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Figure 1: Door scene with glossy surfaces rendered in 90 min. L2 errors are shown in false color. Primary sample space MLT [Kelemen et al.
2002] (PSSMLT) renders a noisy image as its bidirectional connections cannot efficiently find visible paths in this scene. Original MLT [Veach
and Guibas 1997] is efficient at handling such difficult visibility, but suboptimal sampling on glossy surfaces results in distracting artifacts.
Our Multiplexed MLT (MMLT), although simple to implement just like PSSMLT, has comparable performance to original MLT on diffuse
surfaces and renders glossy surfaces more accurately.

Abstract

Global illumination algorithms using Markov chain Monte Carlo
(MCMC) sampling are well-known for their efficiency in scenes
with complex light transport. Samples in such algorithms are gen-
erated as a history of Markov chain states so that they are distributed
according to the contributions to the image. The whole process is
done based only on the information of the path contributions and
user-defined transition probabilities from one state to the others. In
light transport simulation, however, there is more information that
can be used to improve the efficiency of path sampling. A notable
example is multiple importance sampling (MIS) in bidirectional
path tracing, which utilizes the probability densities of construct-
ing a given path with different estimators. While MIS is a powerful
ordinary Monte Carlo method, how to incorporate such additional
information into MCMC sampling has been an open problem. We
introduce a novel MCMC sampling framework, primary space se-
rial tempering, which fuses the ideas of MCMC sampling and MIS
for the first time. The key idea is to explore not only the sample
space using a Markov chain, but also different estimators to gener-
ate samples by utilizing the information already available for MIS.
Based on this framework, we also develop a novel rendering algo-
rithm, multiplexed Metropolis light transport, which automatically
and adaptively constructs paths with appropriate techniques as pre-
dicted by MIS. The final algorithm is very easy to implement, yet
in many cases shows comparable (or even better) performance than
significantly more complex MCMC rendering algorithms.
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1 Introduction

Rendering photorealistic images in computer graphics is almost ex-
clusively done by using Monte Carlo methods nowadays. They all
share the concept of stochastically constructing paths that connect
the sensor to a light source and computing the energy reaching the
sensor. This process can be done in many ways: sampling only
from the sensor or the light sources (path tracing [Kajiya 1986]
or light tracing [Arvo 1986]), sampling from both sides with de-
terministic connections (bidirectional path tracing [Lafortune and
Willems 1993; Veach and Guibas 1995]), or density estimation of
path vertices (photon mapping [Jensen 1996]).
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While direct applications of general Monte Carlo methods are fea-
sible, some rendering methods effectively utilize more domain-
specific knowledge of light transport simulation than the oth-
ers. One notable example is multiple importance sampling
(MIS) [Veach and Guibas 1995]. MIS uses the extra knowledge
of multiple different approaches to construct a given path with dif-
ferent probability densities. This information is then used to define
a weighted sum of Monte Carlo estimators that results in less vari-
ance than using each estimator alone. MIS has been proven useful
in many existing rendering algorithms, such as the recent combina-
tions of density estimation and Monte Carlo integration [Georgiev
et al. 2012; Hachisuka et al. 2012], as well as its application to
many-lights algorithms [Walter et al. 2012].

On the other hand, Markov Chain Monte Carlo (MCMC) ren-
dering methods (as first introduced to rendering by Veach and
Guibas [1997]) take a more direct approach. This class of methods
applies MCMC sampling to locally explore the space of transport
paths. They obtain paths from a Markov chain, where a new path
is generated based only on the information about the current path,
without any knowledge of probability densities. While the depen-
dency only on the current path is the reason why MCMC meth-
ods are so general, they can still benefit from incorporating more
domain-specific knowledge in light transport simulation as some
ordinary Monte Carlo methods do.

We present a novel MCMC sampling framework, primary space
serial tempering, which enables us to combine the generality of
MCMC sampling with the additional knowledge of multiple differ-
ent techniques as in MIS. The main idea is to let a Markov chain
explore not only the space of transport paths, but also different sam-
pling techniques for each path. To the best of our knowledge, it
is the first general MCMC framework that enables us to achieve
such a combination. This framework leads to a new MCMC light
transport simulation method, Multiplexed Metropolis Light Trans-
port (MMLT), which explores the sampling space and adaptively
changes the path sampling technique using MCMC sampling.

Despite its improved adaptivity, our new algorithm is easy to im-
plement. We demonstrate the efficiency of our algorithm on scenes
with complex light transport due to combinations of difficult visi-
bility and highly glossy transport. We show that the performance
of our algorithm is comparable to, or even better than, significantly
more complex MCMC rendering algorithms (e.g., Fig. 1).

In summary, the contributions of this paper are:

• A theory to bridge multiple importance sampling and MCMC
sampling (Sect. 2 and Sect. 3).
• Primary space serial tempering, which allows a Markov chain

to explore different techniques for sampling a given distribution
with additional information available from MIS (Sect. 3.2).
• Multiplexed Metropolis Light Transport, a simple-to-implement

rendering method built upon our general framework, which is
robust to many scene configurations (Sect. 4).

2 Connection between MCMC and MIS

In order to establish the connection between MCMC and MIS, we
recapitulate important concepts related to our work using a consis-
tent formulation (see Table 1 for notations). Using this formulation,
we show how to combine MCMC and MIS in Sect. 3.2. Readers fa-
miliar with MCMC and MIS might skip to Sect. 2.6 where we state
the problem we solve. We discuss our method and its relation to
highly related previous work in Sect. 7.

Symbol Description
x̄, ȳ path defined as a vector of vertices
f(x̄) path throughput
C(x̄) path contribution

p(x̄), P (x̄) probability density function, cumulative distribution
w(x̄) multiple importance sampling weighting function
ū, v̄ path defined as a vector of random numbers

Ĉi(ū), p̂(ū), ŵ(ū) functions in primary space
f∗(x̄), C∗(x̄), p∗(x̄) unnormalized target distribution of x̄

b normalization factor
q(x → y) transition probability of y given x

min(a(x → y), 1) acceptance probability of the proposal y given x
min(r(t → t′), 1) acceptance probability of technique t′ given t

Ω,U sampling domain
N,M the number of samples, the number of techniques
k, t, s path length, the numbers of eye/light path vertices

Table 1: Notation used in this paper.

2.1 (Markov Chain) Monte Carlo Integration

Monte Carlo integration [Metropolis and Ulam 1949] estimates the
value of a definite (possibly vector valued) integral withN samples
xi ∈ Ω drawn from a probability density function (PDF) p(x) as∫

Ω

g(x)dx ≈ 1

N

N∑
i=1

g(xi)

p(xi)
. (1)

p(x) should ideally be as proportional to g(x) as possible, which is
the variance reduction technique known as importance sampling.

There are many approaches to generate samples from a given
PDF [Brooks et al. 2011]. MCMC sampling [Metropolis et al.
1953] is one powerful approach as it can generate samples accord-
ing to any positive scalar function p∗(x) ∝ p(x) without knowing
the normalization constant b =

∫
Ω
p∗(x)dx of the PDF. Using sam-

ples from MCMC, we can estimate the above integral as:∫
Ω

g(x)dx ≈ b

N

N∑
i=1

g(xi)

p∗(xi)
. (2)

MCMC sampling itself is not a particularly useful integration
method (especially when p∗(x) ∝ g(x)) since we still need to
know b to estimate the above integral. However, when we need
to estimate many different integrals

∫
Ω
g0(x)dx,

∫
Ω
g1(x)dx, · · ·

with a common p∗(x) (as in rendering, see Sect. 2.3), MCMC sam-
pling allows us to estimate all integrals up to the common scaling
factor b. The scaling factor is then estimated separately, for exam-
ple, by ordinary Monte Carlo integration.

MCMC sampling generates samples as a history of states of a
Markov chain. Given xi as the current state of the Markov chain,
first a proposal y is generated based on a conditional probability
density q(xi → y) (proposal density, often called mutation in ren-
dering), and then we set xi+1 = y with the probability min(a, 1);

a(xi → y) =
p∗(y)q(y→ xi)

p∗(xi)q(xi → y)
. (3)

Otherwise, the same state xi+1 = xi is repeated; this is the
Metropolis-Hastings (MH) algorithm [Hastings 1970].

2.2 Path Integral

Light transport simulation algorithms in rendering essentially com-
pute an estimate of the path integral [Veach 1998]:

Ij =

∫
Ω(M)

hj(x̄)f(x̄)dµ(x̄) =

∞∑
k=1

∫
Ωk(M)

hj(x̄)f(x̄)dµ(x̄), (4)



where Ij is the intensity of the j-th pixel, Ωk(M) is the space of all
possible light paths of length k, and Ω(M) =

⋃∞
k=1 Ωk(M) is the

space of all possible paths; x̄ ∈ Ωk(M) is a complete path from a
light to the camera in this path space. A path is represented as a vec-
tor of points on the scene manifoldM, i.e. x̄ = (x0,x1, . . . ,xk).

The path throughput f(x̄) includes a product of reflection operators
at all points of a path x̄, and hj(x̄) is a pixel filtering function which
is non-zero only for the support of the j-th pixel. Note that we
explicitly separated paths of different lengths in Eq. 4 for brevity
in later sections. In the following, we show equations only on a
specific path length k whenever we define an estimator of Ij .

Path tracing [Kajiya 1986] is a direct application of ordinary MC
integration (Eq. 1) to the path integral. Each Ij is independently
estimated by sampling paths x̄i ∼ pj(x̄i):

Ij ≈
1

N

N∑
i=1

hj(x̄i)f(x̄i)

pj(x̄i)
=

1

N

N∑
i=1

hj(x̄i)Cj(x̄i), (5)

where Cj(x̄) = f(x̄)/pj(x̄) is the path contribution. Sampling a
path through each pixel normally leads to a unique probability den-
sity pj(x̄) as a product of PDFs for BSDF, light, and lens sampling.

2.3 Original Metropolis Light Transport

MLT [Veach and Guibas 1997] applies Eq. 2 to the path integral as

Ij ≈
b

N

N∑
i=1

hj(x̄i)f(x̄i)

f∗(x̄i)
, (6)

where f∗(x̄) is the scalar luminosity of the path throughput f(x̄),
which is used as the target distribution p∗(x̄) in Eq. 2.

Unlike in path tracing, path samples x̄i are shared among pixels in
MLT: samples are projected to the image plane and contribute to
pixels with non-zero hj(x̄i). By this process, they can be used for
estimating the integrals of all pixels at the same time. The common
scaling factor b =

∫
Ω
f∗(x̄)dµ(x̄) (related to the brightness of the

image) is estimated by separate MC integration such as path tracing.
MLT updates the current path x̄i using MCMC (Eq. 3)

a(x̄i → ȳ) =
f∗(ȳ)q(ȳ → x̄i)

f∗(x̄i)q(x̄i → ȳ)
. (7)

Since well-designed mutation strategies in MLT locally explore the
sample space of f∗(x̄) where they are large, MLT is effective at
avoiding sampling paths where f(x̄) is zero (thus f∗(x̄) is zero)
due to visibility. This consideration of the complete path through-
put is a key advantage over ordinary MC methods, where it would
be difficult to define such a PDF.

The implementation of original MLT, however, has been commonly
considered very challenging due to the intricate MCMC processes
such as the mutations and computation of the transition probabili-
ties directly on a path x̄ (Eq. 7). For example, randomly perturbing
all the vertex locations of a given path almost always results in an
invalid path, since perturbed vertices will likely be off the scene
surfaces M. Each mutation strategy therefore has to be carefully
designed such that it generates valid paths, while making a reason-
able change to the current path [Veach and Guibas 1997].

2.4 Primary Sample Space Metropolis Light Transport

Primary sample space MLT (PSSMLT) [Kelemen et al. 2002] sig-
nificantly simplifies the MCMC process compared to the original

Figure 2: Primary sample space MLT. ū is a vector of random
numbers mapped to a path x̄ according to the inverse cumulative
distribution function P−1(ū). The path contribution in each space
is C(x̄) and Ĉ(ū). The differential contribution (used for integra-
tion)C(x̄)p(x̄)dµ(x̄) is mapped into Ĉ(ū)dū in the primary space.

MLT method. It utilizes the fact that each path x̄ is uniquely de-
fined by a vector of random numbers ū ∈ U = [0, 1]O(k) (O(k)
random numbers are normally needed to define a path of length k).
The mapping from ū to x̄ is defined by the (inverse) cumulative dis-
tribution function (CDF) as x̄ = P−1(ū) (Fig. 2). This mapping
is already used in MC sampling of paths in Eq. 5 to trace a path x̄
given uniform random numbers ū.

In order to utilize this mapping in MCMC sampling, Kelemen et al.
considered the following decomposition with a given p(x̄):

f(x̄) =
f(x̄)

p(x̄)
p(x̄) = C(x̄)p(x̄). (8)

For the brevity of notation, we define the path throughput and
the PDF in primary space as Ĉ(ū) = C(P−1(ū)) = C(x̄) and
p̂(ū) = p(P−1(ū)) = p(x̄). Using this notation, we can observe
the following relationship [Kelemen et al. 2002] (see Fig. 2):

C(x̄)p(x̄)dµ(x̄) = Ĉ(ū)p̂(ū) |dµ(x̄)/dū|dū
= Ĉ(ū)p̂(ū)

∣∣dP−1(ū)/dū
∣∣ dū

= Ĉ(ū)p̂(ū)1/p̂(ū)dū = Ĉ(ū)dū, (9)

which leads to a simplified path integral over the unit hypercube U
and the respective MCMC estimator:

Ij =

∫
Ω(M)

hj(x̄)C(x̄)p(x̄)dµ(x̄)

=

∫
Ω(U)

ĥj(ū)Ĉ(ū)dū ≈ b

N

N∑
i=1

ĥj(ūi)Ĉ(ūi)

Ĉ∗(ūi)
. (10)

This algorithm operates on a vector of random numbers ū ∈ U
which is significantly easier to manipulate than a vector of vertices
on the scene manifold x̄ ∈ M. For example, any random pertur-
bation of ū results in x̄ ∈ M in a closed scene (recall that almost
all random perturbations of x̄ itself will be invalid). Furthermore,
it is easy to use a symmetric mutation in the primary space which
avoids the computation of the transition probabilities altogether.

The MCMC update process in Eq. 3, now in the primary space with
the symmetric mutation v̄ ∼ q(ūi → v̄) = q(v̄ → ūi), becomes

a(ūi → v̄) =
Ĉ∗(v̄)

Ĉ∗(ūi)
. (11)

In comparison to Eq. 7, C∗(x̄) can be significantly flatter and thus
easier to explore by MCMC sampling than f∗(x̄), if we have a



PDF p(x̄) roughly proportional to f∗(x̄). In this case, we have
a(ūi → v̄) = Ĉ∗(v̄)/Ĉ∗(ūi) ≈ 1, which avoids repeating the
same states while allowing large changes in MCMC sampling.

Unfortunately, it is difficult to find such a PDF. In fact, impor-
tance sampling in ordinary MC (Eq. 1) also faces the same diffi-
culty, which is inherited here due to the decomposition using p(x̄)
in Eq. 8. In addition, since the algorithm indirectly mutates a path
by changing its associated vector of random numbers with a fixed
mapping defined by p(x̄), the flexibility of its mutation strategies is
limited compared to original MLT.

2.5 Multiple Importance Sampling

While it is difficult to define a single p(x̄) that is roughly propor-
tional to f∗(x̄) everywhere, we often know multiple different PDFs
pt(x̄) where each PDF locally approximates f∗(x̄) better than the
others. Multiple importance sampling (MIS) [Veach and Guibas
1995] uses such extra information to generalize the decomposition
in Eq. 8 to a weighted sum:

f(x̄) =

M∑
t=1

wt(x̄)
f(x̄)

pt(x̄)
pt(x̄) =

M∑
t=1

wt(x̄)Ct(x̄)pt(x̄), (12)

where M is the number of PDFs and wt(x̄) is a weighting function
with

∑M
t=1 wt(x̄) = 1 for any given x̄.

Following the original terminology by Veach [1998, p.299], we de-
fine an (s, t) technique (or t-th technique given fixed k) as a bidirec-
tional path sampling procedure where we trace t eye-subpath and s
light-subpath vertices to generate a path of length k = s + t − 1.
Each pt(x̄) then corresponds to a PDF of sampling such a pair of
subpaths. In this paper, pt(x̄) is specifically defined as a product of
subpath sampling probability densities with t eye subpath vertices
and s = (k + 1)− t light subpaths vertices for a given path length
k. MIS (and our method) however is not limited to this particular
definition of PDFs.

MIS uses ordinary MC integration (Eq. 1) to estimate Ij by taking
Nt samples x̄t,i (t = 1 . . .M , i = 1 . . . Nt) distributed according
to pt(x̄):

Ij ≈
M∑
t=1

1

Nt

Nt∑
i=1

hj(x̄t,i)wt(x̄t,i)Ct(x̄t,i), (13)

which is a generalization of Eq. 5.

2.6 Analysis and Problem Statement

MIS is a powerful technique as each PDF pt(x̄) can account for a
different approach to sample the same path. In contrast, MCMC
sampling ignores this extra information and directly tries to dis-
tribute paths according to f∗(x̄). MIS however can be computa-
tionally wasteful since samples are weighted after being generated,
where the weightwt(x̄) can be extremely small (or even zero) while
their probability densities are not. Moreover, the PDFs pt(x̄) typ-
ically do not include visibility as opposed to the target distribution
f∗(x̄) in MCMC sampling.

While the relationship between MCMC sampling and MIS has been
considered unclear, from Eq. 8 and Eq. 12, we can see that primary
sample space MLT is an MCMC sampling approach operating on
a special case of MIS, where we use only one technique p(x̄) and
w(x̄) = 1 (original importance sampling). As such, it is important
to note that the use of bidirectional path tracing in primary sample
space MLT does not utilize all available information as in Eq. 12.

Figure 3: Overview of multiplexed MLT for paths of length two.
MMLT utilizes different mappings to the path space by extending
the Markov chain state (ū, t). The index t defines the corresponding
bidirectional sampling technique (the illustration shows an exam-
ple of t = 2). MMLT can change the sampling technique by chang-
ing t via MCMC. The target distribution of each primary space is
weighted according to ŵt(ū) defined via MIS.

Specifically, while the evaluation of C(x̄) might be done by bidi-
rectional path tracing with MIS, there is always a unique mapping
x̄ = P−1(ū) (Eq. 9). This means that the fact that we have M
different mappings x̄t = P−1

t (ū) is ignored. Ignoring such infor-
mation can be wasteful since each t-th technique can result in a
different pt(x̄) and potentially better approximates f∗(x̄).

3 Primary Space Serial Tempering

We explain serial tempering [Marinari and Parisi 1992; Geyer and
Thompson 1995] as the basis in order to explain how we extend
it to our novel framework, primary space serial tempering. Our
framework enables us to use MCMC sampling with the available
information for MIS. To be specific, we can sample directly from
the distribution defined by Eq. 12 using MCMC sampling, while
fully utilizing all the information of pt(x̄) and P−1

t (ū).

3.1 Serial Tempering

Efficient MCMC sampling from a sum of parametrized distri-
butions has been actively investigated in computational statis-
tics [Brooks et al. 2011]. In this problem setting, we generate
samples from

∑M
t=1 f(x, Tt) where Tt is a parameter of the tar-

get distribution f(x, T ) (T originally denotes the temperature of a
physical process, thus the name “tempering”).

Among many approaches, serial tempering [Marinari and Parisi
1992; Geyer and Thompson 1995] allows us to use a single Markov
chain to explore the extended state space (x, t), where t is the
index to the discretized parameter Tt. In addition to the regular
MCMC update of x while keeping Tt (i.e., using Eq. 3 with fixed
Tt), the extra parameter Tt is updated to Tt′ with the probability
min(1, r(Tt → Tt′)) where

r(Tt → Tt′) =
f∗(x, Tt′)q(Tt′ → Tt)

f∗(x, Tt)q(Tt → Tt′)
. (14)

Here, q(Tt → Tt′) is a transition probability density from Tt to
Tt′ . By introducing this update of the parameter, serial tempering
makes the chain automatically visit parameters T that result in large
f(x, T ) and generates samples according to

∑M
t=1 f(x, Tt).



Problems of the Direct Application to Original MLT It might
be tempting to apply serial tempering directly to the problem of
sampling

∑M
t=1 wt(x̄)Ct(x̄)pt(x̄) by defining

f∗(x̄, Tt) = wt(x̄)C∗t (x̄)pt(x̄) = wt(x̄)f∗(x̄). (15)

In the context of light transport simulation, this is equivalent to us-
ing a path x̄ as the state of a Markov chain as in the original MLT
method, except that we now use wt(x̄)f∗(x̄) as the target distribu-
tion specified by the extra Markov chain state t.

There are three major issues with this approach. Firstly, it still ig-
nores the additional knowledge of pt(x̄) and P−1

t (ū), since pt(x̄)
cancels out. Secondly, this approach would still be challenging to
implement due to the complexity of the MCMC update process akin
to the original MLT method. Lastly, and most importantly, it is not
clear how wt(x̄) (inherited from MIS) should be defined and eval-
uated in this application, since a path is not generated by the t-th
technique, but by a generic MCMC process. Because of these rea-
sons, this direct application of serial tempering to original MLT is
not feasible.

3.2 Primary Space Serial Tempering

Our solution is to define each target distribution as f∗(x̄, Tt) =
wt(x̄)C∗t (x̄)pt(x̄) in the primary space according to Eq. 9. Each
target distribution is thus “warped” according to the correspond-
ing CDF Pt(x̄). This results in the target distribution f̂∗(ū, Tt) =

ŵt(ū)Ĉ∗t (ū) for each technique t since

wt(x̄)C∗t (x̄)pt(x̄)dµ(x̄) = ŵt(ū)Ĉ∗t (ū)dū, (16)

where ŵt(ū) is defined analogously to Ĉ∗t (ū). Each t-th primary
space has its own mapping defined as P−1

t (ū), thus we can utilize
the additional knowledge of pt(x̄) and P−1

t (ū).

The proposed state v̄, given the current state ū and the technique t,
is accepted with the probability min (1, a(ū→ v̄));

a(ū→ v̄) =
ŵt(v̄)Ĉ∗t (v̄)q(v̄ → ū)

ŵt(ū)Ĉ∗t (ū)q(ū→ v̄)
. (17)

Similar to the argument in primary sample space MLT,
ŵt(ū)Ĉ∗t (ū) can be smooth if pt(x̄) is approximately proportional
to f∗(x̄) (i.e., Ĉ∗t (ū) becomes approximately constant). The key
difference to primary sample space MLT (Eq. 11) is that, because
of the additional term ŵt(ū), we do not need pt(x̄) to fit f∗(x̄)
well for all x̄, but only locally where wt(x̄) is large enough. Be-
ing a primary space approach, our method maintains the ease of
implementation.

This extra flexibility is naturally combined with the MIS frame-
work. A provably optimal weighting function such as the balance
heuristic [Veach and Guibas 1995] indeed ensures that wt(x̄) au-
tomatically gets small in the region where pt(x̄) is a bad approxi-
mation of f∗(x̄). Analogous to serial tempering, the probability of
switching from the t-th to the t′-th target distribution then becomes:

r(t→ t′) =
ŵt′(ū)Ĉ∗t′(ū)q(t′ → t)

ŵt(ū)Ĉ∗t (ū)q(t→ t′)
. (18)

Final Algorithm In practice, we can combine the change of tech-
niques (Eq. 18) and the regular MCMC update (Eq. 17). Given the
current state (ū, t) and the proposal (v̄, t′), we accept the proposal
with the probability min (1, a ((ū, t)→ (v̄, t′))) where

a((ū, t)→ (v̄, t′)) =
ŵt′(v̄)Ĉ∗t′(v̄)q ((v̄, t′)→ (ū, t))

ŵt(ū)Ĉ∗t (ū)q ((ū, t)→ (v̄, t′))
. (19)

Using a symmetric probability density q ((v̄, t′)→ (ū, t)) =
q ((ū, t)→ (v̄, t′)) it further simplifies to

a((ū, t)→ (v̄, t′)) =
ŵt′(v̄)Ĉ∗t′(v̄)

ŵt(ū)Ĉ∗t (ū)
. (20)

Our final algorithm thus can be seen as primary sample space MLT
with the extended state space (ū, t) and the acceptance probability
defined as above. Even though they might look similar, primary
sample space MLT and our framework are fundamentally different
in that an actual sample x̄ is no longer associated with the primary
space state ū by the unique mapping P−1(ū), but by the mapping
P−1
t (ū) which changes according to the current state t.

The advantage of our method is that it maintains the simplicity of
primary sample space MLT, while effectively utilizing all the avail-
able information of pt(x̄) and P−1

t (ū). Primary sample space MLT
can be seen a special case of our method with a fixed t. While the
end result might look deceivingly trivial, our framework is the first
to achieve the exploitation of the extra knowledge available for MIS
in MCMC sampling. We would also like to note that bidirectional
mutation in original MLT can be viewed as a special case of our for-
mulation with the balance heuristic using an independent mutation.
Our formulation however is not limited to the balance heuristic as
we discuss later.

4 Multiplexed Metropolis Light Transport

We now describe our rendering algorithm, Multiplexed Metropolis
Light Transport (Multiplexed MLT or MMLT) based on the primary
space serial tempering framework. The key characteristic is that an
extra Markov chain state determines how the rest of Markov chain
states are mapped to a path (Eq. 16 and Fig. 3).

Algorithms 1 and 2 show pseudocode of PSSMLT and MMLT with
highlighted differences. Note that the basic structures of the two
algorithms are the same. The only major change is that MMLT
limits the connection of subpaths to a single technique specified by
the current state of the Markov chain. By this change, our algorithm
is able to dedicate more computational effort to the techniques that
contribute more to the image.

Initialization Algorithm 2 shows that we need to select a specific
path length k to choose one of the techniques. To this end, we esti-
mate the average image contribution of paths of length k using bidi-
rectional path tracing as bk ≈ 1

Nk

∑Nk
i=1 ŵ

∗
t (ū)Ĉ∗(ū), and select

the path length by importance sampling the discrete PDF defined
by bk. Each bk can be estimated either once at the initialization
stage or progressively during the integration stage. We used the
former approach to produce all the results in the paper for simplic-
ity. For a more robust implementation, the latter approach is less
likely to miss rare bounces when an initial estimate of bk is zero
but bk > 0. The contribution from each bounce has to be divided
by the probability of the selected path length. The remaining ini-
tialization process is the same as for PSSMLT, where we could also
employ start-up bias elimination [Veach and Guibas 1997].

Optimization for Multiple Bounces While our framework does
not limit us to do so, we found that keeping one separate Markov
chain for each path length is more efficient. The reason is that paths
of different lengths are essentially contributing to different integrals
(see also Eq. 4). We thus use L independent chains for the differ-
ent path lengths k ∈ [1, L], where L is the maximum path length.
L can be either specified by a user, or automatically decided by
the maximum path length reached during the evaluations of bk. It



Algorithm 1 : PSSMLT: CURRENT stores a vector of random num-
bers as well as its resulting path contribution. COMBINE returns
the weighted contribution of all possible bidirectional connections
of the subpaths. MAX returns the maximum luminosity of the
weighted bidirectional contributions.

Proposal.ū← MUTATE(Current.ū)

EyePath← SAMPLEEYEPATH(Proposal.ū)

LightPath← SAMPLELIGHTPATH(Proposal.ū)

Proposal.Contribution← COMBINE(EyePath, LightPath)

a← MAX(Proposal.Contribution)/MAX(Current.Contribution)

if Random ≤ a then
Current← Proposal

end if
ACCUMULATECONTRIBUTION(Current.Contribution)

could also be lazily extended during the integration process [Kele-
men et al. 2002]. The storage cost for multiple chains is negligible
(typically less than 100 KB).

Path Generation Analogous to PSSMLT, the state of the Markov
chain is a vector of random numbers ūk ∈ [0; 1]O(k) used for path
sampling. The actual number of components in ūk depends on
the implementation (e.g., if each vertex uses three random numbers
then ūk ∈ [0; 1]3(k+1)). We also have the extra state uk,t ∈ [0; 1)
to specify the sampling technique P−1

t (ū).

This extra state determines the number of vertices for the eye and
light subpaths for a BPT connection. For paths of length k, the eye
subpath consists of t = b(k+ 2)uk,tc ∈ [0, k+ 1] vertices and the
light subpath of s = (k + 1)− t vertices (there are k + 2 possible
techniques). The two subpaths are then connected deterministically
to compute the path contribution. Unlike bidirectional path tracing,
we connect subpaths only at their endpoints.

Mutation and Acceptance Probability We used the same muta-
tion function for ūk as Kelemen et al. [2002] (i.e., the combination
of large-step and regular mutations). The extra state uk,t to spec-
ify the sampling technique is mutated similarly to the other states,
while it could potentially use a different mutation function. Since
these mutations are all symmetric, we do not need to evaluate tran-
sition probability density functions. The acceptance probability a
is simply the quotient of the luminosities of the weighted contribu-
tions of the mutated path and the current path (Eq. 20).

Accumulation of Path Contributions In addition to the scaling
by the reciprocal of the discrete probability density of the selected
path length as noted before, we also need to scale each contribution
by the number of techniques k+ 2. This scaling corresponds to the
fact that the chain explores k + 2 different spaces. The example
code in the supplementary materials provides more details.

5 Results

We implemented bidirectional path tracing (BPT), primary sample
space MLT (PSSMLT), Veach and Guibas’ original MLT, stochastic
progressive photon mapping (SPPM) [Hachisuka and Jensen 2009],
and our algorithm (MMLT) in a single framework. The reference
images are rendered by PSSMLT with days of computation, except
for the box scene in Fig. 8 where we had to use SPPM. All compar-
isons are equal-time using a maximum of eight bounces rendered
with a Intel Core i7-3930K at 3.2 GHz using six cores. The param-
eters for original MLT (such as mutation size for each perturbation
strategy and probabilities to delete/insert a certain number of ver-
tices in bidirectional mutation) are tweaked manually to achieve
the best results, and its behavior has been validated against the im-

Algorithm 2 : Differences of Multiplexed MLT to PSSMLT
(Alg. 1). CURRENT additionally stores a random number uk,t to
specify a technique (determining subpath lengths s and t). COM-
BINE connects subpaths only at their endpoints. The acceptance
probability a uses the weighted luminosity as is.

k ← SAMPLEPATHLENGTH()
Proposal.[ūk, uk,t]← MUTATE(Current.[ūk, uk,t])

t← b(k + 2)uk,tc
s← (k + 1)− t

EyePath← SAMPLEEYEPATH(Proposal.ūk, t)

LightPath← SAMPLELIGHTPATH(Proposal.ūk, s)

Proposal.Contribution← COMBINE(EyePath, LightPath, t, s)

a← Proposal.Contribution/Current.Contribution
if Random ≤ a then

Current← Proposal
end if
ACCUMULATECONTRIBUTION(Current.Contribution)

plementation in Mitsuba [Jakob 2010]. We used the same primary
sample space mutation parameters for primary sample space MLT
and our algorithm. A simplified implementation of our algorithm
and PSSMLT in a single C++ file is available on our website.

Comparison to Other Rendering Algorithms Fig. 4 demon-
strates the robustness of our algorithm. This scene is challenging to
render as it contains both highly glossy surfaces and difficult vis-
ibility. We compare to BPT, PSSMLT, and original MLT with an
equal render time of 60 minutes. BPT and PSSMLT result in noisy
images as they cannot efficiently find visible paths in this scene.
PSSMLT does not improve the efficiency much over BPT in this
scene as the target distribution is defined as the maximum of all
BPT connections. This wastes computation when only few of the
connections yield a non-zero contribution due to visibility.

Fig. 6 compares sequences of images of original MLT and MMLT
for the parts of the scene showing diffuse and glossy surfaces. The
rendering using the original MLT method is less noisy in some
regions, but shows splotchy artifacts on glossy surfaces. This is
because no mutation strategy captures these light transport paths
well. It is conceivable that adding a specially crafted mutation strat-
egy would improve the performance. However, trying to cover all
possible types of paths would require us to design and implement
new mutation strategies. Furthermore, adding customized muta-
tion strategies wastes samples when a scene does not include the
intended path types (as noted also by Veach and Guibas [1997]).

Our MMLT renders an image that is overall less noisy than BPT
and PSSMLT, while capturing glossy transport better than original
MLT. MMLT automatically switches to the most appropriate tech-
nique as defined by the MIS weights, while difficult visibility is still
handled well by MCMC sampling. We emphasize that this result is
achieved by a very simple algorithm without any customized mu-
tation for specific types of paths. This automatic adaptation is a
consequence of the fusion of MIS and MCMC sampling (Sect. 4).

Sample Counts and Effective Path Ratio Fig. 1 shows an
equal-time comparison with the well-known door scene [Veach and
Guibas 1997] with highly glossy surfaces. For diffuse surfaces such
as the back wall, original MLT produces very accurate results. On
the other hand, there are distracting artifacts on glossy surfaces sim-
ilar to the scene in Fig. 4. PSSMLT is more accurate on glossy sur-
faces but noisy overall. Our algorithm works well in both regions.
In order to assess the efficiency of our algorithm over PSSMLT, we
computed the ratio of the number of samples with non-zero con-
tributions over the total number of samples. PSSMLT resulted in
11.81% in this scene and MMLT resulted in 29.75%, which is an
improvement of approximately 2.5 times.



BPT (RMSE: 0.3340) PSSMLT (RMSE: 0.2945) Original MLT (RMSE: 0.2129) MMLT (RMSE: 0.1809)

Figure 4: Bathroom scene with glossy surfaces rendered in an hour. The light source (red box in the overview, left) is facing towards
the corner of the shower booth. Bidirectional path tracing (BPT) is inefficient due to the complex visibility, and primary sample space
MLT (PSSMLT) can only slightly improve the result. While the original MLT method handles complex visibility well, no mutation strategy
efficiently captures glossy transport. Our algorithm (MMLT) handles both complex visibility and glossy transport by automatically selecting
an efficient sampling technique during MCMC sampling.

Fig. 5 visualizes the individual contributions from each technique
for paths of length six and the corresponding sample count distri-
butions for PSSMLT and MMLT. This visualization is not possible
with original MLT as there is no concept of sampling techniques.

As we mentioned in Sect. 3, PSSMLT with bidirectional connec-
tions is different from our algorithm since PSSMLT relies on a sin-
gle unique mapping of primary space samples to paths, while our
algorithm automatically uses multiple mappings. This difference is
evident in the sample count images (bottom two rows): PSSMLT
essentially results in the same number of samples for all the tech-
niques regardless of their weighted contributions, while our algo-
rithm adaptively distributes the samples according to their contri-
butions.

The visualization in the last column further confirms this differ-
ence. PSSMLT results in an almost entirely gray image if we vi-
sualize relative sample counts of three techniques as RGB values.
MMLT results in relative sample counts that roughly correspond to
the magnitudes of relative contributions under the same visualiza-
tion scheme.

Manifold Exploration Jakob and Marschner [2012] introduced a
mutation strategy, manifold exploration (ME), which is specially
designed to improve the handling of specular and highly glossy
paths. Like other mutations in original MLT, a path is mutated by
directly modifying its vertices. In order to evaluate how our algo-
rithm compares in a scene where manifold exploration is expected
to work well, we rendered the Cornell box with glossy surfaces
(Fig. 7).

For this comparison, we use the implementation of ME and original
MLT (as well as the reference rendering with PSSMLT) available in
Mitsuba. We intentionally selected a geometrically simple scene to
avoid the influence of low-level optimization (e.g., for ray-triangle
intersection) within each framework.

ME effectively compensates the lack of efficient mutation strategy
in the original MLT method and resulted in a more accurate image.
While our method does not outperform ME, it still works better than
original MLT. As such, ME is certainly a good option to improve the
efficiency of original MLT for glossy transport. The simplicity and
its advantage over original MLT, however, can make our algorithm
an attractive alternative in many cases. We however do not claim
that our method outperforms ME in general.

6 Discussion

Limitations Like any other local path sampling algorithms,
MMLT is inefficient at (nearly) non-samplable paths, such as
specular-diffuse-specular paths. Fig. 8 compares renderings of the
box-scene by Hachisuka et al. [2008] with the original MLT method
and MMLT. An equal-time comparison with SPPM revealed that
SPPM is significantly more efficient at capturing specular reflec-
tions and refractions of caustics than all the algorithms we tested
including manifold exploration; note that this scene has been specif-
ically designed to make unbiased path seeding impractical.

In general, we do not claim that MMLT always outperforms other
MCMC methods. Figure 9 demonstrates such a case using a recre-
ation of the original door scene [Veach and Guibas 1997]. While
MMLT still outperforms PSSMLT, original MLT is more efficient
than MMLT since its mutation strategies sufficiently cover all the
possible types of paths in this scene. Likewise, manifold explo-
ration can work better in some scenes as it is a global path sampling
algorithm (Figure 7).

We would like to note that MMLT shares fundamental issues com-
mon to all the MCMC rendering algorithms such as a lack of per-
fect stratification across pixels, potentially distracting artifacts for
animation, generally unreliable convergence tests, and remaining
bright pixels in otherwise converged renderings.

Parameters Similar to any MCMC sampling method, MMLT has
parameters that affect its performance. However, unlike the origi-
nal MLT method where several mutation strategies (bidirectional,
caustics, lens, multi-chain etc.) have their own set of parameters
to tweak, our algorithm has essentially only two global parameters:
mutation size in primary space and large step probability. This is
because MMLT uses a single mutation strategy in primary space
only, and different types of paths (e.g., caustics and glossy trans-
port) are automatically handled by exploring different techniques.

We can thus make our algorithm parameter-free in practice by using
adaptive MCMC in primary space [Hachisuka and Jensen 2011]
for mutation size adjustment and automatic tuning of the large step
probability [Zsolnai and Szirmay-Kalos 2013]. It would however
be interesting to see if a customized mutation for our algorithm
is beneficial, e.g. for the technique index. All the comparisons in
this paper use non-adaptive parameters for both PSSMLT and our
algorithm in order to ensure the fairness of comparisons.
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Figure 5: Analysis of the usage of different techniques for paths of length six in PSSMLT and MLT: Top row: contributions from each
technique to the image (with adjusted brightness and tone mapping). Middle row: the number of samples per pixel in our MMLT is roughly
proportional to the contribution. Bottom row: PSSMLT uses bidirectional path tracing as a sampler, but does not adaptively distribute samples
to each technique. The right-most column visualizes the dominant techniques (3,4), (4,3), and (5,2) by assigning their relative contributions
(top) as well as the sample counts in MMLT and PSSMLT to RGB channels. Sample counts in MMLT closely match the contributions. Note
that PSSMLT results in a gray image under the same visualization scheme as it equally distributes samples to techniques.

Optimal Weighting Functions MIS has some flexibility in the
choice of weighting functions [Veach and Guibas 1995]. Since
our framework supports arbitrary weighting functions, different
weighting functions potentially result in different performance. We
used the balance heuristic for all the results in this paper, but we
do not claim that this is the optimal choice. Bidirectional light-
cuts [2012] is a prominent example where customizing weighting
functions can significantly improve results. While we did not find a
weighting function with better performance than the balance heuris-
tic in our experiments so far, it might be interesting future work.

Possible Optimization The original MLT method is more effec-
tive at path reuse than PSSMLT and MMLT, as it can directly keep
a part of the path during the mutation process. It however does not
mean that path reusing is impossible in PSSMLT and MMLT. In
computational statistics, it is well known that we do not need to up-
date all states of the Markov chain simultaneously. We can use the
so-called block-wise update [Brooks et al. 2011] and keep a part
of a path whenever it is not affected by the mutation. This opti-
mization can be done without any change to the theory. Contrary
to the common misconception that parallelization is extremely dif-
ficult with MCMC rendering methods, we can simply run multiple
Markov chains in parallel and combine the output images. Both
Mitsuba and our framework use this approach.

7 Comparison to Previous Work

Unified path sampling/vertex connection and merging [Hachisuka
et al. 2012; Georgiev et al. 2012] formulates a MIS combination of
photon density estimation and Monte Carlo path integration to bet-
ter handle non-samplable paths. The extra adaptivity across tech-
niques in our method could be used to focus samples to a potentially
even smaller set of useful techniques in this formulation. It is, how-
ever, not entirely clear how this formulation can be efficiently com-
bined with MCMC sampling. Path space regularization [Kaplanyan
and Dachsbacher 2013; Bouchard et al. 2013] also addresses the
problem of non-samplable paths and it is potentially a viable option
for a combination with MCMC sampling like ours.
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Figure 6: Close-ups of Fig. 4 which highlight the convergence
behavior. While the original MLT method renders diffuse surfaces
well, its convergence is slower on glossy surfaces. MMLT results in
more uniform convergence across different regions.

Variants of MLT and other MCMC techniques have been proposed
in graphics literature. Energy redistribution path tracing [Cline et al.
2005] strives to stratify perturbations and to improve exploration of
the sample space by using a large number of short Markov chains
starting from stratified locations on the image. This idea can poten-
tially be combined with any MCMC rendering algorithm as well as
ours (e.g., population Monte Carlo [Lai et al. 2007]).

Kitaoka et al. [2009] applied replica exchange [Swendsen and
Wang 1986] using a set of user-defined target distribution for differ-
ent path types (caustics, specular-diffuse-specular, indirect diffuse
illumination, etc). While our idea of using multiple distributions
might look deceivingly akin to their work, our framework does not
rely on a user-defined classification of paths at all. Such a user-
defined classification becomes nontrivial with glossy materials or,
in general, in any scene configuration that was not originally con-
sidered. For example, it is not clear whether reflections from a
glossy surface should be classified as caustics or indirect bounce.
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Figure 7: Glossy Cornell box rendered in three minutes with
MMLT and Mitsuba’s implementation of manifold exploration
(ME) and the original MLT method. ME improves the efficiency
of original MLT in the presence of glossy surfaces. MMLT achieves
a comparable result with a much simpler algorithm.

This is the exact ambiguity that MIS resolves in ordinary Monte
Carlo via provably optimal weighting. MMLT incorporates this
general weighting approach of MIS into MCMC for the first time.
Kitaoka et al. also pointed out that, since replica exchange runs a
Markov chain for each distribution regardless of its contribution,
their algorithm becomes inefficient when many distributions result
in small contributions. In contrast, MMLT automatically avoids
spending samples on such distributions, since a single extended
Markov chain less frequently visits distributions with small con-
tributions.

Hachisuka and Jensen [2011] applied an adaptive MCMC sampling
method for photon density estimation (Chen et al. [2011] proposed
a similar approach without adaptive MCMC). Their application is
limited to light subpaths for creating photons, and camera subpaths
are sampled by an ordinary Monte Carlo method as in path trac-
ing. This fixed decomposition of complete paths is the reason why
their approach is not efficient for glossy surfaces, which our method
handles well. Since their formulation uses the primary space, their
adaptive MCMC component can be directly applied to MMLT.

Although we believe that the use of the primary space is the key
component that makes our algorithm easy to implement, it would
be interesting to see if we can combine the original MLT method
and MMLT into a single algorithm to improve the performance in
some special cases. This combination would potentially make man-
ifold exploration [Jakob and Marschner 2012] accessible to our al-
gorithm. However, we emphasize again that the simplicity of imple-
mentation is one of the key benefits of our algorithm, which would
be sacrificed in a combination with original MLT or ME.

Gradient-domain MLT [Lehtinen et al. 2013] computes an approx-
imation of the image and its gradients to reconstruct the final im-
age by solving a Poisson equation. In its implementation, gradient-
domain MLT uses an extended variant of original MLT with mani-
fold exploration. The basic concept of gradient-domain MLT, how-
ever, is orthogonal to, and can thus be combined with, any MCMC
sampling technique including ours. The performance of such a di-
rect application, however, would be suboptimal due to the extra dif-
ficulty of sampling gradients.

8 Conclusion

We introduced a novel Markov chain sampling framework, primary
space serial tempering, that combines the concepts of multiple im-
portance sampling and Markov chain Monte Carlo sampling. The
key idea is that a Markov chain also explores different probability
density functions to generate samples from the weighted distribu-
tions from MIS. The fusion of MCMC sampling and MIS allows us
to locally avoid generating samples from a probability density func-
tion that is a bad approximation of the target distribution. Based

Original MLT MMLT
(RMSE: 7.1385) (RMSE: 14.876)

Figure 8: Box scene with SDS paths rendered in 45 minutes with
original MLT and ours. While original MLT works better than our
method, SDS paths are better captured by a biased approach such
as SPPM (which resulted in RMS error of 1.1506). Note that specu-
lar reflections of caustics are quite noisy in both images; the differ-
ences in brightness are due to the uneven distributions of samples
in MCMC.

on this general framework, we introduced a new rendering algo-
rithm, multiplexed Metropolis light transport, which automatically
explores and dedicates computation time to different path sampling
techniques. The method is very simple to implement, while its per-
formance is comparable to or better than significantly more com-
plex methods across various scenes with complex light transport.
In particular, it is effective at handling glossy transport with diffi-
cult visibility.

We believe that multiplexed Metropolis light transport is a viable
addition to the existing set of MCMC rendering algorithms due
to its good performance while being a relatively simple algorithm.
While we focused on surface light transport in the paper, its ap-
plication to volume light transport should be straightforward. Pri-
mary space serial tempering can potentially be useful in any prob-
lem where MCMC sampling is applied, not only for rendering.
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