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What’s often considered

• Graphics communities “just use” statistics
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StatisticsGraphics



What I hope to see

• Statistics communities take something from graphics 
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Aim of this talk

• Motivate you to facilitate cross-pollination

• Both ways (graphics     statistics)

• Using two examples

• Progressive density estimation

• Primary space serial tempering
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“Progressive Photon Mapping” Hachisuka et al.  ACM SIGGRAPH Asia 2008

“Multiplexed Metropolis Light Transport” Hachisuka et al.  ACM SIGGRAPH 2014 (conditionally accepted)
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Progressive Density Estimation
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Probability of sampling this path is nearly zero
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Probability of sampling this path is nearly zero
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Probability of hitting at the same point is zero
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Manifold of non-samplable paths
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How can we capture 
non-samplable paths?
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Progressive Density Estimation
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θ2 θ1

Allow approximate connection within distance
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θ2 θ1

Allow approximate connection within distance r
... and progressively reduce r



Progressive density estimation

• Algorithmically convergent density estimation

• Add gradually reducing bias to relax the problem

• First to solve the issue of non-samplable paths
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[Hachisuka et al. 2008]
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Initial pass

Image
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Initial pass

j-th pixel
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Initial pass

xj Visible point
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Initial pass

Kernelr0

r0Initial kernel bandwidth:
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1st pass
Monte Carlo photon tracing
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1st pass

Photons
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1st pass

Range query with r0



35

1st pass

Reduce radius into r1



Radius reduction

• Reduce radius based on sample statistics

• Number of photons found so far

• Number of newly found photons

• Reduction rate (user-defined)
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1st pass
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1st pass

N1 = N0 + αM0 = 0 + α4
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2nd pass
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2nd pass

New set of photons
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2nd pass

Range query with r1
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2nd pass

r2 =
N1 + αM1

N1 +M1
r1 N2 = N1 + αM1
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3rd and n-th passes

rn+1 =
Nn + αMn

Nn +Mn
rn Nn+1 = Nn + αMn
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MC integration Progressive density estimation

Equal time



Convergence
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• Converges to the correct solution

• Infinite number of neighboring samples

• Infinitely small radius

L = lim
n→∞

Nn

πr2n



• Converges to the correct solution

•  

•  
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Convergence
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• Converges to the correct solution

•  

•  

• Convergence rate

• Variance

• Bias
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Convergence
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Relationship to recursive density estimation

• Recursive density estimation

• Predefined sequence of radii

• Assume stationary density distribution

• Progressive density estimation

• Adaptive sequence from sample statistics

• No assumption on stationarity
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[Wolverton and Wagner 1969, Yamato 1971, Knaus and Zwicker 2011]

[Hachisuka et al. 2008, Hachisuka and Jensen 2009]



Progressive vs Ordinary
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Progressive Ordinary

Computation Unbounded Unbounded

Storage Bounded Unbounded

Convergence Single run Multiple runs
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Primary Space Serial Tempering



Multiple sampling methods

51



Multiple sampling methods
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Multiple sampling methods
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Multiple sampling methods
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Multiple sampling methods
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p0(X̄)

p1(X̄) p2(X̄)

p3(X̄)

Given the same integrand, there are many known PDFs



Multiple importance sampling

• Utilizes samples from multiple PDFs by weighting
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[Veach and Guibas 1995]

f(X̄)



Multiple importance sampling

• Utilizes samples from multiple PDFs by weighting
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[Veach and Guibas 1995]

p0(X̄) p1(X̄)

f(X̄)



Multiple importance sampling

• Importance sampling

• Multiple importance sampling
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[Veach and Guibas 1995]
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Markov chain Monte Carlo sampling

• Requires no knowledge of PDFs
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f(X̄)
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How can we combine MIS and MCMC?



Combination

• Multiple importance sampling

• Ordinary Monte Carlo method

• Utilizes the knowledge of all the PDFs

• Markov chain Monte Carlo sampling

• Markov chain Monte Carlo method

• No usage (or requirement) of PDFs
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Primary Space Serial Tempering



Primary sample space

• Hypercube of random numbers

• Mapping from a point to a sample

• Inverse CDF = mapping function
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[Kelemen et al. 2002]
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Primary sample space

• Hypercube of random numbers

• Mapping from a point to a sample

• Inverse CDF = mapping function
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[Kelemen et al. 2002]

Point in the hypercubePath in the sample space

Ū ∈ ]0, 1[N

X̄ = P−1(Ū)X̄ Ū



Serial tempering

• MCMC sampling of a sum of multiple distributions

• Extended states of the Markov chain

• Index j is updated via MCMC

• Extended state is originally temperature

• Still does not use any PDFs
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x̄ ∼
�
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fj(x̄)
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[Marinari and Parisi 1992, Geyer and Thompson 1995]



Primary space serial tempering

• Use a weighted sum of primary space distributions

• Extended states is now 

• Index j is the index to the j-th PDF/CDF

66

ū ∼
�
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[Hachisuka et al. 2014] (TBA)

MIS weightPrimary space distribution



Original primary space
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C(Ū)

x̄ = P−1(Ū)



Multiplexed primary space
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w3(Ū)C3(Ū)w2(Ū)C2(Ū)w1(Ū)C1(Ū)w0(Ū)C0(Ū)

x̄ = P−1
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Primary space serial tempering
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w3(Ū)C3(Ū)w2(Ū)C2(Ū)w1(Ū)C1(Ū)w0(Ū)C0(Ū)

x̄ = P−1
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Primary space serial tempering
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w3(Ū)C3(Ū)w2(Ū)C2(Ū)w1(Ū)C1(Ū)w0(Ū)C0(Ū)

x̄ = P−1
0 (Ū)



Primary space serial tempering
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w3(Ū)C3(Ū)w2(Ū)C2(Ū)w1(Ū)C1(Ū)w0(Ū)C0(Ū)
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Primary space serial tempering
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w3(Ū)C3(Ū)w2(Ū)C2(Ū)w1(Ū)C1(Ū)w0(Ū)C0(Ū)
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Primary space serial tempering
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w3(Ū)C3(Ū)w2(Ū)C2(Ū)w1(Ū)C1(Ū)w0(Ū)C0(Ū)

x̄ = P−1
3 (Ū)



[Veach and Guibas 1997]Metropolis-Hastings
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Equal time



Primary space only
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[Kelemen et al. 2002]

Equal time



Primary space serial tempering
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Equal time



[Veach and Guibas 1997]Metropolis-Hastings
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Equal time
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Summary



Statistics / Graphics

• Progressive density estimation

• Statistics: new density estimator

• Graphics: simulation of complex light paths

• Primary space serial tempering

• Statistics: MCMC driven MIS

• Graphics: robust and efficient path sampling

79



What I hope to see

• Statistics communities take something from graphics 
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StatisticsGraphics



StatisticsGraphics

What I really hope to see

• We collaborate to develop something interesting!
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