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Figure 1: A glass lamp illuminates a wall and generates a complex caustics lighting pattern on the wall. This type of illumination is difficult
to simulate with Monte Carlo ray tracing methods such as path tracing, bidirectional path tracing, and Metropolis light transport. The
lighting seen through the lamp is particularly difficult for these methods. Photon mapping is significantly better at capturing the caustics
lighting seen through the lamp, but the final quality is limited by the memory available for the photon map and it lacks the fine detail in the
illumination. Progressive photon mapping provides an image with substantially less noise in the same render time as the Monte Carlo ray
tracing methods and the final quality is not limited by the available memory.

Abstract

This paper introduces a simple and robust progressive global illu-
mination algorithm based on photon mapping. Progressive photon
mapping is a multi-pass algorithm where the first pass is ray trac-
ing followed by any number of photon tracing passes. Each photon
tracing pass results in an increasingly accurate global illumination
solution that can be visualized in order to provide progressive feed-
back. Progressive photon mapping uses a new radiance estimate
that converges to the correct radiance value as more photons are
used. It is not necessary to store the full photon map, and unlike
standard photon mapping it possible to compute a global illumina-
tion solution with any desired accuracy using a limited amount of
memory. Compared with existing Monte Carlo ray tracing methods
progressive photon mapping provides an efficient and robust alter-
native in the presence of complex light transport such as caustics
and in particular reflections of caustics.

Keywords: Global Illumination, Photon Mapping, Sampling and
Reconstruction, Density Estimation

1 Introduction

Efficiently simulating global illumination is one of the classic prob-
lems in computer graphics. In the most general form it involves
solving for all types of light transport within a scene in order to pro-
vide a full solution to the rendering equation [Kajiya 1986]. Several
global illumination algorithms have been developed over the years
and a number of algorithms based on Monte Carlo ray tracing are
capable of solving the rendering equation without any approxima-
tions [Dutré et al. 2006].

Monte Carlo based methods can simulate both specular and diffuse
materials, but there is one combination of these materials that is
particularly problematic for most of the methods. This combina-
tion involves light being transported along a specular to diffuse to
specular path (SDS path) before being seen by the eye. An exam-
ple of an SDS path is the shimmering light seen on the bottom of a
swimming pool, or it could be any type of specular surface seen in a
room illuminated by a light source enclosed in glass. Most artificial
lighting involves light sources embedded in glass (e.g. light bulbs,
and headlights of car), and this type of illumination is very com-
mon. SDS paths are particularly challenging when the light source
is small since the probability of sampling the light through the spec-
ular material is low in unbiased Monte Carlo ray tracing methods
such as path tracing, bidirectional path tracing, and Metropolis light
transport. For example, this can be seen in Figure 1 where a glass
lamp illuminates a room. Notice how the Monte Carlo ray trac-
ing methods fail to capture the transmission of caustics through the
lamp.

Photon mapping is a consistent algorithm which is good at simu-
lating caustics and SDS paths. However, photon mapping becomes
very costly for scenes dominated by caustics illumination since the



caustics are simulated by directly visualizing the photon map. To
avoid noise it is necessary to use a large number of photons and the
accuracy is limited by the memory available for the photon map.
The fourth image in Figure 1 shows the lamp scene rendered using
20 million photons, but this is not enough to capture details in the
illumination and the rendered image exhibits low-frequency noise.

In this paper we present a progressive photon mapping algorithm
that makes it possible to robustly simulate global illumination in-
cluding SDS paths with arbitrary accuracy without requiring infi-
nite memory. Progressive photon mapping uses multiple photon
tracing steps to compute an accurate solution without maintaining
every photons from each iteration. We use a novel progressive ra-
diance estimate that converges to the correct solution as more pho-
tons are added. The progressive radiance estimate uses the consis-
tency of photon mapping to refine the estimate and ensure conver-
gence. Our results show that progressive photon mapping is more
efficient and robust than path tracing, bidirectional path tracing and
Metropolis light transport in scenes with SDS paths. Furthermore,
progressive photon mapping can compute a noise free solution in
complex scenes where traditional photon mapping is limited by the
memory available for the photons in the photon map.

2 Related Work

In his seminal paper on the rendering equation Kajiya [1986] in-
troduced the path tracing algorithm. Path tracing is a Monte Carlo
ray tracing algorithm, that computes global illumination in a given
scene by evaluating a large number of random ray paths. This ap-
proach works well in scenes with smooth illumination, but it be-
comes costly in the presence of caustics due to small light sources.
This is caused by the low probability of generating random paths
that are reflected by the specular surface towards the light source.

To render scenes with caustics more efficiently Dutré et al. [1993]
used Monte Carlo light tracing from the light sources to the image
pixels. This approach renders caustics, but it cannot capture specu-
lar reflections seen by the observer. To address this issue Lafortune
et al. [1993] and Veach and Guibas [1995] introduced bidirectional
path tracing (BDPT). BDPT traces light paths both from the light
source and the eye, which makes it significantly more efficient at
rendering caustics. However, BDPT is very inefficient at render-
ing mirror reflections and transmissions of caustics, since it cannot
connect the light path and the eye path in this case.

To address the shortcomings of BDPT Veach and Guibas [1997]
proposed the Metropolis light transport algorithm (MLT). In MLT,
each path is generated based on the mutation (perturbation) of a
previous path. MLT can render complex illumination effects and
it is particularly good at handling strongly localized illumination
effects, such as illumination coming through a slight opening of
door. However, in the case of mirror reflections of caustics, even
MLT becomes inefficient because such paths are difficult to gen-
erate by mutating existing paths. Veach and Guibas introduced a
special caustics mutation for this case, but it is only effective in
scenes with large light sources.

Cline et al. proposed an improvement to MLT called Energy Re-
distribution Path Tracing (ERPT) [Cline et al. 2005]. ERPT is in
essence a stratification of MLT over pixels, and it is simpler to im-
plement than MLT. Since ERPT still depends on mutations similar
to MLT, it shares the same weakness in the context of mirror re-
flections of caustics. To address this issue Cline et al. used image
filtering to reduce noise. Unfortunately, the filter introduces an ar-
bitrary amount of error in the resulting image. Recently, Lai et al.
applied the Population Monte Carlo method to global illumination
rendering (PMC-ER) [Lai et al. 2007]. They modified ERPT us-
ing Population Monte Carlo sampling. Their method is essentially

an iterative importance sampling approach, and they demonstrated
some improvement in efficiency over ERPT.

In his PhD thesis, Veach formulated unbiased Monte Carlo render-
ing methods as an integration over path space [Veach 1998]. Path
space is the space of all possible light transport paths in a scene. He
formulated unbiased Monte Carlo rendering methods as a Monte
Carlo sampling from this path space. He also pointed out several
limitations of unbiased path space based methods. One of the lim-
itations is that any path space based method cannot render perfect
specular reflections of caustics from a point light source viewed
through a pinhole camera. The reason for this is that the probabil-
ity of generating a path that connects the eye with the light is zero.
Veach mentioned that changing the light source into a small area
light addresses this problem, but as our results demonstrates such
small area lights are still difficult to sample and contribute consid-
erable noise to the final image. Note that path tracing, BDPT, MLT,
ERPT and PMC-ER are all unbiased path-space based methods.

Photon mapping is a two-pass global illumination algorithm devel-
oped by Jensen [1996]. The first pass is building a photon map
using photon tracing, and the second pass uses ray tracing to ren-
der the image. In the ray tracing pass the photon map is used to
estimate the radiance at different locations within the scene. This
is done by locating the nearest photons and performing a nearest
neighbor density estimation. Since the density estimation process
can be considered as a way of loosely connecting paths from the
eye to the light, photon mapping is very effective at rendering SDS
paths. The density estimation process effectively blurs the lighting
in the scene, and to represent sharp illumination details it is nec-
essary to use a large number of photons. The main challenge is
scenes with lighting dominated by caustics. This type of lighting is
rendered using a direct visualization of the photon map, which can
require a large number of photons to resolve the details. Since the
photon map is stored in memory, the final quality is often limited
by the maximum number of photons that can be stored in the pho-
ton map. We overcome this problem in photon mapping by using
a sequence of smaller photon maps without the need of storing all
the photons.

To improve the performance of photon mapping and final gather-
ing Havran et al. introduced the concept of reverse photon map-
ping [Havran et al. 2005]. Reverse photon mapping uses ray trac-
ing in the first pass and photon tracing in the second pass. The ray
tracing step builds a kd-tree over the hit points and in the photon
tracing step this kd-tree is used to find the nearest hit points that a
photon contributes to. The motivation for this approach is to reduce
the complexity and improve the performance of photon mapping
when a large number of rays are used in the ray tracing pass (e.g. as
part of final gathering). We use a concept similar to reverse photon
mapping, but our goal is to compute a highly accurate global illu-
mination solution in scenes with complex lighting and to overcome
the inherent limitation of the final image quality in standard photon
mapping.

Suykens and Willems [2000] proposed an adaptive image filtering
algorithm that asymptotically converges to the correct solutions.
They described several heuristics that reduces the width of filter-
ing kernel based on the number of samples. Our method also uses
the number of photons to reduce the search radius of the radiance
estimate, which asymptotically converges to the correct solutions
similar to their method. The key difference is that our method uti-
lizes the fact that photon mapping is a consistent method. Therefore
we can keep the robustness of photon mapping, while obtaining
asymptotically correct images.

A number of papers have addressed the issues in the standard pho-
ton mapping algorithm. Ray splatting [Herzog et al. 2007] removes



boundary bias and topology bias [Schregle 2003] by using rays
rather than photons to perform the radiance estimate. Proximity
bias is not avoided as these methods still rely on nearest neighbor
density estimation. Fradin et al. [2005] presented an out of core
photon mapping approach optimized for large buildings where only
a small part of the photon map is used during rendering. Chris-
tensen et al. [2004] introduced brick maps as a compact approxi-
mate representation of the illumination represented by the photon
map. With progressive photon mapping we can use an unlimited
number of photons, since we do not need to store all the photons
and we retain all the advantages of the standard photon mapping
method such as being able to handle non-Lambertian surfaces.

3 Overview

Photon Mapping [Jensen 2001] is a two-pass algorithm. The first
pass is photon tracing, which traces photons from the light sources
into the scene and stores them in a photon map as they interact with
the surfaces. The second pass is rendering in which the photon map
is used to estimate the illumination in the scene. Given a photon
map, exitant radiance at any surface location x can be estimated as:

L(x, ~ω) ≈
n∑
p=1

fr(x, ~ω, ~ωp)φp(xp, ~ωp)

πr2
, (1)

where n is the number of nearest photons used to estimate the in-
coming radiance. φp is the flux of the pth photon, fr is the BRDF,
~ω and ~ωp are the outgoing and incoming directions. r is the radius
of the sphere containing the n nearest photons. This estimate as-
sumes that the local set of photons represents incoming radiance at
x, and that the surface is locally flat around x.

The radiance estimate in Equation 1 is the source of bias in pho-
ton mapping. The photon tracing step is unbiased, but the resulting
photon distribution is blurred as part of the radiance estimate. As
the photon density increases the radiance estimate will converge to
the correct solution, and this makes photon mapping a consistent
algorithm. To ensure convergence to the correct solution it is nec-
essary to use an infinite number of photons in the photon map and
in the radiance estimate. Furthermore, the radius should converge
to zero. We can satisfy these requirements by using N photons in
the photon map, but only Nβ with β ∈]0 : 1[ photons in the radi-
ance estimate. As N becomes infinite both N and Nβ will become
infinite, but Nβ will be infinitely smaller than N , which ensures
that r will converge to zero. This can be written as [Jensen 2001]:

L(x, ~ω) = lim
N→∞

bNβc∑
p=1

fr(x, ~ω, ~ωp)φp(xp, ~ωp)

πr2
, (2)

In standard photon mapping this result is only of theoretical interest
since all the photons are stored in memory. This makes it impos-
sible to obtain a solution with arbitrary precision. In the following
sections we describe a new radiance estimate that fulfills the re-
quirements of Equation 2 without having to store all the photons in
memory.

3.1 Progressive Photon Mapping

The main idea in progressive photon mapping is to reorganize the
standard photon mapping algorithm based on the conditions of con-
sistency, in order to compute a global illumination solution with
arbitrary accuracy without storing the full photon map in memory.
Progressive photon mapping is a multi-pass algorithm in which the
first pass is ray tracing and all subsequent passes use photon tracing.

Each photon tracing pass improves the accuracy of the global illu-
mination solution and the algorithm is progressive in nature. Fig-
ure 2 summarizes our algorithm.

Ray Tracing Pass Photon Tracing Pass

Figure 2: Progressive photon mapping uses ray tracing in the first
pass followed by one or more photon tracing passes.

Ray Tracing Pass: The ray tracing pass is similar to reverse pho-
ton shooting [Havran et al. 2005] without the use of gathering. It
uses standard ray tracing to find all the surfaces in the scene visible
through each pixel in the image (or a set of pixels). Note, that each
ray path includes all specular bounces until the first non-specular
surface seen. In scenes with a large number of specular surfaces the
length of the ray paths can be limited by using Russian Roulette.
For each ray path we store all hit points along the path where the
surface has a non-specular component in the BRDF. With each hit
point we store the hit location x, the ray direction ~ω, scaling factors
including BRDF and pixel filtering value, and the associated pixel
location. In addition we store extra data necessary for the progres-
sive radiance estimate including a radius, the intercepted flux, and
the number of photons within the radius. We represent these values
in the following structure:

struct hitpoint {
position x Hit location
normal ~n Normal at x

vector ~ω Ray direction
integer BRDF BRDF index
float x,y Pixel location
color wgt Pixel weight
float R Current photon radius
integer N Accumulated photon count
color τ Accumulated reflected flux

}

We will describe how to compute the last three values in more detail
in the next section.

Photon Tracing Passes: The photon tracing step is used to accu-
mulate photon power at the hit points found in the ray tracing pass.
It can be divided into multiple passes where each pass consists of
tracing a given number of photons into the scene in order to build a
photon map. After each photon tracing pass we loop through all hit
points (from the ray tracing pass) and find the photons within the ra-
dius of each hit point. We use the newly added photons to refine the
estimate of the illumination within the hit point as described in the
following section. Once the contribution of the photons have been
recorded they are no longer needed, and we can discard all photons
and proceed with a new photon tracing pass. This continues until
enough photons have been accumulated and the final image quality
is sufficient. Note that we can render an image after each photon
tracing pass. As more photons are accumulated the quality of the
image will progressively improve toward the final result.



4 Progressive Radiance Estimate

The traditional photon map radiance estimate as given in Equation 1
relies on an estimate of the local density of photons. The estimate
of the local density d(x) is:

d(x) =
n

πr2
. (3)

This estimate is based on locating the n nearest photons within a
sphere of radius r, assuming that the surface is locally flat such
that the photons are located within a disc. If we generate another
photon map and use it to compute the density at x we might find
n′ photons within the same disc, which may results in a different
density estimate d′(x):

d′(x) =
n′

πr2
. (4)

Note that we are using the same radius as Equation 3. By averag-
ing d(x) and d′(x) we can obtain a more accurate estimate of the
density within the disc of radius r. This approach was proposed by
Christensen [Jensen et al. 2004], and it will lead to a smoother ra-
diance estimate, but the final result does not have more detail than
each individual photon map. Furthermore, the averaging procedure
is not consistent and the method will not converge to the exact value
at x. Instead it computes the average value within a constant radius
r. As a result, it cannot resolve small details within the radius r, and
the accuracy is effectively limited by the total number of photons in
each individual photon map.

The progressive radiance estimate combines the result from several
photon maps in such a way that the final estimate will converge to
the correct solution. It is able to resolve details in the illumination
that is not captured by the individual photon maps. The key in-
sight that makes this possible is a new technique for reducing the
radius in the radiance estimate at each hit point, while increasing
the number of accumulated photons. This effectively ensures that
the photon density becomes infinite in the limit in accordance with
Equation 2. In the following sections we describe how the pho-
ton density is progressively increased. We perform the radiance
estimate computation at each hit point generated in the ray tracing
pass. Initially, the radius, R(x), at x is set to a non-zero value such
as the footprint of the pixel. It is also possible to estimate the ra-
dius after the first photon tracing pass by using the photon map to
estimate the radius around each hit point.

4.1 Radius Reduction

Each hit point has a radius, R(x). Our goal is to reduce this radius
while increasing the number of photons accumulated within this ra-
dius, N(x). The density d(x) at a hit point x is computed using
Equation 3. Assume that a number of photon tracing steps have
been performed and that N(x) photons have been accumulated at
x. If we perform one additional photon tracing step and find M(x)
photons within the radius R(x) then we can add these M(x) pho-
tons to x, which results in a new photon density d̂(x):

d̂(x) =
N(x) +M(x)

πR(x)2
. (5)

The next step of the algorithm is reducing the radius R(x) by
dR(x). If we assume that the photon density is constant within
R(x), we can compute the new total number of photons N̂(x)

within a disc of radius R̂(x) = R(x)− dR(x) as:

N̂(x) = πR̂(x)2d̂(x) = π(R(x)− dR(x))2d̂(x) . (6)

Radius: R(x)
Photons: N(x)

Radius: R(x)
Photons: N(x) + M(x)

Radius: R(x) - dR(x)
Photons: N(x) + αM(x)

Figure 3: Each hit point in the ray tracing pass is stored in a global
data structure with an associated radius and accumulated photon
power. After each photon tracing pass we find the new photons
within the radius of each hit point, and we reduce the radius based
on the newly added photons. The progressive radiance estimate
ensures that the final value at each hit point will converge to the
correct radiance value.

To satisfy the consistency condition in Equation 2, there has to be a
gain in the total number of photons at every iteration (i.e. N̂(x) >
N(x)). For simplicity, we use a parameter α = (0, 1) to control the
fraction of photons to keep after every iteration. Therefore, N̂(x)
can be computed as:

N̂(x) = N(x) + αM(x) , (7)

which states that we would like to add αM(x) new photons at each
iteration. We can compute the actual reduction of the radius dR(x)
by combining Equations 5, 6 and 7:

π(R(x)− dR(x))2d̂(x) = N̂(x)

⇔ π(R(x)− dR(x))2
N(x) +M(x)

πR(x)2
= N(x) + αM(x)

⇔ dR(x) = R(x)−R(x)

√
N(x) + αM(x)

N(x) +M(x)
. (8)

Finally, the reduced radius R̂(x) is computed as:

R̂(x) = R(x)− dR(x) = R(x)

√
N(x) + αM(x)

N(x) +M(x)
. (9)

Note that this equation is solved independently for each hit point.

4.2 Flux Correction

When a hit point receivesM(x) photons we need to accumulate the
flux carried by those photons. In addition we need to adjust this flux
to take into account the radius reduction described in the previous
section. Each hit point stores the unnormalized total flux received
premultiplied by the BRDF. We call this quantity τ(x, ~ω), and for
the N(x) photons it is computed as:

τN (x, ~ω) =

N(x)∑
p=1

fr(x, ~ω, ~ωp)φ
′
p(xp, ~ωp) , (10)

where ~ω is the direction of the incident ray at the hit point, ~ωp is the
direction of the incident photon, and φ′p(xp, ~ωp) is unnormalized
flux carried by the photon p. Note, that the flux at this stage is not
divided by the number of emitted photons as in standard photon
mapping. Similarly, the M(x) new photons give:

τM (x, ~ω) =

M(x)∑
p=1

fr(x, ~ω, ~ωp)φ
′
p(xp, ~ωp) . (11)



If the radius was constant we could simply add τM (x, ~ω) to
τN (x, ~ω), but since the radius is reduced we need to account for
the photons that fall outside the reduced radius (see Figure 3). One
method for finding those photons would be to keep a list of all pho-
tons within the disc and remove those that are not within the re-
duced radius disc. However, this method is not practical as it would
require too much memory for the photon lists. Instead, we assume
that the illumination and the photon density within the disc is con-
stant, which results in the following adjustment:

τN̂ (x, ~ω) = (τN (x, ~ω) + τM (x, ~ω))
πR̂(x)2

πR(x)2

= τN+M (x, ~ω)
π
(
R(x)

√
N(x)+αM(x)
N(x)+M(x)

)2

πR(x)2

= τN+M (x, ~ω)
N(x) + αM(x)

N(x) +M(x)
, (12)

where τN+M (x, ~ω) = τN (x, ~ω) + τM (x, ~ω), and τN̂ (x, ~ω) is the
reduced value for the reduced radius disc corresponding to N̂(x)
photons. The assumption that the photon density and thereby the
illumination is constant within the disc may not be correct initially,
but it becomes increasingly true as the radius becomes smaller ex-
cept for points exactly at illumination discontinuities. This is not an
issue, since the illumination at discontinuities is undefined and the
probability of having a hit point exactly at a discontinuity is zero.

4.3 Radiance Evaluation

After each photon tracing pass we can evaluate the radiance at the
hit points. Recall that the quantities stored include the current ra-
dius and the current intercepted flux multiplied by the BRDF. The
evaluated radiance is multiplied by the pixel weight and added to
the pixel associated with the hit point. To evaluate the radiance we
further need to know the total number of emitted photons Nemitted
in order to normalize τ(x, ~ω). The radiance is evaluated as follows:

L(x, ~ω) =

∫
2π

fr(x, ~ω, ~ω
′)L(x, ~ω′)(~n · ~ω′) dω′

≈ 1

∆A

n∑
p=1

fr(x, ~ω, ~ωp)∆φp(xp, ~ωp)

=
1

πR(x)2
τ(x, ~ω)

Nemitted
. (13)

Similar to the normal photon mapping, this formulation is not re-
stricted to Lambertian materials as we premultiply the flux with the
BRDF and store it as τ(x, ~ω). Note that the radius R(x) will not
be reduced if the disc defined by R(x) is within an unlit region
(i.e., M(x) = 0). Although this situation seemingly breaks the
conditions of consistency, it still converges to the correct solution
L(x, ~ω) = 0, since τ(x, ~ω) will not increase and L(x, ~ω) → 0
as Nemitted → ∞. Although the formal analysis of convergence
properties of R(x) and N(x) has not been done yet, the graphs in
Figure 4 indicate that the progressive radiance estimate converges
to the correct radiance valueL(x), while the radiusR(x) is reduced
to zero, and the number of photonsN(x) grows to infinity. The pro-
gressive radiance estimate ensures that the photon density at each
hit point increases at each iteration and it is therefore consistent in
accordance with Equation 2.

5 Results and Discussion

In this section we present results based on our implementation
of the progressive photon mapping algorithm (PPM). For com-
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Figure 4: Statistics at the hit points as a function of the number
of iterations. The three hit points A, B, and C are indicated in (d).
Each iteration is using 100000 photons. Note that the graph of
R(x) uses log scale for both axes.

parisons we have implemented path tracing (PT) with explicit di-
rect light source sampling, bidirectional path tracing (BDPT) with
multiple importance sampling [Veach and Guibas 1995], Metropo-
lis light transport [Veach and Guibas 1997] based on the primary
sample space [Kelemen et al. 2002] (MLT), and photon mapping
(PM) [Jensen 2001]. The algorithms have been implemented in
Pascal (Delphi), and all our examples have been rendered on a PC
with 1GB of memory and a 2.4GHz Intel Core 2 Q6600 using one
core. The rendered images have a width of 640 pixels. We used
100000 photons per photon shooting pass and α = 0.7. We lim-
ited the standard photon mapping results to 20 million photons due
to memory constraints on the machine we used for rendering. We
used 500-1500 photons in the radiance estimate for our results. The
exact number was picked to reduce low-frequency noise in the fi-
nal image. All results are equal time comparisons except for photon
mapping, where the rendering time is shorter since the total number
of photons is limited by the available memory. Table 1 summarizes
the computational effort for the different scenes.

Figure 1 shows a glass lamp illuminating a wall. The images have
been rendered using PT, BDPT, MLT, PM, and PPM. The image
was rendered in 22 hours. Note, how the illumination seen in the
glass lamp is very noisy in all the Monte Carlo ray tracing meth-
ods, while the photon mapping result exhibit low frequency noise
even with 20 million photons. With progressive photon mapping
we used 165 million photons, which captures the sharp features in
the illumination without the high frequency noise seen in the Monte
Carlo ray tracing images.

The test scene shown in Figure 6 is a box with two mirror balls
and a smaller glass ball. One of the mirror balls is faceted to cause
interesting caustics pattern. The scene is illuminated by two light-
ing fixtures, where each lighting fixture is a spherical light source
behind a spherical lens inside the metal cylinders at the ceiling.
This type of caustics illumination results in numerous SDS paths
within the model. Note, how the reflections in the mirror ball are
very noisy in both BDPT and MLT. Normal photon mapping re-
sults in a slightly blurry result. With progressive photon mapping
we can increase the number of photons to 213 million, which makes
it possible to capture the detailed illumination within the scene with
considerable less noise than the Monte Carlo ray tracing methods.
The Monte Carlo ray tracing images and the progressive photon
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Figure 5: Sequence of images with increasing number of photons. The images show a direct visualization the progressive radiance estimate
after 1, 16, 64, 256, and 1024 photon tracing passes. Note, how the illumination is quite good already after 0.1 million photons. Adding more
photons makes the image sharper and reduces low frequency noise.

PT BDPT MLT PPM Time
Samples Samples Mutations Iterations Hours

Lamp 840 80 82 1651 22
Box 1428 155 132 2134 4

Torus 1050 550 359 520 2
Bathroom 675 66 66 6126 16

Table 1: Rendering statistics for the different scenes. The samples
and mutations numbers are the average number per pixel. PPM
uses 100000 photons per iteration.

mapping image were rendered in 4 hours, while the normal photon
mapping image was rendered in 1 hour. The progressive nature of
our method is demonstrated on the box scene in Figure 5 where the
intermediate results have been visualized.

Figure 7 demonstrates the illumination on a torus embedded in a
glass cube (inspired by a similar scene by Cline et al. [2005]). All
the Monte Carlo ray tracing methods have trouble rendering the
lighting on the torus, while progressive photon mapping renders a
smooth noise free result in the same time (2 hours). The reference
image rendered using path tracing still exhibit noise even after using
51500 samples per pixel and 91 hours of rendering time.

The bathroom scene in Figure 8 is an example of complex ge-
ometry and illumination. The illumination in this scene is due to
two small spherical area light sources enclosed within bumpy glass
tubes. This type of illumination is common in real world lighting.
Both BDPT and MLT fail to properly sample the reflection in the
mirror and on the chrome pipes as well as the lighting behind the
glass door. Our method robustly handles all of these illumination
paths robustly. Normal photon mapping is also fairly robust in this
scene, but it is not possible to render a noise free image using 20
million photons.

6 Conclusion and Future Work

We have presented a progressive refinement extension to photon
mapping that makes it possible to compute solutions with arbitrary
accuracy in scenes with complex illumination. Our results show
that progressive photon mapping is particularly robust in scenes
with complex caustics illumination, and it is more efficient than
methods based on Monte Carlo ray tracing such as bidirectional
path tracing and Metropolis light transport. The primary contribu-
tion is a new progressive radiance estimate that converges to the
correct solution as more photons are added.

We believe progressive photon mapping opens several opportuni-
ties for future research. First, we would like to develop a stopping
criteria and an error estimate based on the local statistics of the
photon map around each hit point. This would address one of the
outstanding problems in photon mapping, which is how to deter-
mine the number of photons required in a given scene. We would
also like to explore adaptive photon tracing techniques, which could

be effective in the progressive photon mapping framework since we
know precisely how much each photon path contributes to the final
image. It could also interesting to utilize statistics from the accu-
mulated photons to determine optimal values for the parameters,
such as α and the initial radius.

Acknowledgments

This work was supported in part by NSF grant CPA 0701992. The
glass lamp and bathroom models are courtesy of Youichi Kimura
(Studio Azurite). The box scene is inspired by a similar scene used
by WinOSi (http://www.winosi.onlinehome.de/).

References
CHRISTENSEN, P. H., AND BATALI, D. 2004. An irradiance atlas for global illumination in complex production scenes.

In Proceedings of Eurographics Symposium on Rendering 2004, 133–141.

CLINE, D., TALBOT, J., AND EGBERT, P. 2005. Energy redistribution path tracing. ACM Trans. Graph. (SIGGRAPH
Proceedings) 24, 3, 1186–1195.
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Progressive photon mapping PT BDPT MLT PM PPM

Figure 6: A box scene illuminated by a lighting fixture. The lighting fixture is behind glass and the illumination in the scene is dominated
by caustics. The specular reflections and refractions have significant noise even with Metropolis light transport. Standard photon mapping
cannot resolve the sharp illumination details in the scene with the maximum 20 million photons in the photon map. With progressive photon
mapping we could use 213 million photons, which resolves all the details in the scene and provides a noise free image in the same rendering
time as the Monte Carlo ray tracing methods.

PT BDPT MLT PPM Reference

Figure 7: Torus embedded in a glass cube. The reference image on the far right have been rendered using path tracing with 51500 samples
per pixel. The Monte Carlo ray tracing methods fail to capture the lighting within the glass cube, while progressive photon mapping provides
a smooth result using the same rendering time.

Progressive photon mapping PT BDPT MLT PM PPM

Figure 8: Lighting simulation in a bathroom. The scene is illuminated by a small lighting fixture consisting of a light source embedded in
glass. The illumination in the mirror cannot be resolved using Monte Carlo ray tracing. Photon mapping with 20 million photons results in
a noisy and blurry image, while progressive photon mapping is able to resolve the details in the mirror and in the illumination without noise.


