Rise of the Machines in MC Integration for Rendering

Toshiya Hachisuka

The University of Tokyo

This talk is NOT about

but about this

Deep (learning) impact

- Significant step on classification tasks in 2012
- 10% improvement (where 1% was typical)
- Better than a "man-made" classifier

e.g., "Gradients should be useful to classify images."

Successes of deep learning

- Achieving significant results in many applications
 - Image segmentation [Long et al.14]
 - Image captioning (many groups in 2014)
 - Playing video games [Mnih et al.13]
 - Lip reading [Ngiam et al.11]
 - and more...

How can we utilize deep learning in MC?

Rise of the Machines

- Learn the "optimal" estimator for a given function
 - Uses coarse samples as "images"
 - Assume a set of specific (non-arbitrary) functions
 - Automatically exploit "hidden" structures
 - Similar to adaptive Monte Carlo, but we use machine learning to decide how to adapt

Automatic Mixing of MC Integrators

Light transport simulation

Solution of the following governing equation

$$L(x, \vec{o}) = L_e(x, \vec{o}) + \int_{\Omega} f_r(x, \vec{\omega}, \vec{o}) L(x, \vec{\omega}) (\vec{\omega} \cdot \vec{n}) d\vec{\omega}$$

- Can be formulated as a simple MC integration
- Different algorithms coverage to the same results

Efficiency of each algorithm varies for different inputs

Efficiency of each algorithm varies for different inputs

Algorithm 2 is more efficient

Efficiency of each algorithm varies for different inputs

Efficiency of each algorithm varies for different inputs

Algorithm 1 is more efficient

Mixing different algorithms

- Combine the results by a weighted sum
 - More efficient algorithm should have larger weight
 - Often called "blending" in graphics

Pixel-wise blending

Each pixel has its own blending weight

Key idea

Key idea

Method

Two algorithms

- Stochastic progressive photon mapping (SPPM)
 [Hachisuka & Jensen 2009]
- Manifold exploration (MLT)
 [Jacob & Marschner 2012]

training samples

Regression forests

 Machine learning technique which uses an ensemble of randomized regression trees

Body segmentation [Shotton et al. 2011]

Fluid simulation [Ladický et al. 2015]

Relative contributions

Relative contributions

Relative contributions

Vector of relative intensities of each integral

$$\vec{\phi}(I) = \frac{(I_1, I_2, I_3, I_4, \dots)}{I}$$

- Similar to relative magnitudes of subsets of samples
 - Samples are clustered by some fixed rules

Given pixel intensities from two algorithm (a and β),
 the optimal weight (minimizes error) is defined as

$$w_{\text{opt}} = \underset{w}{\operatorname{arg\,min}} \left| \left(w \hat{I}_{\alpha} + (1 - w) \hat{I}_{\beta} \right) - I \right|$$

Given pixel intensities from two algorithm (a and β),
 the optimal weight (minimizes error) is defined as

$$w_{\text{opt}} = \underset{w}{\operatorname{arg\,min}} \left| \left(w \hat{I}_{\alpha} + (1 - w) \hat{I}_{\beta} \right) - I \right|$$

blended result reference

Given pixel intensities from two algorithm (a and β),
 the optimal weight (minimizes error) is defined as

$$w_{\text{opt}} = \underset{w}{\operatorname{arg\,min}} \left| \left(w \hat{I}_{\alpha} + (1 - w) \hat{I}_{\beta} \right) - I \right|$$

$$w_{\mathrm{opt}} \approx w_{\mathrm{reg}}(\vec{\phi}(\hat{I}_{\alpha}), \vec{\phi}(\hat{I}_{\alpha}))$$

what we learn

Given pixel intensities from two algorithm (a and β),
 the optimal weight (minimizes error) is defined as

$$w_{\text{opt}} = \underset{w}{\operatorname{arg\,min}} \left| \left(w \hat{I}_{\alpha} + (1 - w) \hat{I}_{\beta} \right) - I \right|$$

$$w_{\mathrm{opt}} \approx w_{\mathrm{reg}}(\vec{\phi}(\hat{I}_{\alpha}), \vec{\phi}(\hat{I}_{\alpha}))$$

what we learn

note: $w_{\mathrm{opt}}(\hat{I}_{\alpha}, \hat{I}_{\beta}, I) \approx w_{\mathrm{reg}}(\hat{I}_{\alpha}, \hat{I}_{\beta})$ $\lim \hat{I}_{\alpha} = \lim \hat{I}_{\beta} = I$

Results

Training scenes

Evaluation

One scene for testing

Other scenes for training

Evaluation

One scene for testing

Other scenes for training

Scene: babylonian-city

Weights (Ours) SPPMI MLT

Automatic mixing of MC

- Tries to optimally mix two Monte Carlo integrators
 - Learn optimal weights by examples
 - Better results than the baseline
- The same approach can be used for any other problems where we have multiple MC integrators
 - No modification to MC integrators themselves

Auto-adaptive MCMC

Idea

 Adapt proposal distributions according to pre-trained data for various functions

Idea

 Adapt proposal distributions according to pre-trained data for various functions

Auto-adaptive MCMC

Learning

- Given coarse samples + current state, maximize the expected jumping distance
- Learn the relationship with the proposal distribution

Runtime

Given coarse samples + current state,
 output the parameters of the proposal distribution

Auto-adaptive MCMC

Learning

- Given coarse samples + current state, maximize the expected jumping distance
- Learn the relationship with the proposal distribution

Runtime

Given coarse samples + current state,
 output the parameters of the proposal distribution

Adaptively maximize the expected jumping distance

Early experiments

- Samples from a mixture of two non-gaussians
- Radial basis functions for learning
- Instead of coarse samples, used parameters of a mixture distribution (still contains complex relations)

Histogram

Baseline

Histogram

Our machine-learned MCMC

Trace plot

Baseline

Trace plot

Our machine-learned MCMC

Expected jumping distance

Numerically maximized at each point

0 0 0.25 0.5 0.75 1

Expected jumping distance

Our machine-learned MCMC

Conclusions

Conclusions

- Two general frameworks on how to utilize machine learning to improve MC/MCMC estimators
 - Auto-mixing MC
 - Auto-adaptive MCMC
- Same key idea
 - Consider samples as "images", then learns the relationship between them and optimal estimators