At the Boundary Between Light Transport Simulation and Computational Statistics

Toshiya Hachisuka

Aarhus University

MCQMC2014

At the boundary

What's often considered

• Graphics communities "just use" statistics

What I hope to see

• Statistics communities take something from graphics

Aim of this talk

- Motivate you to facilitate cross-pollination
 - Both ways (graphics ↔ statistics)
 - Using two examples
 - Progressive density estimation
 - Primary space serial tempering

"Progressive Photon Mapping" Hachisuka et al. ACM SIGGRAPH Asia 2008

"Multiplexed Metropolis Light Transport" Hachisuka et al. ACM SIGGRAPH 2014 (conditionally accepted)

Progressive Density Estimation

Matte Surface

Probability of sampling this path is nearly zero

Probability of sampling this path is nearly zero

Probability of hitting at the same point is zero

Manifold of non-samplable paths

 θ_1

Matte surface

How can we capture non-samplable paths?

Progressive Density Estimation

Allow approximate connection within distance r

Allow approximate connection within distance r ... and progressively reduce r

Progressive density estimation

[Hachisuka et al. 2008]

- Algorithmically convergent density estimation
 - Add gradually reducing bias to relax the problem
 - First to solve the issue of non-samplable paths

Initial pass

Image

Initial pass

Initial pass

Initial pass Kernel

Initial kernel bandwidth: r_0

st pass

st pass

Range query with r_0

Reduce radius into r_1

Radius reduction

- Reduce radius based on sample statistics
 - Number of photons found so far N_n
 - Number of newly found photons M_n
 - Reduction rate (user-defined) $\alpha \in]0,1[$

$$r_{n+1} = \frac{N_n + \alpha M_n}{N_n + M_n} r_n$$
$$N_{n+1} = N_n + \alpha M_n$$

 $N_1 = N_0 + \alpha M_0 = 0 + \alpha 4$

2nd pass

Range query with r_1

3rd and n-th passes

MC integration

Progressive density estimation

Equal time

Convergence

$$L = \lim_{n \to \infty} \frac{N_n}{\pi r_n^2}$$

- Converges to the correct solution
 - Infinite number of neighboring samples
 - Infinitely small radius

Convergence

$$L = \lim_{n \to \infty} \frac{N_n}{\pi r_n^2}$$

- Converges to the correct solution
 - $\lim_{i \to \infty} N_i(R_i) = \infty$

•
$$\lim_{i \to \infty} R_i(N_i) = 0$$

Convergence

$$L = \lim_{n \to \infty} \frac{N_n}{\pi r_n^2}$$

- Converges to the correct solution
 - $\lim_{i \to \infty} N_i(R_i) = \infty$

•
$$\lim_{i \to \infty} R_i(N_i) = 0$$

- Convergence rate
 - Variance $O(n^{-\alpha})$
 - Bias $O(n^{\alpha-1})$

Balanced with $\alpha = \frac{2}{3}$

Relationship to recursive density estimation

- Recursive density estimation
 - Predefined sequence of radii
 - Assume stationary density distribution

[Wolverton and Wagner 1969, Yamato 1971, Knaus and Zwicker 2011]

- Progressive density estimation
 - Adaptive sequence from sample statistics
 - No assumption on stationarity

[Hachisuka et al. 2008, Hachisuka and Jensen 2009]

Progressive vs Ordinary

	Progressive	Ordinary
Computation	Unbounded	Unbounded
Storage	Bounded	Unbounded
Convergence	Single run	Multiple runs

Primary Space Serial Tempering

 $p_3(X)$

 $p_2(X)$

 $p_0(X$

 $p_1(X$

Given the same integrand, there are many known PDFs

Multiple importance sampling

[Veach and Guibas 1995]

• Utilizes samples from multiple PDFs by weighting

Multiple importance sampling

[Veach and Guibas 1995]

57

• Utilizes samples from multiple PDFs by weighting

 $f(\bar{X})$

 $p_0(X$

Multiple importance sampling

[Veach and Guibas 1995]

Importance sampling

$$\int f(\bar{X}) d\mu(\bar{X}) \approx \frac{1}{N} \sum_{i} \frac{f(\bar{x}_{i})}{p_{0}(\bar{x}_{i})} \text{ or } \frac{1}{N} \sum_{i} \frac{f(\bar{x}_{i})}{p_{1}(\bar{x}_{i})}$$

• Multiple importance sampling

$$\int f(\bar{X}) d\mu(\bar{X}) \approx \frac{1}{N} \left(w_0(\bar{x}_i) \frac{f(\bar{x}_i)}{p_0(\bar{x}_i)} + w_1(\bar{x}_i) \frac{f(\bar{x}_i)}{p_1(\bar{x}_i)} \right)$$

Markov chain Monte Carlo sampling

Requires no knowledge of PDFs

How can we combine MIS and MCMC?

Combination

- Multiple importance sampling
 - Ordinary Monte Carlo method
 - Utilizes the knowledge of all the PDFs

- Markov chain Monte Carlo sampling
 - Markov chain Monte Carlo method
 - No usage (or requirement) of PDFs

Primary Space Serial Tempering

Primary sample space

[Kelemen et al. 2002]

- Hypercube of random numbers $ar{U} \in \left]0,1
 ight[^N$
 - Mapping from a point to a sample
 - Inverse CDF = mapping function

$$\int f(\bar{X}) d\mu(\bar{X}) \approx \frac{1}{N} \sum_{i} \frac{f(\bar{x}_i)}{p(\bar{x}_i)} = \frac{1}{N} \sum_{i} C(\bar{u}_i)$$
$$C(\bar{U}) = \frac{f(P^{-1}(\bar{U}))}{p(P^{-1}(\bar{U}))}$$

Primary sample space

[Kelemen et al. 2002]

- Hypercube of random numbers $ar{U} \in \left]0,1
 ight[^N$
 - Mapping from a point to a sample
 - Inverse CDF = mapping function

Serial tempering

[Marinari and Parisi 1992, Geyer and Thompson 1995]

• MCMC sampling of a sum of multiple distributions

$$\bar{x} \sim \sum_{j} f_j(\bar{x})$$

- Extended states of the Markov chain $(ar{x},j)$
 - Index j is updated via MCMC
 - Extended state is originally temperature
 - Still does not use any PDFs

[Hachisuka et al. 2014] (TBA)

- Use a weighted sum of primary space distributions
 - Extended states is now (\overline{u}, j)
 - Index j is the index to the j-th PDF/CDF

$$\bar{u} \sim \sum_{j} w_j(\bar{u}) C_j(\bar{u})$$

$$C_{j}(\bar{U}) = \frac{f(P_{j}^{-1}(\bar{U}))}{p_{j}(P_{j}^{-1}(\bar{U}))}$$

Primary space distribution

 $w_j(\bar{U}) = w(P_j^{-1}(\bar{U}))$

MIS weight

Original primary space

Multiplexed primary space

70

Primary space serial tempering

Metropolis-Hastings

[Veach and Guibas 1997]

Primary space only

[Kelemen et al. 2002]

Primary space serial tempering

Metropolis-Hastings

[Veach and Guibas 1997]

Summary

Statistics / Graphics

- Progressive density estimation
 - Statistics: new density estimator
 - Graphics: simulation of complex light paths

- Primary space serial tempering
 - Statistics: MCMC driven MIS
 - Graphics: robust and efficient path sampling

What I hope to see

• Statistics communities take something from graphics

What I **really** hope to see

• We collaborate to develop something interesting!

