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Figure 1: Left: Modified Cornell box rendered with our method using 32 paths per pixel (structural noise is due to limitations of
simulation of quantum computing). Center: Error convergence plot. Our quantum light transport simulation with quantum
ray marching (blue) converges asymptotically faster than classical Monte Carlo (MC) rendering (green). Right: Diagram of how
light transport paths are sampled between when each bounce branches into two. Classical MC (top) will visit one random light
transport path at a time and needs several samples (shown in different colors) to cover all the possible light transport paths
faithfully. Thanks to the exponential nature of quantum computing, the quantum state in our quantum method captures all
the exponential numbers of light transport paths in one quantum estimate (bottom).

ABSTRACT
The use of quantum computers in computer graphics has gained
interest in recent years, especially for the application to render-
ing. The current state of the art in quantum rendering relies on
Grover’s search for finding ray intersections in𝑂 (√𝑀) for𝑀 prim-
itives. This quantum approach is faster than the naive approach
of 𝑂 (𝑀) but slower than 𝑂 (log𝑀) of modern ray tracing with an
acceleration data structure. Furthermore, this quantum ray trac-
ing method is fundamentally limited to casting one ray at a time,
leaving quantum rendering scales for the number of rays the same
as non-quantum algorithms. We present a new quantum render-
ing method, quantum ray marching, based on the reformulation
of ray marching as a quantum random walk. Our work is the first
complete quantum rendering pipeline capable of light transport
simulation and remains asymptotically faster than non-quantum
counterparts. Our quantum ray marching can trace an exponential
number of paths with polynomial cost, and it leverages quantum
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numerical integration to converge in 𝑂 (1/𝑁 ) for 𝑁 estimates as
opposed to non-quantum 𝑂 (1/√𝑁 ). These properties led to first
quantum rendering that is asymptotically faster than non-quantum
Monte Carlo rendering. We numerically tested our algorithm by
rendering 2D and 3D scenes.
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1 INTRODUCTION
Recent advances in quantum computing have opened up opportu-
nities to fundamentally accelerate certain numerical computation
methods. One example is quantum numerical integration which
was introduced to computer graphics by Johnston [2016]. Quantum
numerical integration can be seen a fundamental improvement
over Monte Carlo (MC) integration due to its faster𝑂 (1/𝑁 ) conver-
gence than the classical 𝑂 (1/√𝑁 ) convergence for 𝑁 estimates. It
also has another unique property that its error is independent from
the variance of the integrand unlike MC integration [Shimada and
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Hachisuka 2020]. Due to the popularity of MC integration in light
transport simulation, it would be interesting to study how to apply
quantum numerical integration to light transport simulation.

To fully utilize quantum numerical integration in light transport
simulation, one would need to implement ray tracing on quantum
computers because ray tracing is a key component in MC light
transport simulation. Currently, ray tracing on quantum computers
(which we call quantum ray tracing in this paper) is said to be
realizable based on Grover’s search algorithm [Alves et al. 2019;
Lanzagorta and Uhlmann 2005; Santos et al. 2022]. Recently, Lu and
Lin [2022a] speculated that a potential strength of light transport
simulation on quantum computers (which we call quantum light
transport simulation in this paper) is that it can branch a light
transport path exponentially with a polynomial cost by utilizing
the exponential nature of qubits (quantum bits). It is in contrast
to classical MC light transport simulation where it stochastically
selects a single path to avoid this exponential branching [Kajiya
1986]. Quantum numerical integration uses this property where
the integrand is evaluated against all the possible inputs (e.g., an
exponential number of branching paths) with polynomial cost to
prepare a quantum state for numerical integration.

While all those properties sound attractive, we identified two
fundamental issues in this current formalism of quantum light
transport simulation via quantum ray tracing. The first issue is
that each quantum ray tracing operation based on Grover’s search
costs 𝑂 (√𝑀) for 𝑀 primitives [Lanzagorta and Uhlmann 2005].
While this is faster than a naive classical approach of 𝑂 (𝑀), it is
asymptotically slower than the 𝑂 (log𝑀) of ray tracing with a tree
data structure on classical (i.e., non-quantum) computers [Wald and
Havran 2006]. With this asymptotic performance gap, even when
quantum computers become stable and fast in the future, quantum
ray tracing is not very attractive over classical ray tracing.

The second issue is that the speculation that an exponential
number of light transport paths can be computed at a polynomial
cost is in fact false for ray tracing with Grover’s search. While
qubits might be able to store an exponential number of search re-
sults in a polynomial storage cost, finding an exponential number of
search results with the Grover’s algorithm will take an exponential
computation cost because each search result needs to be read out
into a classical bit first. Quantum light transport simulation with
Grover’s search thus scales the same way as the classical counter-
part for the number of sampled paths, that is, exponential cost for
an exponential number of paths. If we were to use MC sampling
to avoid this exponential branching (like path tracing), the process
becomes incompatible with quantum numerical integration.

We propose a new formulation of quantum light transport sim-
ulation with a new quantum ray marching algorithm to address
these issues. Unlike quantum ray tracing with Grover’s search, we
employ ray marching as its core method where the scene geometry
is represented by a voxel data as a promising alternative to ray trac-
ing [Xie et al. 2022]. On the first issue of scaling against classical
algorithms, our quantum ray marching scales equivalently to classi-
cal ray marching for the number of voxels and the number of steps.
While this property alone is still neither good nor bad, quantum
ray marching simultaneously solves the second issue and is capable
of computing an exponential number of light transport paths in a

polynomial time. We achieve this property by utilizing quantum
randomwalk [Aharonov et al. 1993] to prepare a superposition of an
exponential number of paths as qubits in a polynomial time [Joshi
et al. 2018]. Being a fully quantum approach, our approach can
benefit from the faster convergence𝑂 (1/𝑁 ) of quantum numerical
integration. Our work is the first to provide a full picture of quan-
tum light transport simulation without reading out qubits until
the very end, with its fundamental advantages maintained over
classical approaches. We also tested these properties numerically
as a proof of concept. To summarize, our contributions are

• Formulation of ray marching on quantum computers.
• Quantum light transport simulation algorithm based on
quantum ray marching with exponential branching.

• First full pipeline of quantum light transport simulation that
is asymptotically faster than MC light transport simulation.

Fig. 1 shows a result of our method via a simulator of quantum
computation. The reference solution was computer classically via
MC integration using a larger number of samples. Due to the limita-
tions of current (both actual and simulated) quantum computers we
have access to, it is expected that the visual quality is not as good as
what we typically see with MC rendering. This result mainly serves
as a proof of concept that our method is implementable and has a
faster convergence as expected. The amount of error is also worse
in our method, which is expected for simple scenes with smooth
illumination where MC integration is expected to work well. Nev-
ertheless, unlike simulated results in prior work [Lu and Lin 2022b;
Santos et al. 2022] that uses classical ray tracing in its numerical
results, our results are from a fully quantum light transport simula-
tion algorithm and are some of the most complicated scenes ever
numerically tested on fully quantum rendering algorithms [Alves
et al. 2019].

2 BACKGROUND
Since quantum computing is relatively new to typical readers in
computer graphics, we first summarize the current approaches of
quantum numerical integration and quantum ray tracing. Readers
familiar with those topics may skip this section. Interested readers
can refer to the book by Johnston et al. [2019] for a general review.

2.1 Basics of Quantum Computing
Qubits. A qubit is the quantum equivalent of a bit in classical

computing. Unlike a bit, which can only be a 0 or 1, a qubit is
represented by a complex vector, known as a state vector. Each
entry in this vector represents the amplitude of the corresponding
state. The equivalent of 0 and 1 states for a qubit are

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
(1)

for |0⟩ and |1⟩. A ket, |⟩, represents a column vector and a bra, ⟨|,
is a row vector (as opposed to complex conjugate). We will stick
with this notation for the sake of brevity while admitting a lack of
mathematical rigor, which is sufficient to explain our method.

We can represent a mixture of states known as a superposition in
qubits. A superposition of the |0⟩ and |1⟩ states can be written as

|𝜓 ⟩ =
√︁
1 − 𝛼2 |0⟩ + 𝛼 |1⟩ (𝛼 ∈ [0, 1]) (2)
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where 𝛼 is the amplitude of the |1⟩ state. The amplitude 𝛼 is a
complex number in general, but for our purposes, 𝛼 can be simply
thought of as the square root of the probability that a given state
will be measured. As such, the norm of a state vector must be
1. Measuring a qubit is a destructive operation and collapses the
superposition into a single state.

A single qubit is not sufficient for doing much useful work.When
working with multiple qubits, the state can be represented as a
tensor product of qubit states as |0⟩⊗ |1⟩. We often drop the operator
⊗ and write as |0⟩ |1⟩ for brevity when it is not misleading. The state
vector of a systemwith 𝑛 qubits can be described by 2𝑛 amplitudes.

We will utilize two approaches for representing values using
qubits [Weigold et al. 2022]. The first, known as basis encoding,
stores data as binary data similar to non-quantum computers. The
other, amplitude encoding, uses the amplitude of the different states
to store data. Since the data is stored in the amplitudes, the data
must be normalized first (i.e., the 𝑙2 norm is one).

Gates. There are several models of quantum computing and
the most prevalent one for our work is the quantum circuit model
[Deutsch 1989]. In this model, the state of the system is evolved
by the application of quantum gates, similarly to how logic gates
are applied to bits in non-quantum computers. These gates can be
thought of similarly to classical logic gates but operate on qubits.

Quantum gates are often defined as matrices. Two gates that
will be relevant to our work are the 𝑋 and 𝑅𝑦 gates. The 𝑋 gate
is the quantum version of a bit flip, changing |0⟩ to |1⟩ and vice
versa. The 𝑅𝑦 gate, on the other hand, does not have a classical
counterpart. This gate applies a rotation around the 𝑌 -axis to a
qubit. Gates are not limited to acting on a single qubit and can
be applied to multiple qubits at once. Controlled gates [Barenco
et al. 1995] use such operations. These gates can be thought of as a
version of the non-controlled gate but only act on the target qubit
when the control qubit is in a desired state.

There are physical restrictions on the types of gates that can be
constructed in practice. In particular, all gates must be physically
realizable and must be consistent with the laws of quantum me-
chanics, meaning that all gates take the form of unitary matrices
[Barenco et al. 1995]. While it may seem like a severe restriction
of quantum computers, it can be shown that the Toffoli gate, a 𝑋
gate with two control qubits, is universal [Aharonov 2003] (i.e.,
anything we can do with non-quantum computers can be done on
quantum computers). We assume that all the gates are available.

2.2 Quantum Ray Tracing with Grover’s Search
Grover’s search [Grover 1996] was by Lanzagorta and Uhlmann
[2005] to computer graphics. Their quantum ray tracing approach
formulates the computation of the intersection between a ray and
𝑀 primitives as a search problem of finding a primitive that in-
tersects with a ray. Recent work by Alves et al. [2019] showed a
practical implementation of this approach for simple scenes with
orthographic rays. In the absence of an acceleration data structure,
non-quantum computers would require 𝑂 (𝑀) to perform such a
search, whereas Grover’s search can accomplish this task in𝑂 (√𝑀).
The latest approach along this line by Santos et al. [2022] which
supports recursive ray tracing [Whitted 1979].

Although several improvements have been proposed over the
basic approach, even the latest approach is still 𝑂 (√𝑀), which is
slower than the 𝑂 (log𝑀) of ray tracing with a tree data structure
on non-quantum computers [Wald and Havran 2006]. Quantum
ray tracing with Grover’s search does not accelerate ray tracing
of multiple rays either beyond what we can do with parallel com-
putation. When tracing 𝑁 rays, 𝑂 (𝑁 ) measurements are required
to find intersecting primitives, which is the same scaling as the
non-quantum approach. Santos et al. [2022] thus claim that quan-
tum ray tracing would be mainly useful for dynamic scenes where
construction of an acceleration data structure would need at least
𝑂 (𝑀) for each frame and thus 𝑂 (√𝑀) of Grover’s search is better.
We instead propose an alternative approach to perform ray tracing
operations based on ray marching to step aside these limitations
due to Grover’s search.

2.3 Quantum Numerical Integration
Both MC integration and quantum numerical integration aim to
estimate a definite integral in the form of

𝐹 =

∫
D

𝑓 (𝑥)𝑑𝑥, (3)

where D is the domain of integration and 𝑓 (𝑥) is a scalar function
that does not have an analytical expression for its integral 𝐹 . MC
integration uses random samples to approximate 𝐹 as the expected
value over those random samples. Without loss of generality, we
assume that 𝐹 ∈ [0, 1] and 𝑓 (𝑥) is appropriately scaled if it is not.

In quantum numerical integration, one would need to have a
quantum circuit that computes 𝑓 (𝑥) for input qubits,𝑥 , representing
all the possible values of 𝑥 given the representation of numbers
(e.g., 32-bit floating point numbers). Given such a circuit, it is easy
to construct another qubit

|𝐹 ⟩ =
√︁
1 − 𝐹 2 |0⟩ + 𝐹 |1⟩ , (4)

where it encodes the correct integral 𝐹 up to the limit of the precision
of 𝑥 , with the computation cost equivalent to evaluating 𝑓 (𝑥) for a
single sample in MC integration on a classical computer. Quantum
numerical integration uses multiple instances of |𝐹 ⟩ to estimate the
amplitude 𝐹 since it is impossible to read 𝐹 directly from |𝐹 ⟩. This
process is called amplitude estimation in quantum computing and
was introduced to computer graphics by Johnston [2016] followed
by more recent developments [Shimada and Hachisuka 2020].

Quantum numerical integration has two unique properties.
Firstly, it internally encodes 𝐹 and thus its estimation of 𝐹 is in-
dependent of the variance of 𝑓 (𝑥). Its accuracy depends only on
amplitude estimation of 𝐹 as demonstrated by prior work [John-
ston 2016; Shimada and Hachisuka 2020]. MC integration requires
more samples to reach the same error when the integrand 𝑓 (𝑥) has
a larger variance, and variance reduction techniques need to be
employed. Such variance reduction is likely unnecessary or will be
in a different form in quantum numerical integration.

Secondly, quantum numerical integration achieves 𝑂 (1/𝑁 ) con-
vergence for 𝑁 evaluations of 𝐹 , in contrast to the 𝑂 (1/√𝑁 ) con-
vergence of MC integration for 𝑁 evaluations of 𝑓 (𝑥). Note that
the computational complexity for one evaluation is considered the
same despite the differences between 𝐹 and 𝑓 (𝑥). Even with quasi
MC integration, the best possible convergence is 𝑂 ((log𝑁 )𝑑/𝑁 )
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for 𝑑 dimensions [Lemieux 2009]. Quantum numerical integration
is thus asymptotically faster than non-quantum approaches.

We utilize quantum numerical integration based on the work
by Nakaji [2020] and Shimada and Hachisuka [2020], although
other methods can be employed. Our main focus is to evaluate
𝑓 (𝑥) on quantum computers for the case where 𝑓 (𝑥) represents the
measurement contribution function in the path integral formulation
for a path 𝑥 . We then use quantum evaluation of 𝑓 (𝑥) to prepare
|𝐹 ⟩ as a superposition of all the possible paths in 𝑥 in the evaluation
of 𝑓 (𝑥) to support quantum numerical integration.

3 OVERVIEW
We use ray marching as a basic building block in quantum light
transport simulation. We take a ray and its first intersection point
as input and outputs the resulting radiance that is emitted from
the intersection point in the inverse direction of the ray. Fig. 2
illustrates a circuit of our quantum ray marching.

Unlike the classical counterpart or even quantum ray tracing
with Grover’s search, our quantum light transport can process an
exponential number of paths in polynomial storage and computa-
tion cost because the states of ray marching are all superpositioned
as qubits. Our quantum ray marching scales equivalently to non-
quantum ray marching for𝑀 voxels, which makes it a more feasible
than quantum ray tracing with Grover’s search. The performance
gain in our method is not directly coming from ray marching itself
since it scales equivalently to the classical one when all the paths
are processed in parallel. It is due to its compatibility to quantum
numerical integration.

Our quantum ray marching works as a quantum evaluation of
the integrand 𝑓 (𝑥) which allows us to take a superposition of all
the possible paths 𝑥 and construct the qubit |𝐹 ⟩. As a result, our
method can handle an exponential number of rays in a polynomial
cost (both storage and time) and simultaneously achieves faster
𝑂 (1/𝑁 ) convergence for 𝑁 estimates, both of which fundamentally
outperform algorithms on non-quantum computers. The above
properties cannot be achieved by any of the combinations of classi-
cal and quantum approaches at the moment. For example, quantum
ray tracing with Grover’s search scales worse than non-quantum
ray tracing, and it scales linearly to the number of rays. One might
consider running ray tracing classically, loading the results into
qubits, and performing quantum numerical integration to combine
both. This hybrid of non-quantum ray tracing and quantum numer-
ical integration achieves better scaling for the number of primitives,
though the construction of the qubit |𝐹 ⟩ for quantum numerical
integration takes a prohibitive amount of computation (i.e., need to
generate all the possible paths 𝑥 as an input to a quantum circuit to
construct |𝐹 ⟩). Our approach is the first to provide a full pipeline of
quantum light transport simulation that would be fundamentally
faster than non-quantum counterparts.

4 QUANTUM RAY MARCHING
We consider ray marching against a voxel grid of 3D surfaces, not
3D volumetric and solid objects. Each voxel is thus either empty or
contains a piece of 3D surfaces. Our main idea is to formulate ray
marching as a (quantum) random walk which fits well to the model
of quantum computing and would not involve a search problem.

4.1 Ray Marching as a Discrete RandomWalk
Given a camera configuration and a pixel, we assume that we have
already found the first hit point of a ray through the pixel. This
initialization step can be done on a non-quantum or quantum com-
puter using the existing methods. Let us denote the position of this
first intersection point as 𝑥0 and the direction of the ray as 𝜔0 and
we start a (discrete) random walk process.

We define the state of our random walk as a position 𝑥𝑖 in the
3D space and it moves along the ray direction 𝜔𝑖 at each step. A
scattering event will change the direction to a new direction 𝜔𝑠 if
it hits a surface. Following this model, each step 𝑖 can be written as

𝜔𝑖+1 =

{
𝜔𝑠 (𝑝𝑖 is on surface)
𝜔𝑖 (otherwise) (5)

𝑝𝑖+1 = 𝑝𝑖 + Δ𝑉𝜔𝑖+1, (6)

where Δ𝑉 is a distance along 𝜔𝑖 to the next voxel.
To implement this process on a quantum computer, we can use

the equivalent of a randomwalk for quantum computing, a quantum
walk [Aharonov et al. 1993]. Both quantum and random walks
transition from their current states to the new one step by step.
The key difference is that, instead of deciding on a single state
to visit at each step, a quantum walk creates a superposition of
states at each step as if we were to step in every possible direction at
each 𝑥𝑖 . For instance, if we have 𝑛 possible (discretized) scattering
directions, a quantum walk can take all the directions into account
by constructing a superposition of all the 𝑛 directions and the next
states can be similarly defined as a superposition of all the𝑛 possible
next positions. Each step of a quantum walk thus becomes

|𝑝𝑖 ⟩ |𝜔𝑖+1⟩ = 𝐶 |𝑝𝑖 ⟩ |𝜔𝑖 ⟩ (7)
|𝑝𝑖+1⟩ |𝜔𝑖+1⟩ = 𝑆 |𝑝𝑖 ⟩ |𝜔𝑖+1⟩ . (8)

The unitary matrix 𝐶 changes |𝜔𝑖 ⟩ based on the position of the
walker. Similarly, 𝑆 is another unitary matrix that moves the walker
by Δ𝑉𝜔𝑖 . We evolve the quantum walk until a desired number
of steps are taken, and then measure the resulting quantum state.
Both 𝑝 and 𝜔 are discretized and thus it forms a discrete random
walk. Note that discretization of 𝑝 and 𝜔 happen also in classical
computers (e.g., 32-bit floating point numbers), so it is not specific
restriction of our approach. If we measure this qubit, it collapses
into a single state, giving us a random path among all the possible
paths visited by the walker, proportional to the probability that the
walker was in that state after our chosen number of steps.

4.2 Quantum RandomWalk
We now explain the details of the algorithm. Our choices regarding
encoding of values for positions and directions are explained later.
We construct a quantum walk using two (quantum) registers (en-
coding the position of the walker and its direction), a coin gate, and
a shift gate. Let us illustrate the function of these gates with a 1D
example. The walk starts by initializing the position register with
𝑥0. Next, the coin operator, 𝐶 is applied to this register and |0⟩ as

(𝐼 ⊗ 𝐶) |𝑥0⟩ |0⟩ = |𝑥0⟩ ⊗ 1√
2
( |0⟩ + |1⟩). (9)

The name coin operator is derived from the fact that it replaces
the direction deciding portion of the classical walk, which could
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𝑠

𝑠

𝑝

𝑑
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. . .

Path, 𝑃

|𝑓 (𝑥)⟩
|𝐿𝑒 ⟩

Sample, 𝑀
|𝜌⟩
|𝑥⟩

Init (𝑥0, 𝜔𝑜 )
Shift, 𝑆

|𝜔⟩ Coin,𝐶

Repeat 𝑠 times

|0⟩ |𝐿𝑒𝑖 ⟩

|0⟩ |𝜌𝑖 ⟩

Figure 2: Overview of our ray marching circuit. The Init circuit initializes the position and direction of the walk. Next, the
Sample gate encodes the emitted radiance and reflectance of the surface at the given position into a qubit from the |𝐿𝑒 ⟩ and |𝜌⟩
registers. After, the Coin gate scatters the ray in superposition over the outgoing directions. Finally, the Shift gate steps one
unit along the ray. This process is repeated for each step of the walk. After all the samples are taken, Path, expanded in Fig. 3,
evaluates the samples stored in |𝐿𝑒 ⟩ and |𝜌⟩ to evaluate 𝑓 (𝑥) for all the paths in superposition.

theoretically be done by flipping a coin in this example. Instead
of choosing a direction randomly, it creates a superposition of
states that represent all the directions the walker can go in. In this
example, |0⟩ means moving the walker to the left and |1⟩ means
moving the walker to the right. The shift operator 𝑆 is then applied
to move the walker following the rules we have defined for the coin
operator

𝑆 ( |𝑝𝑖 ⟩ ⊗ 1√
2
( |0⟩ + |1⟩)) = 1√

2
( |𝑝𝑖−1⟩ |0⟩ + |𝑝𝑖+1⟩ |1⟩), (10)

where we used 𝑝𝑖 to denote the 𝑖th discretized location and we
considered 𝑝𝑖 = 𝑥0. After repeating this process, we have a super-
position |𝑝⟩ of all the possible positions by the walker.

We are interested in sampling the paths along the walk and not
the final state, thus we apply another𝑀 gate

𝑀 |𝑝⟩ |0⟩ |0⟩ = |𝑝⟩ |𝐿𝑒 ⟩ |𝜌⟩ (11)
to evaluate the emission 𝐿𝑒 and reflectance 𝜌 into two qubits via
amplitude encoding the value in the 1 state of the qubit, given 𝑝 .
The distributions of directions are selected such that the product
of the BRDF and the geometry terms cancels out with the PDF to
leave only the reflectance. It is important to note that this will be
applied to a superposition of positions in the scene and as such,
will sample all the positions the walker is currently located at.

Coin Gates. Coin gates represent ray-surface (non)interactions.
We explain three different coins, one models the vacuum the other
two coins model different surfaces. We follow the work of Ahmad
et al. [2020] and use position dependent coins. This approach uses
different coins controlled by the position of the ray. The use of po-
sition dependent coins allows the definition of scattering behaviors
for different surfaces.

The vacuum coin models null interaction and is thus simply the
identity gate. One surface coin is the specular surface coin. This coin
maps the incident direction to the appropriate matching reflected
direction over the normal of the surface. This mapping can be
precalculated and a circuit simply carries out this mapping. While
implemented, we did not use this specular coin in our experiments.

Another surface coin is the Lambertian surface coin. Since sur-
faces now scatter light uniformly, the resulting direction qubit state
should be a superposition of outgoing directions. A challenge here
is that that different incident directions map to the identical set of

scattered directions. Since quantum gates must be reversible, it may
seem like this coin gate is not realizable. One potential solution
would be to add another register to identify the direction at each
step, but it wouldmake circuits wider as wewould need to introduce
additional 𝑑 qubits (one direction) for each step. Our alternative
solution is to utilize of the fact that the amplitude of a state may be
negative. We can then map different input ray directions to differ-
ent quantum states by shuffling the signs of the amplitudes while
keeping amplitudes (directions). By mapping each direction to a
unique quantum state in this fashion, we can construct a unitary
matrix that enables the desired scattering behavior while being
reversible.

While theoretically possible, a more complicated circuit and
more qubits would be needed for other scattering events (e.g., glossy
surfaces), so we limit ourselves to simple materials in this paper.

4.3 Quantum Evaluation of Path Contribution
Just being able to sample a path 𝑥 is not sufficient for a full pipeline
of quantum light transport simulation. We need to evaluate the con-
tribution function 𝑓 (𝑥) in a quantum circuit where 𝑥 is potentially
a superposition of many paths represented as qubits. To proceed,
note that the result so far is a quantum state encoding the samples
along the light paths that have been traced;

|𝐿𝑒 ⟩ |𝜌⟩ =
𝑠⊗
𝑖=0

|𝐿𝑒𝑖 ⟩ |𝜌𝑖 ⟩ (12)

where 𝑠 + 1 is the number of steps taken and |𝐿𝑒𝑖 ⟩ and |𝜌𝑖 ⟩ are
the qubits storing emission and reflectance at the 𝑖th step of walk.
Before we can apply any form of quantum amplitude estimation to
this state, we need to calculate 𝑓 (𝑥) using the values encoded in
these qubits. To achieve this, we want to construct a circuit 𝑃 :

𝑃 |0⟩
𝑠⊗
𝑖=0

|𝐿𝑒𝑖 ⟩ |𝜌𝑖 ⟩ = (
√︃
1 − 𝑓 (𝑥)2 |0⟩ + 𝑓 (𝑥) |1⟩)

𝑠⊗
𝑖=0

|𝐿𝑒𝑖 ⟩ |𝜌𝑖 ⟩

(13)
where

𝑓 (𝑥) =
𝑠∑︁
𝑖=0

𝐿𝑒𝑖

𝑖−1∏
𝑘=0

𝜌𝑘 . (14)

Evaluating 𝑓 (𝑥) requires the ability to multiply and add values
encoded in the amplitudes 𝐿𝑒𝑖 and 𝜌𝑖 . While arbitrary arithmetic
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operations on amplitudes are challenging in general, we were able
to take inspiration from the work of Wang et al. [2020] to evaluate
𝑓 (𝑥) in amplitudes. Fig. 3 illustrates this process. To do so, we first
add qubits |Steps⟩ to basis-encode 𝑖 . These additional qubits are
used to create a superposition of all the relevant terms to control
which terms should be multiplied and added to the output qubit
(Fig. 3). We then perform multiplications using multi-controlled 𝑋
gates where each gate will be controlled by the step number 𝑖 and
all the samples involved with the summation up to a specific step.
The resulting amplitude 𝑓 ′ (𝑥) becomes

𝑓 ′ (𝑥) = 1
𝑠 + 1

𝑠∑︁
𝑖=0

𝐿𝑒𝑖

𝑖−1∏
𝑘=0

𝜌𝑘 =
1

𝑠 + 1 𝑓 (𝑥) (15)

where the division by 𝑠 + 1 is a side-effect of this calculation. We
thus multiply 𝑠 +1 to the result of amplitude estimation to recover 𝐹 .
Note that no random sampling of 𝑓 (𝑥) is done here as it is evaluated
at all the possible 𝑥 as a superposition in qubits.

𝐿𝑒0 𝐿𝑒1 𝐿𝑒2 𝐿𝑒3

𝜌0 𝜌 [0,1] 𝜌 [0,2]

00 01 10 11

|0⟩ |𝑓 ′ (𝑥)⟩
|𝐿𝑒 ⟩
|𝜌⟩

|Steps⟩ 𝐻

Figure 3: Internals of the Path gate for a three step walk.
Each multi-controlled 𝑋 gate calculates one of the terms of
the sum in Eqn. 15. The ancillary register, |Steps⟩ is used to
select the term of the sum.

4.4 Implementation
We explain the reasoning behind our implementation choices below.
We release our implementation to facilitate the reproducibility.

Encoding of Numbers. We encode the origin and direction
via basis encoding which is basically fixed-point binary encoding
of values as states. Basis encoding allows us to trivially perform
the same class of computations on binary numbers in classical
computers. For origins, we use an integer value to represent a voxel
index, and a fixed-point fractional value to represent a sub-voxel
location within the voxel. For directions, rather than representing
a direction vector as three values, we tabulate a predefined set of
directions as a 1D array of 3D vectors and index it via one integer
value. This representation is still basis encoding since one state
corresponds to one direction, but dramatically simplifies the circuit.

Another option, amplitude encoding, represents a value as a
magnitude of a specific state, allowing us to represent a real number
with an amplitude value without any discretization. We use this
encoding for 𝐿𝑒 and 𝜌 to evaluate 𝑓 (𝑥) (thus 𝑓 ′ (𝑥)).

Scene Representation. We choose to represent a scene as a
voxel grid for simple lookup and indexing of the needed scene
information. At each voxel, we store material properties: emission,
reflectance, (averaged) surface normal, and type of that voxel. We
make two assumptions to simplify the circuit; the emitted radiance
is uniform in all directions and all surfaces are Lambertian. The
voxel type defines the type of the coin gate as described earlier.

Currently, the scene description will need to be built as a quan-
tum circuit which calculates the voxel data on the fly (conceptually
the same as procedural modeling) since quantum computers have
no model of memory or storage at this moment. It is, however, not
a fundamental requirement of our quantum ray marching and we
expect that a quantum storage [Giovannetti et al. 2008] will allow
us to store a scene description, just like how a scene is stored in
non-quantum computers.

One potential benefit of a quantum storage of voxels is that the
number of qubits needed to store voxels will be logarithmic to the
number of voxels. For instance, suppose that we have a binary voxel
where we have 1 for a (partially) occupied voxel and 0 otherwise.
If we have 2𝑚 such voxels, we can encode it in a superposition
using𝑚 qubits only, where the state corresponds to an index of
each voxel. It is in contrast to non-quantum computers where we
would need to store 2𝑚 bits, thus voxels can scale much better on
quantum computers than on classical computers.

Amplitude Estimation. The result of our quantum light trans-
port circuit is a qubit that stores 𝐹 ′ (integral of 𝑓 ′ (𝑥)) at the desired
point in the scene as the amplitude of the 1 state. To estimate 𝐹 ′, we
use the approach from Nakaji [2020] and Shimada and Hachisuka
[2020]. Unlike the approach taken by Johnston [2016], it does not
use phase estimation. As identified by Shimada and Hachisuka
[2020], the use of amplitude amplification instead of phase esti-
mation can cut down on the number of qubits and multi qubit
gates.

5 RESULTS
As a proof of concept, we conducted numerical experiments for
our method. The aim is to numerically confirm that our method is
capable of simulating quantum light transport. We tested our meth-
ods both in 2D and 3D. We also tested if our method can achieve
the claimed convergence rate of quantum numerical integration by
comparing our result with the reference solution computed classi-
cally for the same input scene data with same discretization. The
scene complexity is limited by available computing environments
of quantum computing at the moment. Nevertheless, our scenes
are much more complicated than scenes rendered by another fully
quantum rendering algorithm to the date [Alves et al. 2019].

Fully Quantum 2D Light Transport. We identified that quan-
tum computers (real or simulated) are not yet capable to run our
complete circuit for 3D scenes. We thus tested our circuit for simpli-
fied 2𝐷 ray marching. Only by stepping down into 2𝐷 , we could run
our circuit on a simulator of quantum circuits. The scene is modeled
as a 82 grid. At each cell, we store the same information that we
would store in a 3D scene. The only change is that the directions
are now defined on a unit circle instead of a sphere. We use our
method to create a light map by sampling the incoming light at the
center of every cell in the scene. We then use the resulting light
map to render a higher resolution image, using bilinear interpola-
tion to sample from the light map. The computation took roughly
five days for the full image. Fig. 4 shows the resulting images of
our method. Quantum ray marching is capable of capturing both
direct and indirect lighting in the scene; for example, the light being
reflected off the colored walls causing some color to spill onto the
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floor. While the scene is extremely simple, it demonstrates that our
method can simulate light transport fully by quantum computing.

Emulated 3D Light Transport. Simulating our quantum cir-
cuit is very computationally expensive even for the simple 2D scene
and we found that rendering 3D scenes through simulated quan-
tum circuits is infeasible. We thus took a different approach to
evaluate our method in 3D. Instead of feeding our quantum circuit
to a generic quantum circuit simulator, we developed a classical
ray-marcher that samples the scene under the same discretization
and scattering behavior as our quantum algorithm (i.e., branching
exponentially). Our emulator yields the same samples that would be
obtained by the quantum walk but it simply takes exponential time
with the number of steps instead of a polynomial time. This emula-
tor replaces the sampling part of our quantum circuit. We call this
approach emulated to distinguish it from the fact that our 2D result
are from simulation of quantum circuits. This emulation allows us
to validate the properties of our method without compromising
anything, except that the actual running time is now exponential.
To further simplify the problem, we limited the number of paths.
These paths are selected at random from the set of all the paths and
are then used to initialize |𝐿𝑒 ⟩ and |𝜌⟩. We can apply the 𝑃 gate
(Fig. 3) to generate the final path contribution. We then use the
amplitude estimation method [Nakaji 2020] to estimate the final
value.

Figs. 1 and 5 show the resulting rendered images. The images
contain structural noise due to discretization and a limited number
of paths used to keep the computation cost feasible. Unlike previous
quantum ray tracing methods [Lu and Lin 2022a; Santos et al. 2022],
our approach can intrinsically handle paths with multiple bounces
as well as other effects such as soft shadows.

Convergence Rates. To compare convergence rates, we need a
common metric for computation cost across classical and quantum
computers, which is difficult as how the methods function are
inherently different. We decided to use the number of samples in
MC integration or the number of instances of quantum amplitude
estimation as the common metric. For the classical method, we will
be using the number of paths traced, and, for our method, we will
use the number of times our ray marching circuit was executed. We
argue that this metric is fair as it is the way which both methods
sample the scene by one estimation. We could use the number of
light transport paths sampled, but we believe it is unfair for MC
integration since our quantum method cannot read out 𝐹 ′ directly
while it samples an exponential number of light transport paths.

Fig. 1 shows that our method converges with the expected be-
havior. The classical MC method has the convergence with a slope
of about −0.471. Our method has a better-than-expected (< −1)
slope of about −1.407. While this convergence is better than the
classical approach, the actual error of our method starts higher than
classical MC, which is likely because the scene is dominated by
low-variance light transport effects. The error plot however shows
that our method converges as expected.

6 DISCUSSION
Though there has been limited work in the field of computer graph-
ics, quantum numerical integration been an active area of research

in other fields. One of these fields is finance, where the problem of
pricing financial derivatives is classically done via MC integration.
Those prior work [Li and Neufeld 2023; Rebentrost et al. 2018; Wo-
erner and Egger 2019] have looked at the application of quantum
mean estimation methods for this problem. For these methods, the
challenge of state preparation for quantum numerical integration
was side-stepped by assuming that the solution to the integral is
readily computable. While this assumption is impractical since this
solution is what we wanted to compute, it allows for such quantum
methods to be tested and analyzed. Our work, in contrast, shows
how to exactly compute the integrand for the path integral for light
transport on quantum computers and we numerically tested our
method without making this impractical assumption. The most
similar work to our method is by Chakrabarti et al. [2023]. They
proposed to use quantum random walks to estimate the volume
of a given shape. Their method uses continuous quantum walks
and simulated annealing in contrast to our approach that relies on
discrete walks and mean estimation.

There are two metrics in which a quantum circuit can scale and
both of them are important for the usability of an algorithm. The
first is the width of the circuit, or howmany qubits are needed.With
current quantum computers being very limited in the number of
qubits, the width is a strict restriction in being able to run on physi-
cal devices. It is also an issue for simulating the circuit on a classical
computer as the size of the quantum state grows exponentially in
the number of qubits. Our approach scales in𝑂 (𝑠 + 𝑙𝑜𝑔(𝑝) + 𝑙𝑜𝑔(𝑑))
in the number of qubits needed. That is, it scales logarithmically
in the number of positions 𝑝 along an axis and directions 𝑑 that
can be represented in the scene, but linear in the number of steps 𝑠
needed.

The other metric is the depth of the circuit. Our circuit scales in
depth by 𝑂 (𝑠 (𝑝3 + 𝑑)). Scaling cubically in scene size is not ideal,
but it is still viable. The cubic scaling regarding the dimension does
happen also in non-quantum ray marching if each voxel’s data is
generated on the fly as in procedural modeling. In most cases, such
procedural generation would not scale this badly, so our analysis is
only the worst case. The main issue is that quantum computers do
not have any form ofmemory or storage that can be referenced. This
restriction means that each voxel must be represented in the circuit.
As there are 𝑝3 voxels, we get 𝑝3 gates at each step. In practice,
not all voxels have completely different materials, allowing us to
simplify the circuit to use fewer gates by combining gates. This
issue can also be avoided if quantum random memory became
available [Giovannetti et al. 2008]. The material values could then
be accessed in a similar fashion as on a classical computer.

Limitations. There are limitations came from our current im-
plementation. Foremost is its reliance on large many-qubit gates.
Current generation of quantum computers support a limited set of
one and two qubit gates, so these larger many-qubit gates need to
be decomposed into many one or two qubit gates. This decomposi-
tion significantly increases the depth of the circuit. The increase in
the depth in turn increases the amount of time the system needs
to stay coherent, and eventually leads to the chance of errors. The
other limitation is the use of amplitude encoding to store sample
contributions. We need to have a separate scaling to represent a
light intensity greater than 1. It likely would be possible to use basis
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encoding for the sample contributions as well, but doing so would
lead to even more complicated circuits. We do not claim to attain
quantum supremacy on ray marching since nothing is fundamen-
tally different between our quantum ray marching and classical ray
marching running on an exponential number of parallel processes.
Quantum supremacy for ray marching is still an open question.

Future Work. Though we are only capable of modelling and
rendering simple scenes currently, this is not a fundamental limita-
tion of our method but is a limitation on the current capabilities
of quantum computers and simulators. It is interesting to conduct
experiments on more complex scenes once we have better quantum
computing environments. We could also simulate a broader set of
materials by introducing more coin gates, such as participating
media with volumetric scattering. We are also interested in running
our algorithm on actual quantum computers once they became
capable of running our 3D approach.
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Figure 5: Different test scene of two spheres in a box with
an overhead light rendered by the same algorithm. While
the result is very noisy due to the current limitations of the
quantum computing environment we used, the image shows
how shadows and some interreflections can be captured via
a fully quantum algorithm for the first time.

(a) (b)

(c) (d)

Figure 4: (a) The 8×8 lightmap of the 2𝐷 scene sampled at each
point using a quantumwalk of three steps. (b) The same light
map generated by tracing exponential rays classically. (c) The
mean square error of the classical and quantum light maps.
The results match overall beside some remaining noise. (d)
The final higher-resolution image using the quantum light
map.
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