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Deep (learning) impact

* Significant step on classification tasks in 2012
 10% improvement (where 1% was typical)

e Better than a “man-made’” classifier
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ImageNet [Deng et al.09]






Before deep learning
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Before deep learning

Manually designed ..,

Feature Detector * Classifier *dog

e.g., “‘Gradients should be useful to classify images.”
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After deep learning

Learned from examples

Machine Learning
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Successes of deep learning

* Achieving significant results in many applications
* Image segmentation [Long et al.14]
* Image captioning (many groups in 2014)
* Playing video games [Mnih et al.13]
e Lipreading [Ngiam et al.11}

e and more...



How can we utilize
deep learning in MC?



Deep learning in MC

Machine Learning dog
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Rise of the Machines

e Learn the “optimal” estimator for a given function
 Uses coarse samples as “images”
 Assume a set of specific (non-arbitrary) functions
* Automatically exploit "hidden” structures

* Similar to adaptive Monte Carlo, but we use
machine learning to decide how to adapt



Automatic Mixing
of MC Integrators

joint work with S. Kinuwaki and H. Otsu (in submission)












L ight transport simulation

e Solution of the following governing equation
L@,0) = Le(w.0) + [ (0.3, 0)L(0.3)@ - 1)da
Q

* Can be formulated as a simple MC integration

* Different algorithms coverage to the same results
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Varying efficiency

» Efficiency of each algorithm varies tor different inputs
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Varying efticiency

» Efficiency of each algorithm varies tor different inputs

Algorithm™] : Algorithm 2



Varying efticiency

» Efficiency of each algorithm varies tor different inputs

Algorithm 1 is more efficient

Algorithm™] : Algorithm 2



Mixing different algorithms

 Combine the results by a weighted sum
* More efficient algorithm should have larger weight

« Often called “blending” in graphics

W - |Algorithm 1 —|—(1 — W) - [ Algorithm 2



PIxel-wise blending

 Each pixel has its own blending weight
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Key Idea

/U * Machine Learning * “optimal” estimator
@

coarse samples

.................... N

functions (\/f\\,/\ M\f*‘




examples

Key Idea




Method



Two algorithms

e Stochastic progressive photon mapping (SPPM)
[Hachisuka & Jensen 2009]

 Manifold exploration (MLT)
[Jacob & Marschner 2012]
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Regression forests

 Machine learning technique which uses
an ensemble of randomized regression trees
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depthimage == bodyparts = 3D joint proposals

Body segmentation Fluid simulation
[Shotton et al. 2011] [Ladicky et al. 2015]




Runtime
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Relative contributions
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Relative contributions

* Vector of relative intensities of each integral

B I I Iy Iy, ...
iy = Crotedo o)

e Similar to relative magnitudes of subsets of samples

 Samples are clustered by some fixed rules



Optimal weights

* (Given pixel intensities from two algorithm (a and 3),
the optimal weight (minimizes error) is defined as

Wopt = arg min (wfa + (1 — fw)IAﬁ) — 1
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Optimal weights

* (Given pixel intensities from two algorithm (a and 3),
the optimal weight (minimizes error) is defined as

Wopt = arg min (wfa + (1 — fw)IAﬁ) — 1

w

Wopt ~ wreg(g(l/\a)v g(fa))



Optimal weights

* (Given pixel intensities from two algorithm (a and 3),
the optimal weight (minimizes error) is defined as

Wopt = arg min
w

(wfa + (1 — w)f5> — I

Wopt ~ wreg(g(l/\a)v g(fa))

note: wopt(jaafﬁal) ~ wreg(lomlﬁ)
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Results
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Evaluation
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Weights (Optimal)
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Weights (Ours) SPPMI MLT




Error (Average)
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Error (Ours)
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Automatic mixing of MC

* Tries to optimally mix two Monte Carlo integrators
* Learn optimal weights by examples
* Better results than the baseline

 [he same approach can be used for any other
problems where we have multiple MC integrators

* No moditication to MC integrators themselves



Auto-adaptive MCMC

joint work with H. Otsu, M. Sik, and J. Kfivanek (in progress)
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* Adapt proposal distributions according to
pore-trained data for various functions

/\/ * Machine Learning * “optimal” estimator
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* Adapt proposal distributions according to
pore-trained data for various functions

“optimal” proposal
distribution

Machine Learning

coarse sample
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current state




Auto-adaptive MCMC

* Learning

* (Given coarse samples + current state,
maximize the expected jumping distance

* |earn the relationship with the proposal distribution
 Runtime

* (Given coarse samples + current state,
output the parameters of the proposal distribution



Auto-adaptive MCMC

* Learning

* (Given coarse samples + current state,
maximize the expected jumping distance

* |earn the relationship with the proposal distribution
 Runtime

* (Given coarse samples + current state,
output the parameters of the proposal distribution



Carly experiments

e Samples from a mixture of two non-gaussians

* Radial basis functions for learning

* |nstead of coarse samples, used parameters of a
mixture distribution (still contains complex relations)



Histogram

e Baseline




HIstogram

e Qur machine-learned MCMC




Trace plot

e Baseline
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Trace plot

e OQur machine-learned MCMC
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Expected jumping distance

 Numerically maximized at each point




Expected jumping distance

e Qur machine-learned MCMC




onclusions

Deep learning in MC
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Conclusions

Two general frameworks on how to utilize machine
learning to improve MC/MCMC estimators

* Auto-mixing MC
* Auto-adaptive MCMC
Same key idea

* Consider samples as “images”, then learns the
relationship between them and optimal estimators



