Thinking Outside the Cornell Box

Non-rendering Research by a Rendering Guy

Toshiya Hachisuka

University of Tokyo

MEIS 2017

Interfaces

Modeling

Rendering

Computer Graphics

Animation

Acquisition

Image Proc.

Interfaces

Modeling

Rendering

Computer Graphics

Animation

Acquisition

Image Proc.

Input data

Light sources

Shapes

Materials

Camera data

Input data

Light sources

Shapes

Materials

Camera data

Rendering

Input data

Light sources

Shapes

Materials

Camera data

Image

Cornell box

Thinking inside the box

Numerical integration

Represent a path as a vector

Define how much light is carried along the path

Total amount of light = integration over paths

- Solve numerically by taking N samples
 - Numerical integration problem

$$\sum_{j=1}^{N} T(\vec{x}_{0_j}, \vec{x}_{1_j}, \vec{x}_{2_j}, \vec{x}_{3_j}) dA_j \approx \int T(\vec{x}_0, \vec{x}_1, \vec{x}_2, \vec{x}_3) dA$$

- My works can be seen as general numerical methods
 - Progressive density estimation [2008, 2009]
 - Markov chain Monte Carlo methods [2011, 2014]
 - Numerical integration methods [2013, 2016]

- My works can be seen as general numerical methods
 - Progressive density estimation [2008, 2009]
 - Markov chain Monte Carlo methods [2011, 2014]
 - Numerical integration methods [2013, 2016]

Rendering methods applicable to problems outside rendering

- My works can be seen as general numerical methods
 - Progressive density estimation [2008, 2009]
 - Markov chain Monte Carlo methods [2011, 2014]
 - Numerical integration methods [2013, 2016]

Rendering methods applicable to problems outside rendering

and then stepping back even more...

Other Fields

Image Proc.

"Wavelet Convolutional Neural Networks"

S. Fujieda, K. Takayama, and T. Hachisuka arXiv:1707.07394, July 2017

Idea

Image processing: Wavelet analysis of images

Machine learning: Convolutional neural networks

Convolutional Neural Networks

Most popular network architecture for images

Convolutional Neural Networks

Most popular network architecture for images

Filter the input by a shared, trainable kernel

3
5
Trained
2
-0.3
0.1
6
-0.2

3

6

Fixed aggregating operation of the input

-0.2

-0.4

-0.9

-1.1

-0.7

-1.1

-2.1

-0.1

Fixed aggregating operation of the input

Fixed aggregating operation of the input

Fixed aggregating operation of the input

Layman's understanding

- If we ignore jargons of deep learning,
 - Convolution layer = filtering with zero padding
 - Pooling layer (average) = downsampling

They sound really familiar to graphics researchers!

Key observation

Key observation

 Convolution followed by pooling is a limited version of multi-resolution analysis via wavelets

Key observation

 Convolution followed by pooling is a limited version of multi-resolution analysis via wavelets

Wavelet CNNs

Integrate multi-resolution analysis into CNNs

Wavelet CNNs

Integrate multi-resolution analysis into CNNs

Wavelet CNNs

- Integrate multi-resolution analysis into CNNs
 - Constrain convolution and pooling layers in order to form wavelets
 - Given wavelets, several parameters are fixed (= reduce the number of training parameters)
 - Retain information of the input longer

Applications

- Wavelet CNN is a general neural network model
- Applied to two difficult tasks even with CNNs
 - Texture classification
 - Image annotation

Texture classification

- Classify textures into the same materials
- Difficult task even for CNNs due to variation

Experiments

- Two publicly available texture datasets
 - KTH-TIPS2-b: 11 classes of 432 images
 - DTD: 47 classes of 120 images in the wild
- Trained wavelet CNNs and others from scratch

Accuracy (KTH-TIPS2-b)

Accuracy (DTD)

Number of parameters

Image annotation

- Automatically tag images by words
- Used wavelet CNNs to replace the CNN part

umbrella, cup, dining table, chair, person

baseball bat, baseball glove, cellphone, person

Experiments

- Recurrent Image Annotator [Jin et al. 2016]
- Replaced VGG-16 in the model by wavelet CNN
- IAPR-TC12 dataset
 - Vocabulary size: 291
 - Training images: 17665

Precision

Number of parameters

Summary

- Layman's view reformulated convolution and pooling in CNNs as wavelet transformation
- Improved results with a smaller number of trainable parameters in two applications
- Applicable to other image processing problems

We are working on making wavelets themselves trainable

Thinking outside the box

Thinking outside the box

Animation

"A Hyperbolic Geometric Flow for Evolving Films and Foams"

S. Ishida, M. Yamamoto, R. Ando, and T. Hachisuka ACM Transactions on Graphics (SIGGRAPH Asia 2017), 2017

Idea

Animation: Physics simulation of soap films

Differential geometry: Geometric flow

Liquid films as physics

- Liquid film is extremely thin (~650 nm)
- Coupled dynamics of air and liquid
- Direct simulation via NS equations is difficult

Liquid films as geometry

- Subjects of interest in mathematics since 1760
- Steady-state = minimal surface area
- Plateau's law and Plateau's problem

Plateau's law

Empirical predictions of steady shapes of films

Plateau's problem

Empirical predictions of steady shapes of films

$$\arccos(-1/2) = 120^{\circ}$$

$$\arccos(-1/3) \approx 109^{\circ}$$

Plateau's problem

Empirical predictions of steady shapes of films

$$\arccos(-1/2) = 120^{\circ}$$

$$\arccos(-1/3) \approx 109^{\circ}$$

Mean curvature flow (MCF)

- Commonly studied in differential geometry
 - Evolve a surface by its mean curvature
 - Lots of numerical solvers available in graphics

$$\frac{dx}{dt} = -H(x,t)n(x,t)$$
mean curvature unit normal

Can we just use MCF to simulate films?

Geometric flow and film

- Fundamental difference exists
 - Mean curvature flow is a parabolic PDE
 - Film dynamics is a hyperbolic PDE

$$\frac{dx}{dt} = -H(x,t)n(x,t) \neq$$

Hyperbolic MCF and film

- Another geometric flow in differential geometry
 - Hyperbolic MCF is a hyperbolic PDE
 - Film dynamics is a hyperbolic PDE

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t) \neq$$

Hyperbolic MCF and film

- Another geometric flow in differential geometry
 - Hyperbolic MCF is a hyperbolic PDE
 - Film dynamics is a hyperbolic PDE

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t) \stackrel{?}{=}$$

Hyperbolic MCF and film

- Fundamental difference still exists
 - Hyperbolic MCF is not preserving volume
 - Film dynamics is preserving volume of air

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t) \neq$$

Key observation

HMCF with vol. preservation = Film dynamics via NS eqn.

- Steady-state shapes of films can be obtained as solutions of geometric flow
- MCF is a common model, but it's parabolic
- Hyperbolic MCF doesn't preserve volume

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t)$$

No volume preservation

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t)$$

No volume preservation

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t) + \Delta p(x,t)n(x,t)$$

Volume preservation

- Extension of Müller's method for multiple regions
- Pressure in each region is assumed constant

No volume preservation

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t) + \Delta p(x,t)n(x,t)$$

No volume preservation

Introduce a new pressure term-

Mean curvature can be undefined

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t) + \Delta p(x,t)n(x,t)$$

Undefined mean curvature

Undefined exactly on those important points!

No volume preservation

Introduce a new pressure term-

Mean curvature can be undefined

$$\frac{d^2x}{dt^2} = -H(x,t)n(x,t) + \Delta p(x,t)n(x,t)$$

No volume preservation

Introduce a new pressure term-

Mean curvature can be undefined

Replace it by variational derivative

$$\frac{d^2x}{dt^2} = \frac{\partial A}{\partial x} + \Delta p(x,t)n(x,t)$$

Variational derivative

- ullet Properties of $rac{\partial A}{\partial x}$ and Hn match well
 - Direction maximizes the local area
 - Magnitude difference from the maximum
- Indeed, $\frac{\partial A}{\partial x} = Hn$ when mean curvature is defined

(proof is in our paper)

Our model

- Preserve volume of trapped air
- Works fine without mean curvature
- NS equations with assumptions become our model

$$\frac{d^2x}{dt^2} = -\beta \frac{\partial A}{\partial x} + \Delta p(x,t)n(x,t)$$

surface tension constant

Results

Computation cost

Accuracy on Plateau's law

Comparision with Da et al. 2015

Comparison to real film

experiment [Pucci et al. 2015]

our simulation

Summary

- Bridge physics/geometric views of film dynamics
 - Physically valid model for film animation
 - Mathematically novel geometric flow
- Very stable solver for the Plateau's problem
- Source code https://github.com/sdsgisd/HGF

Concluding remarks

Thinking outside the box

Thinking outside the box

"Wavelet convolutional neural networks"

Image processing: Wavelet analysis of images

Machine learning: Convolutional neural networks

"Hyperbolic geometric flow for soap film dynamics"

Animation: Physics simulation of soap films

Differential geometry: Geometric flow

Thinking outside the box

- Interdisciplinary nature of graphics research forced me to think outside the box
- Taking insights from different fields can lead to unexpected and surprising results
- My long term goal is to make continuous effort on bridging mathematics and graphics

Contact me if you are interested in this effort!