
Rise of the Machines in  
MC Integration for Rendering

Toshiya Hachisuka
!
!

The University of Tokyo

This talk is NOT about

but about this

https://www.tensorflow.org/versions/r0.10/tutorials/image_recognition/index.html

https://www.tensorflow.org/versions/r0.10/tutorials/image_recognition/index.html

Deep (learning) impact
• Significant step on classification tasks in 2012

• 10% improvement (where 1% was typical)

• Better than a “man-made” classifier

ImageNet [Deng et al.09]

Before deep learning

Feature Detector

Before deep learning

Feature Detector Classifier

Before deep learning

Feature Detector Classifier dog

Before deep learning

Feature Detector

Manually designed

Classifier dog

e.g., “Gradients should be useful to classify images.”

After deep learning

After deep learning

Machine Learning

After deep learning

Machine Learning dog

After deep learning

Machine Learning dog

Learned from examples

dog

Successes of deep learning
• Achieving significant results in many applications

• Image segmentation [Long et al.14]

• Image captioning (many groups in 2014)

• Playing video games [Mnih et al.13]

• Lip reading [Ngiam et al.11]

• and more…

How can we utilize  
deep learning in MC?

Deep learning in MC

Machine Learning dog

dog

Deep learning in MC

Machine Learning dog

dog

Deep learning in MC

Machine Learning

coarse samples

Deep learning in MC

Machine Learning

coarse samples

functions

Deep learning in MC

Machine Learning “optimal” estimator

coarse samples

functions

Rise of the Machines
• Learn the “optimal” estimator for a given function

• Uses coarse samples as “images”

• Assume a set of specific (non-arbitrary) functions

• Automatically exploit “hidden” structures

• Similar to adaptive Monte Carlo, but we use  
machine learning to decide how to adapt

Automatic Mixing  
of MC Integrators

joint work with S. Kinuwaki and H. Otsu (in submission)

Light transport simulation
• Solution of the following governing equation

!

!

• Can be formulated as a simple MC integration

• Different algorithms coverage to the same results

L(x,~o) = Le(x,~o) +

Z

⌦
fr(x, ~!,~o)L(x, ~!)(~! · ~n)d~!

Algorithm 1 Algorithm 2

Algorithm 1 Algorithm 2

Varying efficiency
• Efficiency of each algorithm varies for different inputs

Algorithm 1 Algorithm 2

Varying efficiency
• Efficiency of each algorithm varies for different inputs

Algorithm 1 Algorithm 2

Algorithm 2 is more efficient

Varying efficiency
• Efficiency of each algorithm varies for different inputs

Algorithm 1 Algorithm 2

Varying efficiency
• Efficiency of each algorithm varies for different inputs

Algorithm 1 Algorithm 2

Algorithm 1 is more efficient

Mixing different algorithms
• Combine the results by a weighted sum

• More efficient algorithm should have larger weight

• Often called “blending” in graphics

Algorithm 1 Algorithm 2

Pixel-wise blending
• Each pixel has its own blending weight

Image

 …

…

Key idea

Machine Learning “optimal” estimator

coarse samples

functions

Key idea

Machine Learning

rendered images

examples

alg.1

alg.2
“optimal” weight

Method

Two algorithms
• Stochastic progressive photon mapping (SPPM) 

[Hachisuka & Jensen 2009]

• Manifold exploration (MLT) 
[Jacob & Marschner 2012]

Learning

MLT

SPPM

References

Learning

Optimal weight

…

Relative Contrib.

MLT

SPPM

References

Learning

MLT

SPPM

References

Optimal weight

…

Relative Contrib.

training samples

Learning

Regression forest

…

MLT

SPPM

References

Optimal weight

…

Relative Contrib.

Regression forests
• Machine learning technique which uses  

an ensemble of randomized regression trees

Body segmentation
[Shotton et al. 2011]

Fluid simulation
[Ladický et al. 2015]

Runtime

Regression forest

Runtime

Regression forest

SPPM

MLT

Runtime
SPPM

MLT

Relative Contrib.

Regression forest

Runtime
Relative Contrib. Weights

Regression forest

SPPM

MLT

Runtime
Result

Relative Contrib. Weights

Regression forest

SPPM

MLT

Relative contributions

…

Relative contributions

…I
I1 I2

I3 I4
I = I1 + I2 + I3 + I4 + · · ·

Relative contributions
• Vector of relative intensities of each integral

!

!

• Similar to relative magnitudes of subsets of samples

• Samples are clustered by some fixed rules

~�(I) =
(I1, I2, I3, I4, . . .)

I

Optimal weights
• Given pixel intensities from two algorithm (α and β),  

the optimal weight (minimizes error) is defined as

w
opt

= argmin
w

���
⇣
wÎ↵ + (1� w)Î�

⌘
� I

���

Optimal weights
• Given pixel intensities from two algorithm (α and β),  

the optimal weight (minimizes error) is defined as

w
opt

= argmin
w

���
⇣
wÎ↵ + (1� w)Î�

⌘
� I

���

blended result reference

Optimal weights
• Given pixel intensities from two algorithm (α and β),  

the optimal weight (minimizes error) is defined as

w
opt

= argmin
w

���
⇣
wÎ↵ + (1� w)Î�

⌘
� I

���

what we learn

w
opt

⇡ w
reg

(~�(Î↵), ~�(Î↵))

Optimal weights
• Given pixel intensities from two algorithm (α and β),  

the optimal weight (minimizes error) is defined as

w
opt

= argmin
w

���
⇣
wÎ↵ + (1� w)Î�

⌘
� I

���

what we learn

w
opt

⇡ w
reg

(~�(Î↵), ~�(Î↵))

w
opt

(Î↵, Î� , I) ⇡ w
reg

(Î↵, Î�) lim Î↵ = lim Î� = Inote:

Results

Training scenes

Evaluation

One scene!
for testing

Other scenes!
for training

Evaluation

One scene!
for testing

Other scenes!
for training

Scene: babylonian-city

Weights (Optimal) SPPM MLT

Weights (Ours) SPPM MLT

Error (Average) 0.0 1.0

Error (Ours) 0.0 1.0

Scene: box

Weights (Optimal) SPPM MLT

Weights (Ours) SPPM MLT

Error (Average) 0.0 1.0

Error (Ours) 0.0 1.0

Scene: torus

Weights (Optimal) SPPM MLT

Weights (Ours) SPPM MLT

Error (Average) 0.0 1.0

Error (Ours) 0.0 1.0

0

0.4

0.8

1.2

1.6

italian-city conference chess box water

MLT SPPM Average Proposed

Automatic mixing of MC
• Tries to optimally mix two Monte Carlo integrators

• Learn optimal weights by examples

• Better results than the baseline

• The same approach can be used for any other
problems where we have multiple MC integrators"

• No modification to MC integrators themselves

Auto-adaptive MCMC

joint work with H. Otsu, M. Šik, and J. Křivánek (in progress)

Idea
• Adapt proposal distributions according to  

pre-trained data for various functions

Machine Learning “optimal” estimator

coarse samples

Idea
• Adapt proposal distributions according to  

pre-trained data for various functions

Machine Learning “optimal” proposal 
distributioncoarse samples

current state
+

Auto-adaptive MCMC
• Learning

• Given coarse samples + current state,  
maximize the expected jumping distance

• Learn the relationship with the proposal distribution

• Runtime

• Given coarse samples + current state,  
output the parameters of the proposal distribution

Auto-adaptive MCMC
• Learning

• Given coarse samples + current state,  
maximize the expected jumping distance

• Learn the relationship with the proposal distribution

• Runtime

• Given coarse samples + current state,  
output the parameters of the proposal distribution

Adaptively maximize the expected jumping distance

Early experiments
!

• Samples from a mixture of two non-gaussians

• Radial basis functions for learning

• Instead of coarse samples, used parameters of a
mixture distribution (still contains complex relations)

Histogram
• Baseline

0

100

200

300

400

0 0.25 0.5 0.75 1

Histogram
• Our machine-learned MCMC

0

100

200

300

400

0 0.25 0.5 0.75 1

Trace plot
• Baseline

0

0.25

0.5

0.75

1

0 500 1,000 1,500 2,000

Trace plot
• Our machine-learned MCMC

0

0.25

0.5

0.75

1

0 500 1,000 1,500 2,000

Expected jumping distance
• Numerically maximized at each point

0

0.225

0.45

0.675

0.9

0 0.25 0.5 0.75 1

Expected jumping distance
• Our machine-learned MCMC

0

0.225

0.45

0.675

0.9

0 0.25 0.5 0.75 1

Conclusions

0

0.25

0.5

0.75

1

0 500 1,000 1,500 2,000

Conclusions
• Two general frameworks on how to utilize machine

learning to improve MC/MCMC estimators

• Auto-mixing MC

• Auto-adaptive MCMC

• Same key idea

• Consider samples as “images”, then learns the
relationship between them and optimal estimators

