Supervised Learning of How to Blend Light
Transport Simulations

Hisanari Otsu, Shinichi Kinuwaki, and Toshiya Hachisuka

Abstract Light transport simulation is a popular approach for rendering photorealis-
tic images. However, since different algorithms have different efficiencies depending
on input scene configurations, a user would try to find the most efficient algorithm
based on trials and errors. This selection of an algorithm can be cumbersome because
a user needs to know technical details of each algorithm. We propose a framework
which blends the results of two different rendering algorithms, such that a blending
weight per pixel becomes automatically larger for a more efficient algorithm. Our
framework utilizes a popular machine learning technique, regression forests, for
analyzing statistics of outputs of rendering algorithms and then generating an appro-
priate blending weight for each pixel. The key idea is to determine blending weights
based on classification of path types. This idea is inspired by the same common
practice in movie industries; an artist composites multiple rendered images where
each image contains only a part of light transport paths (e.g., caustics) rendered by a
specific algorithm. Since our framework treats each algorithm as a black-box, we
can easily combine very different rendering algorithms as long as they eventually
generate the same results based on light transport simulation. The blended results
with our algorithm are almost always more accurate than taking the average, and no
worse than the results with an inefficient algorithm alone.

1 Introduction

Rendering based on light transport simulation is a popular approach for photorealistic
image synthesis. Since such rendering algorithms solve the same governing equations
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(e.g., the rendering equation [Kaj86]), rendering with light transport simulation
should give us the same result regardless of the choice of an algorithm. It is however
well known that some algorithms are more efficient at rendering certain light transport
effects. For example, photon density estimation [Jen96; HOJO08] is often efficient at
rendering caustics, and Markov chain Monte Carlo algorithms [VG97; IM12] are
considered efficient at resolving complex occlusions.

Because of the varying efficiency of different algorithms on different light trans-
port effects, it is common practice to select an algorithm based on the type of light
transport effect that one wants to render. In the movie industry, an artist often de-
composes light transport effects into separate images, renders each with a most
efficient algorithm, and composites the resulting images into the final one. Selecting
appropriate algorithms and composting the results, however, can be difficult and
cumbersome tasks. For selection, an artist either needs to know why some algorithms
work well for some effects, or briefly tries all the available algorithms to see which
one works well. For composition, an artist also needs to pay attention not to double
count a certain type of paths such as caustics.

We propose a framework which automates this selection of the algorithms and
composition of the resulting images. Our work is inspired by the superhuman per-
formance of recent machine learning algorithms on classification tasks. We apply
the same idea to select and composite two different rendering algorithms based
on the classification of light transport effects. To be concrete, we use regression
forests [Bre01] to learn the relationship between blending weights that minimize
the error and the classification of light transport effects. While multiple importance
sampling [VG95] also allows us to blend results of different rendering techniques, the
key difference is that our framework treats each rendering algorithms as a black-box.
Accordingly, our framework can be easily applied to very different algorithms such
as SPPM and MLT without any algorithmic or theoretical modifications for each. To
summarize, our contributions are:

o The use of machine learning to automatically blend the results of different rende-
ring algorithms based on path types.

e A blending framework which is independent from how the underlying rendering
algorithms work.

e First successful application of regression forests to light transport simulation.

2 Overview

Our goal is to blend the results of two different rendering algorithms such that the
error of the blended result is as small as possible. Our algorithm is separated into
two phases; the training phase and runtime. Fig. 1 illustrates the algorithm.

In the training phase, we use regression forests [BreO1] (Section 4) to learn
the relationship between a feature vector of lighting effects extracted from the
rendered images and the optimal weights for blending. For each training scene, we

Page: 2 job: paper macro: svmult.cls date/time: 13-Jul-2017/12:58



Supervised Learning of How to Blend Light Transport Simulations 3

O

Regression forest

Learning features

Reference
‘y
1

SPPM

Training phase

Blended image

LML

W) + wo(g) + Runtime

Fig. 1 General idea of blending the results of two different rendering algorithms using regression
forests. In the training phase (top), we first calculate the optimal blending weight per pixel, given the
reference image and rendered images with different approaches. These weights and the correspon-
ding path features become one training sample for the regression forest for each scene. We iterate
this process for various scenes. Our framework thus learns the relationship between input path
features and optimal weights during this learning phase. At runtime (bottom), the trained regression
forest returns approximated optimal blending weights based on path features of a new scene.

render the reference solution, and the two images with both algorithms allocating
the same rendering time. Based on the rendered images, we extract path features
as the relative pixel contributions of different light transport paths according to
Heckbert’s notation [Hec90]. Modern shader languages often support the same
mechanism [GSK*10]. We then calculate the optimal blending weights based on
the reference solution and the results of the two different rendering algorithms.
The optimal blending weight is defined such that the error of the blended result is
minimized at each pixel. A pair of path features and the optimal blending weight
forms one training sample for regression forests. If a rendering algorithm is based on
Monte Carlo methods (which is the case in our experiments), we generate multiple
training samples for the same scene in order to avoid the influence of the randomness
of rendered images.
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At runtime, we use the trained regression forest to approximate the optimal
blending weights for a given new scene. The path features extracted from the rendered
images are used to traverse the regression forest to obtain the blending weights. The
final result is a blended image with the obtained weights. Since the trained regression
forest expresses the relationship between path features and the optimal weights, a
blended image is expected to have small error, even for a scene that was not included
in the training phase.

3 Automatic Blending with Path Features

3.1 Path Features

Our definition of a feature vector for rendering algorithms is inspired by how artists
decompose a rendered image into several images with specific lighting effects for
each. In order to define the feature vectors, we begin with the formulation of the
light transport known as the path integral formulation [Vea98]. According to the
formulation, the pixel intensity / observed at each pixel is expressed as

1=AﬂWMﬁ (1)

where X is a light transport path, f is the measurement contribution function, and
is the path measure. Q is the space of paths of all different path lengths.

The path space 2 can be partitioned into a union of disjoint spaces according to
the classification by Heckbert [Hec90]:

Q= ppU s UL pse ULLspEU -+, 2

where each €, is a subspace of 2 defined with the paths represented by the Heck-
bert’s notation *. For instance, the subspace Q7 psg with path length 3 is defined as a
set of paths ¥ = XoX|X>X3 where X is on a sensor, X; is on a diffuse surface, X is on
a specular surface, and x3 is on an emitter. A glossy interaction is classified to either
D or S depending on its BRDF.

We thus define a part of the intensity I, contributed only with the subspace €2, as

L= [ f@du). 3)
Since the partition in Equation 2 is disjoint, the pixel intensity / is additive:

I=Ihpg+Isg+1ipsg +1LspE+ - - 4)

We thus define the path features ¢ as a vector of the intensities I, relative to I:
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The definition uses relative intensities such that ¢ is independent from the absolute
intensity. We fixed the maximum path length to ten, which makes ¢ a 2(10-1)
512 dimensional feature vector. The training phase uses an estimate ¢ instead of
the analytical value of ¢ for a given rendering time. We selected the number of
dimensions such that all the data fits within the main memory. For instance, the scene
rendered with 720p resolution requires a storage of 512 x 1280 x 720 x 4 bytes ~
1.8 gigabytes.

3.2 Optimal Blending Weights

In the training phase, we need to determine the optimal blending weight. This weight
is used as an answer associated with a path feature vector. A pair of a path feature
vector and the optimal blending weight thus becomes a training sample for supervised
learning via regression forests.

We define the optimal blending weight wop that gives the minimum error as

Wopt = argmin | (wfa +(1- w)fﬁ) —I| , 6)
w

where [, and fﬁ are the results of two different rendering algorithms o and 8
respectively, and [ is the reference solution. This equation can be easily solved as

ot = 2B %)
Ia _Iﬁ

If the solution of Equation 6 is not in the range of [0, 1], it is clamped to the nearest
side such that wop € [0, 1]. We apply this clamping such that the blending operation
becomes a convex combination of the results. The blended result wig + (1 — w)fﬁ is

thus guaranteed to be more accurate than one of [, and I}; since
wla + (1= w)lp —1| < max(|fo — 11,15 — 1)) ®)

by definition if w € [0,1]. Intuitively, this clamping process sets Wop = 1 when Iy
and /g both either underestimate or overestimate / and /¢ is closer to / (vice versa
for fB)' If one of the I, and fﬁ underestimates and the other overestimates /, we set
wopt such that the blended result is exactly equal to /. Note that Equation 8 only
guarantees that an error per pixel does not become worse, not the sum of errors over
an image. For example, collecting pixels with worse errors (with w =0 or w = 1)
still satisfies Equation 8, but the sum of errors would increase.

The intensities /o, and I}; are the relatively rough estimates of [ in practice. If an
algorithm is based on Monte Carlo ray tracing, an estimated intensity is an instance
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of the random variable for each run. Using samples only from a single run of the
algorithm causes overfitting to this specific run. For example, it might be that 7,
happens to be closer to / than fﬁ for the single run used in the training phase.

In order to deal with this issue, we use multiple training samples even for the
same scene and the same algorithm. In fact, machine learning techniques (including
regression forests) are naturally designed for dealing with such variations in the
training data.

Problem Statement: Given the definitions above, the goal of our algorithm is to
find a function wypprox such that

Wopt = Wapprox ( () ) , )

for given path features ¢ and two rendering algorithms & and 8. This function wapprox
basically expresses the preference of the algorithm o over the other algorithm f for
paths with a feature vector of ¢. In order to learn wypprox, We use a machine learning
algorithm called regression forests.

Difference Between Multiple Importance Sampling: Conceptually, our pro-
posed blending approach is similar to multiple importance sampling (MIS) [VG95].
MIS also combines two or more different estimators to improve the efficiency of the
combined estimator.

MIS combines multiple sampling strategies by decomposing the measurement
contribution function f in Eq. 1 into a weighted sum of M different weights. The
estimate of the pixel intensity / by MIS can be written as

M M
Izégwt(x)f(x)du(x)=t;/9w,(x)f(x)du(f) (10)

Moy & F(E)

~ t; ﬁt Z wi (%)

i=1 pt(xfyi

1)

~

where p;(%) is the pdf of the i-th strategy, w;(X) is the weighting function satisfying
YM  wi(%) = 1 forall £ € Q with f(&) # 0, and w;(¥) = 0 for all ¥ € Q with p;(¥) = 0.
In order to use MIS, however, we need to know the probability densities of path
sampling techniques for arbitrary sample locations. Such information can be difficult
to obtain without modifying an implementation or sometimes impossible due to the
formulation of each algorithm.

4 Regression Forests

The basic idea of regression forests is to use a set of binary trees for approximating
a multivariate function of the feature vector. This multivariate function expresses
the relationship between feature vectors and the corresponding value. Each binary
tree is called a regression tree where the inner nodes (split nodes) express branching
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conditions on an input feature vector. Each regression tree takes an input feature
vector and outputs a value associated with the corresponding leaf node. Regression
forests return the average of the outputs of regression trees as the final output.

4.1 Construction

For the construction of regression forests, we need a large number of training samples
which associate feature vectors (a set of path features) and output values (optimal
weights). We generate these samples by rendering several training scenes. We then
extract the path features and the corresponding optimal weights for each scene. The
regression forest is trained to approximate the optimal weights even for a new scene,
based only on the path features.

We define a training sample 1 = (¢, w,,) € 7 as a tuple of path features ¢’ and
the optimal weight w’opt. T is a set of all training samples. The construction process
begins from the root node of the regression forest. Each step of the construction
process recursively splits training samples into left and right nodes. We denote the
subset of the training samples in the currently processed node as T C .7 and we start
from T = 7. The algorithm is similar to a top-down construction of a kd-tree for
ray tracing [MB90; Hav00].

Node Splitting: The construction process continues splitting the current node
until the number of training samples in the current set 7' is smaller than a threshold,
or the depth of the tree has reached the maximum depth. If the recursion terminates,
the current node becomes a leaf node. Each leaf node stores the average over the set
of the optimal weights in this node as wje,¢. This average weight approximates the
optimal weight at runtime.

If the recursion continues, we split the current set of samples 7 into two disjoint
subsets 77, and Ty according to a threshold 6 and an index k of the path features:

T.(0,k) ={t € T|¢' (k) > 6} (12)

where ¢’ (k) is the k-th element of the path features ¢’. The threshold 6 and the index
k at each step are defined as (6,k) = argmaxg » V(0',k',T), where V(0',k',T) =
Var(T) — Var(T;(8',k')) — Var(Tx (6',k)). Here Var(T) is the variance of the optimal
weights in 7. The function V is used to define the most discriminative pair of the
threshold 6 and the index of the path feature k according to the variance

4.2 Runtime

In our framework, we first render a given new scene with two different algorithms 7,
and iB with the same computation time. We also extract the path features ¢ according
to the definition by Equation 5. Using these path features, we can now evaluate
each trained regression tree by traversing down the tree according to the branching
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condition defined in Equation 12, which eventually reaches a leaf node and the
weight wieyr 1s recorded in the leaf node. By repeating this process for all regression
trees in the trained regression forest, we obtain a set of weights wye,r recorded in
the leaf nodes for each tree. We define w,(¢) as the output of the r-th tree in the
trained regression forest, given the path features ¢. The approximated optimal weight
Wapprox (@) With M trees is given as

1
M

Ms

wr(@). (14)

Wapprox (‘P )

r=1

Blending at each pixel is wapprox(¢)fa +(1- wappmx(qb))fﬁ. This evaluation process
is repeated for all the pixels. The use of forests can alleviate the discontinuity of the
resulting weights. Even if one tree suddenly returns a totally different value due to
hard classification, it is likely that other trees still return similar weights. As a result,
returning weights will be smoothly changing.

4.3 Refinement

A trained regression forest is sometimes too optimized for given training samples.
In order to reduce overfitting, we follow the refinement technique for regression
forests proposed by Ren et al. [RCWS14] and Ladicky et al. [LIS*15]. The main
idea is to split a set of training samples into two subsets and use one for constructing
the structure of each tree while using the other for defining the outputs. After the
construction step, we first discard the values wye,s assigned to the leaf nodes while
keeping the tree structure. The refinement process then updates wie,s using the
additional training samples.

For each additional training sample ¢, we execute the evaluation of the tree until
the evaluation process reach to the leaf node. After collecting the set of training
samples @ reached to the leaf node, the updated weight w} can be computed as

1
wi=— ) won(9). (15)

‘¢)| (¢1W0pl)€(p

We iterate this refinement process for each tree in the regression forest using the
sample training set for the refinement. Since the training samples are taken from
the different portion of the training set independent of the samples assigned for the
initial construction, the final weights associated to the leaf node could become more
generic, which alleviates overfitting to the initial training set.
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Fig.2 Equal-time comparison (20 minutes) of the average and our automatic blending of the images
rendered by SPPM [HJ09] and MLT [VG97] with manifold exploration [JM12]. We highlighted
three scenes with different characteristics from our test cases (box, cryteck-sponza, and water). The
top row shows the reference images. The bottom two rows visualize errors, the optimal blending
weights, and the output blending weights of our framework. Depending on the types of lighting
effects, the optimal blending weights for SPPM and MLT that result in the minimal error vary
significantly. Simply taking the average of SPPM and MLT thus produces a suboptimal result in
terms of RMS error.

5 Results

We selected the two combinations of the rendering algorithms to show the effective-
ness of our framework: (1) stochastic progressive photon mapping (SPPM) [HJ09]
and Metropolis light transport (MLT) [VG97] with manifold exploration [JM12]
shown in Fig. 2, (2) SPPM and bidirectional path tracing (BDPT) [LW93; VG94]
shown in Fig. 3. We chose these algorithms because both the algorithm and the
performance are distinguishably different. One famous characteristic of SPPM
is the ability to handle specular-diffuse-specular paths efficiently. A caustic that
can be seen through a water surface is an example of such paths. MLT is ba-
sed on Markov chain Monte Carlo sampling which utilizes a sequence of cor-
related samples that forms a Markov chain. The sequence of the samples is
generated such that the resulting sample distribution follows an arbitrary user-
defined target function such as the measurement contribution function. MLT is
known to be effective for the scenes with complex occlusion. BDPT can utilize
various sampling technique by the combination of paths traced from the sensor
and the lights. These sampling techniques are combined with multiple impor-
tance sampling [VG95]. The combination of SPPM and BDPT would exhibit the
good trade-off because BDPT is not efficient at handling specular-diffuse-specular
paths [KD13] and while being more efficient at rendering diffuse surfaces [HPJ12;
GKD*12].
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Fig. 3 Comparison of errors, the optimal weights and the approximations by our framework for the
combination of BDPT and SPPM. The selection of the scenes and meaning of the images are same
as Fig. 2. Similar to the combination of MLT and SPPM, our framework generally captures the
preference to the scene according to the characteristics of the scenes, although some difference can
be observed, e.g., preference to the scene dominated with specular material is weaker (box scene).

For the implementations of rendering algorithms, we used the Mitsuba rende-
rer [Jak10]. Mutation techniques used for MLT are bidirectional, lens, caustic, multi-
chain, and manifold perturbation [JM12]. All the images except for the reference
images are rendered on a machine with Intel Core i7-4720HQ at 2.6 GHz. The
training phase is computed with a machine with Intel Core 17-3970X at 3.5 GHz
and 16 GB of main memory. We utilized only a single core for rendering in order to
alleviate the difference of performance between SPPM and MLT according to the
parallelization. In order to facilitate the future work, we publish our implementation
on our website.

Training Samples: Our training set consists of 10 scenes with various characte-
ristics in order to cover as many types of paths as possible. We render all the scenes
with each rendering algorithm for 5, 10, 15, and 20 minutes. Each scene is rendered
five times, in order to alleviate overfitting as discussed in Section 3.2. Given this
whole training data, we generate a regression forest for each scene by excluding
the scene from the training data. We thus have 10 different regression forests as a
result. Each forest is tested against the corresponding scene that was excluded from
its training. It is essentially leave-one-out cross-validation in machine learning.

While it is possible to have a single forest for all the training scenes and test this
forest against the same set of scenes, we found that this kind of experiment is prone
to overfit to the training scenes. Our regression forest consists of five trees and the
maximum depth of each tree is 15. The construction time of the regression forest is
30 minutes.

Approximated Optimal Weights: Fig. 4 shows blending weights and RMS
errors for selected five scenes with the combination of SPPM and MLT. Fig. 2
shows such results with visualization of the error per pixel for three other scenes.
We compare approximated optimal weights via a trained regression forest with the
average of five different runs for each scene. The blending weight is fixed to 0.5 when
a pixel has no information on path features (e.g., background images). We blended
two images rendered by SPPM and MLT by taking the average (Average) or by
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Fig. 4 Comparison of the optimal weights and the approximations by our framework for the
selected five scenes combining MLT and SPPM. The first row shows the reference images. The
bottom two rows visualize the optimal weights and the approximated weights via trained regression
forests. For many scenes, our framework largely reproduces the optimal weights, without any
information other than rough estimates of path features per pixel. The RMS errors between the
blended images and the references are improved compare to taking the average (Average). We also
show RMS errors for MLT and SPPM with the same total rendering time.
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Fig. 5 Scaled RMS errors of MLT, SPPM, Average, and blending with our framework over 10
scenes. All the methods use the total rendering time of 20 minutes. The average and our blending
spends 10 minutes for both MLT and SPPM, keeping the total rendering time equal to 20 minutes.
We scaled RMS errors such that the average is always one. The scenes are sorted roughly according
to the difference of RMS errors between MLT and SPPM.

using the approximated optimal weight per pixel (Proposed). The running time of our
framework is less than 50 msec for all the scenes. The storage cost of our regression
forest is 100 KB. Both the running time and the storage cost are independent of the
geometric complexity of the scenes. We can see that optimal weights and weights
suggested by our framework are very similar to each other in almost all the cases.
Our framework thus successfully learned the preference of an algorithm only based
on path features.
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RMS Errors: Fig. 5 shows RMS errors for 10 scenes for the combination of
MLT and SPPM. We plot RMS errors of MLT, SPPM, their average, and our blended
result for each scene with the total rendering time of 20 minutes for all the methods.
The plots are scaled such that the values for the average is one. We can observe that
our blending is superior to the average in all scenes. The reduction of error by our
blending is larger when the difference of RMS errors between SPPM and MLT is
large. Moreover, the blended solution by our framework sometimes outperforms a
better algorithm with the same total rendering time. Such a result is not trivial since
our framework spends only half of the total rendering time for each algorithm. We
should also note that just taking the average can in fact increase the error for the
same reason (e.g., Cornell scene). In contrast, we did not find any such cases using
our framework. This result supports that our framework can improve the robustness
of light transport simulation in practice.

Effect of Tree Depth: The images in Fig. 6 show the approximated optimal
weights for the box scene with different depths of the regression trees in the runtime.
As the depth increases, we can observe that the preference to each technique becomes
more explicit. Yet another observation is that the approximated weights are converged
around the tree depth of 15. The graph in Fig. 6 shows the RMS error between the
optimal weight and the approximated weight with our framework for this scene. We
can observe that the RMS error converges around the depth of 15, and we found that
it is similar for the other scenes as well. Along with the saturation of the weights, we
thus conservatively set the tree depth to 15 in our experiments.

6 Discussion

6.1 Alternative to Blending

While we found that blending is a practical approach to combine different rendering
algorithms, it is tempting to try selecting one of the different algorithms instead of
blending such that we can spend all the allocated rendering time to one algorithm.
This alternative solution, however, is not feasible for two major reasons. Firstly, as
shown in Fig. 2, a better algorithm can change even within a single image. Even
though MLT looks converged in many regions, it can entirely miss certain lighting
effects such as specular reflections of caustics. As such, resolving all the effects by
a single algorithm can take a significant amount of rendering time as compared to
combining the results of two algorithms. Recent work on robust rendering algorithms
are based on the same observation [HPJ12; GKD*12].

Secondly, defining useful features for this selection is not trivial and algorithm-
dependent. In order to select an efficient algorithm for a specific input scene, we
would need a feature vector of a whole configuration of the rendering process.
This information includes parameters of each rendering algorithm that affects the
performance, which in turn makes the whole framework algorithm-dependent. It
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Fig. 6 Visualization of approximated optimal weights for the box scene with different tree depth
(top) and the corresponding plot of the approximation errors (bottom). The RMS errors of the
blended images are shown under each image. As the depth of the tree increases, the color indicating
the preference to MLT becomes a bit more explicit, but not significantly after a certain depth. The
plot of the variance shows how approximation errors of the optimal weights change according to
the tree depth, which also stops converging around the depth of 15.

is also not obvious how to encode input scenes as feature vectors. Unlike images,
which contain a set of pixels in a structured manner, scene data contains a set of very
different information such as material data, textures, and triangle meshes. There is
no single data structure common to all of data necessary to define input scenes. This
lack of a common structured input form is a striking differences to applications of
machine learning for images.

One might also consider finding a distribution of total rendering time, such that
we do not spend too much computation for an algorithm with small weights. This
deceivingly obvious improvement, however, is not possible since our regression
forest is trained under the assumption that each algorithm spends the same rendering
time. Even if we can find such a distribution of rendering time somehow, optimal
blending weights are now different from those at the training phase since rendering
time for each algorithm is also different. To implement this idea, we would need to
have multiple regression forests for all the possible distributions of total rendering
time, which is likely infeasible.
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Fig. 7 Approximated blending weights (top) and the relative errors (bottom) for the selected three
scenes (box, crytek-sponza, and water) by replacing regression forests via a neural network.

6.2 Comparison to Neural Networks

We used regression forests as a machine learning technique to learn the relationship
between path features and the optimal blending weights. One possible option is to
replace it by neural networks. Given its success in the computer vision community, a
deep neural network [HOTO6] is a possible candidate. We tested replacing regression
forests by a fully-connected four layer’s neural network using Caffe [JSD*14] on
GPU as additional experiments. As shown in Fig. 7, we found that a neural network
can achieve similar performance to regression forests. We discarded this approach in
the end since even its running time is multiple orders of magnitudes slower (three
minutes) than regression forests (60 msec) without much improvement in terms of
RMS errors.

6.3 Limitations

Preparing Training Scenes: In general, a machine learning technique needs a
large number of training samples to avoid overfitting. While we carefully designed
a set of training scenes, it is not guaranteed that the prepared training scenes are
indeed sufficient for learning. This situation is in contrast to the computer vision
community; there are several standardized large datasets such as ImageNet [RDS*15].
Although we used some standard models and scenes often seen in other rendering
research, it would be interesting as future work to generate training scenes based on
procedural modeling. This procedural modeling should include not only shapes, but
also materials, lighting, and camera parameters.
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Fig. 8 RMS errors for a test scene that is only slightly different from a training scene. This test
scene is made by changing the environment light and the camera configuration while retaining the
geometry and materials of the forus scene in Figure 2. For this experiment, we used the original
torus scene for training, and the modified forus scene at runtime.

Dependency on Training Scenes: We found that our method works especially
well if there are only slight differences between training scenes and test scenes.
Fig. 8 shows the forus2 scene which uses the same geometry and materials as the
torus scene in Figure 2, but with a slightly different camera configuration and an
environment map. For this experiment, we used only the forus scene for the training
phase, and rendered the forus2 scene. We can observe that reduction of RMS error
is significant in this case. This experiment indicates an interesting use case of our
framework in practice: when an artist is modeling a new scene based on existing
ones, we can train a regression forest with existing scenes beforehand.

7 Related Work

Light Transport Simulation in Rendering: Since the development of path
tracing [Kaj86], the number of light transport simulation algorithms have been deve-
loped. Among many rendering algorithms, we used the two representative approaches
in our tests: SPPM [HJ09] and MLT [VG97] with manifold exploration [JM12]. We
chose these two approaches because their algorithms are completely different and
have different characteristics as rendering algorithms. SPPM works by tracing a
number of light paths and estimates density of light path vertices at a visible point
through each pixel. MLT on the other hand traces a whole path by a Markov chain
from the previously generated path and estimates the histogram of this Markov chain
at all the pixels. SPPM is generally considered good at rendering caustics, while
MLT is considered efficient at resolving complex visibilities from light sources. Our
framework however is not restricted to use very different algorithms, since it is
independent of how each algorithm works internally.

Machine Learning in Rendering: Several researchers have already applied
machine learning to rendering. One popular application of machine learning in rende-
ring is regression models. Among others, Jacob et al. [JRJ11] utilized unsupervised
online-learning of a Gaussian mixture model (GMM) to represent a radiance distri-
bution in participating media. Vorba et al. [VKS*14] also used online learning of
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GMM to represent probability density functions for importance sampling. Ren et
al. [RWG*13] introduced a realtime rendering algorithm using non-linear regression
to represent precomputed radiance data. The precomputed radiance data is modeled
as a multi-layered neural network [Hay98]. The idea is to learn the relationship
between scene configurations and the resulting radiance distribution based on off-line
rendering with random attributes. While we also use machine learning for regression,
we propose to use machine learning to combine existing rendering algorithms without
any modification to them. Our framework thus can be applied on top of any of the
previous work mentioned above. More recently, Nalbach et al. [NAM*17] showed
how to use CNN to approximate screen-space shaders. While the goal of their work
is completely different from ours, their work demonstrate the powerful potential of
applying machine learning to rendering.

Kalantari et al. [KBS15] recently proposed a image filtering technique to reduce
Monte Carlo rendering noise based on the multilayer perception [Hay98]. The idea
is to learn the relationship between the scene features such as a shading location
or texture values and a set of filtering parameters. Our work is inspired by their
successful application and we also use machine learning to find the relationship
between path features and the optimal blending weights. The difference is that their
work focuses to improve the result of a single image by filtering, while we consider a
situation where there are multiple rendering algorithms available for a user.

The aim of our work is to use machine learning to blend the results of dif-
ferent rendering algorithms. Such blending is often done by multiple impor-
tance sampling [VG95], and there have been many recent works on this appro-
ach [HPJ12; GKD*12]. Our work differs from multiple importance sampling in that
we treat each rendering algorithm as a black-box and does not require any detailed
algorithmic information such as path probability densities.

Regression Forests: Regression forests [BreO1] are actively used in many ap-
plications. One famous example is Kinect body segmentation [SFC*11]. By simply
fetching neighboring depth values and parse the regression forest, this algorithm
can label each pixel by 31 different body parts quite accurately in realtime. For face
recognition, Ren et al. [RCWS14] showed that regression forests can be used to
detect major features such as eyes, a mouth, and a nose. Tang et al. [TYK13] used
regression forests to extract a skeletal hand model from an RGB-depth image.

For applications in computer graphics, Ladicky et al. [LIS*15] used regression
forest for fluid simulation and achieved x200 speed up. They trained a regression
forest via position-based fluid simulation by defining several features around each
particle. The trained regression forest is used to update the state of particles at the
next time step, without relying on costly simulation. Inspired by the success of
regression forests in many applications, we also utilize regression forests instead of a
more popular convolution neural network [HOTO06]. As far as we know, our work is
the first application of regression forests in rendering.
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8 Conclusion

We presented a framework to automatically blend results of different light transport
simulation algorithms. The key idea is to learn the relationship between a class
of light transport paths and the performance of each algorithm on each class. For
classification of paths, we introduced a feature vector based on relative contributions
from different types of paths according to Heckbert’s notation. We then calculate
optimal blending weights such that a resulting image has minimal errors on average
after blending. Using regression forests, we approximate a function that takes a
feature vector of light transport paths and outputs the optimal blending weight per
pixel. The resulting framework is independent from how each algorithm works,
which makes it easily applicable to different rendering algorithms.
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