
Ray Tracing on Graphics Hardware

Toshiya Hachisuka∗

University of California, San Diego

Abstract

Ray tracing is one of the important elements in photo-realistic im-
age synthesis. Since ray tracing is computationally expensive, a
large body of research has been devoted to improve the performance
of ray tracing. One of the recent developments on efficient ray trac-
ing is the implementation on graphics hardware. Similar to general
purpose CPUs, recent graphics hardware can perform various kinds
of computations other than graphics computations. One notable
difference between CPUs and graphics hardware is that graphics
hardware is designed to exploit a larger degree of parallelism than
CPUs. For example, graphics hardware usually processes several
thousands of independent pixels (compare it to a few independent
tasks on multi-core CPUs). Therefore, the key is to use algorithms
that are suitable for parallelization in order to harness the power
of graphics hardware. Although the parallel nature of ray tracing
seems to be well suited for graphics hardware, there are several is-
sues that need to be solved in order to implement efficient ray trac-
ing on graphics hardware. This paper surveys several algorithms
for ray tracing on graphics hardware. First, we provide an overview
of ray tracing and graphics hardware. We then classify several algo-
rithms based on their approaches. We also analyze the bottlenecks
of current approaches and present possible solutions. Finally, we
discuss future work to conclude the survey.

1 Introduction

In order to compute photo-realistic images, we need to accurately
simulate all light-surface interactions. The computation of such in-
teractions is called light transport, or global illumination, in com-
puter graphics. simulating light transport has been an active re-
search area in computer graphics in past decades (refer to Dutre et
al. [2006]). A popular method for solving light transport is ray trac-
ing. The basic procedure of ray tracing is to compute intersections
between rays (which represent light rays) and objects (e.g., trian-
gles). Reflections/refractions of light are simulated by generating
a new set of rays based on material properties of objects. Figure 1
shows examples of global illumination rendering.

The problem of using ray tracing for solving global illumination is
that it is computationally expensive. For example, generating a sin-
gle image using ray tracing can take a few hours. As a result, most
of interactive computer graphics applications, such as video games,
do not use ray tracing because it is too slow for the interactive use.
Instead, these applications often use rasterization. Rasterization
generates images by projecting objects on the screen, and it is usu-
ally faster than ray tracing due to hardware acceleration. However,
rasterization is not well-suited for solving global illumination. In
order to meet the demand of photo-realistic rendering, using ray
tracing in interactive applications as well is ideal. Therefore, there
is a large body of work to improve the performance of ray tracing.

One of the recent developments on ray tracing is its implementation
on graphics hardware. Graphics hardware used to have the fixed
functionalities which are mainly for rasterization. However, the re-
cent emergence of programmable graphics hardware has enabled
us to perform not only interactive rendering using rasterization, but
also general computations on graphics hardware as well. Since

∗e-mail: thachisu@cs.ucsd.edu

graphics hardware is fundamentally designed to exploit parallelism
over all pixels or triangle vertices, problems with large degrees of
parallelism can be efficiently processed on graphics hardware. For
such problems, the speedup is often a few orders of magnitude from
CPU implementations (refer to Owens et al. [2007] for example).
In this paper, we focus on how ray tracing can be implemented on
graphics hardware.

Since ray tracing is known as embarrassingly parallel (i.e., every
ray is independent and can be easily processed in parallel), imple-
menting ray tracing on graphics hardware seems to be easy. How-
ever, because of architectural differences between CPUs and graph-
ics hardware, there are several issues that need to be solved to im-
plement efficient ray tracing on graphics hardware. This paper sur-
veys several different ray tracing algorithms on graphics hardware
and discusses the issues involved efficient ray tracing on graphics
hardware. We first provide an overview of ray tracing and general
purpose computation on graphics hardware. Later, we describe sev-
eral methods by classifying them based on their overall algorithms.
We then compare all the methods and analyze the bottlenecks of the
current approaches. Finally, we conclude by stating future work.

Figure 1: Example images with global illumination. Ray tracing
simulates complex light-surface interactions, such as the shiny re-
flections on Buddha model (left), soft shadow, and the refractions
from the teapot (right).

2 Overview

2.1 Ray Tracing

The goal of ray tracing is to compute intersections between rays and
objects. Since ray tracing often uses only triangles as its geometric
representation, we focus on ray tracing triangles in this survey. The
main obstacle for efficient ray tracing is that the number of rays and
triangles can be extremely large. For example, using a resolution
of 1080p/i (HDTV) requires a few million pixels to be processed.
Since each pixel often uses several hundreds of rays in order to
solve global illumination, the total number of rays could be a few
hundred million. Similarly, a few million triangles are often used to
achieve sufficient geometric complexity. For instance, the Buddha
model in Figure 1 has roughly one million triangles. If we com-
pute all of the ray-triangle intersections, it requires about 1014 ray-
triangle intersection computations. Unfortunately, this brute force
computation is too expensive. The current fastest ray-triangle inter-
section method can only achieve a few hundred million ray-triangle
intersections (108) per second [Kensler and Shirley 2006]. In order



to implement efficient ray tracing, we need to decrease the number
of redundant ray-triangle intersections.

In ray tracing, such reduction of redundant ray-triangle intersec-
tions is achieved by acceleration data structures. Acceleration data
structures utilize the fact that there is spatial sparsity in both rays
and triangles. In acceleration data structures, rays or triangles are
clustered by a spatial subdivision scheme in the precomputation
step. Ray tracing queries the precomputed acceleration data struc-
ture to cull redundant ray-triangle intersections by utilizing the spa-
tial sparsities of rays and triangles. Querying an acceleration data
structure is called ray traversal. The actual algorithm of ray traver-
sal depends on the types of acceleration data structure.

Recent development of interactive ray tracing on CPUs [Wald et al.
2001; Reshetov et al. 2005; Wald et al. 2006] has shown that an ef-
ficient acceleration data structure and efficient ray traversal are the
main factors that achieve significant performance improvement of
ray tracing. Although the performance of ray-triangle intersection
affects the overall performance of ray tracing, the bottleneck is ray
traversal in current ray tracing algorithms [Wald et al. 2001]. This
is mainly because the number of ray-triangle intersections is signif-
icantly decreased by acceleration data structures. For example, the
efficient usage of an acceleration data structure performs only 2 to 3
ray-triangle intersections per ray on average [Reshetov et al. 2005].

2.2 Programmable Graphics Hardware

Recently, graphics hardware became programmable in order to ac-
commodate the increasing demand of complex visual effects in
video games. Usually, those visual effects involve shading, which
determines the appearance of objects based on illumination set-
ting and material properties. The shading process has been one
of the fixed functionalities in graphics hardware. However, in
programmable graphics hardware, programmers can write an ar-
bitrary shading code to perform various computations beyond its
fixed functionalities. We provide an overview of two different ap-
proaches to using the programmable functionalities on graphics
hardware.

Figure 2: Graphics hardware shader pipeline [Owens et al. 2007].
Both vertex processor and fragment processor are programmable.
The vertex buffer contains vertex data (which describes objects) and
frame buffer contains pixels data (aka. fragments) which are dis-
played to the screen. Textures contain pixels that are not displayed
to the screen, which are often used as additional data for computa-
tions.

The first approach is to use a programmable shading language in
the shader pipeline on graphics hardware. In the shader pipeline,
there are two programmable parts called the vertex program and
fragment program. The vertex program processes vertex data (e.g.,
positions, texture coordinates, and normals), and the resulting ver-
tex data is converted into fragments using rasterization. Figure 2

summarizes the shader pipeline. For example, perspective projec-
tion of triangles onto the screen will be written as a vertex program.
The fragment program processes fragments that determine the pixel
colors for display. For example, shading computation is often done
in a fragment program.

Although programmable shading languages are originally designed
to perform rendering tasks, they can be used to perform general
parallel computations very efficiently. This is because the com-
putation of each element (vertex or pixel) is performed in parallel
with arbitrary vertex/fragment programs on graphics hardware. For
example, NVIDIA GeForce 8800 GTX is capable of running 128
threads in parallel to process vertices/pixels. Those units are used
for both vertex/fragment processes and capable of performing arbi-
trary computation specified by shader programs. Because graphics
hardware can be considered as cost-effective vector processor, gen-
eral purpose computation on graphics hardware has been an active
area of research in computer graphics for the last few years (refer
to [Owens et al. 2007] for survey).

Figure 3: Mapping of graphics pipeline onto streaming compu-
tation [Purcell 2004]. The words in parentheses show the cor-
responding terminologies for streaming computation. The kernel
performs the same computation on all the elements in input stream,
which makes the parallel processing of elements easy. The size of
input stream and output stream is usually exactly the same.

The second approach is to use streaming computation languages
based on a streaming computation model. In the streaming com-
putation model, a processor performs the same computation on a
set of elements and outputs the resulting elements. The compu-
tation code is called a kernel and the set of elements is called a
stream. This model makes parallel processing on all the elements
easy because kernels perform exactly the same operations on all
the elements. Moreover, it is usually assumed that computation in
a kernel is independent from the result of output stream. In other
words, we can stream data into computation to get resulting data,
without worry about the dependency chain between data. In fact,
the shader pipeline of graphics hardware can be mapped into the
streaming computation model by considering vertex/fragment data
as a stream (Figure 3).

Streaming computation languages are often designed for specific
hardware in order to enable more flexible control over the pro-
grammable functionalities. For instance, NVIDIA CUDA is only
for GeForce 8 series or later. The syntax of streaming pro-
gramming languages is often very similar to other high-level lan-
guages on CPUs. In CUDA, we can write a program on graph-
ics hardware that is similar to a multi-threaded C++ program.
We now have various choices of streaming processing languages,
such as OpenCL (http://www.khronos.org/opencl/) and CTM (http:/
/sourceforge.net/projects/amdctm/).



3 Ray Tracing on Graphics Hardware

3.1 CPU/GPU Hybrid Ray Tracing

The earliest work on ray tracing on programmable graphics hard-
ware is “Ray Engine” by Carr et al. [2002]. In Ray Engine, a CPU
performs ray traversal on an acceleration data structure and gener-
ates a list of candidate triangles for ray-triangle intersection compu-
tation. Graphics hardware then computes ray-triangle intersections
for these triangles by transferring triangle data from CPU memory.
Since the process of ray-triangle intersections on graphics hardware
does not need to know the underlying representation of the accelera-
tion data structure, the computation on graphics hardware becomes
relatively simple. The main reason behind this system design is
that early programmable graphics hardware had severe limitations
(such as the number of instructions, precision on computations and
the amount of memory), which made it difficult to implement ray
traversal on graphics hardware. Figure 4 shows the diagram of the
algorithm and Figure 5 shows one of the results produced by Ray
Engine.

Figure 4: The organization of Ray Engine [Carr et al. 2002]. Note
that both ray and triangle data are maintained on the CPU. The
only role of graphics hardware (GPU) is to compute ray-triangle
intersections. Because the CPU and graphics hardware need to co-
operate, there is significant amount of data transfer between them.

The main drawback of this approach is that there is significant
amount of data transfer between CPUs and graphics hardware,
which is relatively costly compared to computations. For instance,
this approach requires transferring triangles data from CPUs to
graphics hardware and intersections data from graphics hardware
to CPUs. Because of this data transfer, Carr et al. concluded that
the performance is not comparable with implementation on CPUs
even if we assume infinitely fast computations on graphics hard-
ware. For instance, Wald et al. [Wald et al. 2001] reported 300K-
1M rays per second on a single core CPU, in comparison to 250K
rays per second in Ray Engine with infinitely fast computations.

In contrast to the overall performance of ray tracing, the perfor-
mance of ray-triangle intersections on graphics hardware is signifi-
cantly faster than that on CPUs. The graphics hardware implemen-
tation of ray-triangle intersection achieved 114M intersections per
second on ATI Radeon R200 (the core clock is 275 MHz), whereas
the fastest CPU ray-triangle intersection at that time [Wald et al.

2001] only achieved between 20M to 40M intersections per second
on a Pentium III 800MHz. This is mainly because the ATI Radeon
R200 has 4 independent processing units for pixels. This makes
it possible to process 4 ray-triangle intersections in parallel. As a
consequence, this work showed that ray traversal needs to be accel-
erated on graphics hardware as well to fully exploit computational
power of graphics hardware.

Figure 5: Example image rendered by [Carr et al. 2002]. The num-
ber of triangles in this scene is 34,000. The absolute performance
is 114,499 rays per second on NVIDIA GeForce4 Ti.

3.2 GPU Ray Tracing

Since the efficient usage of acceleration data structure is the key
to improve performance of ray tracing, most of recent work on ray
tracing on graphics hardware has focused on ray traversal on graph-
ics hardware. We discuss these methods based on the classification
by acceleration data structure.

3.3 Uniform Grids

The first complete ray tracer that includes ray traversal on graph-
ics hardware used a uniform grid [Purcell et al. 2002]. A uniform
grid subdivides the bounding box of an entire scene into uniformly
sized voxels, which are rectangular subspaces of the bounding box.
Each voxel contains a list of triangles that overlap with itself. As
the initialization of ray traversal, the intersection between a ray and
the bounding box of the scene is computed. Based on the inter-
section, the voxel where the ray enters into the uniform grid can
be found. After we found the initial voxel, the ray advances into
the next voxel based on the ray direction. If the voxel contains any
triangles, ray-triangle intersections are performed to obtain actual
intersection points. Since ray-triangle intersections are performed
only for voxels that are pierced by the ray, uniform grid reduces the
number of ray-triangle intersections.

Purcell et al. proposed the first ray tracing algorithm that runs
entirely on graphics hardware [Purcell et al. 2002]. They con-
sider programmable graphics hardware as a streaming processor.
A streaming processor is the processor model used in streaming
programming languages, which uses a stream of elements as the in-
put and output data. Those elements are processed in parallel by
kernels. Since a kernel does not vary between different elements in
the same stream, parallel processing on the stream becomes easy.
Programmable graphics hardware can be considered as a streaming
processor because it executes the same vertex/fragment program on



a set of vertices/fragments. This viewpoint was later evolved into
streaming programming languages on graphics hardware.

Ray traversal on a uniform grid can be easily mapped onto this
streaming processor model. The ray traversal of a uniform grid
only needs to know the current voxel index, the ray origin, and the
ray direction in order to compute the next voxel. The input streams
are current voxel indices, ray origins and ray directions. The kernel
(which performs the single step of the ray traversal in an uniform
grid) outputs the next voxel indices as the output stream. Figure 6
summarizes the algorithm.

Figure 6: Streaming ray tracing using uniform grid [Purcell et al.
2002]. The boxes are kernels of streaming computation. Note that
the entire ray tracing process, including ray traversal, is mapped to
the streaming processing model.

Based on this streaming processing model, the entire ray tracing
process can be directly mapped on programmable graphics hard-
ware, without frequent data transfers between the CPU and graph-
ics hardware. Note that the construction of an uniform grid is still
done on the CPU. This algorithm (i.e., constructing the acceleration
data structure on the CPU and perform ray traversal on graphics
hardware) has been extensively used in other work on ray tracing
on graphics hardware. Since the programmable graphics hardware
was not flexible enough to run this algorithm, Purcell et al. reported
results by software simulation. Karlsson et al. [2004] later imple-
mented this algorithm on NVIDIA GeForce 6800, and reported that
the performance is almost comparable with a commercial ray trac-
ing on CPUs (Figure 7 shows one of the results).

The uniform grid data structure is efficient only for uniform triangle
distribution, however, it does not work well with irregular distribu-
tion of triangles. This problem is known as the teapot in a stadium
problem. This refers to the fact that a single voxel will contain all
the triangles of the teapot if we create a uniform grid over the sta-
dium (see Figure 8 for example). Since we compute ray-triangle
intersections in each voxel, the number of ray-triangle intersections
for the teapot does not decrease.

3.4 kD-tree

One acceleration data structure that can avoid the problem of the
uniform grid is the kD-tree. By using a kD-tree, a scene is split

Figure 7: The example image rendered by [Karlsson and Ljung-
stedt 2004]. The rendering time is 6 seconds on NVIDIA GeForce
6800 GTX, which is comparable to the performance of the CPU
implementation in Autodesk 3ds Max (6.2sec).

into small regions by hierarchy of planes. Each non-leaf node of
a kD-tree stores a plane that splits the space into two halves. This
subdivision continues until some criterion (e.g., the number of tri-
angles per leaf node) is met. Finally, each leaf node stores a list of
triangles that overlap with itself. Figure 9 shows the example of 2D
kD-tree. Note that we use a 3D kD-tree in practice.

Figure 8: Example of the “teapot in a stadium” problem. If we
generate a uniform grid on the entire scene (including the large
ground plane), the teapot in the center is likely to be in a single
voxel, which does not help to reduce the number of ray-triangle
intersections for the teapot.

The ray traversal of kD-tree can be efficiently implemented using a
local stack. Figure 10 shows the example code of the ray traversal
for the kD-tree. Unfortunately, directly porting this algorithm to
graphics hardware is not possible because graphics hardware does
not have a local stack on each element (vertex or pixel). Emulating
a local stack on graphics hardware using the programmable func-
tionalities has been experimented by Ernst et al. [2004], but it is not
efficient for ray tracing because of the overhead of emulation.

In order to avoid using a stack in the ray traversal, Foley et al. pro-
posed two new stackless kD-tree traversal methods [2005] called
kD-restart and kD-backtrack. Figure 11 describes the overall al-
gorithms of the two methods. In both methods, we maintain the
interval of ray during ray traversal.

The kD-restart method simply restarts the ray traversal from the
root when the ray exits the current leaf node. Note that a ray does
not revisit the same node because the ray interval has been reduced
when the ray exits the node. If n is the number of nodes, the worst



Figure 9: Example of 2D kD-tree [Foley and Sugerman 2005].
S0, S1, S2 are splitting planes and n0, n1, n2, n3 are leaf nodes.
The tree on right shows the hierarchy of this kD-tree.

case cost becomes O(n log(n)), in comparison to O(n) with the
stack-based kD-tree traversal. The extra O(log(n)) comes from
the fact that we can expect the number of leaf nodes visited by a ray
is O(log(n)).

The kD-backtrack method reduces this additional cost by using
backtracking into the ancestor node with an additional parent
pointer per node. Foley et al. pointed out that the nodes that are
pushed on the stack are always child nodes of the ancestor nodes
in the stack-based kD-tree traversal. Therefore, by backtracking to
the ancestor nodes, we can obtain all the nodes in stack without
explicitly storing them in stack. The kD-backtrack method main-
tains the worst case cost to O(n). Note, however, that backtracking
to the ancestor nodes causes additional overhead. Moreover, each
node should store the pointer to its parent node, which increases the
memory consumption.

Regardless of the additional overhead from the standard kD-tree
traversal, the resulting performance is up to 8 times faster than the
uniform grid method with scenes like teapot in a stadium. Figure 12
shows some statistics of the performance.

Horn et al. later extended the kD-restart method to improve its per-
formance by the push-down traversal [Horn et al. 2007]. Push-down
traversal is based on the observation that a ray tends to intersect
with only a small subtree of kD-tree. Horn et al. pointed out that
the kD-restart algorithm is ignoring this property because it always
restarts the ray traversal from the root. This results in repeating
the redundant computation for nodes that will never intersect with
the ray. Instead of restarting from the root, the push-down traver-
sal restarts from the node that encloses the interval. Such node can
be easily found by looking at a node that has not been visited dur-
ing the traversal. In other words, the push-down traversal performs
backtracking to find such node, instead of just restarting from the
root. They also introduced short-stack to combine with the stack-
based traversal. If the stack overflows, this method switches to the
stackless traversal with the push-down traversal. Figure 13 shows
the improvement with these modifications. In order to reduce the
required bandwidth, Horn et al. also implemented the entire method
as a single kernel on recent graphics hardware.

Horn et al. pointed out that kD-backtrack requires larger bandwidth
for loading the parent pointers. This is the main reason why they
modified the kD-restart method, despite its worst-case cost. They
also noted that traversing packets of rays is easier with the kD-
restart method. The idea of using packets of rays was previously
proposed by Wald et al. [2001] in the context of real-time ray trac-
ing on CPUs, which significantly amortizes the cost of ray traversal
by performing the traversal by the bounding frustum or cone of
rays. “Packets” in Figure 13 shows the improvement by this op-
timization. It assumes that packets of rays are coherent (i.e., they

Figure 10: Standard kD-tree traversal pseudocode [Foley and Sug-
erman 2005]. Note that we need to use a local stack.

Figure 11: Left: The kD-restart advances the interval of rays for-
ward if there is no intersection at a leaf node before. The down
traversal of the tree find a new leaf node based on this new interval.
Right: The kD-backtrack resumes the search at the first ancestor
node that intersect with the new interval. We perform up traversal
of the tree to find such ancestor node.

have similar directions and origins). Therefore, the performance
goes down if rays diverge after reflections on a complex surface.

Popov et al. [2007] proposed another stackless kD-tree traversal by
adding auxiliary links between the neighboring nodes in a kD-tree.
The same idea had been proposed as the rope-tree in the context
of ray tracing [Havran et al. 1998] on CPUs, but it was not effi-
cient on CPUs. A rope-tree is a modification of kD-tree. Each node
in a rope-tree has pointers called ropes which stores the neighbor-
ing nodes of each face of the node (i.e., a 3D node have 6 ropes).
Figure 15 illustrates the example of rope-tree. Using ropes, the
ray traversal is significantly simplified and does not require a local
stack. The ray traversal of rope-tree simply chooses a rope based
on the face of the node that a ray intersects, and steps into the next
node based on the selected rope. Figure 16 shows the absolute per-
formance of their implementation.

The main issue of rope-tree is that it increases the size of kD-tree
significantly. As shown in Figure 17, adding the ropes increased the
size of tree to about 3 times larger than the original kD-tree. Since



Figure 13: The performance of the number of millions of rays per second in the resolution of 10242 pixels on ATI Radeon X1900 XTX [Horn
et al. 2007]. Each line includes the modifications above it in the table (i.e., the last line includes all modifications). All scenes are the same
as in [Foley and Sugerman 2005] except for the conference scene which consists of 282,801 triangles. ”Primary” traced the rays that find
visible points from camera and Shadow traced the rays for computing occlusion from a light source.

Figure 16: Absolute performance for a single ray and packet traversal [Popov et al. 2007]. The CPU implementation uses the same
algorithm on Opteron 2.6GHz. The GPU performance is measured on GeForce 8800 GTX. The performance is the number of rendered
images per second with resolution of 10242.

Figure 12: Top: rendering time in millisecond for 5122 pixels for
primary rays (rays that find visible points from the camera). Brute
used the naive all ray-triangle intersections. Grid used uniform
grid based [Purcell et al. 2002]: Scenes used for the measurement.
From left to right: Cornell Box - 32 triangles, 23 grid. Bunny -
69,451 triangles, 503 grid. Robots - 71,708 triangles, 503 grid.
Kitchen: 110,561 triangles, 503 grid. All results from [Foley and
Sugerman 2005].

graphics hardware still has a smaller amount of memory than CPUs,
this severely limits the size of scene that can be handled. Note that
all the data needs to be in the memory since there is no memory
paging on current graphics hardware. Additional data loading due
to the rope is also problematic because it increases the required
number of registers and bandwidth. Due to its overhead, the authors
calculated that the number of cycles per ray is about 10,000 in their
implementation, which is still significantly large compared to 1,000
of the highly optimized CPU ray tracing [Reshetov et al. 2005].

More recently, Zhou et al. implemented the stack-based kD-
tree traversal, as well as a kD-tree construction using NVIDIA
CUDA [Zhou et al. 2008]. The performance is only compara-
ble to optimized CPU ray tracing methods. Budge et al. [2008]
also demonstrated the implementation of mono-ray (i.e., non-
packet) stack-based traversal using CUDA with the similar perfor-

Figure 14: The performance for specular reflections with/without
packets [Horn et al. 2007]. ’Single’ does not use the packets opti-
mization. Note that the packet optimization actually decreases the
performance as we increase the number of bounces

mance. Although the comparable performance may sound reason-
able, we have to take into account that graphics hardware has larger
raw computational power than CPUs. For example, ATI Radeon
HD 4800 achieves about 1.2TFLOPs, whereas Intel Core2 Quad
QX9770 has 51GFLOPs. If the efficiency of ray tracing imple-
mentation is the same on both graphics hardware and CPUs, ray
tracing on graphics hardware needs to be significantly faster than
CPU ray tracing. Therefore, the comparable performance means
that ray tracing on graphics hardware is very inefficient than CPU
ray tracing.



Figure 17: The size overhead caused by ropes [Popov et al. 2007]. Adding ropes increases the size of kD-tree by about 3 times regardless of
the number of triangles.

Figure 15: A kD-tree with ropes [Popov et al. 2007]. Each rope in a
face of leaf node points the smallest node that encloses all adjacent
nodes of the face.

3.5 Bounding Volume Hierarchy

Both uniform grid and kD-tree subdivide space into smaller sub-
spaces. We can alternatively subdivide a list of triangles into
smaller subsets instead of subdividing space. Bounding Volume
Hierarchy (BVH) uses this approach to construct the tree of bound-
ing volumes. Bounding volume is defined as an enclosing shape
of all the triangles in a set. Although the choice of the bounding
volume shape is arbitrary, Axis Aligned Bounding Box (AABB) is
commonly used due to its efficiency of the ray-AABB intersection
computation. Figure 18 shows the example of BVH.

Figure 18: BVH using AABB [Thrane and Simonsen 2005]. Each
node is an AABB of its child nodes, and the root node is the AABB
of entire scene. Leaf nodes contain a list of triangles.

Similar to kD-tree, the ray traversal of BVH on CPUs uses a lo-
cal stack. Therefore, directly porting the ray traversal of BVH on
CPUs to graphics hardware is difficult. In order to avoid this issue,
Thrane and Simonsen used threading of BVH [Thrane and Simon-
sen 2005]. Threading connects a node with a parent and sibling

node that indicate the next node during ray traversal. These con-
nections are chosen during ray traversal (depending on hit/miss on
the node); thus they are called hit and miss links. For example, if
a ray missed the left node, the sibling node (i.e., the right node) is
used to continue the ray traversal. Figure 19 shows the example
of threaded BVH. Note that a similar idea is used by the stack-
less traversal of kD-tree [Popov et al. 2007] as ropes. The traversal
algorithm does not use a stack because the next node is always de-
termined by hit/miss link. Thrane and Simonsen reported that the
performance of their implementation is better than both kD-tree and
uniform grid (see Figure 20 for some statistics).

Figure 19: Threading of BVH [Thrane and Simonsen 2005]. The
dotted lines show miss link. In this representation, a hit link is
represented as the pointer to next node in the linear array shown
below.

Figure 20: Absolute performance comparison between different
data structures including BVH [Thrane and Simonsen 2005]. The
table shows rendering times in milli seconds for rendering an image
with the resolution of 5122 on NVIDIA GeForce 6800 Ultra. Two
BVHs at the bottom only differs at the construction of BVH. kD-
tree traversal is from [Foley and Sugerman 2005] and the scenes
included in this table are exactly the same as they used.

Carr et al. used the same threading approach for ray tracing of
dynamic scenes [Carr et al. 2006]. The difference from previous
work [Thrane and Simonsen 2005] is that scene geometry is repre-
sented as a geometry image [Gu et al. 2002], which is a 2D param-
eterization of a triangle mesh. In geometry images, each triangle



is formed by connecting neighboring three pixels that store vertex
positions and normals as pixel data. The construction of BVH over
geometry images is simplified to the construction of hierarchical
tree over pixels, which is efficiently done on graphics hardware (see
Figure 21 for example). Since this process is very fast, this algo-
rithm can handle dynamic geometry. If the some vertices moved,
the BVH can be quickly rebuilt only by updating the size of bound-
ing boxes efficiently. Note that the tree structure of BVH nodes,
including threading, does not change because of fixed topological
links between pixels on geometry images. Unfortunately, using a
single geometry image is restricted to handling a single connected
mesh. For example, a car with rotating wheels needs to use 5 ge-
ometry images (1 for a car body and 4 for wheels). Since using 5
geometry images requires 5 independent ray tracing processes, this
method is costly for disconnected meshes.

Figure 21: Geometry images and the BVH construction. Top row:
Given a triangle mesh (left), we can parametrize the mesh onto 2D
by providing sufficient cuts (middle). By recoding vertex positions
and normals in each pixel, we get the 2D image that represents the
3D mesh (right). Bottom row [Carr et al. 2006]: Based on the
geometry image, we can easily compute the AABB of BVH at each
level by taking minimum and maximum of positions over all pixels
in different resolutions.

Figure 22: Top row: the comparison between stackless kD-tree
traversal [Popov et al. 2007] and the stack-based BVH traversal on
GPU [Günther et al. 2007]. The performance is measured by the
number of frames per second (FPS) for a 10242 rays on NVIDIA
GeForce 8800 GTX. Bottom row: The rendered images. Conference
(282,641 triangles), Soda Hall (2,169,132 triangles), Power Plant
(12,748,510 triangles) and the inside of Power Plant.

Guenther et al. implemented a packet-based ray tracing using BVH
on graphics hardware [Günther et al. 2007]. The algorithm uti-

lizes a stack instead of the threading technique by using NVIDIA
CUDA on GeForce 8 series. Instead of having a local stack per ray,
they used a shared local stack between several rays using packet ray
tracing [Wald et al. 2001]. By sharing a stack with several rays, the
computation overhead and memory cost of stack are amortized over
multiple rays in a packet. Moreover, since a stack-based traversal
does not require any additional data on an acceleration data struc-
ture, their method can handle the very large number of triangles
(see the bottom row of Figure 22 for example). The top row of Fig-
ure 22 shows that their implementation outperforms the stackless
kD-tree traversal [Popov et al. 2007]. The disadvantage of all the
stack-based algorithms is that it reduces the amount of parallelism.
We discuss this issue later in detail.

3.6 Ray-Space Hierarchy

Since the goal of acceleration data structure is to decrease the num-
ber of ray-triangle combinations, we can use the spatial subdivision
of rays instead of the spatial subdivision of geometries to achieve
the same goal. Szécsi extended Ray Engine [Carr et al. 2002] as
Hierarchical Ray Engine by using tiles of rays, instead of individ-
ual rays [Szécsi 2006]. In this approach, we feed all the triangles to
graphics hardware, but the actual ray-triangle computation is per-
formed only if the enclosing cone of the set of rays (tile) intersects
the triangle. Since we do not need to construct an acceleration data
structure of objects (which is often costly than ray tracing itself),
this approach is well-suited for dynamic scenes. Figure 23 shows
the block diagram of this algorithm.

Figure 23: The block diagram of Hierarchical Ray Engine [Szécsi
2006]. A triangle is first tested against the enclosing cone of set of
rays. The ray-triangle intersection computations are executed only
if the cone intersects with a triangle.

Roger et al. [2007] proposed a similar idea for ray tracing of dy-
namic scenes. They developed a ray hierarchy which uses hierar-
chy of ray tiles, instead of uniformly-sized tiles as in [Szécsi 2006].
The construction of ray hierarchy is efficiently done on graphics
hardware because creating the upper level of tiles is operationally
similar to image resizing (Figure 24). After constructing the tree,
the list of candidate rays for each triangle is obtained by travers-
ing the ray hierarchy. Note that this is dual to ordinary ray trac-
ing, where we obtain the list of candidate triangles for each ray by
traversing the triangle hierarchy. The ray traversal is started from
the root node, and it outputs child nodes that intersect with a given
triangle. The output of intersecting child nodes needs a random



Figure 25: The traversal of the ray-space hierarchy [Roger et al. 2007]. We first initialize each pixel by storing the root node index and
all triangle index. We then perform cone-triangle intersections for each combination and write out the results if a cone intersects with the
triangle into 4 separate buffers (since we have 4 child nodes per node). The stream reduction compacts the 4 buffers into one buffer by
ignoring a cone that did not intersect with the triangle. Resulting buffer again feeds as the input until we reach leaf nodes.

Figure 24: The hierarchy of cones [Roger et al. 2007]. The last
level of hierarchy starts from individual rays (left), and the hierar-
chy is constructed by grouping 4 neighboring cones into the enclos-
ing cone by the bottom up approach.

write which is inefficient on graphics hardware. Therefore, all the
4 child nodes are written regardless of the results of intersections
with additional valid/invalid flags (i.e., valid if there is an intersec-
tion). As a result, some nodes are stored with invalid flags even if
corresponding child nodes do not intersect with the triangle. In or-
der to remove those invalid nodes and compact the array of nodes
in parallel, Roger et al. developed a new algorithm called streaming
reduction. Figure 25 summarizes the algorithm. The performance
of this method is barely comparable with the kD-tree ray tracing
by Horn et al. [2007], which is not comparable with the fastest ray
tracing on graphics hardware such as the stackless kD-tree [Popov
et al. 2007].

4 Discussion

In this section, we compare and discuss the methods we surveyed
in previous section. First, we compare the absolute performance of
different methods. We then discuss latest ray tracing methods on

CPUs briefly in order to compare it with ray tracing on graphics
hardware. We present several reasons behind why graphics hard-
ware is less efficient than CPU ray tracing and propose some so-
lutions later in this section. We also discuss ray tracing other than
graphics hardware and CPUs to highlight benefits of ray tracing on
graphics hardware. Table 1 summarizes the comparison between
different methods in the survey.

4.1 Absolute Performance

Figure 26 compares performance of different methods. Since each
method uses different graphics hardware, we scaled the perfor-
mance based on the bottleneck. For example, if the bottleneck is
bandwidth, we scaled the performance by the ratio of bandwidth.
This is likely to be a valid scaling because graphics hardware is
fully pipelined (i.e., the bottleneck completely determines the entire
performance). However, note that this comparison is not very accu-
rate because the performance also depends on several factors such
as scene setting (e.g., the camera angle and complexity of the ob-
jects) and different architecture of graphics hardware. In addition,
some of the methods should not be directly compared because they
have different functionalities. For example, ray hierarchy [Roger
et al. 2007] is capable of handling dynamic scenes whereas ray
tracing using object hierarchy cannot change the shape of objects
during runtime. Therefore, this comparison should be considered
as a rough estimate of the absolute performance of each method.
The first thing we noticed is that packet ray tracing methods gener-
ally outperform mono-ray tracing methods (compare [Günther et al.
2007] and [Thrane and Simonsen 2005] for example). This is be-
cause packet ray tracing amortizes the cost (memory read/write,
computations) of traversal by sharing the same traversal between
several rays. Although the original algorithm of packet ray tracing
was developed for CPUs, the performance comparison shows that
packet ray tracing is also effective on graphics hardware as well.
We also noticed that both stackless methods and stack-based meth-
ods have similar performance in this comparison. It is contradicting
to the fact that almost all stackless methods add the overhead to the



stack-based version. We discuss this point later in this section.

Figure 26: Absolute performance comparison of different methods.
The numbes are scaled according to the specifications of NVIDIA
GeForce 8800.

4.2 Comparison with CPU Ray Tracing

In order to discuss the efficiency of ray tracing on graphics hard-
ware, we describe the latest ray tracing methods on CPUs. One
of the significant steps toward high performance ray tracing is the
work by Wald et al. [2001]. Their key idea is to trace a coher-
ent set of rays at the same time in order to amortize the cost of
ray traversal, which significantly improves the performance of ray
tracing. This speedup is because ray traversal is the bottleneck of
ray tracing. Note that the performance of ray-triangle intersection
does not affect the overall performance of ray tracing. For exam-
ple, the number of ray-triangle intersections performed is often 2 to
4 whereas the number of ray traversal steps is 30 to 50 [Reshetov
et al. 2005].

The idea of using coherent rays is currently the main focus of high
performance ray tracing on CPUs. Wald et al. applied the same
idea for uniform grid [Wald et al. 2006] and bounding volume hier-
archy [Wald et al. 2007a] as well. Recently, Reshetov proposed ver-
tex culling [Reshetov 2007], which reduces redundant ray-triangle
computations of packet ray tracing using the frustum of rays. Other
than the basic idea of using packets of rays, recent work on packet
ray tracing has not been used on graphics hardware. We consider
that testing recent work of packet tracing on graphics hardware is
interesting future work.

Reshetov extended the idea of packet tracing to multiple levels of
ray packets (i.e., hierarchy of ray packets) to further improve the
performance [Reshetov et al. 2005]. This work is considered to be
the fastest ray tracing on CPUs so far. The performance is 109.8
million rays per second for a scene with 804 triangles, 19.5 million
rays per second for the conference scene (274K triangles), and 35.5
million rays per second for the soda hall scene (2195K triangles) on
Intel Pentium4 3.2GHz using 2 threads with hyperthreading.

The fact that we can obtain this performance on CPUs indicates
that ray tracing on CPUs is significantly efficient than ray tracing
on graphics hardware. To be concrete, ray tracing on Intel Pen-
tium4 3.2GHz with 6.4 GFLOPS is comparable with ray tracing on
NVIDIA GeForce 8800 GTX with 345.6 GFLOPS in terms of the
ray tracing performance. For example, the fastest BVH packet trac-
ing [Günther et al. 2007] achieves 16.2 million rays per second for
the soda hall scene on GeForce 8800 GTX, in comparison to 35.5

million rays per second on two CPU cores [Reshetov et al. 2005].
If we simply scale the performance by FLOPS, GeForce 8800 GTX
has to achieve 1.887 billion rays per second for this scene. Al-
though this estimation is not accurate because we compared dif-
ferent methods and these numbers for FLOPS are theoretical val-
ues, this performance loss is indicating that ray tracing on graphics
hardware is inefficient compared to ray tracing on CPUs. Another
possibility is that the performance of ray tracing on graphics hard-
ware is bounded by some factors other than computation since it
did not scale by FLOPS. However, almost all methods in this sur-
vey are computation-bounded, which performance should be scaled
by FLOPS.

4.3 Performance Gap

As we already discussed above, ray tracing on graphics hardware is
inefficient compared to ray tracing on CPUs. In this section, we will
describe three issues that cause inefficiency. We will also discuss
possible solutions for these issues in order to provide the idea for
more detailed analysis in future work.

Data retention Since the computation model on graphics hard-
ware is essentially the same as a streaming processor, no data is
retained after each computation. For example, if the kernel of ray-
triangle intersection performs several ray-triangle intersections for
the same ray, we need to reload the ray data each time the kernel is
invoked. This wastes bandwidth because the ray data needs to be
loaded from memory many times even if it does not change during
the computation. In CPUs, such ray data will likely be in the reg-
isters or the local cache because the cache algorithm on CPUs will
capture frequent accesses to the same data. Although recent graph-
ics hardware has the cache for textures (i.e., array of elements),
the cache algorithm exploits the spatially coherent accesses over
neighboring elements, not the repeated usage of the same element.
In the ray traversal, it is usually rare that such spatial locality ex-
ists because neighboring rays will go through a different part of
acceleration data structure. We consider that ray tracing on graph-
ics hardware should take into account this difference. We think that
sorting rays based on their directions and origins will amortize this
issue because similar rays will access the same data, and putting
them close to each other facilitates the use of cache on graphics
hardware.

Wide-SIMD width Although graphics hardware can exploit
higher degree of parallelism in comparison to CPUs, graphics hard-
ware still cannot process each single pixel independently. This
means that graphics hardware needs to perform the same compu-
tation over several pixels. For example, ATI X1900 XTX requires
48 pixels to do the same computation in order to avoid any idling
of processing units [Horn et al. 2007]. This is related to the fact
that graphics hardware hides the memory latency with the con-
text switch over several identical computations. We noticed that
this is essentially the same as having wider SIMD width because
many data share the same computation. Because of this hardware
constraint, the computation on graphics hardware becomes most
efficient if the flow of computation is uniform over all data (ver-
tices/pixels). However, having the uniform computation flow is es-
pecially difficult for ray traversal because each ray tends to have dif-
ferent routes of computations depending on acceleration data struc-
ture. Most of ray traversal methods surveyed in this paper have not
considered this issue. One of the solutions is packet ray tracing. As
we already discussed, packet ray tracing amortizes the cost of ray
traversal significantly by sharing the ray traversal over similar rays.
However, since packets tracing limits generality of ray tracing, it is
not necessarily the optimal solution. We consider that effectively



Aceeleration Data Structure Relative Performance Dynamic Geometry Packet Tracing Stack/Stackless Implementation
[Purcell et al. 2002] Uniform Grid N/A N N/A Stackless N/A

[Carr et al. 2002] N/A 1.0 N N/A Stackless Shader
[Thrane and Simonsen 2005] BVH (threaded) 3.6 N Mono Stackless Shader
[Foley and Sugerman 2005] kD-tree 1.1 N Mono Stackless Shader

[Carr et al. 2006] BVH (threaded) 5.1 Y Mono Stackless Shader
[Szécsi 2006] Ray-Space (tile) N/A Y N/A Stackless Shader

[Roger et al. 2007] Ray-Space (hierarchy) 6.2 Y N/A Stackless Shader
[Günther et al. 2007] BVH 42.3 N Packet Stack-based Streaming

[Horn et al. 2007] kD-tree 40.9 N Packet Stack-based Shader
[Popov et al. 2007] kD-tree (rope) 17.2 N Mono/Packet Stackless Streaming
[Budge et al. 2008] kD-tree 68.6 N Mono Stack-based Streaming
[Zhou et al. 2008] kD-tree 26.2 Y Mono Stack-based Streaming

Table 1: Comparison between different methods. The relative performance column shows the rough estimated speedup from [Carr et al.
2002] for 10k triangles. The implementation column shows whether the actual implementation is based on programmable shader (Shader)
or streaming processing language (Streaming).

using wider SIMD width is the key to improve the performance of
ray tracing on graphics hardware. We expect that the idea of sort-
ing rays based on their directions and origins will be applicable as
well. However, this idea merely amortizes the issue. We need to
solve the fact that ray tracing is not suited for wide SIMD archi-
tecture. A general solution to this issue is currently the main focus
of high performance ray tracing (for example, refer to [Wald et al.
2007b]).

Stackless and Stack-based method Unlike stack-based meth-
ods, stackless traversal methods require more computational re-
sources [Horn et al. 2007]. In theory, the performance of stack-
based methods should be better than the performance of stackless
methods. However, we have shown that this is not necessarily the
case, based on the performance comparison between the different
methods. We claim that this is because stack-based algorithms ex-
press smaller degree of parallelism than stackless algorithms on
graphics hardware. Stack-based algorithms require a local stack
for each ray. The amount of required memory for stack could be
prohibitively large, depending on the number of rays processed in
parallel. Therefore, the number of parallel processes is usually re-
stricted by the total size of local stack. For example, the standard
BVH traversal usually requires 256 byte per ray for the local stack.
Since NVIDIA G80 has 16K byte of memory that can be used for
the stack, 64 rays can be processed in parallel using the 256 byte
local stack per ray. This is not fully utilizing the parallelism on
graphics hardware because NVIDIA G80 can process up to 128
processes in parallel. Based on this viewpoint, we consider that
stackless methods are likely to scale well in the future as the num-
ber of parallel processing units will increase. Although most recent
work is using a stack-based method graphics hardware, further in-
vestigation on stackless traversal is necessary.

4.4 Other Related Work

Schmitteler et al. developed a ray tracing hardware architecture,
called SaarCOR [Schmittler et al. 2002], in order to accelerate ray-
triangle intersections. Although ray-triangle intersections are not
the bottleneck of ray tracing, SaarCOR significantly outperformed
ray tracing on CPUs and graphics hardware due to the efficiency of
hardware implementation. Later, Woop et al. extended SaarCOR
into RPU [Sven Woop and Slusallek 2005] using FPGA, which has
programmable functionalities and accelerates both ray-triangle in-
tersection and ray traversal. They reported that the performance is
50-100 times faster than ray tracing on graphics hardware. These
results indicate that having special functionalities for ray tracing
significantly improves the performance. However, note that hard-

ware ray traversal functionality means that we cannot alter acceler-
ation data structure. This is not desirable property because it cannot
incorporate new acceleration data structure such as BIH [Waechter
and Keller 2006].

Benthin et al. implemented ray tracing on Cell processor [Benthin
et al. 2006]. Cell processor is a heterogeneous multi-core CPU con-
sisting of one general processor called PPE and several specialized
vector processors called SPE. PPE is a modified IBM PowerPC,
which is not different from a recent single core CPU except for its
ability to manage SPEs. SPEs are SIMD processors with a small,
fast scratch pad memory called LS (local store) that acts as user-
managed cache. The distinct limitation of SPEs is that they can-
not directly access the main memory. In order to access data on
main memory, it is required to issue DMA transfers explicitly from
PPE to SPE’s LS. Since the latency of DMA transfer is larger than
arithmetic instructions, decreasing the number of DMA transfers is
important to avoid idling of SPEs.

In order to avoid complex management of LS, Benthin et al. im-
plemented software caching and software hyperthreading which
systematically avoids unnecessary DMA transfers. The idea is to
switch the current task to any task that performs arithmetic oper-
ations whenever DMA transfer is required. Their implementation
achieved comparable performance with a single SPE to Intel Pen-
tium4 2.8GHz. Since Cell processor has 8 SPEs, it is 8 times faster
than Intel Pentium4 2.8GHz. One of the interesting observations
they made is that a shading process of intersection points becomes
the bottleneck in this system.

The shading process requires random accesses to the main mem-
ory which frequently invokes DMA transfers. Since graphics hard-
ware has the specialized texture cache to handle such access pat-
terns of shading processes, they mentioned that the implementa-
tion on PlayStation3 (which has Cell and graphics hardware in the
same system) will improve the performance significantly. We claim
that it indicates that using graphics hardware directly for ray trac-
ing as well is probably the optimal solution because shading can be
directly performed on graphics hardware without transferring data
between another processor such as Cell processor.

5 Future Work

Construction of Acceleration Data Structure An open prob-
lem of ray tracing on graphics hardware is the efficient construction
of acceleration data structure on graphics hardware. The construc-
tion of acceleration data structure can be avoided by using the ray-
space hierarchy, but the ray tracing performance is often not com-
parable to object-space hierarchy (e.g., kD-tree). The main issue



here is how to extract the parallelism in the construction of an ac-
celeration data structure. Shevtsov proposed the parallel version of
kD-tree construction on a multi-core CPU [Shevtsov et al. 2007].
The basic idea is to perform construction of a subtree on each core
in parallel. However, since degree of parallelism on a multi-core
CPU is still significantly smaller than that on graphics hardware,
exploiting fine-grained parallelism is still required.

Recently, Zhou et al. developed the algorithm to construct a kD-tree
on graphics hardware by building a tree in breadth-first order [Zhou
et al. 2008]. It is based on the observation that each node has many
objects that can be processed in parallel during the first few subdi-
vision of space. Similarly, after we finely subdivided the space, we
can process each node in parallel because we have many nodes. In
order to fully exploit parallelism, the algorithm uses breadth-first
order for first several levels of subdivisions, and uses depth-first or-
der later. Although their implementation is still barely comparable
to the latest methods on CPUs, such as the above mentioned method
by Shevtsov et al. [2007], we consider this algorithm as the promis-
ing starting point for the fully dynamic construction on graphics
hardware.

More recently, Lauterbach et al. [2009] proposed the construction
of BVH on graphics hardware. They proposed the following two
methods: a method based on similar approach as Zhou et al. [Zhou
et al. 2008], and a method using a space filling curve. The sec-
ond method uses the fact that a space filling curve tends to cluster
nearby objects in multidimensional space onto nearby 1D space on
the curve. Using the 1D array of objects, the construction of BVH
can be done by sorting objects along a space filling curve and clus-
tering two nearby objects into one in a bottom up fashion. Since this
method is very fast but tends to degrade the quality of the tree (i.e.,
the performance of ray traversal is inferior), Lauterbach et al. also
proposed the hybrid method. The hybrid method uses the second
method only for the upper level of the tree, where the construction
cost is high, and uses the first method to maintain the quality of the
tree. We consider that this approach could be further explored for
different acceleration data structure such as kD-tree.

Specialized Acceleration Data Structure for GPUs In addition
to using existing acceleration data structures on graphics hardware,
we consider that finding a new acceleration data structure suitable
for graphics hardware is interesting future work. As we have al-
ready seen in the survey, an acceleration data structure that is ef-
ficient on CPUs is not necessarily efficient on graphics hardware.
For example, the kD-tree traversal on graphics hardware needs to
be stackless, which causes additional overhead compared to the kD-
tree traversal for CPUs.

Among different acceleration data structures, we have found that
the ray classification could be more suitable for ray tracing on
graphics hardware [Arvo and Kirk 1987]. The key idea is to use
the spatial subdivision of the 5D space of rays (i.e., 3 for ray ori-
gin and 2 for ray direction) that stores the list of objects. This 5D
space is first subdivided into subspaces using uniform grid. Any
object that intersects at least one ray in each 5D subspace are added
to the list. The ray traversal of the ray classification is very simple
because each ray corresponds to a point in 5D space. Therefore,
the ray traversal performs a single, constant-time query in 5D space
and obtains the list of objects. Since it does not require stack, it
might be more efficient on graphics hardware. Mortensen et al.
recently proposed a similar approach called visibility field [2007].
They reduced the dimensionality of space into 4D space by consid-
ering each ray as a line rather than a half line. They reported that
this method outperformed packet ray tracing by Wald et al. [2001].
This method has not been tested on graphics hardware as far as we
know, so we consider it is interesting to see whether this is efficient

on graphics hardware as well.

Utilizing Rasterization Another interesting future work is utiliz-
ing the rasterization functionality of graphics hardware. For ex-
ample, rasterization has been used for accelerating eye-ray trac-
ing from a camera, because the result of ray tracing eye rays is
equivalent to rasterization. Another application of rasterization
for ray tracing is ray tracing a set of parallel rays (called ray
bundle [Szirmay-Kalos 1998]) by parallel projection [Hachisuka
2005]. Recent work even shows rendering complex refraction and
caustics (e.g., light focusing pattern under a pool) using rasteriza-
tion [Wyman 2005; Shah et al. 2007], which have been considered
difficult with rasterization. Although these techniques are not ex-
actly equivalent to ray tracing due to their approximations, resulting
images are visually equivalent. We consider that it is possible to use
these rasterization techniques as a hint for efficient ray tracing. For
example, if we know the bound of intersection points using rasteri-
zation, we can use this bound to reduce the number of ray traversal
steps.

Ray Tracing Hardware Architecture Based on the survey, we
propose an “ideal” hardware architecture for the ray tracing al-
gorithm. In general, we think that hardware implementations are
preferable to software implementations using programmable func-
tionality. The reason is that programmable functionality has the
overhead of interpreting a user program compared to hardware im-
plementations.

First, we think that the ray-triangle intersection algorithm should be
implemented on hardware, not by the programmable functionality.
This is because there are several mature algorithms for computing
ray-triangle intersections [Kensler and Shirley 2006], which can be
implemented directly in hardware without a loss of flexibility in the
ray tracing algorithm.

However, the ray traversal algorithm should not be completely hard-
wired as in previous work [Sven Woop and Slusallek 2005]. The
reason is that each acceleration data structure is suitable for a dif-
ferent type of scene. For example, a BVH is suitable for dynamic
scenes, whereas a kD-tree results in the best performance for static
scenes. Therefore, we would like to have the flexibility to change
the acceleration data structure based on the scene type, while keep-
ing the efficiency of a hardware implementation. One idea for bal-
ancing between flexibility and efficiency is to implement the tree
traversal procedure in hardware. For example, we could have a
hardware tree traversal algorithm with a programmable criterion.
Switching between a kD-tree and a BVH would be performed by
just changing the criterion (e.g., hit/miss for BVH traversal and a
ray interval for kD-tree).

Finally, we note that current graphics hardware architecture is well
suited for the shading computation. Previous work on ray tracing
on the Cell processor also suggests this is likely to be the case [Ben-
thin et al. 2006]. Thus, we believe that an ”ideal” hardware archi-
tecture for ray tracing combines current graphics hardware archi-
tecture with the specialized ray tracing hardware functions as dis-
cussed above.

6 Conclusion

In this paper, we surveyed several ray tracing algorithms on graph-
ics hardware. Implementing ray tracing on graphics hardware is
not just the matter of engineering effort. In order to implement
efficient ray tracing, the algorithm should be modified so that it uti-
lizes the parallelism on graphics hardware. We have seen that the
current performance of ray tracing on graphics hardware is compa-



rable with a highly optimized CPU ray tracing method. However,
we also pointed out that current algorithm of ray tracing on graph-
ics hardware is significantly inefficient compared to CPU ray trac-
ing, if we consider the difference between the raw computational
power of CPUs and graphics hardware. In order to fully harness
the power of graphics hardware for ray tracing, we need to take
into account architectural differences between CPUs and graphics
hardware. We discussed several issues that have not been well han-
dled by existing methods. Since we consider that the parallel nature
of programming model on graphics hardware will be the standard
model for high performance computing in the future, current work
should be applicable for other parallel processing platform, not only
for graphics hardware.

Acknowledgments

I would like to acknowledge Henrik Wann Jensen for insightful sug-
gestions for the points of discussion, Krystle de Mesa for helpful
and thorough comments on the overall text, and Will Chang for
well-directed comments on the ray tracing hardware architecture
section.

References
ARVO, J., AND KIRK, D. 1987. Fast ray tracing by ray classification. In SIGGRAPH

’87: Proceedings of the 14th annual conference on Computer graphics and inter-
active techniques, ACM, New York, NY, USA, 55–64.

BENTHIN, C., WALD, I., SCHERBAUM, M., AND FRIEDRICH, H. 2006. Ray Tracing
on the CELL Processor. Technical Report, inTrace Realtime Ray Tracing GmbH,
No inTrace-2006-001 (submitted for publication).

BUDGE, B. C., ANDERSON, J. C., GRATH, C., AND I., K. 2008. A hybrid cpu-gpu
implementation for interactive ray-tracing of dynamic scenes. Tech. Rep. CSE-
2008-9, University of California, Davis Computer Science.

CARR, N. A., HALL, J. D., AND HART, J. C. 2002. The ray engine. In HWWS ’02:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 37–
46.

CARR, N. A., HOBEROCK, J., CRANE, K., AND HART, J. C. 2006. Fast gpu ray
tracing of dynamic meshes using geometry images. In GI ’06: Proceedings of
Graphics Interface 2006, Canadian Information Processing Society, Toronto, Ont.,
Canada, Canada, 203–209.

DUTRE, P., BALA, K., BEKAERT, P., AND SHIRLEY, P. 2006. Advanced Global
Illumination. AK Peters Ltd.

ERNST, M., VOGELGSANG, C., AND GREINER, G. 2004. Stack implementation on
programmable graphics hardware. 255–262.

FOLEY, T., AND SUGERMAN, J. 2005. Kd-tree acceleration structures for a gpu
raytracer. In HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, ACM, New York, NY, USA, 15–22.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry images. ACM Trans.
Graph. 21, 3, 355–361.

GÜNTHER, J., POPOV, S., SEIDEL, H.-P., AND SLUSALLEK, P. 2007. Realtime
ray tracing on GPU with BVH-based packet traversal. In Proceedings of the
IEEE/Eurographics Symposium on Interactive Ray Tracing 2007, 113–118.

HACHISUKA, T. 2005. GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation. Addison-Wesley Professional,
ch. High-Quality Global Illumination Rendering Using Rasterization, 613–635.

HAVRAN, V., BITTNER, J., AND SÁRA, J. 1998. Ray tracing with rope trees. In 14th
Spring Conference on Computer Graphics, L. S. Kalos, Ed., 130–140.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P. 2007. Interac-
tive k-d tree gpu raytracing. In I3D ’07: Proceedings of the 2007 symposium on
Interactive 3D graphics and games, ACM, New York, NY, USA, 167–174.

KARLSSON, F., AND LJUNGSTEDT, C. J. 2004. Ray tracing fully implemented on
programmable graphics hardware. Master’s thesis, Chalmers University of Tech-
nology.

KENSLER, A., AND SHIRLEY, P. 2006. Optimizing ray-triangle intersection via auto-
mated search. rt 0, 33–38.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D., AND MANOCHA1,
D., 2009. Fast bvh construction on gpus. To be appeared on Eurographics 2009.

MORTENSEN, J., KHANNA, P., YU, I., AND SLATER, M. 2007. A visibility field
for ray tracing. In CGIV ’07: Proceedings of the Computer Graphics, Imaging and
Visualisation, IEEE Computer Society, Washington, DC, USA, 54–61.

OWENS, J. D., LUEBKE, D., NAGA GOVINDARAJU, M. H., KRÜGER, J., LEFOHN,
A. E., AND PURCELL, T. J. 2007. A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum 26, 1, 80?–113.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. 2007. Stackless kd-
tree traversal for high performance GPU ray tracing. Computer Graphics Forum
26, 3 (Sept.), 415–424. (Proceedings of Eurographics).

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2002. Ray tracing
on programmable graphics hardware. ACM Trans. Graph. 21, 3, 703–712.

PURCELL, T. J. 2004. Ray tracing on a stream processor. PhD thesis, Stanford, CA,
USA. Adviser-Patrick M. Hanrahan.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-level ray tracing
algorithm. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM, New York,
NY, USA, 1176–1185.

RESHETOV, A. 2007. Faster ray packets - triangle intersection through vertex culling.
In SIGGRAPH ’07: ACM SIGGRAPH 2007 posters, ACM, New York, NY, USA,
171.

ROGER, D., ASSARSSON, U., AND HOLZSCHUCH, N. 2007. Whitted ray-tracing
for dynamic scenes using a ray-space hierarchy on the gpu. In Rendering Tech-
niques 2007 (Proceedings of the Eurographics Symposium on Rendering), the
Eurographics Association, J. Kautz and S. Pattanaik, Eds., Eurographics and
ACM/SIGGRAPH, 99–110.

SCHMITTLER, J., WALD, I., AND SLUSALLEK, P. 2002. Saarcor: a hardware
architecture for ray tracing. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, Eurographics As-
sociation, Aire-la-Ville, Switzerland, Switzerland, 27–36.

SHAH, M. A., KONTTINEN, J., AND PATTANAIK, S. 2007. Caustics mapping: An
image-space technique for real-time caustics. IEEE Transactions on Visualization
and Computer Graphics 13, 2, 272–280.

SHEVTSOV, M., SOUPIKOV, A., AND KAPUSTIN, A. 2007. Highly parallel fast
kd-tree construction for interactive ray tracing. Computer Graphics Forum 26, 3,
305–404.

SVEN WOOP, J. S., AND SLUSALLEK, P. 2005. Rpu: A programmable ray processing
unit for realtime ray tracing. In Proceedings of ACM SIGGRAPH 2005.

SZÉCSI, L. 2006. The hierarchical ray engine. In WSCG ’2006: Proceedings of the
14th International Conference in Central Europe on Computer Graphics, Visual-
ization and Computer Vision’2006, 249–256.

SZIRMAY-KALOS, L. 1998. Global ray-bundle tracing. Tech. Rep. TR-186-2-98-18,
Vienna.

THRANE, N., AND SIMONSEN, L. O. 2005. A comparison of acceleration structures
for GPU assisted ray tracing. Master’s thesis, University of Aarhus.

WAECHTER, C., AND KELLER, A. 2006. Instant ray tracing: The bounding inter-
val hierarchy. In Rendering Techniques 2006 (Proceedings of 17th Eurographics
Symposium on Rendering, 139–149.

WALD, I., BENTHIN, C., WAGNER, M., AND SLUSALLEK, P. 2001. Interac-
tive rendering with coherent ray tracing. In Computer Graphics Forum (Pro-
ceedings of EUROGRAPHICS 2001, Blackwell Publishers, Oxford, A. Chalmers
and T.-M. Rhyne, Eds., vol. 20, 153–164. available at http://graphics.cs.uni-
sb.de/ wald/Publications.

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. G. 2006. Ray
tracing animated scenes using coherent grid traversal. ACM Trans. Graph. 25, 3,
485–493.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing deformable scenes using
dynamic bounding volume hierarchies. ACM Trans. Graph. 26, 1, 6.

WALD, I., GRIBBLE, C. P., BOULOS, S., AND KENSLER, A. 2007. SIMD Ray
Stream Tracing - SIMD Ray Traversal with Generalized Ray Packets and On-the-
fly Re-Ordering. Tech. Rep. UUSCI-2007-012.

WYMAN, C. 2005. An approximate image-space approach for interactive refraction.
ACM Trans. Graph. 24, 3, 1050–1053.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B., 2008. Real-time kd-tree construction
on graphics hardware. ACM Transaction on Graphics (conditionally accepted).


