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Deep (learning) impact
• Significant step on classification tasks in 2012 

• 10% improvement (where 1% was typical) 

• Better than a “man-made” classifier

ImageNet [Deng et al.09]
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Before deep learning

Feature Detector

Manually designed

Classifier dog

e.g., “Gradients should be useful to classify images.”
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Successes of deep learning
• Achieving significant results in many applications 

• Image segmentation [Long et al.14] 

• Image captioning (many groups in 2014) 

• Playing video games [Mnih et al.13] 

• Lip reading [Ngiam et al.11] 

• and more…



How can we utilize  
deep learning in MC?
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Rise of the Machines
• Learn the “optimal” estimator for a given function 

• Uses coarse samples as “images” 

• Assume a set of specific (non-arbitrary) functions 

• Automatically exploit “hidden” structures 

• Similar to adaptive Monte Carlo, but we use  
machine learning to decide how to adapt



Automatic Mixing  
of MC Integrators

joint work with S. Kinuwaki and H. Otsu (in submission)









Light transport simulation
• Solution of the following governing equation 

!

!

• Can be formulated as a simple MC integration 

• Different algorithms coverage to the same results

L(x,~o) = Le(x,~o) +

Z

⌦
fr(x, ~!,~o)L(x, ~!)(~! · ~n)d~!
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Varying efficiency
• Efficiency of each algorithm varies for different inputs
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Mixing different algorithms
• Combine the results by a weighted sum 

• More efficient algorithm should have larger weight 

• Often called “blending” in graphics

   
Algorithm 1 Algorithm 2



Pixel-wise blending
• Each pixel has its own blending weight

Image
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“optimal” weight



Method



Two algorithms
• Stochastic progressive photon mapping (SPPM) 

[Hachisuka & Jensen 2009] 

• Manifold exploration (MLT) 
[Jacob & Marschner 2012]
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Regression forests
• Machine learning technique which uses  

an ensemble of randomized regression trees

Body segmentation 
[Shotton et al. 2011]

Fluid simulation 
[Ladický et al. 2015]
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Relative contributions
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Relative contributions

…I
I1 I2

I3 I4
I = I1 + I2 + I3 + I4 + · · ·



Relative contributions
• Vector of relative intensities of each integral 

!

!

• Similar to relative magnitudes of subsets of samples 

• Samples are clustered by some fixed rules

~�(I) =
(I1, I2, I3, I4, . . .)

I



Optimal weights
• Given pixel intensities from two algorithm (α and β),  

the optimal weight (minimizes error) is defined as
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Optimal weights
• Given pixel intensities from two algorithm (α and β),  

the optimal weight (minimizes error) is defined as
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(Î↵, Î� , I) ⇡ w
reg

(Î↵, Î�) lim Î↵ = lim Î� = Inote: 
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Scene: babylonian-city
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Scene: box
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Scene: torus
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Automatic mixing of MC
• Tries to optimally mix two Monte Carlo integrators 

• Learn optimal weights by examples 

• Better results than the baseline 

• The same approach can be used for any other 
problems where we have multiple MC integrators"

• No modification to MC integrators themselves



Auto-adaptive MCMC

joint work with H. Otsu, M. Šik, and J. Křivánek (in progress)
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Auto-adaptive MCMC
• Learning  

• Given coarse samples + current state,  
maximize the expected jumping distance 

• Learn the relationship with the proposal distribution 

• Runtime  

• Given coarse samples + current state,  
output the parameters of the proposal distribution



Auto-adaptive MCMC
• Learning  

• Given coarse samples + current state,  
maximize the expected jumping distance 

• Learn the relationship with the proposal distribution 

• Runtime  

• Given coarse samples + current state,  
output the parameters of the proposal distribution

Adaptively maximize the expected jumping distance



Early experiments
!

• Samples from a mixture of two non-gaussians 

• Radial basis functions for learning 

• Instead of coarse samples, used parameters of a 
mixture distribution (still contains complex relations)
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Trace plot
• Our machine-learned MCMC

0

0.25

0.5

0.75

1

0 500 1,000 1,500 2,000



Expected jumping distance
• Numerically maximized at each point
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Conclusions
• Two general frameworks on how to utilize machine 

learning to improve MC/MCMC estimators 

• Auto-mixing MC 

• Auto-adaptive MCMC 

• Same key idea 

• Consider samples as “images”, then learns the 
relationship between them and optimal estimators


