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1 PROOF OF EXPONENTIAL PATHS
To illustrate how our method can evaluate an exponential number
of paths relative to the number of steps in the walk, we apply our
method to evaluate the integral along some function 𝑓 (𝑥) on a 1𝐷
line. We choose to evaluate our method this way as this setting
allows for analysis of the paths traced by the walk compared to a
more complicated domain of light paths in a 3𝐷 scene.

To analyze the paths of the walk we will be following the work
of Joshi et al. [2018]. Beginning with a initial state

|𝜓0⟩ = |𝑥0⟩ ⊗ (𝛼 |↑⟩ + 𝑒𝑖𝜙𝛽 |↓⟩)
𝑠⊗

|0⟩ (1)

Where 𝑥0 is the initial position of the walker. The direction register
is set to (𝛼 |↑⟩ + 𝑒𝑖𝜙𝛽 |↓⟩), with 𝛼 and 𝛽 being real values, where
|↑⟩ implies heading to the right and |↓⟩ is to the left. The remaining
qubits will be used to store the samples along the walk. In the
full rendering approach, 2𝑠 qubits would be needed as we sample
2 values at each step, but only 1 sample is needed for this task.

Evolving the system using a coin of 𝐶 =

[
1 0
0 −1

]
results in

|𝜓1⟩ = 𝑆𝐶𝑀 |𝜓0⟩ = (𝛼 |𝑥1⟩ |↑⟩ |𝑠0⟩ − 𝑒𝑖𝜙𝛽 |𝑥−1⟩ |↓⟩ |𝑠0⟩)
𝑠−1⊗

|0⟩
(2)

Joshi et al. [2018] show that for a 1𝐷 walk, the number of po-
tential paths doubles at each step. This means the total number
of paths after 𝑛 steps will be equal to 2𝑛 giving us an exponential
number of paths that could be traced. Unlike most quantum walk
works, our method is interested in the result of the paths of the
walk and not the vertices that are reached at the end of the walk.
As the walk progresses and the state evolves, we sample the 𝑓 (𝑥) at
each position visited by the walker using the𝑀 circuit described in
the main paper. This captures the path that was taken by the walker.
The circuit 𝑀 does not depend on the walk, depending solely on
the current position of the walker, so it is able to capture the paths
in the more complicated domain of rendering. Similarly to the 1𝐷
walk there will also be a similar exponential branching as the light
is scattered at each diffuse surface.
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2 IMPLEMENTATION DETAILS
As quantum computers are still at the level of circuits, implementing
complex algorithms is difficult as operations that would normally
be trivial, such as adding, require the construction of specialized
circuits. To help facilitate the construction of the circuits presented
in this paper some approximations were made to the standard
ray marching that would be typically implemented on a classical
computer. The main approximation that is made is that a look-
up table of directions must be defined before circuit construction.
This lookup table greatly simplifies the implementation of both the
surface coins and the shift operator.

Our approach does not rely on any particular implementation for
defining this lookup table, we choose uniformly sampling the unit
sphere for the results presented in the paper though empirically
random sampling can provide better results when the number of
directions used is small. It is important to note that the resolution
of the lookup table effects the scaling of the circuit. The position of
the walker must be represented with a high enough resolution such
that any a step using any vector results in the walker arriving at a
unique final location compared when starting from the same initial
location. Failing to do this, will result in the direction of the lookup
table not being accurately applied to the position of the walker.
Also, the look-up of the appropriate vector to apply at each step is
linear in the number of directions as there is no efficient memory
lookups on quantum computers. This means that the depth of the
circuit grows linearly as the number of directions increases.

Once the lookup table is defined we can then construct the cir-
cuit based on the scene and set of directions The shift operator is
implemented by controlled increment and decrement gates that
add the constant values to the position register, controlled by the
direction register. The coin operator is built out of the many con-
trolled coin gates. Each coin gate is controlled from the position
of the walker based on what voxels the walker is currently in. The
coins function as a mapping from the incoming direction ID to a
set of outgoing IDS. For the air, each ID is mapped to its self. Since
this operation has no effect, these gates are skipped in the circuit
construction, but it can be helpful to think of them conceptually
being the identity gate as then it may be treated the same as any
other coin that is present in the scene. The specular coin is a 1-to-1
mapping of directions whereas the Lambertian coin is a 1 to many
mapping. The exact directions that are elected for the mappings
may differ depending on how the set of directions but the directions
and weights must be selected such that they respect the properties
of BSDF that the coin is emulating.
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