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Multiple importance sampling (MIS) is a powerful tool to combine different
sampling techniques in a provably good manner. MIS requires that the tech-
niques’ probability density functions (PDFs) are readily evaluable point-wise.
However, this requirement may not be satisfied when (some of) those PDFs
are marginals, i.e., integrals of other PDFs. We generalize MIS to combine
samples from such marginal PDFs. The key idea is to consider each marginal-
ization domain as a continuous space of sampling techniques with readily
evaluable (conditional) PDFs. We stochastically select techniques from these
spaces and combine the samples drawn from them into an unbiased estimator.
Prior work has dealt with the special cases of multiple classical techniques
or a single marginal one. Our formulation can handle mixtures of those.

We apply our marginal MIS formulation to light-transport simulation to
demonstrate its utility. We devise a marginal path sampling framework that
makes previously intractable sampling techniques practical and significantly
broadens the path-sampling choices beyond what is presently possible. We
highlight results from two algorithms based on marginal MIS: a novel for-
mulation of path-space filtering at multiple vertices along a camera path
and a similar filtering method for photon-density estimation.
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1 INTRODUCTION
Continuous multiple importance sampling (CMIS) [West et al. 2020]
generalizes multiple importance sampling (MIS) [Veach and Guibas
1995] to support uncountably infinite sets of sampling techniques.
West et al. [2020] showed that CMIS is equivalent to sampling
from the marginal distribution over the space of sampling tech-
niques (technique space), and thereby the continuous generalization
of the balance heuristic must evaluate the marginal PDF. This mar-
ginal PDF is often computationally intractable, so they proposed
to stochastically sample a finite number of techniques from the
technique space and make an approximation. This stochastic ap-
proximation, referred to as stochastic MIS (SMIS), yields an unbiased
estimator at the cost of additional variance. However, SMIS, while
powerful, is limited to combining samples drawn from techniques
that are defined (parameterized) in a single technique space.
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We introduce marginal MIS (MMIS), a generalization of SMIS
to multiple technique spaces. Our key insight is that the marginal
distribution over a technique space can be thought of as a single
sampling technique with a marginal PDF (marginal technique), and
multiple marginal techniques can be combined in a manner akin to
the classical multi-sample MIS estimator. The result is a practical
unbiased estimator combining multiple computationally intractable
marginal distributions.
We demonstrate the practicality of MMIS with an application

to path sampling in light-transport simulation. Path sampling is
usually done by sequentially generating the vertices along a path,
starting either from the sensor, a light source, or both. To define
an estimator for an image pixel, we generally need to be able to
evaluate the PDF for each sampled path. This requirement of having
computationally tractable PDFs has severely limited the types of
path sampling techniques we can use in practice. We devise a mar-
ginal path sampling framework, based on MMIS, which enables the
use of path sampling techniques with computationally intractable
marginal PDFs. For example, such PDFs can arise from performing
multiple connections to multiple subpaths to form a complete path,
something that is beyond the capability of existing (bidirectional)
sampling methods.
We present concrete examples that demonstrate how our path

sampling framework allows formulating techniques that were pre-
viously not possible. We first augment the path-filtering method of
West et al. [2020] to filter at multiple path vertices instead of only
one. Unlike prior work [Deng et al. 2021] which builds on the con-
cept of path graphs and fixed-point iteration to achieve multi-vertex
filtering, our framework allows us to directly define a Monte Carlo
estimator out of marginal path sampling techniques. We then show
how our multi-vertex filtering formulation can be trivially applied
to photon-density estimation, extending the benefits to scenes that
require sampling from emitters. These new methods are possible
only with our new framework which enables us to use samples from
marginal distributions.

In summary, our contributions are as follows:
• marginal MIS framework that generalizes SMIS to combine
samples drawn from multiple different technique spaces;

• path sampling framework that leverages this estimator to
enable the use of a large arsenal of previously intractable
path sampling techniques;

• path-integral formulation of multi-vertex path filtering; and
• multi-vertex filtering extension to photon-density estimation.
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2 RELATED WORK
Veach and Guibas [1995] proposed multiple importance sampling
(MIS) to combine a finite set of estimators with different PDFs. They
refer to each PDF and its sampling procedure as a sampling technique.
West et al. [2020] generalized MIS to handle an uncountably infinite
set of sampling techniques, referred to as a technique space. They
also proposed the practical stochastic MIS (SMIS) estimator which
randomly selects a finite number of techniques from this continuous
space. The key difference in our work is that we now consider
multiple technique spaces in our estimator, instead of the single
technique space in SMIS.
We focus on applications of our proposed framework to path

reuse and filtering. Bekaert et al. [2002] introduced the first path
reuse method that amortizes path sampling cost by deterministically
tracing a ray for every pixel in a tile, and connecting each to a single,
shared suffix path. Bauszat et al. [2017] leveraged recent advances
in gradient-domain rendering and deterministic shift mapping to
support a wider range of materials and improve the convergence
rate of of path reuse by an order of magnitude. Our marginal path
sampling framework generalizes the concept of path reuse beyond
those cases where the resulting path probability density is readily
computable.
Path-space filtering [Keller et al. 2014] refines the contributions

of sampled paths by connecting a prefix of one path to suffixes of
other paths whose prefixes lie in close proximity. West et al. [2020]
showed that this process can be formulated as multiple importance
sampling over a continuous technique space where prefixes identify
techniques and suffixes represent samples from those techniques,
enabling unbiased path filtering for the first time. Deng et al. [2021]
extended path filtering to multiple vertices along a path by refor-
mulating filtering as the fixed point solution to a linear system of
aggregation and propagation. While their numerical results support
the idea of the fixed-point iteration, the link between this iterative
process and the underlying transport equations is not fully clear.
We show how our marginal path sampling can be applied to the
same problem to derive a path-based formulation for multi-vertex
path filtering. Our formulation is based on path sampling from mar-
ginal distributions and is an explicit estimator of a path integral.
We further show the relationship between our formulation and the
iterative process proposed by Deng et al. [2021] in Section 5.

3 MARGINAL MULTIPLE IMPORTANCE SAMPLING
We begin by deriving a marginal MIS (MMIS) estimator that com-
bines sampling techniques with marginal densities. Using such a
marginal density requires typically intractable marginalization over
a space of continuous, auxiliary variables that condition sampling.
In contrast toWest et al. [2020]’s SMIS, our MMIS considers multiple
such spaces of conditioning variables, i.e. technique spaces, one for
each marginal density, with potentially differing dimensionality.
Consider the integral 𝐼 =

∫
X 𝑓 (𝑥) d𝑥 of a real-valued function 𝑓

over a domain X and a multi-sample MIS estimator for it that draws
𝑛𝑖 samples from each of𝑇 ≥ 1 sampling techniques with probability

density function (PDFs) 𝑝𝑖 and associated weighting function𝑤𝑖 :

⟨𝐼 ⟩MIS =

𝑇∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝑤𝑖 (𝑥𝑖, 𝑗 ) 𝑓 (𝑥𝑖, 𝑗 )
𝑛𝑖𝑝𝑖 (𝑥𝑖, 𝑗 )

=

𝑇∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

⟨𝐼 ⟩𝑖, 𝑗MIS . (1)

This estimator can be directly used when each PDF 𝑝𝑖 can be evalu-
ated exactly. However, 𝑝𝑖 (𝑥) could be a marginal density,

𝑝𝑖 (𝑥) =

∫
T𝑖
𝑝𝑖 (𝑥, 𝑡)d𝑡 =

∫
T𝑖
𝑝𝑖 (𝑥 |𝑡)𝑝𝑖 (𝑡)d𝑡, (2)

which is the expectation of a conditional density 𝑝𝑖 (𝑥 |𝑡) over some
auxiliary variable 𝑡 ∈ T𝑖 with density 𝑝𝑖 (𝑡). Such a marginal PDF
arises when, for example, a sampling procedure first chooses a
random 𝑡 value which it then uses to condition the sampling of 𝑥
(e.g., choosing the standard deviation 𝑡 of a Gaussian distribution
and then sampling 𝑥 from it). We will refer to techniques with
readily computable PDFs 𝑝𝑖 (𝑥) as classical, and techniques requiring
marginalization over auxiliary variables we will call marginal.
The marginal integral (2) generally has no closed-form solution.

This hampers the practical use of marginal techniques, since even
unbiased estimation of the integral, which appears in the denom-
inator of Eq. (1), generally leads to a biased MIS estimator [West
et al. 2020]. We will address this problem via an approximation of
the MIS estimator that yields sub-optimal yet unbiased estimates of
the sought integral.

3.1 Marginal MIS estimator
When using the balance heuristic [Veach and Guibas 1995], the MIS
weighting functions𝑤𝑖 for marginal techniques take the form

𝑤𝑖 (𝑥) =
𝑛𝑖𝑝𝑖 (𝑥)∑𝑇

𝑖′=1 𝑛𝑖′𝑝𝑖′ (𝑥)
=

𝑛𝑖𝑝𝑖 (𝑥)∑𝑇
𝑖′=1 𝑛𝑖′

∫
T𝑖′

𝑝𝑖′ (𝑥 |𝑡)𝑝𝑖′ (𝑡) d𝑡
. (3)

Plugging𝑤𝑖 into the MIS estimator (1) and simplifying it yields

⟨𝐼 ⟩𝑖, 𝑗MIS =
𝑓 (𝑥𝑖, 𝑗 )∑𝑇

𝑖′=1 𝑛𝑖′
∫
T𝑖′

𝑝𝑖′ (𝑥𝑖, 𝑗 |𝑡)𝑝𝑖′ (𝑡) d𝑡
. (4)

Next, recall that sampling from a marginal technique involves draw-
ing an auxiliary variable 𝑡 ∼ 𝑝𝑖 (𝑡) which conditions the sampling
of 𝑥 ∼ 𝑝𝑖 (𝑥 |𝑡). For each marginal technique 𝑖 , we generate 𝑛𝑖 such
pairs (𝑡𝑖, 𝑗 , 𝑥𝑖, 𝑗 ), with 𝑗 = 1..𝑛𝑖 . FollowingWest et al. [2020], we reuse
those pairs to construct an 𝑛𝑖 -sample estimate of the technique’s
marginal integral in Eq. (4):

⟨𝐼 ⟩𝑖, 𝑗MIS ≈
𝑓 (𝑥𝑖, 𝑗 )∑𝑇

𝑖′=1��𝑛𝑖′
[

1
��𝑛𝑖′

∑𝑛𝑖′
𝑗 ′=1

𝑝𝑖′ (𝑥𝑖,𝑗 ′ |𝑡𝑖′, 𝑗 ′ )����𝑝𝑖′ (𝑡𝑖′, 𝑗 ′ )
����𝑝𝑖′ (𝑡𝑖′, 𝑗 ′ )

] . (5)

Plugging this result back into Eq. (1), we obtain our marginal MIS
(MMIS) estimator:

⟨𝐼 ⟩MMIS =

𝑇∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝑓 (𝑥𝑖, 𝑗 )∑𝑇
𝑖′=1

∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (𝑥𝑖, 𝑗 |𝑡𝑖′, 𝑗 ′ )

. (6)

This estimator is an approximation of Eq. (1), yet it is an unbiased
estimator for the sought integral 𝐼 , as long as at least one sampled
conditional technique has positive density for every point 𝑥 where
𝑓 (𝑥) > 0.
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Fig. 1. Top: Our MMIS estimator can mix classical (top square) and marginal
(bottom square) techniques to achieve lower variance than prior theory can.
Bottom: MMIS approximates a (hypothetical) MIS estimator that evaluates
marginal PDFs (here, four) exactly. The additional variance vanishes the
number of techniques sampled from each technique space increases.

Note that we do not need to use all available (marginal) techniques
in the estimation. We are free to choose a (random) subset, and so
long as the above unbiasedness conditions hold, the MMIS remains
unbiased. Note also that for 𝑇 = 1 the MMIS estimator reduces to
the SMIS estimator of West et al. [2020].
The estimator in Eq. (6) involves only the conditional sampling

PDFs 𝑝𝑖 (𝑥 |𝑡) which must be readily computable—a reasonable re-
quirement in path sampling as wewill discuss later. Similarly toWest
et al. [2020], we think of the auxiliary variable 𝑡 as a conditional-
technique identifier that lives in an associated technique space T𝑖 .

Combining classical and marginal techniques. For simplicity, we
derive the MMIS estimator (6) from a variant of the balance heuris-
tic (3) that assumes all techniques are marginal. However, mixing
in classical techniques (i.e., with readily computable densities) is
straightforward. Each classical technique can be extended to an
arbitrary space of conditional techniques that are all identical; Fig. 1
(top) shows an example. Alternatively, one can split the PDF sum in
Eq. (3) into a sum of classical and a sum of marginal PDFs. Following
through the derivation, only the PDFs in the latter sum are expanded
into marginal integrals that require MMIS.

3.2 Canonical experiments
In Fig. 1 we perform two experiments that illustrate the properties
and trade-offs of our MMIS estimator (6). We plot the variance of
estimating a 1D function 𝑓 (𝑥) using marginal techniques with a 1D
technique space each. Every 2D plot shows a joint density 𝑝 (𝑥, 𝑡)
along with its 1D marginals 𝑝 (𝑥) and 𝑝 (𝑡).

With only the MIS and SMIS theories, we must decide whether to
construct an estimator using a set of classical techniques or using

a single marginal technique, respectively. In Fig. 1, top, we demon-
strate how our marginal MIS allows mixing classical and marginal
techniques. The top PDF represents a classical technique that im-
portance samples the left part of the integrand well. The bottom
is a marginal technique whose (intractable) PDF 𝑝 (𝑥) importance
samples the right part of the integrand. By extruding the classical
technique over a technique space, and applying our marginal MIS,
we combine the two into a single estimator that importance samples
the entire integrand well and outperforms both sampling using only
the classical technique and SMIS with only one marginal technique.

Figure 1, bottom, shows four marginal techniques. The first three
achieve good importance sampling of different integrand features
but are by individually biased, i.e., do not each cover the entire do-
main. The fourth technique has a defensive uniform distribution for
𝑥 . We measure the variance of a reference (in normal circumstances
infeasible) classical MIS estimator (1) that analytically evaluates
the 𝑥-marginal of each technique and several variants of our MMIS
approximation (6) of that estimator. Each estimator is given a total
budget of 𝑁 = 64 samples, where MMIS𝑛 draws 𝑛 technique-sample
pairs (i.e., 𝑛𝑖 in Eq. (6)) from each of the 𝑇 marginal techniques and
averages over 𝑁 /(𝑛𝑇 ) independent realizations. The additional vari-
ance incurred by our MMIS approximation vanishes as 𝑛 increases
at the cost of computational cost.For a fixed total sample count 𝑁
the total number of PDF evaluations in MMIS𝑛 is 𝑛𝑁𝑇 , i.e., linear
in 𝑛. In contrast, the number of PDF evaluations 𝑁𝑇 in the refer-
ence MIS estimator is independent of the sample allocation (and
so is its variance). Determining the optimal choice of 𝑛 in MMIS is
problem-specific as it depends on the cost of PDF evaluation.

4 PATH SAMPLING USING MARGINAL MIS
Light-transport simulation using Monte Carlo integration involves
sampling light paths connecting the emitters in a scene to sensors. In
this section, we explain how our MMIS enables unbiased simulation
in ways not possible with the existing path sampling frameworks.
Specifically, it allows us to employ sampling techniques with previ-
ously intractable marginal PDFs.

4.1 Monte Carlo path sampling
The classical path-integral formulation of light transport expresses
the value of an image pixel as a conceptually simple integral over the
space P of all possible paths in the scene [Veach 1997]. In practice
this integral is estimated using Monte Carlo sampling:

𝐼 =

∫
P
𝑓 (x)dx ≈ 1

𝑛

𝑛∑︁
𝑖=1

𝑓 (x𝑖 )
𝑝 (x𝑖 )

, (7)

where 𝑓 (x) is the energy contribution of path x = x1 . . . x𝑘 with 𝑘

vertices. The sampling density 𝑝 (x) = 𝑝 (x1, . . . , x𝑘 ) of a path is the
joint density of its vertices. Each unique way to construct a given
path constitutes a path sampling technique with a distinct PDF.
To estimate the pixel integral (7) we need to sample paths and

evaluate their PDFs. The most commonly used sampling technique
is path tracing [Kajiya 1986] which generates vertices sequentially,
starting from the sensor (see figure below).

Column 1 Column 2

x1 x3 x4 xkx2 ≈

PT
(inline)

3



SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Rex West, Iliyan Georgiev, and Toshiya Hachisuka

The PDF for sampling a 𝑘-vertex path in this manner is

𝑝 (x) = 𝑝 (x1, . . . , x𝑘 ) = 𝑝 (x1)𝑝 (x2 |x1)
𝑘∏
𝑖=3

𝑝 (x𝑖 |x𝑖−1, x𝑖−2) . (8)

Since each vertex is sampled dependent only on the preceding two
vertices, and all conditioning variables are part of the output path
sample, the resulting path PDF is easy to evaluate.

4.2 Problem statement
In theory, one has the full freedom to construct paths, i.e., vertex
sequences, in arbitrary ways. Unbiased pixel estimation has tra-
ditionally been possible only if the technique’s associated PDF is
readily computable, since it is required by the pixel estimator (7) or
an MIS variant thereof. This requirement has significantly limited
the set of practically usable techniques.

To illustrate why this restriction is severe, consider a slight modi-
fication to the path-tracing technique where we “skip” the second
sampled vertex, i.e., we exclude x2 from the constructed path x.
Sampling proceeds as before, with vertices still conditioned on x2.

Column 1 Column 2

x1 x3 x4 xk+1

x2

≈

PT with a skipped vertex
(inline)

The vertex x2 will thus not show up in the PDF of the path as it is
no longer a part of it:

𝑝∗ (x) = 𝑝∗ (x1, x3, . . . , x𝑘+1) (9)

= 𝑝∗ (x1)𝑝∗ (x3 |x1)𝑝∗ (x4 |x3)
𝑘+1∏
𝑖=5

𝑝∗ (x𝑖 |x𝑖−1, x𝑖−2) . (10)

The vertices x3 and x4 are sampled conditionally on x2, but their
PDFs 𝑝∗ (x3 |x1) and 𝑝∗ (x4 |x3) are not conditioned on it as they
marginalize it out:

𝑝∗ (x3 |x1) =
∫
M

𝑝∗ (x3 |x2, x1)𝑝∗ (x2 |x1)dx2 , (11)

𝑝∗ (x4 |x3) =
∫
M

𝑝∗ (x4 |x3, x2)𝑝∗ (x2 |x1)dx2 , (12)

whereM is the union of all scene (surface) points. Recall that the
computation of these PDFs is necessary to evaluate the pixel esti-
mator (7). Simply estimating the marginal integrals would bias the
estimator [Qin et al. 2015].

In general, marginals appear whenever a technique samples ver-
tices conditionally on other vertices that are not included in the
output path. Consequently, such techniques have not been used in
light-transport simulation. Next we will show how our marginal
MIS enables unbiased pixel estimation using such techniques.

4.3 A marginal path sampling framework
The PDF 𝑝∗ in Eq. (9) belongs to a class of sampling techniqueswhere
the sample vertices x are drawn conditionally on a set of auxiliary
vertices t that we need to marginalize over. For that technique we
can visualize this split as in the inline figure below.

Column 1 Column 2

x1 x3 x4 xk+1

x2
≈ sample vertices

auxiliary vertices

Sample / Auxiliary split
(inline)

x

t

We will refer to the class of techniques that conform to this sam-
pling model asmarginal path sampling techniques. These techniques
have a clear correspondence to the marginal techniques of marginal
MIS (6), 𝑝𝑖 (𝑥𝑖, 𝑗 |𝑡𝑖, 𝑗 ) −→ 𝑝𝑖 (x𝑖, 𝑗 |t𝑖, 𝑗 ), where the sample variable 𝑥
and technique variable 𝑡 are replaced by their path-sampling coun-
terparts x and t. The technique space T then naturally arises as the
space of possible values for the auxiliary vertices t. For the tech-
nique in Eq. (9), this space is M. Classical techniques do not utilize
auxiliary vertices, i.e., t = ∅ (see Section 3.1).

We can combine several path sampling techniques into an MMIS
estimator. For 𝑇 marginal techniques 𝑝𝑖 , and 𝑛𝑖 technique-sample
pairs (x, t) ∼ 𝑝𝑖 (x, t), where t ∈ T𝑖 , the estimator reads

⟨𝐼𝑘 ⟩MPS =

𝑇∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝑓 (x𝑖, 𝑗 )∑𝑇
𝑖′=1

∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (x𝑖, 𝑗 |t𝑖′, 𝑗 ′ )

, (13)

which we refer to as our marginal path sampling (MPS) estimator.
Note that the MPS estimator (13) assumes the conditional density

𝑝𝑖′ (x𝑖, 𝑗 |t𝑖′, 𝑗 ′ ) is readily computable. This is usually true for path
sampling techniques, as we demonstrate in the following sections.
Further, note that the auxiliary variables t𝑖, 𝑗 can only come from, and
are used with, the associated marginal technique. These variables do
not necessarily need to (all) be vertices; for example, they can include
a randomly sampled wavelength, when doing spectral rendering.

5 MULTI-VERTEX PATH FILTERING
Path filtering [Keller et al. 2014; West et al. 2020] refines the contri-
butions of sampled paths by connecting the prefix of each path to
the suffixes of other paths (e.g., associated with different pixels).

Column 1 Column 2

West,2020 Path Filtering
(inline)

≈
≈

x1

x2 κ suffix

prefix

West et al. [2020] proposed an MIS interpretation of this method,
over a continuous space of sampling techniques, where all possible
prefixes within the filtering kernel around a vertex are techniques,
and their corresponding suffixes are the samples. Their balance-
heuristic continuous MIS (CMIS) formulation involves a marginal
density of suffix samples which is an intractable integral over pre-
fixes. To that end,West et al. applied stochasticMIS (SMIS) to approx-
imate that marginal using the finite number of sampled prefixes.

Under our marginal path-sampling framework (13), we can view
a prefix technique as a set of auxiliary vertices t, and the constructed
path as a set of sample vertices x.

Column 1 Column 2

West,2020 Path Filtering
(inline)

x1

x2

≈
≈

sample vertices

auxiliary vertices

κ
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Fig. 2. Comparison of several methods after 350s of rendering. Path tracing (PT) renders every pixel independently and shows noise. West et al.’s [2020]
filtering reuses vertices to construct novel paths but its computationally intensive weight computation affords tracing only a small number of initial paths
whose contributions are blurred into conspicuous artifacts. Deng et al.’s [2021] iterative filtering and our multi-vertex filtering maximize vertex reuse and are
much faster, showing significant improvement. Though different in formulation, these two methods are similar in implementation and performance.

One or more prefixes may satisfy the filter kernel 𝜅 at a query
point. We have one classical technique—the suffix sampled from
the query-point vertex—and zero or more marginal techniques (i.e.,
connections to other suffixes). These can be combined into an MPS
estimator (13).

Extension to multi-vertex filtering. Filtering is traditionally per-
formed at a single select vertex of each path [Keller et al. 2014; West
et al. 2020]. Our framework allows us to maximize the amortization
of path sampling by filtering at multiple vertices along the path.

≈ ≈ ≈

Column 1 Column 2

MVPF
(inline)

x1

x2

sample vertices

auxiliary vertices

κ2κ1 κ3

x3 x4

In the inline figure above, the last three (blue) output-path vertices
are each collected from a different prefix. The set of (purple) auxiliary
vertices represents the corresponding conditioning prefixes. Our set
of conditional techniques is then all of the ways we can sample the
constructed path—the choices of prefix vertices that fall within the
support of filtering kernel along the path. If we apply filtering at
𝑘 vertices, there are 𝑇 =

∏𝑘
𝑖=1 𝑁 (P, 𝜅𝑖 ) conditional path sampling

techniques , where P is the set of traced paths and 𝑁 (P, 𝜅𝑖 ) counts
the number of prefixes that fall within the support. This results in a
number of techniques exponential in 𝑘 .
Computing the MMIS weights in the resulting MPS estimator

requires evaluating the PDF of x for each of the exponential number
of conditional techniques. To this end, note that density of sampling
each vertex reappears in multiple (conditional) path PDFs in the
denominator of the estimator (13):

𝑇∑︁
𝑖′=1

𝑛𝑖′∑︁
𝑗 ′=1

𝑝𝑖′ (x𝑖, 𝑗 |t𝑖′, 𝑗 ′ ) =
𝑇∑︁

𝑖′=1

𝑛𝑖′∑︁
𝑗 ′=1

𝑘∏
𝑘 ′=1

𝑝𝑖′ (x𝑖, 𝑗,𝑘 ′ |y𝑖′, 𝑗 ′,𝑘 ′ ) , (14)

where, x𝑖, 𝑗,𝑘 ′ is the 𝑘′-th vertex from the sensor on the 𝑗-th path
sample from the 𝑖-th marginal technique, and y𝑖′, 𝑗 ′,𝑘 ′ is the prefix

that conditions the PDF evaluation. The index 𝑖 iterates over the per-
mutations of prefix choices at each kernel, and thereby intrinsically
parameterizes a choice of prefix at each kernel.
Equation (14), when expanded, has many repeated terms and

can be reorganized from a sum of products into a product of sums.
Such a reorganization reduces the computational complexity from
exponential to linear, and is analogous to locally performing MIS
over each filtering kernel and taking their product. We provide
technical details in the supplemental document.

5.1 Discussion
Our path-filtering MPS estimator is unbiased when there is at least
one sampling technique where 𝑝𝑖 (x|t) > 0 when 𝑓 (x) > 0 (see
the supplemental document). Including the classical path tracing
techniques (i.e., the natural suffix at the query vertex) guarantees
this condition even if all marginal techniques are biased.
However, an unbiased implementation can be prohibitively ex-

pensive as it requires evaluating visibility and BSDFs along connec-
tions [West et al. 2020]; this problem is compounded when filtering
at multiple vertices. In practice, we use a biased approximation that
assumes all vertices within a kernel have the same visibility. This al-
lows us to avoid additional ray casting, and to compute the weights
and throughput terms locally at each filtering kernel and iteratively
propagate them (see supplemental document for details). This itera-
tive propagation of localized terms is similar to the method of Deng
et al. [2021]. Additionally, both Deng et al.’s and our implementation
perform the highly localized filtering operations on the GPU. Not
only is path filtering well suited to the highly parallel processing
of GPUs, we have found that a GPU implementation is practically
essential for achieving satisfactory performance.

Though our biased implementation is analogous to that of Deng
et al., there are three key differences. The first is in the formula-
tion. Ours is an MMIS-based path-integral estimator, providing a
clear connection between the filtering process and the underlying
transport integrals. The fixed-point iteration of Deng et al., while
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Fig. 3. A scene lit predominantly by caustics and indirect light from caustics, which is challenging for both bidirectional path tracing and the filtering method
of Deng et al. [2021]. Photon mapping shows improvement, but exhibits artifacts in indirectly lit areas. Our filtered variant better handles the complex lighting
in this scene and shows reduced error in indirectly lit areas. The zoom-ins show results after 120s of rendering, and all methods use a fixed-radius kernel.

numerically sound, lacks apparent connection to MC estimation.
Our method does not need energy clamping, and our formulation
enables other forms of multi-vertex filtering (e.g., for photon-density
estimation, see Section 6).
The second difference is in the sample weighting. Our MMIS

weights are principally based on the balance heuristic via marginals,
which permits unbiased implementation in principle. The weights
used by Deng et al. [2021] are not guaranteed to sum up to one.

The third difference is in clusteringmethod. Existing path-filtering
methods typically employ spatial nearest-neighbor lookup at each
query vertex independently, which results in a quadratic number of
PDF evaluations. Deng et al. [2021] use k-means clustering which
greatly amortizes computational overhead but lacks controllable
bias. We employ a clustering variant (described in the supplemen-
tal document) that introduces controllable bias by only clustering
vertices that are within a radius parameter.

5.2 Results
We implemented the sampling part of our method in a CPU-based
ray tracer and the filtering part in CUDA. Experiments were per-
formed on consumer-grade hardware with a Ryzen 5 3600 CPU and
an RTX 3070Ti (8GB) GPU.

Figure 2 shows a same-time comparison of various methods. Path
tracing (PT) produces a noisy output as it renders every pixel inde-
pendently. Single-vertex filtering [West et al. 2020] employs a com-
putationally expensive weighting scheme which limits the number
of initial paths that can be traced in the allocated time, whose contri-
butions are blurred into conspicuous splotches. Deng et al.’s [2021]
iterative filtering and our multi-vertex filtering appear significantly
more converged, especially in mostly indirectly lit areas. While
multi-vertex path filtering also correlates samples, the greatly lower
error makes correlation artifacts much less noticeable.

6 MULTI-VERTEX PHOTON FILTERING
Path filtering demonstrates an appreciable reduction in estimation
variance over unfiltered path tracing. However, both perform poorly
under illumination that is poorly importance sampled from the
camera, e.g., strongly directional lighting or caustics (see Fig. 3).
Such scenes are better suited to photon-density estimation [Jensen
1996] where paths are sampled from emitters instead. Inspired by
the approach from Section 5, we also propose an adjoint method
that augments photon tracing with multi-vertex filtering.
Photon-density estimation can be interpreted as construction

of a path by merging a sensor subpath x1 with an emitter subpath
x2 [Georgiev et al. 2012], if the last vertex of x2 lands within the sup-
port of a given kernel (𝜅de in the illustration below) around the last
vertex of x1. The probability of a successful merge is proportional
to the kernel extent (represented below by a cone).

Column 1 Column 2

West,2020 Path Filtering
(inline)

≈x1

κde
x2

While photon-density estimation considers the merging of sensor
and emitter subpaths, it is not uncommon for vertices of different
emitter subpaths to land near each other. This provides an opportu-
nity, much like in path filtering, to improve sample contribution by
filtering the contributions of emitter subpaths. The distinction be-
tween sensor and emitter subpaths does not necessitate an entirely
new method, since our MPS framework is based on general path
sampling conditionally on a set of auxiliary vertices. We can use the
same procedure as in Section 5, where the marginal sampling PDFs
𝑝𝑖 (x) of Eq. (13) additionally include the probability of merging.
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This adjoint application is not trivial within the frameworks of
other filtering methods [Keller et al. 2014; Deng et al. 2021] as
they are not based on path sampling. The possibility of performing
filtering multiple times along a bidirectionally constructed path was
also conceived by Hachisuka et al. [2012], but only in passing.

Multi-vertex photon filtering can be implemented as a post-process
after emitter tracing, which operates as in path filtering but with the
sampling directions reversed. Once the subpaths have been filtered,
standard photon-density estimation is performed as usual.

6.1 Results
Our implementation is based on the same rendering system and
hardware as in Section 5.2. The scene in Fig. 3 is predominantly lit
by caustic illumination from the top which is exceptionally chal-
lenging for (bidirectional) path tracing methods. Conversely, it is
exactly the type of scene where photon mapping excels. Deng et
al.’s path sampling from the camera and exhibits high variance. Un-
filtered photon mapping yields significantly lower error. Enabled by
our marginal path sampling framework, our multi-vertex photon
filtering reduces error further.

It is worth noting that our multi-vertex photon filtering does not
improve the distribution or number of photons. Instead, it allows
each emitter subpath to carry the contribution of multiple subpaths.
This can be advantageous in closed scenes and those with strong
indirect light contribution.

7 LIMITATIONS AND FUTURE WORK
Limitations. Our path sampling framework assumes that we can

compute the PDF of a vertex given the auxiliary variables that
condition its sampling. For any techniquewhere the true distribution
of samples is unknown, like those used in Markov chain Monte
Carlo and adaptive sampling methods, we are unable to compute
this conditional PDF.

Both path and photon filtering require additional memory to store
information about the vertices of each path and their weights. This
memory overhead can grow prohibitively large for high-resolution
images. Deng et al. [2021] also mentioned that their method con-
sumes 800MB for 1280 × 720 images. This added storage cost may
not be justifiable depending on the setting.

Future work. Path and photon filtering are each effective in certain
lighting situations but can perform poorly in others. Rather than
choosing one, ideally the twowould be combined in a unifiedmethod
like VCM/UPS [Georgiev et al. 2012; Hachisuka et al. 2012]. We
believe our framework should in principle enable the derivation
of such a unified method. Another interesting direction would be
to devise a vertex-clustering scheme that would make the filtering
estimator consistent as the cluster size is reduced (as in progressive
photon mapping [Hachisuka et al. 2008]), or to perhaps fully debias
the estimator [Misso et al. 2022].

Similarly to stochastic MIS [West et al. 2020], our marginal MIS is
a stochastic approximation of an estimator that uses exact marginals.
This approximation introduces additional variance which we show
vanishes empirically as more techniques are sampled. Increasing
the number of techniques, however, comes at the ost of additional
computational overhead. A thorough variance analysis of marginal

MIS may provide insight on the optimal number of techniques that
balances variance reduction and computational overhead.

The applications shown in this paper are small examples of what
is possible with our framework. One could consider reusing the
same subpath multiple times to construct a complete path, essen-
tially forming a graph cycle. Deng et al. [2021] state that cycles
can be formed by iterating path filtering. Our framework also en-
compasses the idea of cycles, as path samples containing repeated
vertex sequences. However, such repetitions introduce high cor-
relation, which makes their practical variance-reduction potential
unclear. Our framework could help identify how path-constructed
graphs and cycles should be properly used to solve light-transport
simulation.
Through preliminary experiments, we have also found that one

might need to carefully select a subset of efficient sampling tech-
niques out of a large number of available techniques. Our frame-
work enables such sub-sampling and its exploration remains an
open problem.
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