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Abstract

While lights are often described by their origin and orientation in
computer graphics, lights in the real world have particular states of
vibration because lights are electromagnetic waves. Such state of
vibration is called polarization state. Although human eyes can-
not detect polarization state, sometimes lights behave differently
according to their polarization states, which may be detected by
human eyes. In this paper, we describe how to incorporate track-
ing of polarization states into conventional ray tracing. We propose
direct tracking of polarization states, which uses two harmonic os-
cillations to describe polarization state. As applications of tracking
of polarization states, we present how to render thin-film interfer-
ence and birefringence. We show our direct tracking method is easy
to be applied for thin-film interference compared to Stokes vector,
which is one of the popular ways to describe polarization states in
the field of optics. As for birefringence, we propose a method to
calculate a refraction vector inside birefringent materials based on
Huygens’ principle. Our results suggest dealing with polarization
is important for truly accurate image synthesis.

1 Introduction

It is well known that lights have duality of wave and particle. Op-
tics based on particle properties of light is called geometric optics,
and optics based on wave properties of light is called wave optics.
Since human eyes cannot detect oscillations of light waves directly,
geometric optics has been a popular model to describe light in com-
puter graphics community. However, geometric optics fails to take
into account someimportant phenomena caused by wave properties
of light. Therefore, using only geometric optics is not enough to
simulate appearances of the real world perfectly, so we need to take
into account wave optics in some cases.

In this paper, we describe how to incorporate wave optics into con-
ventional ray tracing, which is based on geometric optics. Espe-
cially, we present a way to incorporate polarization to ray tracing,
which is fundamental phenomenon of wave optics. As applications
of polarization, we present methods to render thin-film interference
and birefringence. Thin-film interference is one of structure colors
caused by diffraction. The rainbow-color of soap bubbles is fa-
mous examples of thin-film interference (Figure 6). Birefringence
is a phenomenon that refractive index varies according to state of
polarization and light direction.Doubling of refracted image by a
calcite (Figure 13) is prominent example of birefringence. From
the next section, we start by basic background theory of polariza-
tion, and then show how it can be applied to thin-film interference
and birefringence.
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1.1 Polarization of Light

Based on geometric optics, we can describe propagation of light by
using ray, which is defined by its origin and direction. However,
since light is an electromagnetic wave [Donnelly et al. 2006], we
should consider a transverse wave along ray direction as in Figure
1. This transverse wave oscillates perpendicular to the propagation
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Figure 1: Light as a transverse electromagnetic wave. E and M
denote oscillation directions of electric wave and magnetic wave.
Note that ray direction R, E and M are orthogonal each other.
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direction D. Note that electric wave E and magnetic wave M are
orthogonally oscillating. We only deal with electric wave for the
rest of the paper because magnetic wave is always perpendicular to
electric wave.

Since light wave is transverse wave, it has direction of oscillation.
If we choose direction of propagation D as a z axis and direction
of oscillation can be expressed in 2D coordinates as in Figure 2.
Therefore, we can describe oscillation of light wave in this coordi-

Figure 2: Oscillation of electric wave in 2D coordinates. E is
oscillating on a particular plane.

nate system as
E(r) = Adsin(wt + ¢) 1)

Here d is an unit vector of direction of oscillation, ® is s frequency
of light and ¢ is a phase shift of light wave. For simplicity, we
look at the filed at z = 0. Note that the amplitude of light is 4 =
| E(¢)||. The energy (or intensity) of light 7 is 4%, which is used in
conventional ray tracing as intensity.

Since we can choose xy axes arbitrary as long as they are orthogonal
to z axis and each other, we can rewrite Equation 1 in more general
form by using combination of two harmonic oscillations.

-

Ey (1) = (Aysin(ot + ¢x), Aysin(ot + ¢,)) ?2)

The intensity of light in this case is 4% +4,%. If (¢ — ¢,) = 0.5n7
(n=---,-1,0,1---), these two harmonic oscillation are called to
be in phase. This particular type of oscillation is called /inear po-
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Figure 3: Types of polarization. (a) linear polarization. (b) ellip-
soidal polarization. (c) circular polarization.

larization because light wave oscillates on a plane as in Figure 3
(a). If (¢x — ¢,) # 0.5nm, a plane of oscillation will be rotating as
light propagates. In this case, the tip of the wave swept an ellip-
soid as in Figure 3 (b). This type of oscillation is called elliptical
polarization. 1f the phase difference is exactly the quarter of the
wavelength ( (¢ — ¢,) = 0.25n7 ) and amplitudes of waves are the
same, Ay = Ay, the tip of the wave now swept a circle. This type of
oscillation is called circular polarization. Note that neither ellipti-
cal nor circular polarized light rotate physically. Both cases are just
superposition of two harmonic oscillations as in Equation 2, and the
results of superposition just seem to be rotating wave. Therefore,
the intensity of light is always calculated by 4, —i—Ay2 for all types
of polarization.

If polarization state of light (while intensity is the same) is com-
pletely random in time, it is called a light is unpolarized. Note that
while it is named “unpolarized”, the exact description is “randomly
polarized”. If unpolarized light (=randomly polarized light) gets
correlated by some phenomena such as reflection, light is now po-
larized. For polarized light, polarization states are not completely
random but somewhat (or completely) correlated.

Since human eyes are not trained to capture polarization states of
lights (e.g. we cannot discriminate between a circularly polarized
light and a linearly polarized light if they have the same intensity),
computer graphics community has been somewhat ignorant to po-
larization. However, polarization is actually important for visually
accurate image synthesis because some materials behave differently
for different polarization states (interest readers refer a survey by
[Devlin et al. 2002]). One of the famous polarized lights is the sky
light. Since the sky lights are linearly polarized by scattering, pho-
tographers often use a polarizer to enhance contrast of sky and land-
scape (Figure 4). In contrast to its importance in appearances of the
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Figure 4: Example of sky light polarization (©nikkei BPnet). (a)
photograph taken without polarization filter. (b) photograph taken
with polarization filter. Note that only the sky in (b) is darker than
(a) because linearly polarized sky light is filtered out by polariza-
tion filter.

real world, almost all commercial renderers do not take account of
polarization and only a few graphics CADs, such as OptiCAD (see
www.opticad.com), can handle polarization of lights. However, this
little attention is somewhat misdirected because polarization affects

resulting appearance in many cases, even if our eyes cannot detect
polarization. Therefore, we need to incorporate polarization if we
would like to render truly physically accurate images. As such ex-
amples, we describe thin-film interference and birefringence from
the next chapter.

2 Interference with Polarization

2.1 Background

Thin-film interference is an interference caused by re-
fracted/reflected lights from a film which is as thin as wavelength of
incident light waves. Figure 5 shows how this interference occurs.
Since reflected light on the bottom of the film goes through longer
path than the reflected light on the top of the film, the interference
affected by this difference of path (the details are in [Glassner
1999]). The most famous example of thin-film interference is
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Figure 5: Interference caused by a thin-film. Part of incident light
(1) reflects off at the top of the film (R) or refracted into thin-film
and reflects off at the bottom of the film (T). Thickness of the film
(d) is small enough to make two rays (R and T) cause interference.

rainbow colors of soap bubbles (Figure 6). Thickness of soap
bubbles is usually several hundreds nm, which is close enough to
the wavelength of visible light. Therefore, thin-film interference
makes soap bubbles to be rainbow-colored. As described by

Figure 6: Photograph of a soap bubble ((©Photo 360 Limited).
The rainbow color of soap bubble is due to thin-film interference.

[Glassner 1999], a path difference due to a thin-film can be
calculated as folllows.

w(6;) = 2dncos6, 3)

Here 1 is refractive index of a thin-film and 6; is an angle between
refracted light direction and the surface normal. Since light wave



undergoes a half wavelength phase shift when it is reflected at the
bottom of the film (iff the refractive index of a film is lager than the
refractive index of incident media), the phase difference p between
rays R and 7 due to thin-film is expressed as follows.

w(@,) T
4z )

p(@,,L) =2r

Here L is wavelength of light. Therefore, given intensity of the
incident light /, the interfered intensity F is calculated by

F(6;,L) = 4lcos*(p(6,,L)) )

Here we assume that there is no attenuation by reflection/refraction
for simplicity. As a result, thin-film interference causes interfer-
ence fringes over surface for particular wavelength. Since patterns
of interference fringes depend on wavelength, it results in rainbow
color as we can seen in soap bobbles.

Equation 5 well predicts the appearance of soap bubbles ([Glass-
ner 1999]), but we should notice that light is actually polarized
by reflection/refraction on thin-film according to Fresnel equa-
tions.Especially, we should take account the fact that two orthog-
onally and linearly polarized lights do not cause any interference.
Previous formulation in Equation 5 ignores this effect, so resulting
interference may be largely different if we take account of polariza-
tion as we describe from the next section.

2.2 Implementation
2.2.1 Direct Tracking

Before we consider interference with polarization, we need to de-
cide how to keep track polarization state of light.One of the popular
way to handle polarization state is Stokes vector, which has been
used well in optics. Stokes vector describes a polarization state by
4-component vector as follows.

S=,0U7) (6)

The first component of Stokes vector (/) denotes the intensity of a
light, and the rest of components (Q,U, V) describe the polariza-
tion state. By using Stokes vector, we can express unpolarized light
just by using 1 Stokes vector, S, = (1,0,0,0). If a light undergoes
change of its polarization state by reflection/refraction, we can cal-
culate the resulting Stokes vector S, just by multiplying a matrix
M.

S, =MS (7

This matrix M is called Muller matrix and this calculation of po-
larization state is called Muller calculus. Stokes vector has been
used well in optics because of its simplicity (such as [Bartel and
Hielcher 2000]). However, as the fact that it can express unpolar-
ized light just by one vector suggests, we should pay attention to
that Stokes vector just describes ensemble average of several polar-
ization states. We cannot use Stokes vector for thin-film interfer-
ence because interference is interaction between particular polar-
ization states. [Wilkie et al. 2001] and [Wolff and Kurlander 1990]
have used coherency matrix, which is another way to express polar-
ization state, but it also describes only the ensemble average.

For this reason, we propose direct tracking of polarization state in
this paper. As Equation 2 suggests, all types of polarizations (lin-
ear, circular and ellipsoidal) can be expressed by combination of
two harmonic oscillations. Direct tracking uses this fact to keep

track polarization state. Therefore, polarization state is express by
following four parameters.

Sa = (Ax, 0, 4y, $y) ®)

This vector is 4-component vector as the same as Stokes vector, but
now we cannot use Muller calculus to change polarization state. We
will describe how to calculate resulting polarization state from the
next section when light is reflected/refracted. In contrast to Stokes
vector, unpolarized light in direct tracking is expressed by multi-
ple randomly polarized light (i.e. randomly changing ¢, and ¢,
etc). Therefore, we calculate image with unpolarized light by tak-
ing ensemble average of results obtained from particular polariza-
tion state. This is similar to Monte-Carlo method, but notice that
it actually imitates real behavior of unpolarized ligh (i.e. randomly
polarized in time).

2.2.2 Reflection/Refraction by Direct Tracking

To perform direct tracking, we first need to define a coordinate sys-
tem for two harmonic oscillations. We define such coordinate sys-
tem as follows

A Ix? R IXF) T
x| T

Here 7 is the direction of ray and 7 is a vector which is defined by 7 =
7 by replacing the component with the smallest absolute value by 1
(e.g. 7= (—1,0.5,0.2) then 7 = (—1,0.5,1)). Note that &, R, and
ﬁy are orthogonal to each other. We call this coordinate system as
ray coordinate system. The two harmonic oscillations, 4sin(wt +
¢x) and Aysin(wt 4 ¢y), are associated with this coordinate system.
Therefore, Aysin(®t + ¢) is oscillating along R, and Aysin(ot +
¢y) is oscillating along Ey.

If a light hits a dielectric surface, fraction of light is reflected off
from the surface and the rest of light is refracted (Figure 5). The
ratio of amplitudes of incident light and reflected/refracted light is
described by Fresnel equations. Let the angle between incident ray
and normal vector is 0;, angle between refracted ray and normal
vector is 6, and ratio of refractive index (exitant media / incident
media) is 1. In this case, Fresnel coefficients obtained by Fresnel
equations are

m—n 1—nm
Ry=—— =
m+n 1+nm
2
Ty =/l T=vall o (0
micas@;
" cosH;

Note that /1 |m| is the term for change of ”density of ray”, which is
required to obtain correct intensity. Here R denote attenuation of
amplitude for reflected ray and T} denote attenuation of amplitude
for refracted ray. These Fresnel coefficients are defined on the co-
ordinate system constructed by incident light direction and normal
vector as:
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where 7 is normal vector of the surface. We call this coordinate
system as p-s coordinate system. If we consider a plane defined
by incident light direction and normal vector p axis is parallel to
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Figure 7: Definition of p-s coordinate system. The green plane is a
plane defined by incident ray and normal vector. Red and blue ar-
rows denote p-s coordinate system. Note that ray coordinate system
and p-s coordinate system share z axis as the direction of ray. The
right shows relationship between ray coordinate system and p-s co-
ordinate system by projecting to the plane perpendicular to the ray
direction.

this plane and s axis is perpendicular (s denotes senkrecht, ’perpen-
dicular” in German) to this plane (Figure 7). To multiply Fresnel
coefficients to light by direct tracking, we need to transform values
in ray coordinate system into p-s coordinate system. By consider-
ing ray coordinate system and p-s coordinate system share the same
axis as ray direction, two harmonic oscillations in ray coordinate
system are simply distributed to p-s coordinate system as follows.
Therefore, given incident light (4, @, 4y, §y), resulting oscillations

Eps(t) = (Ep(t),Es(t)) are defined as

Ep(1) ( ﬁ) wsin(Of + ¢ )+
(Fy - Ry)Aysin(ot + ¢y)
Eg(t) =(F, - Ry)Agsin( ot + ¢, )+ (12)

(FS -Ry)Aysin(a)t +¢y)

The above equation can be rewritten as two harmonics oscillations
(Ap, ¢p,As, §5) in p-s coordinate system by using combination of
harmonic oscillations as follows.

Ap = \/(Apxcos(px +Apycos¢y)2 +

2 . . 2
As = \/(Asxcos(f)x +Asycos¢y) + (Asxsm(j)x +Asysm¢y)
_1 ApxSingyx + Apysing, (13)
Apxcosdy + Apycosdy
_1 AsxSin@y + Agysingy,
Asxcosy + Asycosdy

. . 2
(A prSingy +4 pysmq)y)

¢p = tan

Os = tan

Here we used notations 4 = (F}, ~§X)Ax, Apy = (F}; ~§y)Ay, Ay =
(Fy - Ro)Ay, Ay = (F ~1?y)Ay for simplicity. Therefore, we finally
obtain two harmonic oscillations on p-s coordinate system as fol-
lows.

Eps(t) = (Apsin(i + 0, Assin(ot +6y)  (14)

Note that the transformed light has the same intensity and difference
of phase shift is the same as before transformation. After transform-
ing into p-s coordinate system, Fresnel coefficients are multiplied
to the amplitudes. Therefore the resulting reflected light R ps(t) and

refracted light 7, s (t) are expressed as follows.
ﬁps(t) = (RpApsin(ot + ¢p), RsAssin(ot + ¢y))
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Ts(t) = (TpApsin(ot + @), TAgsin(ot + ¢s)) (1

Notice that there is no change in phase shifts except for the total
reflection because we assume there is no absorption within the thin-
film. To complete this process, we again transform resulting light
in p-s coordinate system into ray coordinate system. This trans-
formation is almost the same as “ray to p-s” transformation using
Equation 13. All we need to do is just swapping axis vectors for
this transformation.

2.2.3 Thin-film Interference

The phase shift due to thin-film is exactly the same as formulation
without considering polarization (Equation 4). However, if we con-
sider polarization, we have to take into account polarization state of
different light. If we denote (Ry, ¢rx, Ry, ¢,y as reflected light at the
top of the film and (T, ¢, Ty, ¢r,) as refracted light from the bot-
tom of the film, the final oscillation of light F,(f) = (Fx(¢), 5 (1))
can be written as

(1) = Rysin(ot + @) + Tisin( ot + ¢ry)

(16)
(t) = Rysin(@t + ¢py,) + Tysin( @t + @)

NS T

Here p(6;,L) is phase shift defined as Equation 4. Note that ¢, =
¢rx+ p(6;,L) and ¢, = ¢, + p(6;, L) because of phase shift due to
the thin-film.

Finally, we combine two harmonic oscillations from two rays (R,
T) into (Fy, ¢y, Fy, ¢ry) similar to Equation 13.

Fo= \/(RxCOSd)rx + TVCOS¢tx)2 + (Rxsl'l’lq)rx + Y}Sin(l),x)z

F, = \/ (Rycosq),y + 7}c0s¢,);)2 + (Rysin(bry + szm%)z
_1 Rysingyx + Tesingyy (17
¢fx =tan
Rycos@yx + T.cos sy
o = ran- Rysingyy + Tsingy,
Rycospy + Tycosdyy

Therefore, intensity of interfered light is sz +Fyz.

2.3 Results and Discussion

Figure 8 shows the rendered images for thin-film interference
with/without polarization. For previous formulation (Equation 5),
we fully incorporated Fresnel coefficients (R = O.S(RIQ, + R2) and

T = 0.5(7}? + T2)) for intensity. For simplicity, we used RGB col-
ors for all interference calculation. We used 32 samples to calcu-
late results by unpolarized lights for direct tracking method. Since
previous formulation (Equation 5) completely ignored polarization,
the result is completely different even if we use unpolarized light
as in Figure 8. Therefore, we can conclude previous formulation is
not even approximation in unpolarized lighting condition. One of
the reasons of this difference is that orthogonally linearly polarized
lights do not interfere. The previous formulation (Equation 5) ig-
nores this effect and estimate effect of interference too large. Figure
9 shows comparison with [Li and Peng 1996], which also incorpo-
rated polarization into Equation 5. Although result by [Li and Peng
1996] is well matched to our result in the case of single sphere (Fig-
ure 9: left), result by [Li and Peng 1996] is too bright in the case
of interreflection (Figure 9: center and right). The reason is that [Li
and Peng 1996] does not track polarization state but only calculates
intensity with polarization. Therefore, reflected lights lack of infor-
mation of polarization states, which is important for interreflection
cases. Especially, it is well know that if light enters thin-film near



uonezuejod yyum

uonezuejod noypm

Figure 8: Rendered images of thin-film interference. Left: Thick-
ness of the film is 500nm. Center: Thickness of the film is 1500nm.
Right: Thickness of the film is 1500nm. The intensity of light is
multiplied by 1.5 to emphasize interreflection.
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Figure 9: Comparison with Li et al. Thickness of the film is
1500nm. Note that result by Li et al. for interreflection is too bright
compared to our result

the Brewster angle (63 = ran~' (1)) reflected lights become almost
completely linearly polarized. Therefore, the effect of interference
is limited compared to unpolarized light, because interference does
not occur for orthogonally polarized component of light. As a con-
clusion, we found polarization plays important role for thin-film in-
terference. Our direct tracking method is general method, so it can
be applied to interreflection cases without any problem, as opposed
to previous method like [Li and Peng 1996].

3 Birefringence

3.1 Background

In birefringent material, refractive index (more precisely speed of
light) varies according to polarization state and propagation di-
rection. Birefringence is defined by opfical axis, which describes
anisotropy of refractive index. If one optical axis is enough to de-
fine refractive index, it is called uniaxial. In the case of two optical
axis, it is called biaxial. In this paper, we consider only uniaxial
material. Either cases are called anisotropic material in contrast
to isotropic material, which refractive index is just one value. For
uniaxial material there are two refractive indices, denoted by 1,
and M. Optical axis and these two refracted indices define indica-
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Figure 10: Indicatrix defined by two refractive indices (M, and 1e).

The red axis is the optical axis. (a) If N, < eta,, it is called optically
negative. (b) If N, > eta,, it is called optically positive.

trix (i.e. ellipsoid defines refractive index) as in Figure 10. With

Figure 11: Crystal coordinate system. The red arrow is optical axis
and red plane is principal plane.

optical axis ¢ and ray direction 7, we can define crystal coordinate
system as follows.
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A plane defined by ray direction 7 and optical axis ¢ is called princi-
pal plane (Figure 11).Note that C, is perpendicular to the principal
plane, and éy is parallel to the principal plane.
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If unpolarized light enters into an uniaxial material, incident light
ray is split into two rays as in Figure 12. These two rays are orthog-
onally and linearly polarized (Figure 12). A light ray with perpen-
dicularly polarized to the principal plane is called ordinary ray, and
a light ray polarized parallel to the principal plane is called extraor-
dinary ray.

As the name suggests, ordinary follows Snell’s law:
Nisin®; = N,sinb, (19)

where 6; is angle between incident light direction and surface nor-
mal and 6, is angle between refrected light direction and surface
normal. Therefore, a ordinary light enters at right angle (6; = %) to
the uniaxial material does not refract. However, extraordinary ray
does not follow Snell’s law. It refracts even if incident ray enters at
right angle. One of the example of such effect can be seen in calcite
(Figure 13). As in Figure 13, refracted images through calcite is
doubling. These images correspond to the images by ordinary ray
and extraordinary ray. There are few research in computer graph-
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Figure 12: Ordinary ray and extraordinary ray. Incident ray I split
into ordinary ray T, and extraordinary ray T,. The direction of
linear polarization of ordinary ray is perpendicular to the princi-
pal plane, while extraordinary ray vibrates parallel to the principal
plane.

Figure 13: Birefringence of calcite ((© Wikipedia). Note that even
this photograph take at right angle to the surface of calcite, there is
birefringence caused by ordinary ray and extraordinary ray.

ics about birefringence. [Tannenbaum et al. 1994] extended coher-
ent matrix to take account birefringence. [Guy and Soler 2004]
mentioned birefringence in their gemstone rendering, however they
only presented approximation appropriate for hardware rendering.
To render birefringence phenomena, we need to deal with not only
polarization states, but also calculation of propagation of rays in-
side anisotropic materials. Especially, since extraordinary ray does
not follow Snell’s law, we need another way to calculated refracted
direction of extraordinary ray. In this paper, we propose an intu-
itive calculation of refracted vector based on Huygens’ principle.
For polarization state tracking, we used direct tracking method as
in thin-film interference.

3.2 Implementation
3.2.1 Refraction by Huygens’s principle

As we mentioned before, light ray splits into ordinary ray and ex-
traordinary ray in birefringent materials ([Donnelly et al. 2006]).
To understand the difference between ordinary ray and extraordi-
nary ray, we need to think wave normal of light and propagation
direction of light separately. The wave normal, which is perpen-
dicular to wave front of light wave, of ordinary ray is the same as
propagation direction of light. Since ordinary ray follows Snell’s

law, refracted vector can be calculated as
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Figure 14: Wave normal and ray direction for (a) ordinary ray and
(b) extraordinary ray. Note that the wave normal and ray direction
is different in the case of extraordinary ray.

propagation direction of light, so direction of refracted ray follows
Snell’s law (Figure 14). More precisely, Snell’s law is actually a law
for wave normals. We cannot use this law to calculate refracted ex-
traordinary ray direction because its wave normal is different from
ray direction. Therefore, here we propose alternative way to calcu-
late refraction vector based on Huygens’ principle. Huygens’ prin-
ciple describes propagation of wave fronts by means of secondary
wavelets. By Huygens’ principle, we can find a propagated wave
front in arbitrary shape by considering set of spherical secondary
wavelets at the point set on the current wave front. The shape of
wave front at the next moment is defined by enveloping surface
of set of spherical secondary wavelets. We apply this principle to
propagation of rays in anisotropic material.

For simplicity, assume light enters to uniaxial material at right angle
as in Figure 15. Since refractive index of ordinary ray is indepen-
dent of its direction, propagation of secondary wavelets at the point
P; will be spherical. Huygens’ principle says wave front in this
case is parallel to the material surface (Figure 15). For ordinary
ray, propagation direction, which is defined by connecting 7; to the
contact point of secondary wavelet and wave front P, ([Gledhill
2000]), is the same as wave normal (normal vector of wave front)
in this case. In contrast, since refractive index of extraordinary ray
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Figure 15: Huygens’ principle for uniaxial material. The blue line
shows secondary wavelet for ordinary ray, and the red line shows
secondary wavelet for extraordinary ray. Note that the wave front
is parallel to the surface for both rays, but the direction of rays are
different.

is dependent on its direction in the case of extraordinary ray, prop-
agation of secondary wavelet at the point will be ellipsoidal. Since
refractive index is inversely proportional to speed of light in mate-
rial, the shape of secondary wavelet is defined as follows ([Gledhill



20001)

Ml a2 g 21
n62y+ -t = ( )

X+
Here we use crystal coordinate to define this ellipsoid.

As in Figure 15, Huygens’ principle again says wave front for ex-
traordinary ray is parallel to the material surface in this case. This
is valid by considering Snell’s law says wave normal is right angle
to the surface for both ordinary and extraordinary rays. However,
propagation of direction is different. As the same as in ordinary
ray, propagation direction is by connecting P; to the contact point
of secondary wavelet and wave front P, (Figure 15).

To calculate such direction, we can convert this problem as a max-
imization problem of the distance along wave normal for surface
points on the ellipsoidal wavelet. Therefore, we can use Lagrange
multiplier method to solve this problem and obtain:

(W oy, W)
exy 7,2 Weyy Wez

T =
¢ 21
2
a 2

We = (VVexa Weyv Wez)

where 7, is direction of propagation and W, is wave normal cal-
culated by Snell’s law. Note that T, is vector in crystal coordinate
system. We need to transform T, into the world coordinates after
this calculation. Since refractive index varies according to direction
for extraordinary ray, we need to take account for this variation to
calculate W,. Given wave normal We and optical axis g, refractive
index for extraordinary ray is calculated by ([Hassler et al. 2002]):

nc(We) _ = NoMNe -
\/(We .5)27122 + (1 — (We '6)2)7102

(23)

Notice that nc(We) is different from n,. While 1, is property of
material, nc(We) is function of angle between wave normal and op-
tical axis. To calculate We, we first calculate We based on Equation
20 with n.(W,) = 1,. Next we calculate n.(J,) and again calculate
W, based on Equation 20 with nc(We). We found just 5-10 numbers
of iteration of this process is enough to find W,. While we have not
applied this calculation to reflection inside uniaxial materials, we
expect it can be easily extended to reflection.

3.2.2 Fresnel Reflection/Refraction

Fresnel coefficients shown in Equation 10 are for interface between
isotropic materials. For birefringent materials, we need to consider
generalized Fresnel equations for interface between anisotropic ma-
terials. In exact form, generalized Fresnel coefficients can be solved
by the following matrix equation as follows ([McClain et al. 1993]).
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Here ef_fi is vibration direction of electric wave and h;’fl is vi-
bration direction of electric wave. Since we only care about
anisotropic/isotropic interface rather than anisotropic/anisotropic
interface in this paper, solving generalized Fresnel equations is re-
dundant. Therefore, we use approximation proposed by [Guy and
Soler 2004], which uses Fresnel coefficients for isotropic material
as follows.

o’ R T
o | | 0
o | T | Ty
o 0
- (25)
ol 0
o | _ | Ry
o | | 0
e T, |

Here Fresnel coefficients Ry, Ry, Ty, T, defined on p-s coordinate
system where normal vector is replaced by optical axis. Each coeffi-
cient, o, 0/’ denotes contribution of ordinary incident ray to
exitant reflection/refraction, and o7, o/’ denotes contribution
of extraordinary incident ray to exitant reflection/refraction. Coeffi-
cient is null (zero) for cross cases like °¢, r°°. Therefore, ordinary
ray only contributes to ordinary direction (perpendicular to optical
axis) and extraordinary ray only contributes to extraordinary direc-
tion (parallel to optical axis). As [Guy and Soler 2004] have shown,
this approximation works well for real materials where difference

between 1), and 7, is not so large.

3.3 Results and Discussion

Figure 16 shows rendered images of birefringence material for dif-
ferent direction of optical axis. We used 64 samples to calculate
results by unpolarized light. For all images, we only rendered re-
fracted components to emphasize effects of birefringence.  For

Figure 16: Rendered images of birefringence material. Here we

use 1N, = 1.658 and n, = 1.486, which correspond to calcite. These

images use different optical axis as follows. Left: % Center:

(1,1,0)

7 , Right: (

—1,1,0)
\/j

the image on the left in Figure 16, even if light enters surface at
right angle (center of the sphere),extraordinary exhibits refraction,
and it results in doubling of refracted image.This effect cannot be
achieved just by using Snell’s law and well matched to real behav-
ior of extraordinary ray (Figure 13). As we can see in Figure 16,
even if refractive indices (1, and 7.) and the geometry are the same,
optical axis changes behaviour of extraordinary ray as we expected.

Table 1 and Table 2 show numerical validations of our method. We
compared results calculated by our method by results from [Bey-
erle and Stuart 1998]. As we can see in Table 2, refracted vectors
(propagation vector and wave normal) are almost matched to the
result from [Beyerle and Stuart 1998].



ordinary ray extraordinary ray

Figure 17: Separation of ordinary ray and extraordinary ray by
polarizer. Here we used polarizers defined by optical axis. Polar-
izer for ordinary ray is perpendicular to optical axis and polarizer
for extraordinary ray is parallel to optical axis.

Figure 17 shows result by applying polarizer between the camera
and the object. Since ordinary ray and extraordinary ray are orthog-
onally and linearly polarized, the images in Figure 17 can separate
images obtained by ordinary ray and extraordinary ray by polarizer.

0; [N 1y 1z Sx sy Sz

30 0.945087 0.326806 0.002785 0.946584 0.322457 0.000000
Our Method 45 0.888261 0.459334 0.002229 0.890116 0.455733 0.000000
60 0.828028 0.560684 0.001739 0.829902 0.557909 0.000000
30 0.945516 0.325546 0.004415 0.946288 0.323325 0.000000
Beyerle et al. 45 0.888783 0.458306 0.004536 0.889279 0.457365 0.000000
60 0.828391 0.560131 0.004565 0.828365 0.560189 0.000000

Table 1: Numerical validation of our method. Here =
(tx,1y,t;) is refracted propagation direction and § = (s,s,,52) is
refracted wave normal. We used surface normal (1,0,0), op-
tical axis (075,0.5,0.433) and refractive indices 1, = 1.54426,
Ne = 1.55335 as Beyerle et al. 6; is angle between incident di-
rection and surface normal and z component of incident direction
is 0.

0; 7 5

30 | 0.999998 | 0.999999
inner product | 45 | 0.999997 | 0.999998

60 | 0.999996 | 0.999996

Table 2: Numerical errors of our method. The values are calcu-
lated by inner product of vectors in Table 1.

4 Conclusion

In this paper, we presented how to incorporate polarization, where
light behaves as wave, to conventional geometric optics based ray
tracing. For applications of polarization, we presented methods to
render thin-film interference and birefringence. To handle interfer-
ence as well as polarization, we proposed direct tracking of polar-
ization state, rather than using Stokes vector. As a result, we found
appearance of interference is largely affected by incorporating po-
larization. For birefringence, we proposed a method to calculate re-
fracted/reflected direction of extraordinary ray based on Huygens’
principle. As a result, we show rendering of birefringent mate-
rial by using ray tracing with direct tracking polarization. Future
work includes thin-film interference with multiple layers, extension
to biaxial material with absorption and integration of polarization
into global illumination. , To the best of our knowledge, here is no
research that fully incorporates polarization in global illumination
system, so it may be interesting direction of future research.
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