖 𝐼 𝑗 (𝝅) = 𝜕𝜋𝑖

[∫
Ω
ℎ 𝑗 (x) 𝑓𝑐 (x, 𝝅) d𝜇 (x)

]
=

∫
Ω
ℎ 𝑗 (x)𝜕𝜋𝑖 𝑓𝑐 (x, 𝝅) d𝜇 (x), (2)

where 𝜕𝜋𝑖 B 𝜕/𝜕𝜋𝑖 . When 𝑓𝑐 is discontinuous with respect to the
parameter being differentiated, the integral may contain Dirac delta
distributions and require special treatment [Li et al. 2018; Zhang
et al. 2019].We focus on the casewhere 𝑓𝑐 is continuouswith respect
to 𝜋𝑖 (e.g., BRDF parameters), and leave discontinuity handling
to future work. Compared to estimating intensities, estimating
derivatives requires a separate integral per parameter, resulting in
a gradient 𝜕𝝅 𝐼 𝑗 =

(
𝜕𝜋1 𝐼 𝑗 , . . . , 𝜕𝜋ℓ

𝐼 𝑗
)
per pixel.

Most differentiable rendering algorithms estimate the entire gra-
dient independently at each pixel. Direct application of ReSTIR
poses a problem here. In ReSTIR, each and every pixel needs to
store a sample in its reservoir, resulting in storage cost proportional
to the number of pixels. This cost quickly precludes its application

to differentiable rendering where each pixel would now need to
retain reservoirs that store samples for derivatives with respect to
all the parameters. For applications such as optimization of scene
textures, the number of parameters is proportional to the number
of texels, i.e., easily in the millions. The storage cost of this naïve ap-
plication is proportional to the number of pixels times the number
of parameters. While it is possible to reduce this cost by keeping
only reservoirs for parameters that contribute to each pixel, de-
termining which parameters affect each pixel prior to performing
differentiable rendering is generally not feasible. See Fig. 2 for a
visual example of the problem.

2.2 From Pixel-centric to Parameter-centric

Estimators

We observe that, in inverse rendering via differentiable rendering,
the final target quantity is a single gradient vector of a loss function
with respect to the parameters, rather than the gradients of all
the pixels individually. In other words, the output of differentiable
rendering lives in the parameter space, while forward rendering
outputs pixels. To recapitulate, inverse rendering techniques aim
to solve the minimization problem

�̂� = argmin
𝝅
L(𝑰 (𝝅), 𝑮) (3)

where L is a differentiable loss function, 𝑰 is the rendered image,
and 𝑮 is a reference image. We solve this problem by using gradient-
based optimization methods, which need a gradient of the loss
function with respect to parameters. The derivative of the loss
function with respect to a parameter 𝜋𝑖 is then

𝜕𝜋𝑖L = 𝜕𝑰L · 𝜕𝜋𝑖 𝑰 =
𝑛∑︁
𝑗=1

𝜕𝐼 𝑗L · 𝜕𝜋𝑖 𝐼 𝑗 , (4)

or the dot product between the adjoint rendering 𝜕𝑰L [Nimier-
David et al. 2020] and the derivatives of all the pixels 𝜕𝜋𝑖 𝑰 . When
estimating the dot product using Monte Carlo, we require that
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𝑰 and 𝜕𝜋𝑖 𝑰 are uncorrelated [Azinović et al. 2019] and that 𝜕𝑰L
is affine in 𝑰 in order for the result to be unbiased. Commonly
used loss functions such as the 𝑙2-norm and relMSE satisfy these
requirements. Differentiable rendering estimates the derivatives per
pixel 𝜕𝜋𝑖 𝐼 𝑗 independently. Each parameter in each pixel involves
estimation of Equation 2.

We noticed that one can rewrite Equation 4 as a single integral
by substituting Equation 2 and rearranging terms:

𝜕𝜋𝑖L =

𝑛∑︁
𝑗=1

𝜕𝐼 𝑗L
∫
Ω
ℎ 𝑗 (x)𝜕𝜋𝑖 𝑓𝑐 (x, 𝝅) d𝜇 (x)

=

∫
Ω


𝑛∑︁
𝑗=1

𝜕𝐼 𝑗L · ℎ 𝑗 (x)
︸                 ︷︷                 ︸

w(x)

𝜕𝜋𝑖 𝑓𝑐 (x, 𝝅) d𝜇 (x)

=

∫
Ω
w(x)𝜕𝜋𝑖 𝑓𝑐 (x, 𝝅) d𝜇 (x), (5)

where w represents the weight of path x due to the adjoint ren-
dering and pixel filter of its location on the image plane. The func-
tion w hides the sum over pixels. We refer to this integral as the
parameter-space differential rendering equation.

This formulation clarifies that one does not need to first estimate
a derivative per pixel and sum them over all the pixels to estimate
a derivative of the loss, but one can just directly estimate it by a
single integral. When performing Monte Carlo integration for the
parameter 𝜋𝑖 , a sampled path x has the contribution equal to the
differential measurement 𝜕𝜋𝑖 𝑓𝑐 times the weight w when the path
has non-zero contribution to the parameter (e.g., a non-occluded
path where a vertex lies at a surface point that uses parameter 𝜋𝑖 ).
The differential measurement 𝜕𝜋𝑖 𝑓𝑐 represents how a change in the
parameter affects the radiance carried by the path, and the weight
w characterizes how this change affects the loss L. The method
of Nimier-David et al. [2021] for textures is a special case of our
formulation. This formulation allows our ReSTIR-based method to
keep only one reservoir per parameter, rather than a reservoir per
parameter per pixel.

3 GRIS FOR DERIVATIVES

We present our extension to generalized resampled importance
sampling (GRIS) [Lin et al. 2022] for estimating derivatives.

3.1 Review of RIS, GRIS, and ReSTIR

Resampled importance sampling (RIS) as presented by Talbot et al.
[2005] approximately samples from a distribution proportional to
a target function 𝑞 by resampling from a pool of independently
sampled candidates {𝑥1, . . . , 𝑥𝑀 } generated from another source
distribution 𝑝 . When a single candidate is selected, this process
forms a one-sample RIS estimator:

⟨𝐹 ⟩ris =
𝑓 (𝑥𝑧)
𝑞(𝑥𝑧)

1
𝑀

𝑀∑︁
𝑠=1

𝑞(𝑥𝑠 )
𝑝 (𝑥𝑠 )

, (6)

where 𝑓 is the integrand, and 𝑥𝑧 is the resampled element. If 𝑝 > 0
and 𝑞 > 0whenever 𝑓 ≠ 0, this estimator is unbiased, with variance

𝑉 [⟨𝐹 ⟩ris] =
1
𝑀
𝑉

[
𝑓

𝑝

]
+
(
1 − 1

𝑀

)
𝑉

[
𝑓

𝑞∗

]
, (7)

where𝑞∗ represents the normalized target density. Intuitively: as the
number of candidates𝑀 increases, the closer the sample 𝑥𝑧 becomes
to being distributed according to 𝑞∗ rather than 𝑝 . Often 𝑞 is chosen
to approximate 𝑓 so that the variance of importance sampling
according to 𝑞∗ is significantly lower than sampling according to 𝑝 .
In RIS, the exact probability density of the selected sample 𝑝𝑧 (𝑥𝑧)
cannot be computed in a closed form [Bitterli et al. 2020].

To increase the number of candidates for each pixel in rendering,
ReSTIR [Bitterli et al. 2020] reuses samples generated from neigh-
boring pixels (spatial) and previous frames (temporal) as candidates
in RIS. To avoid storing every candidate in memory, ReSTIR lever-
ages weighted-reservoir sampling [Chao 1982]. Each pixel stores a
reservoir, which contains the selected sample 𝑥𝑧 , a sum of weights
𝑤sum =

∑
𝑠 𝑤𝑠 , where𝑤𝑠 = 𝑞(𝑥𝑠 )/𝑝 (𝑥𝑠 ), and the number of candi-

dates𝑀 . The sample is selected in a single pass over the candidates
by accumulating𝑤sum, incrementing𝑀 , and replacing the sample
in the reservoir with candidate 𝑥𝑠 with probability𝑤𝑠/

∑
𝑡≤𝑠 𝑤𝑡 .

Because ReSTIR reuses samples from spatiotemporal neighbors
which are themselves resampled previously, two issues arise: 1) the
source distribution 𝑝 becomes intractable since 𝑝𝑧 cannot be evalu-
ated, and 2) the samples 𝑥𝑠 can be correlated and can originate from
different domains Ω𝑠 , while RIS assumes a single source domain.
GRIS addresses these issues using the following estimator:

⟨𝐹 ⟩gris = 𝑓 (𝑦𝑧)𝑊 with𝑊 =
1

𝑞(𝑦𝑧)

𝑀∑︁
𝑠=1

𝑚𝑠 (𝑦𝑠 )𝑞(𝑦𝑠 )𝑊𝑠

���� 𝜕𝑇𝑠𝜕𝑥𝑠

���� , (8)

where 𝑦𝑠 = 𝑇𝑠 (𝑥𝑠 ), 𝑇𝑠 : Ω𝑠 → dom 𝑓 is a shift mapping [Kettunen
et al. 2015] that maps samples 𝑥𝑠 into 𝑦𝑠 in the integrand’s domain
(i.e., transforms a path generated at a neighboring pixel to a path
for the current pixel), |𝜕𝑇𝑠/𝜕𝑥𝑠 | is the Jacobian of this mapping,
and the unbiased contribution weight𝑊 is an unbiased estimator
of the intractable reciprocal density 1/𝑝𝑧 (𝑦𝑧 ). Then, in subsequent
resampling passes, 𝑦𝑧 and𝑊 from the previous pass can be used
as 𝑥𝑠 and𝑊𝑠 , respectively. For the multiple importance sampling
(MIS) [Veach and Guibas 1995] weight 𝑚𝑠 , Lin et al. [2022] gen-
eralized Talbot’s [2005] MIS weights, which follows the standard
balance heuristic:

𝑚𝑠 (𝑦) =
𝑞←𝑠 (𝑦)∑𝑀
𝑡=1 𝑞←𝑡 (𝑦)

, (9)

but replaces densities with 𝑞←𝑠 (𝑦), which evaluates the target func-
tion at 𝑥 in the original domain of the 𝑠-th sample:

𝑞←𝑠 (𝑦) =
{
𝑞𝑠 (𝑇 −1𝑠 (𝑦))

��𝜕𝑇 −1𝑠 /𝜕𝑦
�� , if 𝑦 ∈ 𝑇𝑠 (supp 𝑥)

0 otherwise.
(10)

3.2 Positivized RIS

RIS and GRIS have only been applied to problems in forward ren-
dering where the integrand 𝑓 is non-negative, which is no longer
the case for derivatives. To be precise, while 𝑓 can be signed and
RIS will still be a valid estimator, the target function 𝑞 must be
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Figure 3: PGRIS with changing target functions. At iter-

ation 𝑣 , the target function is 𝑞(𝑥) = sin(𝑥), and so sample 𝑥1
is positive and sample 𝑥2 is negative. At iteration 𝑣 + 1, the
target function changes to 𝑞(𝑥) = − sin(𝑥). If we only reuse 𝑥1
in the positive (red) estimator and 𝑥2 in the negative (blue)

estimator (gray dashed arrows only), then both samples have

zero contribution due to incorrect signs. Instead, we reuse

both samples in both estimators to ensure they end up in the

estimator with the correct sign.

non-negative, since it represents an unnormalized probability dis-
tribution. One possible workaround is to use a target function that
is always non-negative. For example, we can take some function 𝑔
that approximates 𝑓 , and set the target function to be 𝑞 = |𝑔|. This
approach leads to an unbiased estimator, but unlike the case with
non-negative functions, the resulting RIS estimator never achieves
zero variance even if we set 𝑞 = |𝑓 | and 𝑀 = ∞. The variance
of this RIS estimator converges only to the variance of a single
sample drawn exactly from the target density, which is 𝑉

[
𝑓 /|𝑓 |∗

]
(Equation 7). In other words, the variance will never approach zero
due to differences in sign.

We borrow ideas from a method known as positivization [Owen
and Zhou 2000; Owen 2013] to handle this problem. The positiviza-
tion technique decomposes the integrand into positive and neg-
ative parts as 𝑓 (𝑥) = 𝑓+ (𝑥) − 𝑓− (𝑥) where we define 𝑓+ (𝑥) =

max (𝑓 (𝑥), 0) and 𝑓− (𝑥) = max (−𝑓 (𝑥), 0). By constructing densi-
ties 𝑝+ and 𝑝− proportional to 𝑓+ and 𝑓− , it is possible to obtain
a zero-variance estimator using two samples: one each from the
positive and negative densities.

One challenge in positivization is that sampling from densities
𝑝+ and 𝑝− is generally difficult for arbitrary functions. We propose
to apply RIS to approximately solve this problem. By applying
positivization to the target function 𝑞, we obtain a positivized

RIS (PRIS) estimator whose variance converges to zero with an
increasing number of candidates:

𝑞+ (𝑥) = max (𝑞(𝑥), 0) 𝑞− (𝑥) = max (−𝑞(𝑥), 0)

⟨𝐹 ⟩pris =
𝑓 (𝑥𝑧+)
𝑞+ (𝑥𝑧+)

1
𝑀

𝑀∑︁
𝑠=1

𝑞+ (𝑥𝑠 )
𝑝 (𝑥𝑠 )

+ 𝑓 (𝑥𝑧−)
𝑞− (𝑥𝑧−)

1
𝑀

𝑀∑︁
𝑠=1

𝑞− (𝑥𝑠 )
𝑝 (𝑥𝑠 )

, (11)

where 𝑞 is some signed function approximating 𝑓 . We use the same
source pdf 𝑝 for both positive and negative estimators. Additionally,

we use the same set of candidates for both estimators. Since each
candidate is either positive or negative (or zero), it only has a non-
zero contribution in at most one of the two estimators.

Similarly, we apply positivization to GRIS, to obtain a posi-

tivized GRIS (PGRIS) estimator:

⟨𝐹 ⟩pgris =
𝑓 (𝑦𝑧+)
𝑞+ (𝑦𝑧+)

𝑀∑︁
𝑠=1

𝑚𝑠 (𝑦𝑠 )𝑞+ (𝑦𝑠 )𝑊𝑠

���� 𝜕𝑇𝑠𝜕𝑥𝑠

����
+ 𝑓 (𝑦𝑧−)
𝑞− (𝑦𝑧−)

𝑀∑︁
𝑠=1

𝑚𝑠 (𝑦𝑠 )𝑞− (𝑦𝑠 )𝑊𝑠

���� 𝜕𝑇𝑠𝜕𝑥𝑠

���� . (12)

One detail is in the reuse of samples as candidates. In ReSTIR
and GRIS, selected samples are usually reused as candidates in sub-
sequent resampling steps. At the same time, the target functions
can change in subsequent resampling steps. In our application (dis-
cussed in Sec. 4), selected samples might change the signs between
resampling steps. It is thus important to use selected samples from
both positive and negative estimators as candidates for both estima-
tors in the current step. For example, a previously positive sample
in the positive estimator may end up being a negative sample used
now in the negative estimator. This additional step ensures that all
candidates have a non-zero selection probability in either estimator.
Fig. 3 illustrates an example where this step is required to ensure
both selected samples are not discarded due to changing signs.

PGRIS MIS Weights. The MIS weight𝑚𝑠 in PGRIS is a straight-
forward substitution of the one in GRIS. The main difference is
that the positive and negative estimators are considered different
MIS strategies and both must be considered in the MIS weights. We
denote this with 𝑞←𝑠,±, which evaluates either 𝑞+ or 𝑞− based on
whether 𝑞𝑠 is a positive or negative strategy. Based on this idea,
our weight function𝑚𝑠 evaluates to

𝑚𝑠 (𝑦) =
𝑁𝑠𝑞←𝑠,± (𝑦)∑𝑀
𝑡=1 𝑁𝑡𝑞←𝑡,± (𝑦)

, (13)

where 𝑁𝑠 are the confidence weights of strategy 𝑠 , which are the
total number of candidates capped to a maximum𝑀𝑐𝑎𝑝 to limit the
weight of the reused samples (M-capping) [Lin et al. 2022].

4 APPLICATION TO TEXTURE

OPTIMIZATION

We provide an application of our parameter-space formulation and
PGRIS estimator to an inverse rendering problem of determining
textures. We focus on optimizing BRDF parameter textures; thus the
number of parameters is proportional to the number of texels.While
ReSTIR stores one reservoir per pixel and performs spatiotemporal
reuse, we store two reservoirs (positive and negative) per-texel
and reuse samples across gradient-descent iterations. Algorithm 1
describes our reservoir data structure in more detail. Unlike Re-
STIR, we generate candidates from the camera but store reservoirs
at each texel (see Section 4.1), and so when parallelizing the al-
gorithm across pixels, synchronization is required at each texel,
since multiple candidates from different pixels may have non-zero
contribution at the same texel (see Fig. 2).
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Algorithm 1: Parameter-space Reservoir

1 class Reservoir:
2 𝑥 ← 0 # Selected sample
3 𝑤𝑠𝑢𝑚 ← 0 # Sum of weights (q / p)
4 𝑀 ← 0 # Number of candidates / confidence weight
5 𝑊 ← 0 # Unbiased contribution weight
6 lock← 0 # Lock to synchronize the reservoir update
7
8 function update(𝑥𝑠 , 𝑤𝑠 ):
9 lockReservoir(lock)
10 𝑤𝑠𝑢𝑚 ← 𝑤𝑠𝑢𝑚 + 𝑤𝑠

11 if rand() < (𝑤𝑠 / 𝑤𝑠𝑢𝑚 ):
12 𝑥 ← 𝑥𝑠

13 unlockReservoir(lock)

4.1 Candidate Generation

While directly generating resampling candidates at each texel is
possible, not all texels will be visible from the camera and generating
candidates for invisible texels is wasteful as their contributions to
the loss will be zero. We thus propose to generate candidates by
tracing rays from the camera and sharing the same set of candidates
at all texels. This approach is equivalent to having the number of
candidates equal to the number of pixels (𝑛) times the number of
samples per pixel (𝑚). The resulting estimator for parameter 𝜋𝑖 is

⟨𝜕𝜋𝑖L⟩ =
𝑔𝑖 (𝑥𝑧)
𝑞𝑖 (𝑥𝑧)

1
𝑀

𝑛∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑞𝑖 (𝑥 𝑗,𝑘 )
𝑝 𝑗 (𝑥 𝑗,𝑘 )

, (14)

where we set 𝑀 = 𝑚𝑛, a sample 𝑥 𝑗,𝑘 is the 𝑘th path sample gen-
erated through the 𝑗th pixel, and 𝑔𝑖 (𝑥) = w(𝑥)𝜕𝜋𝑖 𝑓𝑐 (𝑥) is our
parameter-space integrand for parameter 𝜋𝑖 . While only a few of
𝑥 𝑗,𝑘 will have non-zero contributions to a given texel, the cost
of generating the candidates is amortized across all the parame-
ters by sharing the candidates. The above shows an RIS estimator
for brevity, but we extend it to PRIS in practice as we discussed
in the previous section. Algorithm 2 describes this procedure in
pseudocode.

Algorithm 2: Candidate Generation

1 function generateCandidates():
2 rs+ ← array of Reservoir[Texture.size()]
3 rs− ← array of Reservoir[Texture.size()]
4
5 foreach pixel 𝑗 in Image:
6 for 𝑘 in 1 to𝑚: ⊳ Equation 14
7 𝑥 𝑗,𝑘 ∼ 𝑝 𝑗 # Sample candidate from camera
8 foreach texel 𝑖 where 𝑞𝑖 (𝑥 𝑗,𝑘 ) ≠ 0:
9 rs+[𝑖].update(𝑥 𝑗,𝑘 , max(𝑞𝑖 (𝑥 𝑗,𝑘 ), 0) / 𝑝 𝑗 (𝑥 𝑗,𝑘 ) )
10 rs−[𝑖].update(𝑥 𝑗,𝑘 , max(−𝑞𝑖 (𝑥 𝑗,𝑘 ), 0) / 𝑝 𝑗 (𝑥 𝑗,𝑘 ) )
11
12 foreach texel 𝑖 in Texture:
13 # Compute M and W for both positive and negative reservoirs
14 foreach r in { rs+[𝑖] , rs−[𝑖] }:
15 r.𝑀 ←𝑚𝑛 ⊳ Equation 14
16 r.𝑊 ← r.𝑤𝑠𝑢𝑚 / (𝑞𝑖 (r.𝑥 ) · r.𝑀)
17
18 return rs+ , rs−

Target function. We define our target function 𝑞 as the signed
luminance of our parameter-space integrand 𝑔 (i.e., RGB values can
be negative). Note that setting the target function equivalent to the
integrand typically brings no benefit in standard RIS with a single
candidate distribution. In this case, RIS reduces to just importance
sampling using the candidate distribution 𝑝 with an unnecessary
overhead of resampling. Only the candidate distribution 𝑝 is rele-
vant to the RIS estimator in this case. In our case, however, selected
samples are also used as candidates in the next resampling step,
and the candidate distribution 𝑝 itself also converges to the target 𝑞.
Our estimator thus still improves over iterations as it converges to
a perfect importance sampling estimator of the target 𝑝 in the limit;
Lin et al. [2022] makes the same observation within the forward
rendering setting.

Algorithm 3: Reuse Across Iterations

1 function reuse(rsCur+ , rsCur− , rsPrev+ , rsPrev− ):
2 rs+ ← array of Reservoir[Texture.size()]
3 rs− ← array of Reservoir[Texture.size()]
4
5 foreach texel 𝑖 in Texture:
6 # Merge current reservoirs and apply MIS
7 foreach r in { rsCur+[𝑖] , rsCur−[𝑖] }:
8 𝑦← r.𝑥 # No shift mapping required
9 𝑚←𝑚𝑐𝑢𝑟 (𝑦) # MIS weight at cur. iteration ⊳ Equation 13
10 rs+[𝑖].update(𝑦 ,𝑚 · max(𝑞𝑖 (𝑦), 0) · r.𝑊 ) ⊳ Equation 12
11 rs−[𝑖].update(𝑦 ,𝑚 · max(−𝑞𝑖 (𝑦), 0) · r.𝑊 )
12
13 # Merge prior reservoirs
14 foreach r in { rsPrev+[𝑖] , rsPrev−[𝑖] }:
15 r.𝑀 ← min(r.𝑀 ,𝑀𝑐𝑎𝑝 ) # M−capping
16 𝑥 ← r.𝑥
17 𝑦←𝑇𝑐𝑢𝑟 (𝑥 ) # Shift to current iteration
18 𝑚←𝑚𝑝𝑟𝑒𝑣 (𝑦) # MIS weight at prev. iteration ⊳ Equation 13
19 𝐽 ← |𝜕𝑇𝑐𝑢𝑟 /𝜕𝑥 | # Jacobian of the shift mapping
20 rs+[𝑖].update(𝑦 ,𝑚 · max(𝑞𝑖 (𝑦), 0) · r.𝑊 · 𝐽 ) ⊳ Equation 12
21 rs−[𝑖].update(𝑦 ,𝑚 · max(−𝑞𝑖 (𝑦), 0) · r.𝑊 · 𝐽 )
22
23 # Compute M and W for both positive and negative reservoirs
24 rs+[𝑖].𝑀 ← rsCur+[𝑖].𝑀 + rsPrev+[𝑖].𝑀
25 rs−[𝑖].𝑀 ← rsCur−[𝑖].𝑀 + rsPrev−[𝑖].𝑀
26 foreach r in { rs+[𝑖] , rs−[𝑖] }:
27 r.𝑊 ← r.𝑤𝑠𝑢𝑚 / 𝑞𝑖 (r.𝑥 ) ⊳ Equation 12
28
29 return rs+ , rs−

4.2 Sample Reuse

We adapt temporal reuse in ReSTIR by treating different iterations
as different frames. We reuse samples from the previous gradient-
descent iteration at the current iteration. Algorithm 3 shows pseu-
docode for this procedure which resamples candidates from the
current and previous iterations by merging their reservoirs. Lines
7-11 apply MIS (𝑚𝑐𝑢𝑟 represents 𝑚𝑠 with the current iteration’s
target function in the numerator, see Equation 13) to the current
samples. Since the MIS weights require evaluating the target func-
tion at the previous iteration, we not only store the previous set
of reservoirs for each texel, but also the texture itself. Lines 14-21
merge the previous iteration reservoirs by applying our PGRIS esti-
mator (Equation 12). We shift each sample to the current iteration



Parameter-space ReSTIR for Differentiable and Inverse Rendering SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

and apply MIS. As discussed in Section 3, we reuse both positive
and negative samples from the previous iteration for both reser-
voirs in the current iteration to handle sign changes. Finally, lines
24-27 compute the new candidate count𝑀 , as well as the unbiased
contribution weight𝑊 . The final derivatives can then be computed
using𝑊 by applying Equation 12.

To reuse a sample from the previous iteration, we use the ran-
dom replay shift mapping [Hua et al. 2019; Lin et al. 2022; Manzi
et al. 2016] which copies and replays the random numbers used to
generate the sample. We chose random replay for its simplicity and
generalizability to many scenarios, especially for direct lighting.
One disadvantage of random replay is that it generally does not
save any computation cost. Despite its computational inefficiency,
we still benefit from reuse since the distribution of candidates con-
verges to the target distribution as we discussed above. Other types
of shift mapping may further reduce the computation cost. The
survey by Hua et al. [2019] lists some common shift mappings.

5 RESULTS AND DISCUSSION

We implemented our method on top of a direct lighting integrator
in Mitsuba 3 [Jakob et al. 2022b], using its GPU backend. We found
that, at low sample counts, Mitsuba’s JIT compiler [Jakob et al.
2022a] spends most of the computation time on tracing (recording

the computation graph) and compiling the code to GPU kernels,
rather than actually executing the kernels. While the JIT compiler
caches the compilation step when possible, further work is required
to cache the tracing step to reduce this overhead. As a result, in
order to measure the efficiency of applying ReSTIR, we excluded
this overhead, and report the time spent exclusively on executing
the GPU rendering kernels. All experiments ran on an NVIDIA
GeForce RTX 2080 Ti.

We evaluate our method against Mitsuba 3’s base direct lighting
integrator across a few scenes with complex direct lighting and
materials. We compare both equal-time derivative estimates, as
well as equal-time inverse rendering. Each experiment optimizes
a single 20482 texture encoding parameters of Disney’s principled
BSDF [Burley 2012], including the base color (albedo), roughness,
and anisotropy, from a single view. For all cases, we use 32 spp for
the forward primal rendering pass (one “sample” consists of a light
sample and a BSDF sample, combined with MIS). For the derivative
pass, both methods use detached sampling [Zeltner et al. 2021]. We
set M-cap to 32 when optimizing for base color, and 16 otherwise.

To compare equal-time derivatives, we use 1 spp for our method
and increase the spp of the derivative pass of Mitsuba 3 so that the
time to compute a single iteration is roughly the same. We run our
method for 20 iterations, and using the texture at the 20th iteration,
compute the baseline and reference derivatives for comparison.

To compare inverse rendering performance, we use the Adam
optimizer [Kingma and Ba 2015] with learning rates of 0.1 for
the christmas tree scene, 0.005 for the tire scene, and 0.01 for the
others. We use 1 spp per iteration for the derivative pass of both
methods and run the optimization for a fixed amount of time. The
loss function is relMSE.

We also provide additional results in the supplemental material.

Scene: Chalice. Figure 1 (a) involves the recovery of the rough-
ness texture of the chalice with many colored lights. Detached

sampling in Mitsuba 3 in this case leads to high variance at esti-
mating the roughness derivative at low roughness, so the insets
(b) show that Mitsuba 3 computes noisy gradients. By reusing sam-
ples, our method greatly reduces variance of gradient estimates,
resulting in (d) faster inverse rendering.

Scenes: Tire and Ashtray. Figure 4 (a) also optimizes for rough-
ness with complex lighting. The right edge of the tire shown in
(c) contains very low roughness, resulting in a few yellow specu-
lar highlights. The yellow insets in (b) show that Mitsuba 3 at low
sample count frequently computes derivativeswith thewrong sign—
comparing with the reference, some regions that are red should be
blue, and vice-versa—resulting in a slow and noisy optimization tra-
jectory in (d). As a result, only our method is able to reconstruct the
yellow highlights in the given time. The ashtray scene in Figure 5,
which optimizes for the anisotropy parameter, has similar behavior,
where incorrect derivative signs slow Mitsuba 3’s progress.

Scene: Christmas Tree. Figure 6 (a) optimizes for the base color
of the pine needles, uv-mapped to a single texture, lit by lights on
the tree. The thin needles with light sources close by create a scene
with very challenging visibility. As a result, at low sample count,
(b) Mitsuba 3 computes extremely sparse derivatives. While our
method at 1 spp is still relatively far from the reference and the
reconstructed image (c) looks similar to the one by Mitsuba 3, our
derivatives still have over four times lower error than Mitsuba 3’s
estimates. This reduction in error allows our method to (d) continue
reducing loss, after Mitsuba 3 has already converged.

Ablation: Positivization. Figure 7 shows the reconstructed image
after inverse rendering from Figure 5 with and without our PGRIS
estimator. With Positivization uses PGRIS while Without Positiviza-

tion uses GRIS with the target function as the absolute value of the
integrand, as discussed in Section 3.2. GRIS without our positiviza-
tion technique leads to higher variance in gradient estimates, which
manifests as additional noise in the final reconstructed rendering.

Discussion: Comparison to Adam. The Adam optimizer [Kingma
and Ba 2015] reuses past gradients by keeping exponential moving
averages of the gradient and squared gradient, tuned with hyper-
parameters 𝛽1 and 𝛽2. A core difference between our method and
Adam is that we reuse samples to reduce variance at each itera-
tion without bias, effectively increasing sample count. In contrast,
Adam simply averages gradients, which reduces noise but cannot
reconstruct missing or poorly-sampled regions of the derivatives.
As a result, our method still provides significant improvements
when used on top of Adam. We experimented with different val-
ues of 𝛽1 ∈ [0.8, 0.95] and 𝛽2 ∈ [0.99, 0.9999] and found that our
method consistently outperforms the baseline, with less than a 10%
difference in the reconstruction errors reported in the paper.

6 CONCLUSION AND FUTUREWORK

We presented a novel adaptation of ReSTIR to differentiable ren-
dering that reuses samples across iterations of gradient descent.
Using our parameter-space reformulation of differentiable render-
ing, we developed a practical resampling algorithm that leverages
positivization to achieve theoretical zero-variance convergence of
resampled derivative estimates.
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Limitations. Our main assumption is that gradients acquired in
consecutive iterations are sufficiently correlated. However, this may
not hold at high learning rates; in this case, parameters can change
by large margins, leading to large gradient differences between
iterations. Nevertheless, even in high learning rate settings, our
resampling algorithm still empirically accelerates inverse rendering
optimization. We also note that the relationship between gradient
estimation errors and convergence speed of optimization steps
remains generally unclear in differentiable rendering. Indeed, we
have observed that inverse rendering can reach adequate minima
even with imprecise or noisy gradients.

Future work. Reuse across parameters, analogous to spatial reuse
in ReSTIR, is possible with our parameter-space formulation. A po-
tential challenge lies in efficiently selecting neighboring parameters
to reuse. Reuse introduces correlation in sample estimates [Sawhney
et al. 2022], and the exact effect of correlated gradients in inverse
optimization is an interesting avenue to be investigated. While
we have focused on differentiable and inverse rendering for BRDF
textures under complex direct lighting, our theory and methods
are general and can be extended to other rendering methods and
scenarios involving general light transport, discontinuities, and
other parameters, such as in volumetric or neural representations.
Finally, our PGRIS estimator is immediately applicable to Monte
Carlo integral estimation in contexts broader than rendering, where
integrands can be both positive and negative.
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(a) Target (b) Roughness Texture Derivatives Mitsuba 3 Ours Reference

relMSE: 9.8e-07 (1.00x) relMSE: 3.1e-07 (0.32x)

(c) Reconstructed Images
Initial Mitsuba 3 Ours Reference
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Figure 4: Tire. (a) Inverse rendering of a tire, optimizing for its roughness texture. Mitsuba 3 often computes derivatives (b)

with the wrong sign compared to the reference, leading to slow convergence (d), and only our method recovers the glossy

yellow highlights (c) by 90 seconds. Scene adapted from Dirty Truck Tire ©HorusZ, Fairy lights ©laha_pictures, and Workshop

©Dimitrios Savva and Jarod Guest.

(a) Target (b) Anisotropy Texture Derivatives Mitsuba 3 Ours Reference

relMSE: 4.9e-11 (1.00x) relMSE: 1.4e-11 (0.28x)
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Figure 5: Ashtray. (a) Inverse rendering of an ashtray, optimizing for the anisotropy texture. As in Tire, Mitsuba 3 often

computes derivatives (b) with the wrong sign, leading to slower convergence (c) compared to our method. Scene adapted from

Vintage Ashtray ©Aartee and Fairy lights ©laha_pictures.
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(a) Target (b) Base Color Texture Derivatives Mitsuba 3 Ours Reference

relMSE: 1.2e-08 (1.00x) relMSE: 2.8e-09 (0.23x)

(c) Reconstructed Images
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Figure 6: Christmas Tree. (a) Inverse rendering of a Christmas tree, optimizing for the base color of the pine needles. Due

to the challenging visibility, Mitsuba 3 computes highly sparse derivatives (b) and therefore only our method (d) continues

reducing the image loss after 200 seconds. Scene adapted from Christmas ©Jeremy Birn.

Mitsuba 3 Ours, Without Positivization Ours, With Positivization Reference
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0
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Figure 7: Positivization. Close-up of the ashtray from Figure 5. Not using positivization leads to noisier gradients that manifest

as distracting noise in the otherwise smooth surface shown in the final reconstructed image. Scene adapted from Vintage

Ashtray ©Aartee and Fairy lights ©laha_pictures.
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