
Quantum Coin Method for Numerical Integration
N. H. Shimada T. Hachisuka

The University of Tokyo

Figure 1: Experiment with supersampling. We supersample 8× 8 subpixels of "Original image". "Ideal sampling" shows the ground truth,
which takes an average of 8×8 subpixels. Monte Carlo and our method (QCoin) take samples from subpixels to approximate this average for
each pixel. The images show the results of numerical experiments using Monte Carlo, Quantum Supersampling [Joh16](QSS) on a noiseless
simulator, QCoin on a noiseless simulator, and QCoin on an actual quantum computer with the equal sample counts of 240 queries (only
QSS is done by 255 queries). The table shows mean absolute error of 5 colored rectangular regions (black, gray, and white) in the bottom
of supersampling images and of gradation regions on the right half of the images. QCoin produces more accurate results than Monte Carlo
does because of its accurate estimation using quantum computers. While QSS is comparable to QCoin, it works well only on a noiseless
simulator as reported by Johnston [Joh16]. QCoin, on the other hand, works well even on an actual quantum computer for the first time.

Abstract
Light transport simulation in rendering is formulated as a numerical integration problem in each pixel, which is commonly
estimated by Monte Carlo integration. Monte Carlo integration approximates an integral of a black-box function by taking the
average of many evaluations (i.e., samples) of the function (integrand). For N queries of the integrand, Monte Carlo integration
achieves the estimation error of O(1/

√
N). Recently, Johnston [Joh16] introduced quantum supersampling (QSS) into rendering

as a numerical integration method that can run on quantum computers. QSS breaks the fundamental limitation of the O(1/
√

N)
convergence rate of Monte Carlo integration and achieves the faster convergence rate of approximately O(1/N) which is the best
possible bound of any quantum algorithms we know today [NW99]. We introduce yet another quantum numerical integration
algorithm, quantum coin (QCoin) [AW99], and provide numerical experiments that are unprecedented in the fields of both
quantum computing and rendering. We show that QCoin’s convergence rate is equivalent to QSS’s. We additionally show that
QCoin is fundamentally more robust under the presence of noise in actual quantum computers due to its simpler quantum circuit
and the use of fewer qubits. Considering various aspects of quantum computers, we discuss how QCoin can be a more practical
alternative to QSS if we were to run light transport simulation in quantum computers in the future.

1. Introduction

The use of quantum computers for computer graphics is a fasci-
nating idea and potentially leads to a whole new field of research.
Lanzagorta and Uhlmann [LU05] mentioned this idea for the first

time and suggested many interesting directions for further research.
Their main focus is on Grover’s database search algorithm [Gro96],
and they showed how its application could lead to fundamentally
more efficient algorithms than those on classical computers for var-
ious tasks in rendering, such as rasterization, ray casting, and ra-

ar
X

iv
:1

91
0.

00
26

3v
2

 [
qu

an
t-

ph
]

 2
4

A
pr

 2
02

0

diosity. Since Lanzagorta and Uhlmann, however, there has been
little effort put into this direction, mostly due to the limited avail-
ability of actual quantum computers at that time.

Recently, Johnston [Joh16] introduced a quantum algorithm
called Quantum SuperSampling (QSS) into computer graphics.
Johnston proposed to use this algorithm to perform supersampling
of sub-pixels in rendering. This problem is essentially a numeri-
cal integration problem in each pixel, which is commonly done by
Monte Carlo integration on classical computers. Johnston showed
that the performance of this quantum algorithm is fundamentally
better than classical Monte Carlo integration in terms of time com-
plexity. On the other hand, his experiments on an actual quantum
computer are not as successful as the simulated results due to the
presence of noise in quantum computers. Since noise is essentially
unavoidable in the current architecture of quantum computers, this
issue restricts the use of QSS in practice.

We introduce yet another quantum algorithm for numerical in-
tegration which runs well also on actual quantum computers; the
Quantum Coin method (QCoin). We show that the performance of
QCoin is equivalent to QSS both theoretically and numerically, in-
cluding its convergence rate. We discuss the difference between two
algorithms in terms of their implementations on a quantum com-
puter. Unlike QSS, QCoin can be regarded as a hybrid of quantum-
classical algorithm [KMT∗17]. Being a hybrid algorithm, we show
how QCoin is much more practical than QSS in the presence of
noise and the various restrictions on actual quantum computers.
We tested our QCoin on a real quantum computer and confirmed
that QCoin already shows better performance than classical Monte
Carlo integration. Figure 1 shows one experiment where we com-
pared Monte Carlo and QCoin with the equal sample counts. QCoin
achieves more accurate estimation both on a simulator and an ac-
tual quantum computer. We also discuss several open problems for
running rendering tasks on quantum computers in the future.

2. Background

Before diving into the details of our method, we first summarize
some basic concepts of quantum computing for readers who are
not familiar with them. While we do cover the basics that are nec-
essary to understand our method in this paper, for some further
details, readers might want to refer to a standard textbook of quan-
tum computing [NC11] or an introductory textbook for readers with
computer science background [JHS19].

Single-qubit and superposition. On a classical computer, all the
information is stored as a set of bits where each bit represents only
a binary number 0 or 1. We represent a state of a bit having 0 as
|0〉 and 1 as |1〉. The notation of |〉 is called "bra-ket", which is
commonly used in the field of quantum computing. On a quantum
computer, a single qubit can represent a superposition of both |0〉
and |1〉. For example, we can represent a superposition state, sup-
posing the real number a ∈ [−1,1] as an amplitude of |0〉:

|ψ〉= a |0〉+
√

1−a2 |1〉 . (1)

If we measure (read out) a qubit, the state converges to either side of
|0〉 or |1〉. That is, the only information we can get is either 0 or 1 as

in a classical case. This process is probabilistic and the probability
is given by a squared value of its amplitude. For example, in the
case of Equation 1, the measurement of |ψ〉 returns |0〉 with the
probability a2 and |1〉 with the probability 1−a2.

Quantum logic gates. Just like logic gates for bits on classical
computers, there are several known quantum logic gates that are
used to manipulate qubits. We summarize some of them here.

Identity gate Î� �
Î |0〉 = |0〉
Î |1〉 = |1〉� �

Hadamard gate Ĥ� �
Ĥ |0〉 =

|0〉+ |1〉√
2

Ĥ |1〉 =
|0〉− |1〉√

2� �

Pauli X̂ , Ẑ gates� �
X̂ |0〉= |1〉 , Ẑ |0〉= |0〉
X̂ |1〉= |0〉 , Ẑ |1〉=−|1〉� �

Rotation gate Ûθ
� �

Uθ |0〉= cosθ |0〉+ sinθ |1〉
Uθ |1〉=−sinθ |0〉+ cosθ |1〉

(θ is a rotation angle)� �
Multi-qubits. We express a multi-qubit state by concatenating
single-qubit states. For example, a two-qubits state whose qubits
are both |0〉 are expressed as |0〉⊗ |0〉 or |00〉. The symbol ⊗ rep-
resents a tensor product which means the concatenation of qubits
in this case. In the following, we omit the symbol ⊗ for simplicity
when it is obvious. In general, a two-qubits state whose qubits are
both superposition states as Equation 1 can be written as

|ψ〉a = a0 |0〉+a1 |1〉 , |ψ〉b = b0 |0〉+b1 |1〉
→ |ψ〉a⊗|ψ〉b = (a0 |0〉+a1 |1〉)⊗ (b0 |0〉+b1 |1〉)

= a0b0 |00〉+a0b1 |01〉+a1b0 |10〉+a1b1 |11〉 .

Since this explicit binary notation quickly becomes tedious for
many qubits, we use another notation |i) for a decimal number i
in the binary representation in−1 · · · i1i0 as

|i)≡ |in−1〉⊗ · · ·⊗ |i1〉⊗ |i0〉 . (2)

For example, in the case of 4 qubits, we write as

|0) = |0000〉 , |1) = |0001〉 , |2) = |0010〉 , · · · , |15) = |1111〉 .

Quantum operation as a tensor product. In quantum computing,
tensor products are also used to represent logic gate operations. For
example, given the initial two-qubits state |0〉⊗|0〉, the application
of the Hadamard Ĥ gate for the first qubit and the Pauli Ẑ gate for
the second qubit can be written as

(Ĥ⊗ Ẑ)(|0〉⊗ |0〉) = Ĥ |0〉⊗ Ẑ |0〉 . (3)

If we only operate the Ĥ gate for the first qubit and leave the second
qubit unchanged, we can use the identity gate Î:

(Ĥ⊗ Î) |0〉⊗ |0〉 . (4)

When we apply the same gate to all the qubits, we omit the⊗ sym-
bol and simplify the notation as

Ĥ |00〉 ≡ Ĥ |0〉⊗ Ĥ |0〉 . (5)

2

This notation is also adopted in the case of the decimal representa-
tion in Equation 2. For the 4 qubits case,

Ĥ|0)≡ Ĥ |0000〉= Ĥ |0〉⊗ Ĥ |0〉⊗ Ĥ |0〉⊗ Ĥ |0〉

=
|0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2

=
1√
24

(|0000〉+ |0001〉+ · · · |1111〉) = 1√
24

15

∑
i=0
|i). (6)

Oracle gate. In quantum computing, it is usually assumed that we
have a (quantum) circuit which converts the information of an input
data for each specific application as a quantum state. This circuit is
commonly called an oracle gate. For example, in a database-search
problem [Gro96] with the input data [a0,a1,a2,a3], the oracle Ô
gate works as using a normalization constant C:

Ô |00〉 → 1
C
(a0 |00〉+a1 |01〉+a2 |10〉+a3 |11〉) (7)

which converts the input data into the amplitudes. The exact design
of the quantum circuit of an oracle gate is usually omitted in the
design each quantum algorithm, but the computational universal-
ity [DBE95] almost guarantees the existence of such an circuit.

In the context of ray tracing, Ô can be considered as a ray trace
function. Given the (sub-)pixel index (i.e., quantized pixel coordi-
nate) x, a ray trace function F(x) traces a ray from camera through
the pixel x and returns the light throughput along this ray, which can
model many rendering algorithms such as path tracing [Kaj86]. In
advanced algorithms like path tracing, x is defined as a quantized
high dimensional coordinate including the pixel coordinate. For M
(sub-)pixels, a classical computer needs to repeat this process M
times by evaluating the ray trace function for all the (sub-)pixels.
On a quantum computer, however, one can evaluate the ray trace
function for all the (sub-)pixels in one shot:

Ô|0)→ 1
C

M

∑
x=1

F(x)|x). (8)

We assume the existence of such a ray tracing oracle gate, which is
equivalent to the fact Monte Carlo integration assumes that one can
evaluate the integrand, without specifying how to evaluate.

Products using the bra-ket notation. Under the bra-ket nota-
tion [NC11], a bra vector 〈A| denotes as a complex transpose of
ket vector |A〉. For example, when |A〉= Û |00...0〉, we have

〈A|= |A〉† = (Û |00...0〉)† = 〈00...0|Û−1 (9)

where Û is a unitary matrix which represents a gate operation, and
the complex transpose of a unitary matrix is an inverse matrix. One
can think of 〈A| (|A〉) as a row-vector (column-vector) representa-
tion. Using this notation, inner product (scalar) can be expressed as
〈A|B〉 and outer product (matrix) can be expressed as |B〉〈A|.

Figure 2: Amplitude amplification from |ψ〉 to Ĝ |ψ〉. The am-
plitude of |β〉 is amplified from cosθ to cos3θ in the case that θ

is a small value. The initial state |ψ〉 is sequentially changed as
|ψ〉 → R̂ f |ψ〉 → 2 |ψ〉〈ψ| R̂ f |ψ〉 → Ĝ |ψ〉.

3. Quantum Mean Estimation

Let us consider the problem of computing the mean of F(x) in
Equation 8. This problem corresponds to supersampling M sub-
pixels (or M quantized bins in high-dimensional integrands) in the
context of ray tracing. When M is large, a popular algorithm on a
classical computer is Monte Carlo integration; we randomly sam-
ple multiple subpixels and use their average as the estimate of the
correct average. The estimation error of Monte Carlo integration is
O(1/

√
M) for M samples.

On a quantum computer, we can evaluate F(x) at all the possi-
ble x in one-shot using the oracle gate. As we explain later, it is
also trivial to transform the resulting state into another state whose
amplitude is the correct average value f ≡ 1

M ∑
M
x=1 F(x) as:

|ψ〉=
√

1− f 2 |0〉+ f |1〉 . (10)

Unlike classical computers, it does not fundamentally matter how
large M is on quantum computer since all the M values are com-
puted in one shot. The remaining problem, however, is to estimate
the amplitude f using this state.

One naive solution to this problem is to simply prepare N in-
stances of |ψ〉 by querying the oracle N times and measure all of
them (we cannot simply copy |ψ〉 N times just by querying the
the oracle 1 time at the beginning, due to the no-cloning theo-
rem [Par70]). We then count the number of measured states be-
longing to |1〉 and deduce the value of f from that. This naive solu-
tion is essentially classical Monte Carlo integration, hence the con-
vergence rate for N queries (i.e., samples) is O(1/

√
N), and does

not provide any benefit compared to classical Monte Carlo integra-
tion. It is thus important to design a more efficient estimation algo-
rithm which outperforms the classical calculation. We focus on two
quantum algorithms in this paper: QSS and QCoin, which almost
achieve O(1/N) error with N queries. They use two other basic
quantum algorithms called amplitude amplification and quantum
Fourier transformation.

3

3.1. Amplitude Amplification

The idea of amplitude amplification (AA) was first introduced in
the context of a quantum database-search algorithm which is com-
monly known as Grover’s algorithm [Gro96]. We consider an ora-
cle Ô which results in

|ψ〉= Ô |00...0〉= cosθ |α〉+ sinθ |β〉 (11)

where |β〉 is a set of target states and |α〉 is a set of the other states.
The state |ψ〉 is represented as a vector (cosθ,sinθ) within a plane
spanned by |α〉 and |β〉 as shown in Figure 2. The goal of AA is to
increase the small probability of observing the target state |β〉. The
idea is to rotate |ψ〉 counter-clockwise as |ψ〉 → Ĝ |ψ〉 in Figure 2.
Note that AA, despite its name, does not necessarily amplify the
amplitude when θ is larger than π/2, and thus one can treat AA just
as a rotation operator.

As detailed in Figure 2, we first apply a flip operation R̂ f which
flips the state |ψ〉 against the |α〉 vector. It can be realized by flip-
ping the sign of target states as |β〉 → −|β〉. We then project the
resulting flipped state R̂ f |ψ〉 onto the original |ψ〉, and multiply
the length of the projected vector |ψ〉〈ψ| R̂ f |ψ〉 by two. Finally,
we subtract R̂ f |ψ〉 from it. The resulting state is

|ψresult〉= cos3θ |α〉+ sin3θ |β〉 . (12)

The formula of AA operation Ĝ is derived as:

|ψresult〉= Ĝ |ψ〉 ≡ (2 |ψ〉〈ψ|) R̂ f |ψ〉− R̂ f |ψ〉
=
(
2 |ψ〉〈ψ|− Î

)
R̂ f |ψ〉 (13)

=
(

2Ô |00...0〉〈00...0| Ô−1− Î
)

R̂ f |ψ〉

= Ô
(
2 |00...0〉〈00...0|− Î

)
Ô−1R̂ f |ψ〉 . (14)

The
(
2 |00...0〉〈00...0|− Î

)
operation corresponds to flipping the

amplitude of all the states except the state |00...0〉. Since Ĝ includes
two oracle gates (Ô and Ô−1), the AA algorithm makes two queries
(i.e., Ô is called two times) to perform one Ĝ operator. Note that AA
does not need to know the actual value of θ.

3.2. Quantum Fourier Transformation

Quantum Fourier transformation (QFT) can be thought as an anal-
ogy to classical discrete Fourier transformation. Given a data set
{a0,a1,a2, · · · ,aN−1}, classical Fourier transformation {ak | 0 ≤
k ≤ N − 1} → {b j | 0 ≤ j ≤ N − 1} conducts the calculation as

b j =
1√
N ∑

N−1
k=0 e−i 2π

N jkak. The resulting set {bi} is a set of fre-
quency components of the input data series {ai}, and one can view
that Fourier transform is an algorithm which converts {ai} into
{bi}. In QFT, the input data series is given by the amplitudes:

|ψ〉= a0|0)+a1|1)+ · · ·+aN−1|N−1). (15)

The idea of QFT is to turn this input quantum state into a superpo-
sition of frequency components {bi} as

|ψQFT〉= b0|0)+b1|1)+ · · ·+bN−1|N−1). (16)

We will not explain the detailed process of QFT in this paper as it
is not important for our discussion. Interested readers can refer to a
textbook of quantum computing [NC11].

Figure 3: Example of repeated AA operations. θ is initially defined
as f = sinθ. The degree of state vector evolves as θ→ 3θ→ 5θ · · ·
(left). Therefore, the trace of f values tracks a sin curve (right).

3.3. Quantum Supersampling

Grover [Gro98] was the first to introduce a quantum algorithm for
estimating a mean f = 1

M ∑
M
i=1 F(i). The idea is to combine AA

with QFT as we explain later. Many theoretical developments have
followed since then [BHT06, BdSGT11], but few numerical ex-
periments using simulation have been done so far [TKI99]. John-
ston [Joh16] implemented this original idea by Grover to conduct
numerical experiments in the context of rendering. The problem
addressed there is supersampling of an image, which can be seen
as a mean estimation per pixel. We explain QSS by Johnston in the
following, to contrast it to our QCoin. In the original work by John-
ston [Joh16], the values of F(i) are assumed to be binary {0,1}. We
modified it to be able to handle continuous values of F(i). Since the
algorithm essentially stays the same, we refer to our modified QSS
simply as QSS in the following.

Main idea. The main idea of QSS is to exploit the existence of a
periodic cycle when we keep applying amplitude amplification on
|ψ〉. As we explained before, AA rotates the state within the plane
spanned by |α〉 and |β〉, thus the state actually rotates fully after
sufficiently many AA operations. It turns out that there is a unique
periodic cycle to each corresponding θ value. Figure 3 shows the
movement of the state vector |ψ〉 (left) and the trace of the ampli-
tude value of |1〉 (right). Applying QFT on the history of rotated
|ψ〉, we can extract the frequency of this periodic cycle, which then
allows us to calculate the corresponding θ (and therefore f).

Problem setting. In QSS, given a black-box function F(a) : a→
[0,1] and a quantum oracle operator

Q̂F : |0〉⊗ |i)→
(√

1−F(i) |0〉+
√

F(i) |1〉
)
⊗|i), (17)

the objective is to get the average f of F(a) with N(= 2n) samples:

f ≡ 1
N

N−1

∑
i=0

F(i). (18)

4

Algorithm. In QSS, we use the oracle Q̂F and make a superpo-
sition state |ψ0〉 from the initial state whose all qubits (= register,
target, and input qubits) are |0〉, where the numbers of qubits for
each are log2 P, 1, log2 N. We thus write the initial state as

|0 · · ·0︸ ︷︷ ︸
log2 P

〉⊗ |0〉⊗ |0 · · ·0︸ ︷︷ ︸
log2 N

〉= |0)⊗|0〉⊗ |0) (19)

We generate a superposition state |ψ0〉 as

|ψ0〉 = Q̂F (Ĥ⊗ Î⊗ Ĥ)|0)⊗|0〉⊗ |0) (20)

=
1√
PN

P−1

∑
m=0

N−1

∑
i=0
|m)⊗ Q̂F (|0〉⊗ |i)) (21)

=
1√
PN

P−1

∑
m=0

N−1

∑
i=0
|m)⊗

(√
1−F(i) |0〉+

√
F(i) |1〉

)
⊗|i),

(22)

where Q̂F in Equation 20 operates the latter two states. The to-
tal measurement probability of 1√

N ∑
N−1
i=0

√
F(i) |1〉⊗ |i) states is

∑
N−1
i=0

√
F(i)

N

2
= f . If we define |0〉′ ≡ 1√

N ∑
N−1
i=0 |0〉⊗ |i) and |1〉′

in the same manner, the amplitude of |1〉′ is
√

f :

|ψ0〉 =
1√
P

P−1

∑
m=0
|m)⊗

(√
1− f |0〉′+

√
f |1〉′

)
.

We can define cosθ and sinθ as
√

1− f and
√

f , and |ψ0〉 is

|ψ0〉 =
1√
P

P−1

∑
m=0
|m)⊗

(
cosθ |0〉′+ sinθ |1〉′

)
. (23)

We then apply AA to the
(
cosθ |0〉′+ sinθ |1〉′

)
state for P times:

|ψ1〉=
1√
P

P−1

∑
m=0
|m)
(
cos(2m+1)θ |0〉′+ sin(2m+1)θ |1〉′

)
.

(24)
We then measure the target qubits. We assume that the state is con-
verged to |1〉′:

|ψ2〉=
1
C

P−1

∑
m=0

sin(2m+1)θ |m) |1〉′ (25)

Finally, we perform QFT on |ψ2〉. With a sufficiently large proba-
bility [BHT06], the result of measurement after QFT will be

t ' Pθ

π
,

P(π−θ)

π
. (26)

If the measured and converged state is |0〉′, we get the same result.
Therefore, we can deduce the estimated average f ′ by

f ≈ f ′ = sin2
(tπ

P

)
. (27)

Since tπ
P can be determined by the precision O(1/P) in this process,

f ′ also has the precision of O(1/P). Johnston [Joh16] proposed
to use a precomputed table instead of the analytical expression in
Equation 27 by considering only discrete values of f . The estima-
tion error | f − f ′| is inversely proportional to the number of AA
operations P. Since AA uses two queries per operation, we perform
O(N) queries to achieve O(1/N) error. Note that this convergence
rate is faster than O(1/

√
N) of Monte Carlo integration.

Example. We show how the whole process works for the 5 qubits
case where P = 4 and N = 4. The initial state of 5 qubits is (|0〉⊗
|0〉)⊗|0〉⊗ (|0〉⊗|0〉) = |0)⊗|0〉⊗|0). At first, we apply Ĥ⊗ Î⊗
Ĥ as in Equation 20:(

Ĥ⊗ Î⊗ Ĥ
)
|0)⊗|0〉⊗ |0)

=

(
|0)+ |1)+ |2)+ |3)√

4

)
⊗|0〉⊗

(
|0)+ |1)+ |2)+ |3)√

4

)
.

This transformation is as Equation 6. Then, the oracle Q̂F works as
(omitted the register qubits):

Q̂F |0〉⊗
(
|0)+ |1)+ |2)+ |3)√

4

)
=

1√
4

(√
1−F(0) |0〉+

√
F(0) |1〉

)
⊗|0)

+
1√
4

(√
1−F(1) |0〉+

√
F(1) |1〉

)
⊗|1)

+
1√
4

(√
1−F(2) |0〉+

√
F(2) |1〉

)
⊗|2)

+
1√
4

(√
1−F(3) |0〉+

√
F(3) |1〉

)
⊗|3).

The probability of observing |1〉 is calculated as∣∣∣∣∣
√

F(0)
4

∣∣∣∣∣
2

+

∣∣∣∣∣
√

F(1)
4

∣∣∣∣∣
2

+

∣∣∣∣∣
√

F(2)
4

∣∣∣∣∣
2

+

∣∣∣∣∣
√

F(3)
4

∣∣∣∣∣
2

= f

hence the total amplitude of |1〉 is
√

f . By grouping a set of states
with |1〉 as |1〉′ (and those with |0〉 as |0〉′) for brevity, the resulting
state vector can be written as

√
1− f |0〉′+

√
f |1〉′ = cosθ |0〉′+

sinθ |1〉′ where we write
√

f = sinθ. The state |ψ0〉 is

|ψ0〉=
(
|0)+ |1)+ |2)+ |3)√

4

)
⊗ cosθ |0〉′+ sinθ |1〉′ .

We perform AA operations (Ĝ) corresponding to the decimal num-
ber of the register qubits’ state

|ψ1〉=
1√
4
|0)⊗ Ĝ0 (cosθ |0〉′+ sinθ |1〉′

)
+

1√
4
|1)⊗ Ĝ1 (cosθ |0〉′+ sinθ |1〉′

)
+

1√
4
|2)⊗ Ĝ2 (cosθ |0〉′+ sinθ |1〉′

)
+

1√
4
|3)⊗ Ĝ3 (cosθ |0〉′+ sinθ |1〉′

)
=

1√
4
|0)⊗

(
cosθ |0〉′+ sinθ |1〉′

)
+

1√
4
|1)⊗

(
cos3θ |0〉′+ sin3θ |1〉′

)
+

1√
4
|2)⊗

(
cos5θ |0〉′+ sin5θ |1〉′

)
+

1√
4
|3)⊗

(
cos7θ |0〉′+ sin7θ |1〉′

)
.

We then measure the target qubit |1〉′ to obtain |ψ2〉= 1
C (sinθ|0)+

sin3θ|1)+ sin5θ|2)+ sin7θ|3))⊗|1〉′ which allows us to estimate
θ (thus f) value using QFT.

5

4. Quantum Coin Method

We introduce another mean-estimation quantum algorithm, which
we call as the quantum coin method (QCoin). While the the-
ory of QCoin was introduced by Abrams and Williams 20 years
ago [AW99], its actual implementation was not discussed and no
numerical experiment has been done so far. We provide the first
practical implementation of this algorithm by identifying practical
issues and performed the first set of numerical experiments.

Quantum coin. QCoin uses a quantum coin as its core. A quantum
coin is a quantum state as described in Equation 10, which returns
the target state |1〉 ("head") with the probability of f 2, and other
states |0〉 ("tail") with the probability 1− f 2. By counting the num-
ber of "heads" out of the total number of trials, we can estimate f 2

(and f) with δ error with O(1/δ
2) queries. As we discussed before,

this process alone is equivalent to Monte Carlo integration, thus it
will not provide any benefit.

Main idea. Suppose that we have a rough estimate f ′ by running
Monte Carlo integration using a quantum coin as described above
with N queries. According to the error analysis of Monte Carlo
integration, with a certain confidence probability, one can say that
the actual value of f is in the interval of

[
f ′− δ

2 , f ′+ δ

2

]
where δ =

O(1/
√

N). The idea of QCoin is to repeatedly shrink this interval
by shifting and scaling it using quantum computation until we are
sufficiently close to f . Figure 4 illustrates this process.

Problem setting. QCoin considers a black-box function

F(a) : a→ [0,1] (28)

and a quantum oracle operator Q̂F,E which includes the function
F(a) and the offset (shifting) parameter E:

Q̂F,E |0〉⊗ |i)→
(√

1− (F(i)−E)2 |0〉+(F(i)−E) |1〉
)
⊗|i).

(29)

Our goal is to estimate the average value f similar to QSS.

Algorithm. For the first step, using oracle Q̂F,0, we make the initial
superposition state (the number of qubits of input is log2 N):

|ψ0〉 = Q̂F,0(Î⊗ Ĥ) |0〉⊗ |0)

= Q̂F,0

N−1

∑
i=0
|0〉⊗ |i)

=
1√
N

N−1

∑
i=0

(√
1−F(i)2 |0〉+F(i) |1〉

)
⊗|i) (30)

The construction of a quantum coin is in fact simple; we perform
Ĥ operators for all the qubits after the oracle gate operation. After
this process, each state is distributed with 1√

N
amplitude to a |0)

state and any amplitude to all the other states:

|ψ0〉′ = (Î⊗ Ĥ) |ψ0〉

=
1
N

N−1

∑
i=0

F(i) |1〉⊗ |0)+ · · ·= f |1〉⊗ |0)+ · · · (31)

Figure 4: Shifting-Scaling process of QCoin: 1. We estimate the
value of f and decide bounded-error range: [f ′ − δ

2 , f ′ + δ

2]. 2.
We scale up quantum coin to [0,1]. 3. Now the target value f is
changed to f1, we can estimate f1 with δ error. 4. We can estimate
f with δ

2 error via calculating back from estimated f1 value.

We show the construction of a quantum coin for the 3 qubits
case. The initial state of 3 qubits is |0〉 ⊗ (|0〉⊗ |0〉) = |0〉 ⊗ |0).
Applying Î⊗ Ĥ operation, we have(

Î⊗ Ĥ
)
(|0〉⊗ |0)) = |0〉⊗

(
|0)+ |1)+ |2)+ |3)√

4

)
.

We get |ψ0〉 in Equation 30 using Q̂F,0:

|ψ0〉= Q̂F,0 |0〉⊗
(
|0)+ |1)+ |2)+ |3)√

4

)
=

1√
4

(√
1−F(0)2 |0〉+F(0) |1〉

)
⊗|0)

+
1√
4

(√
1−F(1)2 |0〉+F(1) |1〉

)
⊗|1)

+
1√
4

(√
1−F(2)2 |0〉+F(2) |1〉

)
⊗|2)

+
1√
4

(√
1−F(3)2 |0〉+F(3) |1〉

)
⊗|3).

Now, if we operate Ĥ on the input qubits, the states are changed to

Ĥ|0) = |0)+ |1)+ |2)+ |3)√
4

, Ĥ|1) = |0)−|1)+ |2)−|3)√
4

Ĥ|2) = |0)+ |1)−|2)−|3)√
4

, Ĥ|3) = |0)−|1)−|2)+ |3)√
4

.

All states are distributed to |0) with + 1√
4

amplitude, hence

|ψ0〉′ =
(
Î⊗ Ĥ

)
|ψ0〉

=

(
F(0)+F(1)+F(2)+F(3)

4

)
|1〉⊗ |0)+ · · ·

= f |1〉⊗ |0)+ · · · .

Note that the amplitude of |1〉⊗ |0) is equal to f . This |ψ0〉′ state
thus can be regarded as a quantum coin. We use |ψ0〉′ to perform
a rough estimate of f within δ error using O(1/δ

2) queries just
like Monte Carlo integration. Suppose that the estimated value is
f0, then we can say that the correct value f is in the interval [f0−
δ

2 , f0 + δ

2] with a certain high probability (1st process in Figure 4).

For the next step, we set E ≡ f0− δ

2 and the oracle gate as Q̂F,E .

6

Algorithm 1 Our implementation of Qcoin (F,k,L)
// 1st step
f0← 0
for i = 1 to L do

make QCoin : Q̂√F ,0 |0〉 |0)
if Measure(QCoin) == |1〉 then

f0 += 1
end if

end for
f0 /= L

// The other steps
E−← 0.0, E+← 1.0
for i = 1 to k do

δ ← sin(π/2i+1) // hypothetical error
E−←Max(fi−1− δ

2 ,E−) // lower bound of error range
E+ ←Min(fi−1 +

δ

2 ,E+) // upper bound
fi← 0
for j = 1 to L do

make QCoin : Ĝ2i−1

F,E− |0〉 |0)
if Measure(QCoin) == |1〉 |0) then

fi += 1
end if

end for
fi /= L
fi←Min

(
E−+ sin

(
asin(fi)

2i

)
,E+

)
end for

// Output
print fk

We make the quantum coin |ψ1〉′ using Q̂F,E as above:

|ψ1〉′ = (f −E) |1〉⊗ |0)+ · · · . (32)

Now, the amplitude of |1〉⊗|0) is f −E. This value is in the interval
[0,δ]. If we define sinθ≡ f −E,

|ψ1〉′ ≡ sinθ |1〉⊗ |0)+ · · · . (33)

We then operate AA for O(1/δ) times to make the error range from
[0,δ] to [0,1− ε] (upper limit is not always precisely 1). It can be
done without knowing the exact value of f . If we conduct m times
AA operations, the state is changed as:

|ψ1〉′′ = sin(2m+1)θ |1〉⊗ |0)+ · · · . (34)

This corresponds to the 2nd process in Figure 4. Now, we can esti-
mate the value of sin(2m+ 1)θ within δ error measuring the state
for O(1/δ

2) times (3rd process in Figure 4).

We assume the estimated value is f1. Then, we can easily cal-
culate back to the original scale: calculate the value of θ from
m and sin(2m + 1)θ values, and f is calculated by the relation
“ f = sinθ+E”. As a result, we get to estimate f value with the
error range δ

2 (4th process in Figure 4). If this step is repeatedly
for k times, we achieve the error δ

k+1.

Convergence rate. In the case of k = 1 step as above, the estima-
tion error is δ

2, and the total number of queries is calculated as:

O(1/δ
2)+(1+2O(1/δ))×O(1/δ

2) = O(1/δ
3) (35)

The convergence rate is improved from "δ error with O(1/δ
2)

queries" to "δ
2 error with O(1/δ

3) queries". For comparison, as-
suming the numbers of queries are both Nall, the estimation error is
reduced from O

(
1

Nall
0.5

)
to O

(
1

Nall
0.66···

)
.

As for the case of k� 1, we show the convergence rate here.
If we use M queries in the Monte Carlo integration part of QCoin,
we achieve O(1/

√
M) as the error value of δ (equivalently, δ =

O(1/
√

M)). For a total of k−1 iterations, QCoin achieves the final
error value O(δk) as described above. On the other hand, the total
number of queries Nall in this case is asymptotically defined as

Nall = M ·O
(

1+M1/2 + · · ·+M(k−1)/2
)
= O

(
Mk/2

)
(36)

for a large enough k. Given that we have δ = O(1/
√

M), we can
conclude that QCoin achieves the final error value of O(δk) =

O(1/
√

M
k
) = O(1/Nall) using Nall queries using QCoin.

Our contributions over Abrams and Williams. Compared to the
original work by Abrams and Williams [AW99], our work provides
the following contributions.

• We conducted numerical experiments to clarify the followings:

– While Abrams and Williams [AW99] showed that the con-
vergence rate of QCoin approaches to O(1/N) as k increases,
it has not been clear how the convergence rate changes for a
finite (practical) k as we have done.

– Similar to classical Monte Carlo integration, there is non-zero
possibility that f resides outside the estimated interval at each
step. Its influence is difficult to investigate just by looking at
the theory, which we have shown by numerical experiments.

– In the QCoin algorithm, Monte Carlo estimates are done by
estimating f 2 (i.e., the probability of "heads") and then tak-
ing its square-root, making its estimation more error-prone
toward f ≈ 0. This causes the fluctuation of a estimation error
in accordance with the observed values. How this influences
the efficiency of the algorithm is unknown.

• We redesigned and implemented the whole algorithm of QCoin
as shown in Algorithm 1. Some technical points we implemented
are as follows:

– We showed how to deal with the cases where Monte Carlo
estimation at each step is outside the range [0,1] which has
been ignored so far, yet certainly happens in practice.

– We proposed to directly estimate f for the first estimate using
a different quantum coin than the rest.

– We fixed the number of scaling-shifting operations per step.

• We pointed out the superiority of QCoin against QSS, for the
first time, in terms of usefulness on an actual quantum computer.

– We pointed out that QCoin belongs to a class of hybrid
quantum-classical algorithms [KMT∗17] and demonstrate its
usefulness on actual quantum computers in the presence of
noise (shown and discussed later).

7

Figure 5: Example of the quantum circuit of QSS with 4 input qubits and 4 register qubits case. (X ,Z: Pauli gates, Ĥ: Hadamard gate, Q̂F
and Q̂−1

F : oracle gate and inverse oracle gate, M: measurement gate, R|0〉|0): phase flip gate only for the state |0〉 |0), Un(n = 1,2,3): ei π

2n

phase shift gate for |1〉 state.)

Figure 6: Example of the quantum circuit of QCoin with 4 input qubits. (Q̂F,E and Q̂−1
F,E : oracle gate and its inverse, R|0〉|0) and R|1〉|0):

phase flip gate only for the state |0〉 |0) and |1〉 |0) respectively.)

5. On a Simulator

We now explain our implementations of QSS and QCoin on a
simulator of quantum computing using Microsoft Q# [SO18]. Our
source code is available on Github [Shi].

QSS. The AA operation ĜF using from Equation 23 to Equation
24 in QSS is defined as Equation 13:

ĜF ≡ (2 |ψ0〉〈ψ0|− Î) Ẑ. (37)

|ψ0〉 can be decomposed as Equation 20:

|ψ0〉 = Q̂F (Î⊗ Ĥ) |0〉 |0) (38)

〈ψ0| = 〈0|(0|(Î⊗ Ĥ)Q̂−1
F . (39)

We substitute Equation 38 and 39 to Equation 37:

ĜF = Q̂F (Î⊗ Ĥ)
(
2 |0〉 |0)〈0|(0|− Î

)
(Î⊗ Ĥ)Q̂−1

F Ẑ

=−Q̂F (Î⊗ Ĥ)
(
Î−2 |0〉 |0)〈0|(0|

)
(Î⊗ Ĥ)Q̂−1

F Ẑ,

where we omit irrelevant register qubits here. If (Î−2 |0〉 |0)〈0|(0|)
is defined to be represented by R̂|0〉|0), we have

ĜF =−Q̂F (Î⊗ Ĥ) R̂|0〉|0) (Î⊗ Ĥ)Q̂−1
F Ẑ. (40)

The example of an quantum circuit of QSS using ĜF is shown in
Figure 5 where the number of input qubits is 4. Each blue-colored
region of the circuit corresponds to Equation 40. The operators in
Equation 40 are lined up in the reverse order in the circuit (oper-
ators are like matrix operations, hence they are indeed conducted
from the back of an equation). AA operations are controlled by
register qubits, which allows us to store the history of the rotating
state vector; only if a control-register qubit is |1〉, ĜF is run and the
state vector rotates. Finally, the red region of the circuit performs
QFT, which operates on the register qubits and extracts the period.

QCoin. The quantum circuit of QCoin is described in Figure 6,
where the number of input qubits is 4. The exact operator ĜF,E of

8

Figure 7: Error plots against query times (represented by colors indicated in the legends) with various target mean f in three methods;
Monte Carlo, QSS, and QCoin.

Figure 8: (Left and Center) Mean absolute error plots with query times in Monte Carlo, QSS, and QCoin(k = 3,4,5,6). (Right) The best
performance of QCoin with selected optimal k values is plotted.

AA for Qcoin |ψ1〉′ in Equation 33 is defined as the equation 13:

ĜF,E ≡ (2 |ψ1〉′ 〈ψ1|′− Î) R̂|1〉|0), (41)

where operator R̂|1〉|0) flips the amplitude of |1〉 |0). |ψ1〉′ is de-
composed by |ψ1〉 and some gate operations like Equation 31:

ĜF,E = (Î⊗ Ĥ)(2 |ψ1〉〈ψ1|− Î)(Î⊗ Ĥ) R̂|1〉|0)

= (Î⊗ Ĥ) (2 |ψ1〉〈ψ1|− Î)(Î⊗ Ĥ), R̂|1〉|0) (42)

and |ψ1〉 is also deconstructed from Equation 30:

2 |ψ1〉〈ψ1|− Î = Q̂F̂ ,E(Î⊗ Ĥ)(2 |0〉 |0)(0| 〈0|− Î)(Î⊗ Ĥ)Q̂−1
F̂ ,E

= Q̂F̂ ,E(Î⊗ Ĥ) R̂|0〉|0) (Î⊗ Ĥ)Q̂−1
F̂ ,E , (43)

where (2 |0〉 |0)(0| 〈0| − Î) is represented by R̂|0〉|0) for simplicity.
Substituting Equation 43 to 42, we get the explicit form of ĜF,E :

ĜF,E = (Î⊗ Ĥ)Q̂F̂ ,E(Î⊗ Ĥ) R̂|0〉|0) (Î⊗ Ĥ)Q̂−1
F̂ ,E(Î⊗ Ĥ) R̂|1〉|0).

(44)

5.1. Results

Convergent behavior against target value. Figure 7 shows the
behaviors of estimation error against the increasing number of
queries with various target mean values f in three methods: Monte
Carlo, QSS, and QCoin. We conducted numerical experiments with
3000 samples for each point in Monte Carlo and QCoin, and calcu-
lated its theoretical error for QSS. In Monte Carlo, all the reduction
rates of errors are almost uniform regardless of f , while QSS re-
turns almost zero error at specific f . This distinctively different be-
havior is also showed by Johnston, which arises from QFT. Fourier
transformation extracts a period of data series, therefore it can def-
initely detect the frequency of wave whose period just matches the
data length. In QCoin, however, we see almost uniform reduction
of error just like Monte Carlo integration. One minor difference
occurs at f = 1.0 where QCoin has non-zero error while Monte
Carlo integration has zero error. This difference arises from the fact
that the QCoin algorithm scales the bounded-error of quantum coin
[0,δ] to [0,a] (a is not always 1). If a is always 1, the QCoin with
f = 1.0 only returns |1〉 at any steps. This experiment shows that
the estimation error of QCoin has a similar characteristic as that
of Monte Carlo. On the other hand, QSS behaves quite differently

9

Figure 9: (Top) QSS’s quantum circuit for 6 queries in minimum setting; no input qubit and two register qubits. (Bottom) QCoin’s quantum
circuit in minimum setting; no input qubit.

from Monte Carlo. As we discuss later, this similarity between MC
and QCoin may allow us to use the existing error reduction methods
(e.g., denoising) with QCoin.

Convergent behavior against the number of queries. Figure 8
shows the mean error of QCoin with random f samplings for each
k step. Figure 8 (Left) plots the results of Monte Carlo and QSS.
Monte Carlo integration took 10000 samples (f is randomly se-
lected for each sample) for each point, and calculate theoretical
error of QSS with uniformly selected 200 f values for each point.
In Monte Carlo, the slope of the curve is −0.50 in the logarithmic
scale which matches the theoretical convergence rate of O(1/

√
N)

with O(N) queries. In QSS, the slope is −0.85, hence it achieves
O(1/N0.85) error with O(N) queries. This result is close to the the-
oretical rate of O(1/N). Figure 8 (Center) shows the results of
QCoin with k = 3,4,5,6 cases. For all the k values, the error of
few queries is large because the trials of a quantum coin in each
step is too small for the estimation value be reasonably accurate
for the succeeding shifting-scaling operations. Other than that, the
slope for the same k value first quickly becomes close to −1.0, but
asymptotically approaches to −0.5 after many queries while fixing
k. We can thus observe that there is an optimal number of shift-
ing and scaling operations k for a given total number of queries.
Figure 8 (Right) plots the results of QCoin with the those optimal
k values for each number of queries. This optimal k results in al-
most the same performance as QSS, and we use this optimal k for
the remaining experiments. This experiment thus demonstrates that
QCoin performs as well as QSS for a finite number of queries on a
noiseless simulator. While its theoretical O(1/N) convergence pre-
dicts that QCoin asymptotically outperforms Monte Carlo, we are
the first to numerically verify its performance for a finite N.

Supersampling. Figure 1 shows an application of our method to
a rendering task. The task is supersampling which estimates the
average of subpixel values. One can think of this task as a numerical
integration problem where the integrand is a function of subpixel
values. This experiment is inspired by similar experiments done
by Johnston [Joh16]. In our experiment, each pixel contains 8× 8

subpixels. The ground truth image ("Ideal sampling") is computed
by simply taking the average of all 64 subpixels. We used Monte
Carlo, QSS on a simulator, QCoin on a simulator, and QCoin on an
actual quantum computer (later discussed for the last one) with the
same 240 queries (k = 3 for QCoin) (255 queries only for QSS) by
considering subpixels as the values of the integrand. The table in
Figure 1 shows mean absolute error of the five rectangular regions
at the bottom of each and of the gradation parts at the top right of
the images, which highlight errors for particular pixel values.

In the gradation part of the images, the mean absolute error of
"QCoin on simulator" is almost the same as that of "QSS on simu-
lator", and about half as much as Monte Carlo’s, which is consistent
with the error plots in Figure 8. However, we can see a striking dif-
ference in the images. Although Monte Carlo and QCoin show uni-
form reduction of error in the region, QSS produces more error in
some pixels and less error in other pixels, which is consistent with
the convergence behavior seen in Figure 7. This is also confirmed
by colored rectangular regions; in QSS, some regions of particu-
lar pixel-color (0.0,0.5,1.0) show no error result, but the other parts
indicate more estimation error than in QCoin.

6. On an Actual Quantum Computer

We use IBM Q5 Yorktown [IBM] and Qiskit [AO19] to run QSS
and QCoin on an actual quantum computer. The hardware resources
are very limited, hence we simplified settings for both QSS and
QCoin. Our source code is available on Github [Shi].

QSS. To implement QSS, we removed the circut for input qubits
and assumed that the oracle Q̂F operates as:

Q̂F |0〉=
√

1− f |0〉+
√

f |1〉 .

The AA operation Ĝ is expressed as

Ĝ = Q̂F (2 |0〉〈0|− 1̂)Q̂−1
F R̂ f (45)

= Q̂F ẐQ̂−1
F Ẑ.

In one qubit case, the R f flip gate counterparts to a Pauli Z gate,
and the (2 |0〉〈0|− 1̂) flip operation also does to Ẑ gate. Despite its

10

Figure 10: Results of QCoin with f = 0.50 on an actual quantum computer. We plot k = 0 on the left, additionally k = 2,3,4,5 in the center,
and k = 5,6,7 on the right. Monte Carlo plot data points are calculated with 3000 samples, and Optimal_k data is plotted with the data
points calculated by 500 samples on simulator.

very simple implementation, we can create at most 3 qubits circuit
(expressed in Figure 9) on the IBM Q5 quantum computer due to
its requirement for the architecture of qubits as discussed in the
previous section.

QCoin. In QCoin, we also simplified the quantum circuit by elim-
inating the circuit for input qubits and set the oracle as:

Q̂F,E |0〉=
√

1− f 2 |0〉+ f |1〉 .

In this case, the oracle can be regarded as the one including the
process of making a quantum coin. AA operation Ĝ is almost the
same as QSS:

Ĝ = Q̂F,E(2 |0〉〈0|− 1̂)Q̂−1
F,E R̂ f (46)

= Q̂F,E ẐQ̂−1
F,E Ẑ.

The quantum circuit is shown in Figure 9.

6.1. Results

QCoin. Figure 10 shows the error performance of QCoin on the
quantum computer with f = 0.50. All the data points are calculated
by 300 simulations. Figure 10 (left) shows the results of Monte
Carlo integration and QCoin of k = 0 (equivalent to Monte Carlo
integration) on the quantum computer. The convergence rate is al-
most the same at small number of queries (. 100), while the re-
duction of error stops in the range of more query. This error seems
to mainly arise from the readout error of qubits. Hence we cannot
improve this error by more trials. However, we are able to over-
come this limitation by using the AA steps of quantum coin. We
scale-up the bounded error and measure the enlarged quantum coin
in each step as shown in Algorithm 1. We only need to estimate f
value roughly for each step, hence the influence of readout error be-
comes relatively smaller than Monte Carlo method. Figure 10 (cen-
ter) shows k = 2,3,4,5 cases of QCoin. We confirm that error per-
formances are better than Monte Carlo and compatible to QCoin’s
on simulator even on real quantum computer in the range of rather

small number of queries. For larger queries, the convergences of
error reduction are seen, which seem to be also due to readout er-
ror. Figure 10 (right) additionally shows the plots of k = 6,7 cases.
The error does not reduce with k = 6,7 compared to k = 5, though
the scale-up steps of a quantum coin increases. This means that the
scaling-up process over almost 16 AA iterations (corresponds to
the k = 5 case) becomes meaningless due to accumulation of deco-
herence and gate error in large circuit calculation.

Supersampling. We also conducted the experiment of supersam-
pling for QCoin on an actual quantum computer (the right image in
Figure 1). Note that since we cannot prepare the oracle gates which
convert all sub-pixels value into quantum states due to hardware
limitaion, we now set and use the oracle gate which directly have
a target value as Equation 10. For gray-colored regions (where the
pixel color is 0.25, 0.50, or 0.75), QCoin on IBMQ produces sim-
ilar results as QCoin on a simulator, which is consistent with the
results in Figure 10. On the other hand, in the black and white re-
gions, QCoin on IBMQ shows a rather large estimation error than
the simulation. These regions are sensitive to the noise of an ac-
tual quantum computer since the integrand in those regions should
be either strictly zero or one, which can be easily corrupted by the
noise. This disadvantage in the limited narrow region doesn’t de-
crease overall performance of QCoin’s algorithm so much, as we
can see the mean absolute error of the gradation part is not almost
reduced compared with QCoin on simulator.

We also show another supersampling image via QSS in Fig-
ure 11. We cannot conduct QSS’s algorithm with such large num-
ber of queries as in Figure 1 because of the hardware limitation of
IBMQ. Then we now treat the case where the target pixel color is
limited to 0.0, 0.5, and 1.0 (seeing "Ideal sampling" in the Figure),
and the number of queries for QSS is limited to seven. We, how-
ever, note that seven queries are enough to estimate the specific
pixel colors of this case with no error on a simulator, which is con-
firmed by seeing QSS’s result in Figure 7. As was also observed by
Johnston [Joh16], the result of QSS on IBMQ is significantly influ-

11

Figure 11: Supersampling with QSS on an actual quantum computer using 7 queries (3rd form the left). Ideal sampling image is shown in
1st column, and QSS on simulator produces no error result as a 2nd image in this case of the limited pixel colors. QCoin’s results are also
shown in the right, and the settings of experiments are the same as Figure 1.

enced by the noise in an actual quantum computer, and the mean
absolute error increases 0.30. The dominant error in QSS on an ac-
tual quantum computer seems to be a multi-qubit gate error. Multi-
qubit operations are more difficult to execute than single-qubit ones
because they must additionally operate controlled functions. All the
gate errors are publicly disclosed [IBM], and the multi-qubit gate
errors are almost 5%. Therefore, even if we operate it for only a
few times, accumulation error quickly reaches to the visible level
and thus appears as noise in the image. Thanks to its simpler circuit
design, QCoin does not suffer from this issue. One can thus see a
striking difference between QSS and QCoin when we run both on
an actual quantum computer.

7. Discussions

Ray tracing oracle gate. One might argue that our numerical ex-
periments (inspired by Johnston [Joh16]) are too simple compared
to the actual use cases of ray tracing, thus it is not really demon-
strating the applicability of QCoin in rendering. While we admit
that it is not as complex as the actual use cases, the basic idea of
QCoin is readily applicable to arbitrary complex integrands just
like Monte Carlo integration. The remaining challenge is to design
an oracle gate which efficiently performs ray tracing. While it is
theoretically possible to design such an oracle gate, we found it in-
feasible to perform any numerical experiment (even on a simulator)
at this moment for two major reasons.

First, the maximum number of qubits we can have at the mo-
ment is about 50 qubits [PO18]. It is incorrect to assume that we
can get away from this limitation on a simulator. Simulation of
50 qubits already takes roughly 16 peta byte of RAM if we store
the full quantum states, and a 64 qubits simulator (on a cluster of
128 nodes) is possible only by limiting the complexity of quan-
tum circuits [CZX∗18]. Given that even one floating point number
consumes 32 bits, we concluded that it is currently infeasible to
conduct any numerical experiment (both on actual and simulated
quantum computers). Note that computation such as square root
of floating point numbers adds up to the required number of qubits.
While we should be able to theoretically design such a quantum cir-
cuit, if we were to perform numerical experiments, even for simple
cases like ray tracing of a sphere, we need either a better hardware
or a simulator, which are both out of the scope in this paper.

Second, there is currently no research done on how to appropri-

ately represent typical data for ray tracing. For example, due to the
limited number of input qubits, it will not be immediately possi-
ble to handle triangle meshes on a quantum computer. While Lan-
zagorta and Uhlmann [LU05] mentioned a theoretical possibility of
using Grover’s method for ray tracing, implementation of this idea
for any practical scene configurations is currently impossible. We
thus believe that further research on a suitable data representation
for rendering on quantum computers is deemed necessary, and this
topic alone can lead to a series of many research questions and thus
cannot be a short addendum in our paper. We focused on a numeri-
cal integration algorithm which serves as a basic building block for
ray tracing on quantum computers. Our work should be useful as a
stepping stone to conduct further research along this line.

Error distribution over the image A unique requirement of solv-
ing many integrals on the image place in rendering highlights an-
other important difference between QSS and QCoin. In QCoin, the
distribution of errors over the image is essentially noise due to ran-
dom sampling, which is the same as Monte Carlo integration. Being
a hybrid quantum-classical method as we explain later, one can eas-
ily apply many exiting tools developed for Monte Carlo integration,
such as denoising via image-space filtering [ZJL∗15], to QCoin.
QCoin can thus directly replace Monte Carlo integration while be-
ing asymptotically faster. In QSS, however, erroneous pixels appear
as completely wrong pixel values [Joh16] which cannot be easily
recovered or identified by the existing tools for Monte Carlo inte-
gration. For example, denoising for Monte Carlo rendering would
not work as-is for rendered images via QSS. We thus believe that
QCoin is more readily applicable to rendering than QSS.

Required number of qubits. Quantum computers at this moment
have a limited number of usable qubits. As mentioned above, the
maximum number of qubits we can have is ∼ 50 qubits [PO18]
at the moment. Let us consider that the size of input is N and the
maximum AA iterations is P. In this case, QSS needs logN + logP
qubits to run the algorithm, while QCoin needs only logN (left in
Figure 12). The examples of quantum circuits for QSS and QCoin
also verify this fact (Figure 5 and Figure 6). For example, when
the input N = 210 = 1024 is given, using the current architecture of
quantum computers, the number of AA iterations in QSS is limited
to less than only P= 25 = 32 times, whereas QCoin can has no such
limitation by construction. This severely limits the applicability of
QSS, making QCoin an attractive alternative in practice.

12

Figure 12: Relation plots between the number of additional regis-
ter qubits (AA iterations) and error ε in left (right).

Figure 13: Minimum qubits’ architectures for the quantum circuits
in Figure 6 (QCoin) and Figure 5 (QSS). The arrow represents a
connection with controlled gate; a root qubit at the arrow is a con-
trol qubit, and an end-qubit is a target.

Connections among qubits. Another well-known limitation of
quantum computer architecture is the number of connections
among qubits. In many quantum algorithms, controlled-gates are
important. However, it is currently difficult to prepare all interact-
ing the qubits. For example, IBM Q20 Tokyo [IBM] has a total of
20 qubits, while the size of fully-connected qubits set is only up to
4.

Due to the use of QFT, QSS needs a sequence of qubits which
has a connection between target and the other qubits and full con-
nections among the register (used for computation) qubits. On the
other hand, QCoin needs connections only between target and input
qubits. Figure 13 shows the minimum qubits’ architectures (con-
nections) for the quantum circuits in Figure 5 and Figure 6. In
general, we need not only more qubits, but also more connections
among qubits for QSS than QCoin, which further prevents the use
of QSS in real quantum computers.

Quantum error correction and NISQs. Aside from errors due to
the algorithm (i.e., noise due to a limited number of samples or
iterations), the error in quantum computation arises from various
factors; bit-flip errors, decoherence of superposition states, errors
on logic gates, and so on. Note that simulators currently do not in-
clude such errors. While it is theoretically possible to perform error
corrections [KLV00], its implementation on current quantum com-
puters is still considered challenging [RDN∗12]. It is thus generally
assumed that one cannot perform calculation accurately as the scale

of a quantum circuit (computation time, the number of qubits, and
the number of gate operations) is becoming larger.

Such an "unscalable" quantum computer is called an “NISQ"
(Noisy Intermediate-Scale Quantum Computer) [Pre18]. On
NISQs, quantum algorithms which require many qubits and a long
computation time will not work due to the errors in actual quantum
computers. However, NISQs are more realistic models for actual
quantum computers in the near future. Therefore, researchers have
been vigorously investigating a novel class of quantum algorithm
called “hybrid quantum-classical" [KMT∗17]. In this class of algo-
rithms, an algorithm alternately repeats quantum calculations in a
small circuit and adjusting parameters of the quantum circuit based
on the classical calculation. A hybrid quantum-classical algorithm
generally needs fewer qubits and lower depth of quantum circuit,
thus suitable to run on NISQs.

In QSS, the relations of AA iterations and estimation error ap-
pear as in Figure 12 (right). It is obvious that much more time and
larger circuit for one continuous quantum operation are required
for QSS than for QCoin. Therefore, we infer that QCoin performs
better than QSS due to its shorter computation time. In our exper-
iments and the original experiments by Johnston [Joh16], QSS is
not really performing well on NISQs. Based on its performance
on a simulator, we hypothesize that its inferior performance on an
actual quantum computer is not owing to the limited number of
AA iterations, but its use of many qubits and controlled-gate oper-
ations. We, however, should mention that we could not run a large
enough quantum circuit for QSS due to the restriction of the qubit
architecture to fully confirm the influence of decoherence alone.

On the other hand, our QCoin method performs well even on an
actual quantum computer. We think that it is because QCoin is hy-
brid quantum-classical; the use of a quantum coin is done as in clas-
sic Monte Carlo integration, while shifting and scaling of the error
interval are done by AA in quantum computation. Hybrid quantum-
classical algorithms generally need fewer qubits and lower depth
of quantum circuit, which is considered suitable to run on NISQs.
While the idea of QCoin was invented a while ago [AW99], there
has been no effort to investigate whether QCoin is executable on
NISQs, and we think that this finding alone is novel in the field of
quantum computing.

8. Limitations

Aside from the limited complexity of integrands due to the cur-
rent architecture of quantum computers, we have a few more lim-
itations. In classic computers, by giving up the use of random
numbers, it is possible to perform quasi Monte Carlo integra-
tion [MC95] to achieve the convergence rate of O(log(N)s/N) for
s-dimension integrands. While the QCoin’s convergence rate of
O(1/N) is still better, it is unclear if and how we can incorpo-
rate quasi Monte Carlo to achieve an even better convergence rate
in quantum computation, or whether it is possible. The classical
part of QCoin is still limited to Monte Carlo integration. Moreover,
due to the constraints of hardware, our experiments for both QSS
and QCoin on an actual quantum computer omitted the input cir-
cuit part, which generally involves controlled-gate operations. As
such, if we could have included the omitted input part, errors in

13

our experiments might potentially go up due to the use of more
controlled-gate operations.

9. Conclusion

We proposed a concrete algorithm of QCoin and performed nu-
merical experiments for the first time after 20 years of its theoret-
ical introduction [AW99]. Our implementation of QCoin shows a
faster convergence rate than that of classical Monte Carlo integra-
tion. This performance is equivalent to QSS. We formulated QCoin
as a hybrid quantum-classical method and explained why QCoin is
more stable than QSS in the presence of noise in actual quantum
computers. We discussed hardware limitations of near-term quan-
tum computers and concluded that QCoin needs fewer qubits and
simpler architecture, thus being much more practical than QSS.
Our experiments on a quantum computer confirmed this robust-
ness against noise and faster convergence rate than classical Monte
Carlo integration. We believe that QCoin is a practical alternative to
QSS if we were to run rendering algorithms on quantum computers
in the future.

References
[AO19] ALEKSANDROWICZ G., OTHERS: Qiskit: An open-source

framework for quantum computing, 2019. doi:10.5281/zenodo.
2562110. 10

[AW99] ABRAMS D. S., WILLIAMS C. P.: Fast quantum algorithms for
numerical integrals and stochastic processes. arXiv (Aug. 1999). 1, 6, 7,
13, 14

[BdSGT11] BRASSARD G., DN SEBASTIEN GAMBS F. D., TAPP A.: An
optimal quantum algorithm to approximate the mean and its application
for approximating the median of a set of points over an arbitrary distance.
arXiv (June 2011). 4

[BHT06] BRASSARD G., HÃŸYER P., TAPP A.: Quantum counting.
International Colloquium on Automata, Languages, and Programming
(May 2006). doi:10.1007/BFb0055105. 4, 5

[CZX∗18] CHEN Z.-Y., ZHOU Q., XUE C., YANG X., GUO G.-C.,
GUO G.-P.: 64-qubit quantum circuit simulation. Science Bulletin 63,
15 (2018), 964–971. 12

[DBE95] DEUTSCH D. E., BARENCO A., EKERT A.: Universality in
quantum computation. Proceedings of the Royal Society of London. Se-
ries A: Mathematical and Physical Sciences 449, 1937 (1995), 669–677.
3

[Gro96] GROVER L. K.: A fast quantum mechanical algorithm for
database search. In STOC ’96 Proc. of the twenty-eighth annual
ACM symposium on Theory of Computing (1996). doi:10.1145/
237814.237866. 1, 3, 4

[Gro98] GROVER L. K.: A framework for fast quantum mechanical al-
gorithms. In STOC ’98 Proc. of the thirtieth annual ACM symposium on
Theory of computing (1998). doi:10.1145/276698.276712. 4

[IBM] IBMQ:. Ibmq experience [online]. (web site) https://
quantumexperience.ng.bluemix.net/qx/devices. 10, 12, 13

[JHS19] JOHNSTON E. R., HARRIGAN N., SEGOVIA M. G.: Program-
ming Quantum Computers: Essential Algorithms and Code Samples. Or-
eilly, 2019. 2

[Joh16] JOHNSTON E. R.: Quantum supersampling. In Proc. SIGGRAPH
Talks ’16 (2016). (Presentaiton video at SIGGRAPH 2016) https://
vimeo.com/180284417. doi:10.1145/2897839.2927422. 1, 2,
4, 5, 10, 11, 12, 13

[Kaj86] KAJIYA J. T.: The rendering equation. In ACM SIGGRAPH
computer graphics (1986), vol. 20, ACM, pp. 143–150. 3

[KLV00] KNILL E., LAFLAMME R., VIOLA L.: Theory of quantum er-
ror correction for general noise. Physical Review Letters 84, 11 (2000),
2525. 13

[KMT∗17] KANDALA A., MEZZACAPO1 A., TEMME K., TAKITA M.,
BRINK M., M. CHOW1 J., M. GAMBETTA J.: Hardware-efficient vari-
ational quantum eigensolver for small molecules and quantum magnets.
Nature 549 (Sept. 2017), 242. doi:10.1038/nature23879. 2, 7,
13

[LU05] LANZAGORTA M., UHLMANN J.: Quantum rendering: an intro-
duction to quantum computing, quantum algorithms and their applica-
tions to computer graphics. In SIGGRAPH ’05 ACM SIGGRAPH 2005
Courses (2005). doi:10.1145/1198555.1198722. 1, 12

[MC95] MOROKOFF W. J., CAFLISCH R. E.: Quasi-monte carlo inte-
gration. Journal of computational physics 122, 2 (1995), 218–230. 13

[NC11] NIELSEN M. A., CHUANG I. L.: Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, 2011. 2, 3, 4

[NW99] NAYAK A., WU F.: The quantum query complexity of ap-
proximating the median and related statistics. In STOC ’99 Proc. of
the thirty-first annual ACM symposium on Theory of computing (1999).
doi:10.1145/301250.301349. 1

[Par70] PARK J. L.: The concept of transition in quantum mechanics.
Foundations of Physics 1 (1970), 23–33. 3

[PO18] PEDNAULT E., OTHERS: Breaking the 49-qubit barrier in the
simulation of quantum circuits. arXiv (Dec. 2018). 12

[Pre18] PRESKILL J.: Quantum computing in the nisq era and beyond.
Quantum 2 (Aug. 2018), 79. doi:10.22331/q-2018-08-06-79.
13

[RDN∗12] REED M. D., DICARLO L., NIGG S. E., SUN L., FRUNZIO
L., GIRVIN S. M., SCHOELKOPF R. J.: Realization of three-qubit quan-
tum error correction with superconducting circuits. Nature 482, 7385
(2012), 382. 13

[Shi] SHIMADA N. H.:. Qcoin’s source code on github [online]. (Under
construction). 8, 10

[SO18] SVORE K. M., OTHERS: Q#: Enabling scalable quantum com-
puting and development with a high-level dsl. In Proceedings of the
Real World Domain Specific Languages Workshop 2018 (Feb. 2018).
doi:10.1145/3183895.3183901. 8

[TKI99] TOKUNAGA Y., KOBAYASHI H., IMAI H.: Applications or
grover’s quantum search algorithm. IPSJ SIG Notes 70, 5 (Nov. 1999),
33–40. 4

[ZJL∗15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S.-E.:
Recent advances in adaptive sampling and reconstruction for monte carlo
rendering. In Computer Graphics Forum (2015), vol. 34, Wiley Online
Library, pp. 667–681. 12

14

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1007/BFb0055105
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/276698.276712
https://quantumexperience.ng.bluemix.net/qx/devices
https://vimeo.com/180284417
https://doi.org/10.1145/2897839.2927422
https://doi.org/10.1038/nature23879
https://doi.org/10.1145/1198555.1198722
https://doi.org/10.1145/301250.301349
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1145/3183895.3183901

