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Rendering guy

* | have been working on various topics in rendering

* Qver thepast ten years

 ~95% of'my publications are on rendering

* People probably see me as “a rendering guy”
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T'ninking outside the box

Numerical integration
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Rendering as numerical integration




Rendering as numerical integration
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Rendering as numerical integration

 Represent a path as a vector




Rendering as numerical integration

e Define how much light is carried along the path




Rendering as numerical integration

* Total amount of light = integration over paths




Rendering as numerical integration

* Solve numerically by taking N samples

 Numerical integration problem

ZT(_)Ongl f )dA / (507517527f3)d14



T'ninking outside the box

My works can be seen as general numerical methods
* Progressive density estimation [2008, 2009]

* Markov chain Monte Carlo methods [2011, 2014]

 Numerical integration methods [2013, 2016]
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T'ninking outside the box

My works can be seen as general numerical methods
* Progressive density estimation [2008, 2009]

* Markov chain Monte Carlo methods [2011, 2014]

 Numerical integration methods [2013, 2016]

Rendering methods applicable to problems outside rendering

and then stepping back even more...
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Image Proc.

“Wavelet Convolutional
Neural Networks”

S. Fujieda, K. Takayama, and T. Hachisuka
arXiv:1707.07394, July 2017
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Image processing: Wavelet analysis of images

=

Machine learning: Convolutional neural networks



Convolutional Neural Networks

* Most popular network architecture for images
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“ImageNet Classification with Deep Convolutional Neural Networks”, Krizhevsky et al., NIPS 2012



Convolutional Neural Networks

* Most popular network architecture for images

Convolution
Pooling

“ImageNet Classification with Deep Convolutional Neural Networks”, Krizhevsky et al., NIPS 2012



Convolution

e Filter the input by a shared, trainable kernel
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Convolution

e Filter the input by a shared, tral
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Convolution
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Convolution

e Filter the input by a shared, tral
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Convolution

e Filter the input iy a shared, tral
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molelllgle

* Fixed aggregating operation of the input
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molelllgle

* Fixed aggregating operation of the input
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molelllgle

* Fixed aggregating operation of the input
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molelllgle

* Fixed aggregating operation of the input
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. ayman's understanding

* |[f we ignore jargons of deep learning,
« Convolution layer = filtering with zero padding

* Pooling layer (average) = downsampling

They sound really tamiliar to graphics researchers!












Key observation
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Key observation

* Convolution followed by pooling is a limited
version of multi-resolution analysis via wavelets
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Wavelet CNNs

e Integrate multi

resolution analysis into CNNs

e
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Wavelet CNNs

e [ntegrate multi-

resolution analysis into CNNs
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Wavelet CNNs

e Integrate multi-resolution analysis into CNNs

e Constrain convolution and pooling layers
In order to form wavelets

 (Given wavelets, several parameters are fixed
(= reduce the number of training parameters)

e Retain information of the input longer



Applications

 Wavelet CNN is a general neural network model
* Applied to two difficult tasks even with CNNs
» Texture classification

* I[mage annotation



Texture classification

» Classifty textures into the same materials

e Difficult task even for CNNs due to variation

Images from KTH-TIPS2-b dataset



EXperiments

* [wo publicly available texture datasets
o KTH-TIPS2-b: 11 classes of 432 images
e DID: 47 classes of 120 images in the wild

e Trained wavelet CNNs and others from scratch



Accuracy (KTH-TIPS2-b)

Wavelet CNN



Precentage

Accuracy (DTD)

Texture CNN Wavelet CNN

AlexNet



Number of parameters

Wavelet CNN




Image annotation

e Automatically tag images by words

* Used wavelet CNNs to replace the CNN part

5"’"‘" 'm\ Lig )
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umbrella, cup, dining table, chair, person baseball bat, baseball glove, cellphone, person

Feng Liu et al., “Semantic Regularisation for Recurrent Image Annotation”, CVPR, 2017



EXperiments

Recurrent Image Annotator [Jin et al. 2016]
Replaced VGG-16 in the model by wavelet CNN
IAPR-TC12 dataset

e Vocabulary size: 291

* [raining Images: 17665



Precentage

Precision

Wavelet CNN



Number of parameters

Wavelet CNN




summary

 Layman’s view reformulated convolution and
oooling in CNNs as wavelet transformation

* Improved results with a smaller number of
trainable parameters in two applications

* Applicable to other image processing problems

We are working on making wavelets themselves trainable
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Animation

"A Hyperbolic Geometric Flow
for Evolving Films and Foams®

S. Ishida, M. Yamamoto, R. Ando, and T. Hachisuka
ACM Transactions on Graphics (SIGGRAPH Asia 2017), 2017
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Animation: Physics simulation of soap films
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Differential geometry: Geometric flow






L_iquid films as physics

e Liquid film is extremely thin (~650 nm)
 Coupled dynamics of air and liguid

* Direct simulation via NS equations is difficult
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Liquid films as geometry

e Subjects of interest in mathematics since 1760
e Steady-state = minimal surface area

 Plateau’s law and Plateau's problem
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Plateau’s law

* Empirical predictions of steady shapes of films

arccos(—1/2) = 120° arccos(—1/3) ~ 109°



Plateau’s problem

* Empirical predictions of steady shapes of films

ot / S¢ x St ldudv = 0
de le=0 []



Plateau’s problem

* Empirical predictions of steady shapes of films

d
— / 5S¢ x SEldudv = 0
d€ le=0 []

= steady state solutions of mean curvature flow




Mean curvature flow (MCF)

 Commonly studied in differential geometry

* Evolve a surface by its mean curvature

* Lots of numerical solvers available in graphics

az _ —H(x,t)n(x,t)

dt T \

mean curvature unit normal



Can we just use MCF
to simulate tilms?



Geometric flow and film

e Fundamental difference exists

 Mean curvature tlow is a parabolic PD

* Fiim dynamics is a hyperbolic PDE




Hyperbolic MCF and film

* Another geometric flow Iin differential geometry

 Hyperbolic MCF is a hyperbolic PD

* Fiim dynamics is a hyperbolic PDE




Hyperbolic MCF and film

* Another geometric flow Iin differential geometry

 Hyperbolic MCF is a hyperbolic PD

* Fiim dynamics is a hyperbolic PDE




Hyperbolic MCF and film

 Fundamental ditference still exists
 Hyperbolic MCF is not preserving volume

* Film dynamics is preserving volume of air




Key observation

HMCF with vol. preservation = Film dynamics via NS eqn.

e Steady-state shapes of films can be
obtained as solutions of geometric flow

« MCF is a common model, but it's parabolic

 Hyperbolic MCF doesn’t preserve volume



dt?

HMCF to our model

—H(x,t)n(x,t)



HMCF to our model

 No volume preservation

dt?

—H(x,t)n(x,t)



HMCF to our model

 No volume preservation

Introduce a new pressure term

d? x

Ty = —H(x,t)n(zx,t)+Ap(x, t)n(z, t)




Volume preservation

e Extension of Muller's method for multiple regions

* Pressure In each region Is assumed constant

Miller [2009] Ours



HMCF to our model

 No volume preservation

Introduce a new pressure term
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HMCF to our model

 No volume preservation
Introduce a new pressure term

e Mean curvature can be undefinead

d? x

Ty = —H(x,t)n(zx,t)+Ap(x, t)n(z, t)




Undefined mean curvature

Undefined exactly on those important points!



HMCF to our model

 No volume preservation
Introduce a new pressure term

e Mean curvature can be undefinead

d? x

Ty = —H(x,t)n(zx,t)+Ap(x, t)n(z, t)




HMCF to our model

 No volume preservation
Introduce a new pressure term

e Mean curvature can be undefinead

|;epace it by variational derivative




Variational derivative

0A

* Properties of F and Hn match well

e Direction - maximizes the local area

 Magnitude - difference from the maximum

. Indeed,% — Hn when mean curvature is defined

0x

(proof is in our paper)



Our mode|

* Preserve volume of trapped air
e Works fine without mean curvature

NS equations with assumptions become our model

d?x 0A

= B 5 thp ()

surface tension constant



Results



Per frame [msec]

Computation cost




Accuracy on Plateau's law
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Comparision with Da et al. 2015



Comparison to real film
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experiment [Pucci et al. 2015]

our simulation



summary

* Bridge physics/geometric views of film dynamics
* Physically valid model for film animation
 Mathematically novel geometric tlow

e \Very stable solver tor the Plateau’s problem

e Source code - https://github.com/sdsgisd/HGE



https://github.com/sdsgisd/HGF

Concluding remarks
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T'ninking outside the box

e "Wavelet convolutional neural networks”

Image processing: Wavelet analysis of images
+
Machine learning: Convolutional neural networks

* "Hyperbolic geometric flow for soap film dynamics”

Animation: Physics simulation of soap films

+
Differential geometry: Geometric flow



T'ninking outside the box

* |[nterdisciplinary nature ot graphics research
forced me to think outside the box

e Taking insights from different fields can lead to
unexpected and surprising results

My long term goal is to make continuous effort
on bridging mathematics and graphics

Contact me if you are interested in this effort!



