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Abstract
Monte Carlo integration has been a common approach for light transport simulation over many years. This
widespread usage, however, seems to come with certain misconceptions regarding the behavior of error in Monte
Carlo algorithms. In particular, unbiased Monte Carlo integration has been blindly (and often implicitly) considered
as a holy grail of accurate light transport simulation by some people. The word “unbiased” has been used even as
a marketing buzzword for some commercial rendering systems - treating “unbiasedness” as something absolutely
good. Such misconceptions now seem to start creeping into the academic research in light transport simulation.
This manuscript lists five such misconceptions. We provide theoretical reasoning and some examples in order to
clarify each misconception why it is wrong. We believe that the list can be used as teaching notes on the topic of
light transport simulation as well as a sanity check for claims of research in light transport simulation.

1. Introduction

Since the formulation the rendering equation [Kaj86], Monte
Carlo integration has been the basis of light transport simu-
lation over many years. For example, path tracing [Kaj86]
solves the rendering equation by random sampling of light
transport paths, where the rendering equation is expanded
into an infinite sum of integrals using the Neumann expansion.
The path integral formulation [Vea98] provides a mathemati-
cally rigorous connection between light transport simulation
and Monte Carlo integration.

Due to the use of random numbers, a solution given by
Monte Carlo integration is naturally a random variable. The
most common approach to quantify the characteristics of a
given random variable is to consider its expected value. If
the expected value of an estimator is exactly equal to the
desired solution of the integral, the estimator is unbiased.
Otherwise, the estimator is biased, where the bias is defined
as the difference between the expected value and the correct
solution. The computational error of an unbiased estimator is
thus solely characterized by the randomness of the solution
(i.e., noise), whereas the computational error of a biased
estimator is also affected by bias in addition to noise.

One common argument regarding bias in light transport
simulation is that unbiased methods are “more accurate” than
biased methods. This argument seems logical at a first glance,
since error of biased methods contains bias in addition to
noise as defined above. This difference in the definitions ap-
parently gives some people a false impression that unbiased
estimators should have smaller error. Given this seemingly

logical reasoning, the unbiased approach has been sometimes
considered as “a holy grail” of accurate light transport simu-
lation, both in some academic research and industrial applica-
tions. This argument, however, is at least not exact, given that
some biased methods do provide far more accurate solutions
than unbiased methods under the same computation time. A
prominent example would be irradiance caching [WRC88].

This manuscripts is the author’s attempt to resolve the
following five common misconceptions related to bias in
light transport simulation algorithms:

1. Unbiased methods are more accurate than biased methods;
2. Unbiased methods always converge to the correct solution;
3. Unbiased methods are parameter-free;
4. Quantifying error is possible only with unbiased methods;
5. Markov chain algorithms are unbiased and consistent.

Naturally, the above list is not meant to be complete. We
however believe it covers some critical misconceptions that
are self-contradictory in the academic community and the
industry. It is the author’s experience that these points are
often misunderstood even among experts of light transport
simulation. The list may be useful for teaching the topic of
light transport simulation, since these misconceptions are far
easier to occur when people are learning this topic. We also
believe that the list can serve as a sanity check for claims in
new research results in light transport simulation.

)
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2. Background

Before diving into the details of each misconception, we
briefly review some basic definitions regarding Monte Carlo
integration.

2.1. Monte Carlo Integration

The problem we want to solve is the following definite inte-
gral over some domain Ω:

I =
∫

Ω

f (x)dx, (1)

where x∈Ω and f : Ω→R is a scalar function. In the context
of light transport simulation, Ω is the space of light transport
paths, I is the pixel intensity to be computed, and f (x) is
the energy transported by the path defined by x. For the
brevity of equations, we consider the Lebesgue measure, but
the following discussion holds for the path measure in path
integral formulation [Vea98].

Monte Carlo integration [MU49] is a numerical integra-
tion method that provides an approximate solution of such a
definite integral. The method is based on the definition of the
expected value of a random variable f (x)/p(x) with proba-
bility density function p(x) and its estimation using a finite
number of independent samples x1,x2, . . . ,xN ∈ X:

E[ f (X)] =
∫

Ω

f (x)p(x) dx. (2)

Using the definition of expected values, we can formulate the
definite integral as the expected value of a random variable
f (x)/p(x) with the probability density function p(x);

E
[

f (X)

p(X)

]
=

∫
Ω

f (x)
p(x)

p(x) dx =
∫

Ω

f (x) dx = I. (3)

Note that we need to use f (x)/p(x) as the random variable
rather than f (x). Monte Carlo integration estimates this ex-
pected value with N samples as

I = E
[

f (X)

p(X)

]
≈ 1

N

N

∑
i=1

f (xi)

p(xi)
. (4)

2.2. Consistency and Unbiasedness

A Monte Carlo estimator with N samples, fN(X), is consis-
tent if the estimate converges almost surely to the correct
solution with an infinite number of samples. In the context of
Monte Carlo integration, a consistent estimator satisfies

lim
N→∞

P
[∫

Ω

f (x) dx− fN(X) = 0
]
= 1, (5)

where P[A] returns the probability that the boolean expres-
sion A is true. An estimator that does not satisfy the above
condition is called an inconsistent estimator.

Another important concept is unbiasedness. A Monte Carlo
estimator fN(X) is unbiased if the expected value of the

estimate is equal to the correct solution. To be concrete, an
unbiased estimator satisfy

E [ fN(X)]− I = 0. (6)

It is important to note that an unbiased estimator is unbiased
regardless of the number of samples. A biased estimator
simply does not satisfy the above condition and the bias
B [ fN(X)] is defined as

B [ fN(X)] = E [ fN(X)]− I. (7)

2.3. Error Estimation

Since every Monte Carlo estimate is a random variable, er-
ror is also a random variable. In order to quantify the er-
ror of an estimate, we consider the expected squared error
E[( fN(X)− I)2]. We can expand this expression by assum-
ing that samples are independent and identically distributed
according to p(X),

E
[
( fN(X)− I)2

]
= E

( 1
N

N

∑
i=1

f (xi)

p(xi)
+B [ fN(X)]− I

)2


= E

( 1
N

N

∑
i=1

f (xi)

p(xi)
+B [ fN(X)]

)2
−2I (I +B [ fN(X)])+ I2

=
1
N

V
[

f (X)

p(X)

]
+(B [ fN(X)])2 , (8)

where V[X] returns the variance of X. This result shows
that the expected squared error of an estimator vanishes as
O(N−1) (thus the error vanishes as O(N−0.5)) if it is unbi-
ased (B[ fN(X)] = 0). This result also shows that bias appears
as an additional error in the form of (B[ fN(X)])2.

There are two remarks on this commonly known “error
estimation of MC integration” that are noteworthy. First, the
equation is true only if the samples are independent and iden-
tically distributed. In many light transport algorithms, such
as photon mapping and even regular path tracing, samples
are not independent due to path reusing. It is thus gener-
ally wrong to use the above equation directly to discuss the
average error over the rendered image.

Second, the derivation assumes that V[ f (X)/p(X)] is finite
and exists. Again, this is hardly true in light transport simula-
tion, where the function f (X)/p(X) can have discontinuities
and singularities, depending on the scene configuration. If
the variance is infinite, we can only rely on the the strong law
of large numbers that tells us

lim
N→∞

P

[
E
[

f (X)

p(X)

]
− 1

N

N

∑
i=1

f (xi)

p(xi)
= 0

]
= 1. (9)

It also means that even the well-known convergence rate
O(N−1) is not necessarily applicable if V[ f (X)/p(X)] is
not finite. Such a situation can easily occur, for example, if
the geometry term [Vea98] is not importance sampled.
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3. Misconceptions

In the following, we describe each misconception and show
why they are indeed “misconceptions”. Note that it is not
the author’s intention to invalidate scientific contributions
of papers which may be making some claims based on the
following misconceptions.

3.1. Unbiased methods are more accurate than biased methods

Misconception: The argument behind this claim is that, ac-
cording to Equation 8, biased methods have additional sys-
tematic error as bias to its expected value, whereas unbiased
methods has no such additional error.

Explanation: This claim is not accurate for two reasons.
Firstly, Equation 8 only discusses expected squared error
which is not equal to the error of a rendered image for a
specific run. An actual rendered image obtained from an
unbiased estimator is not the expected value itself, but a
random estimate. Secondly, and perhaps more importantly,
biased methods could have significantly lower variance than
unbiased methods. The claim ignores possible reduction of
variance in biased methods. It is very well possible that a
biased estimator gives us a solution with a lower actual error
with the same number of samples.

To be more precise, consider an unbiased estimator uN(X)
where B [u(X)] = 0 and a biased estimator bN(X) where
B [b(X)] 6= 0. By definition, we have

E
[
(uN(X)− I)2

]
=

1
N

V [u(X)] , (10)

and

E
[
(bN(X)− I)2

]
=

1
N

V [b(X)]+ (B [b(X)])2 . (11)

However, neither equation supports the following claim of
improved accuracy of uN(X) over bN(X);

P
[
(uN(X)− I)2 < (bN(X)− I)2

]
> 0.5, (12)

which says that the biased estimator bN(X) can be closer to
the correct solution more often than the competing unbiased
estimator uN(X). Neither Equation 10 nor Equation 11 even
implies this expected behavior

E
[
(uN(X)− I)2

]
< E

[
(bN(X)− I)2

]
(13)

due to potential difference in variances. If the two estima-
tors have the same variance, then this claim is true. The
claim, however, is often used for comparing unbiased meth-
ods and biased methods of different characteristics, which
is not appropriate. One cannot claim that a newly developed
unbiased method is “better” than exiting biased methods
just because it is unbiased. For example, progressive pho-
ton mapping [HOJ08] is indeed a biased method that was
demonstrated to often outperform unbiased methods.

3.2. Unbiased methods always converge to the correct solution

Misconception: Unbiasedness is often considered to ensure
convergence to the correct solution. In other words, unbi-
asedness is tend to be tied with consistency. This argument
effectively claims that Equation 6 implies Equation 5.

Explanation: Perhaps somewhat counterintuitive, but an un-
biased estimator does not always satisfy Equation 5. Consis-
tency and unbiasedness are in fact independent properties of
an estimator. A method can be unbiased and inconsistent at
the same time.

To illustrate the independence of consistency and unbi-
asedness, one can think of a simple experiment of computing
the expected value of dice throwing. We can consider the
following four estimators for all combinations of consistency
and unbiasedness:

• Consistent and unbiased estimator:
The sum of numbers obtained so far divided by the number
of throws.

• Inconsistent and unbiased estimator:
The number obtained from the last throw regardless of the
preceding throws.

• Consistent and biased estimator:
The sum of numbers obtained so far divided by the number
of throws + 1.

• Inconsistent and biased estimator:
The number 4, regardless of the outcomes of the throws.

Notice that there exists an inconsistent and unbiased esti-
mator even in this simple example. This estimator is unbiased
since the expected value of the number obtained from the last
throw is equal to the correct value of 3.5. This estimator how-
ever is inconsistent because the estimate never converges to
this expected value, even with an infinite number of throws.

In the simple example above, it is easy to see that the
estimator is not inconsistent. In practice, it is less trivial to
check if a new light transport simulation method is consistent
or not, and the details will depend on the specific algorithm.
The take-home message here is that unbiasedness does not
always imply consistency, thus one needs to be careful when
making such a claim. We will explain an even more subtle
example with Markov chain Monte Carlo sampling for light
transport simulation as another misconception.

3.3. Unbiased methods are parameter-free

Misconception: Based on the definition of error in unbiased
Monte Carlo integral estimators, it is often claimed that the
only parameter of such unbiased estimators is the number
of samples, hence unbiasedness is an attractive property for
making a rendering algorithm easy to use. This claim often
is used as reason for introducing unbiased methods into a
movie production, where biased methods with lots of pa-
rameters make the whole pipeline difficult to use without
understanding each parameter. Likewise, this claim is used
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as a reasoning to prefer unbiased Monte Carlo methods over
biased ones.

Explanation: Even if an estimator is unbiased and consis-
tent, it might have parameters that greatly affects its variance
(hence average error). For example, one could think of a two-
stage importance sampling algorithm, where the first stage
constructs a PDF that is used the second stage to render the
actual image. In this case, even though the entire algorithm
can be unbiased (and potentially consistent), we need to de-
cide how many samples to draw in each stage and how to
construct the PDF. This will result in multiple user-defined
parameters that will affect performance.

Whether a particular algorithm has many parameters or
not is entirely independent from its unbiasedness. In fact, if
estimators are consistent, regardless of their unbiasedness, the
result will converge to the same solution simply by increasing
the number of samples.

3.4. Quantifying error is possible only with unbiased methods

Misconception: One technical reasoning to prefer unbiased
methods over biased methods is that error in unbiased meth-
ods is solely characterized by noise, and thus it is easy to
quantify. The claim often goes on to say that bias is impos-
sible to quantify, thus one cannot use biased methods for
applications of light transport simulation where estimating
the accuracy is important.

Explanation: This claim contains a certain truth: error esti-
mation of unbiased methods is readily available under certain
conditions. For example, we can derive a probabilistic error
bound using the t-distribution. What is often forgotten are
the assumptions for such derivation. For the example of the
t-distribution, we need to assume that samples are drawn ex-
actly from the normal distribution and variance is finite and
exists. These two assumptions are violated in light transport
simulation (e.g., due to the geometry term of shadow ray
connections). Claiming that error estimation is possible with
unbiased estimators is at least misleading since the estimated
error can be arbitrary wrong if these assumptions do not hold.

There also exists work that provides quantification of error
for biased methods. In particular, the analysis and estimation
of error of bias in photon mapping has been explored [HJJ10].
It is therefore possible to quantify error in some biased light
transport simulation methods. One might still claim that es-
timation of bias needs some assumptions, thus this is not a
misconception. However, we should keep it in mind that as-
sumptions are made even for error estimation with unbiased
estimators, as discussed above. Ultimately, we should always
perform numerical experiments to see if error estimations are
in fact useful.

3.5. Markov chain algorithms are unbiased and consistent

Misconception: Throughout the literature, it is well recog-
nized that the original Markov chain Monte Carlo method
is biased and consistent. The reason is that the distribution
of samples converges to the target distribution for infinitely
long Markov chains by definition. The difference between the
initial distribution and the target distribution is called start-up
bias. Veach proposed to eliminate start-up bias in order to
make Metropolis light transport (MLT) unbiased. The mis-
conception is that this technique makes MLT unbiased and
consistent.

Explanation: The start-up bias elimination in fact makes
the algorithm inconsistent, at least, with a single run with
one Markov chain. The inconsistency is due to the necessary
weighting of the Markov chain in the start-up bias elimination.
This misconception has nothing to with the convergence of
the distribution, which happens regardless of the start-up bias
elimination. The main issue here is the introduced weighting.

Without the start-up bias elimination, the biased and con-
sistent MLT converges to the correct solution using a single
chain. When the start-up bias is used, the estimate obtained
from one chain is scaled by a random scaling factor, mak-
ing this algorithm inconsistent for an infinitely long run. To
correctly understand this concept, consider a set of initial
samples from many different runs. The average over many
independent chains of the same length still converges to the
correct solution, which means that the algorithm is unbiased.
This is hinted by Equation 11.7 in Veach’s thesis, where N
is the chain length. This is why MLT with the start-up bias
elimination is inconsistent.
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