
A Monte Carlo Method for Fluid Simulation

DAMIEN RIOUX-LAVOIE∗,McGill University and Ubisoft Montreal, Canada
RYUSUKE SUGIMOTO∗, University of Waterloo, Canada
TÜMAY ÖZDEMIR, University of Waterloo, Canada
NAOHARU H. SHIMADA, Osaka University, Japan
CHRISTOPHER BATTY, University of Waterloo, Canada
DEREK NOWROUZEZAHRAI,McGill University, Canada
TOSHIYA HACHISUKA, University of Waterloo, Canada

Fig. 1. Our novel Monte Carlo fluid simulator supports 2D and full 3D simulations of viscous incompressible flows by computing pointwise stochastic solutions
of the vorticity transport equation. It is easy to implement and treats diverse fluid effects, such as leapfrogging vortex rings (left) and colliding jets (middle).
The adoption of a Monte Carlo method to handle boundaries is well-suited to treating nontrivial boundary geometry (right).

We present a novel Monte Carlo-based fluid simulation approach capable

of pointwise and stochastic estimation of fluid motion. Drawing on the

Feynman-Kac representation of the vorticity transport equation, we propose

a recursive Monte Carlo estimator of the Biot-Savart law and extend it with

a stream function formulation that allows us to treat free-slip boundary

conditions using a Walk-on-Spheres algorithm. Inspired by the Monte Carlo

literature in rendering, we design and compare variance reduction schemes

suited to a fluid simulation context for the first time, show its applicability to

complex boundary settings, and detail a simple and practical implementation

with temporal grid caching. We validate the correctness of our approach

via quantitative and qualitative evaluations – across a range of settings and

domain geometries – and thoroughly explore its parameters’ design space.

Finally, we provide an in-depth discussion of several axes of future work

building on this new numerical simulation modality.
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1 INTRODUCTION
Monte Carlo (MC) methods have been successfully applied to a

diversity of problems in, e.g., statistical inference, simulation and

integration [Metropolis and Ulam 1949]. In graphics, MC has been

used most extensively in physically-based light transport where

it outpaced traditional finite element methods to treat challeng-

ing radiometric effects with increasingly complex geometric and

reflectance models [Kajiya 1986; Pharr et al. 2018]. Recent appli-

cations of MC to problems in geometry processing [Sawhney and

Crane 2020] further evidence its broader applicability in graphics.

Motivated by this growing adoption, we adapt and demonstrate

the utility of MC methods in computational fluid dynamics. We

present a new MC approach to generate fluid motions with a point-

wise stochastic formulation of solutions to the incompressible Navier-

Stokes equations. We leverage a reinterpretation of the deterministic

fluid equations as a stochastic process, introducing Monte Carlo

integral estimators of the Biot-Savart law that relate fluid vorticity
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and velocity �elds. This reformulation allows us to de�ne a recur-
sive �uid �ow model with striking similarities to simulation and
sampling strategies employed in MC rendering.

Concretely, we �rst devise a recursive numerical integration
scheme to solve 2D incompressible Euler equations on open and peri-
odic domains. Next, we develop a stream function-based strategy to
enforce free-slip boundary conditions for static or moving obstacles,
leading to a Poisson equation that we solve stochastically via Walk-
on-Spheres [Muller 1956]. Our solver does not perform any global
solve or boundary discretization, enabling a point-wise estimation
and treatment of complex boundaries. Our stream function-based
approach also allows for the treatment of in�ow and out�ow con-
ditions on the domain boundary. Lastly, we generalize the method
to 3D Navier-Stokes equations (i.e., accounting for viscosity and
stretching) using the Feynman-Kac formula that expresses partial
di�erential equation (PDE) solutions as an expectation of a stochas-
tic process, for which we compute with MC.

In its simplest form, our recursive formulation (Fig. 2) exhibits
exponential computation complexity (Fig. 3) � akin to how dis-
tribution ray tracing scales for the number of light bounces. We
overcome this problem with a practical uniform grid-based cache.
Our caching scheme further allows us to develop and apply MC
variance reduction techniques, including importance sampling of
the vorticity �eld, and a control variate approach that utilizes the
vorticity and velocity �elds from the previous time step, to increase
sample e�ciency and accelerate stochastic estimates.

We validate our method against standard grid- and particle-based
solvers, exploring and summarizing its behavior under di�erent
boundary conditions and parameter settings. The pointwise nature
of our method allows an easy parallelization of computation. Our
work is the �rst foray in the space of MC methods applied to �uid
simulation in graphics and, in addition to highlighting the current
limitations of our proof-of-concept simulators, we outline and dis-
cuss a series of open problems associated to scaling MC-based �uid
simulators to larger and more challenging �ows.

Concisely, our contributions are:
� a novel MC �uid solver using recursive, pointwise probabilistic

solutions to the 2D Euler equations based on the Biot-Savart law,
� a walk-on-spheres treatment of in�ow, out�ow, and free slip solid

boundary conditions using stream functions,
� a generalized MC solver for the full 3D incompressible Navier-

Stokes equations based on the Feynman-Kac PDE formulation,
� a practical, non-recursive cache-based solver,
� applications of MC variance reduction to �uid simulation, and
� a roadmap of open challenges for scalable MC �uid simulation.

2 BACKGROUND
We review the most relevant work in �uid simulation and MC ren-
dering in computer graphics. We refer readers to comprehensive
textbook sources by Bridson [2015] and Pharr et al. [2018] for more
details.

Monte Carlo rendering.A pioneering application of MC integra-
tion to light transport followed the formalization of the now foun-
dationalrendering equation[Cook 1986; Kajiya 1986], leading to the
basic path tracing algorithm. At the time, �nite element radiosity

approaches [Goral et al. 1984] were the de facto scheme for solving
radiative transport problems in rendering. Since then, MC-based
path tracing and its variants have evolved to treat more complex
radiometric e�ects, all while scaling more gracefully with the grow-
ing complexity of virtual environments [Pharr et al. 2018]. Today,
modern industrial-calibre renderers use path tracing [Pharr 2018]
and specialized variance reduction strategies to improve sample the
e�ciency.

Outside of the vast MC rendering literature, Bowers et al. [2011]
proposed to use MC ray tracing to approximate solutions to the Pois-
son problem for di�usion curves. Their approximation is visually
consistent with the solutions to the original Poisson problem in the
examples presented. Sawhney and Crane [2020] recently introduced
a Monte Carlo framework for solving boundary value PDE problems
in computational geometry processing. TheWalk-on-Spheres(WoS)
approach [Muller 1956] they introduced to the graphics community
scales well to complex geometries than �nite element methods �
analogously to the aforementioned evolution of physically-based
rendering methods. In a concurrent work, Sawhney et al. [2022] fur-
ther extended the approach for elliptic PDEs with spatially varying
coe�cients.

We similarly depart from deterministic solvers and treat �uid
simulation with MC, deriving a stream function-based free-slip
boundary condition that solves a Poisson equation using a custom
antithetic WoS sampler. Our work builds upon the original WoS
method by Muller [1956], rather than Sawhney and Crane [2020],
since WoS cannot be applied straightforwardly to the Navier-Stokes
equations. Furthermore, we propose importance sampling and con-
trol variate variance reduction schemes to improve sample e�ciency,
coupled with a practical caching mechanism to overcome naïve
recursive MC estimator complexity. Much like in light transport,
allowing the treatment of general scenes without discretization, our
MC �uid simulation does not fundamentally require explicit spatial
discretization commonly employed in �uid simulation.

Fluid simulation.The numerical prediction of �uid motions plays
an important role in a variety of �elds, from weather forecasting to
the aerospace industry. In computer graphics, there is signi�cant
demand to animate �owing water, swirling smoke, �ickering �ame,
and so on. Most work on this topic falls into a few broad families of
methods based on discretizing the classical incompressible Euler or
Navier-Stokes equations. Eulerian methods assume a static mesh or
grid through which the �uid �ows and the relevant �uid equations
are discretized with �nite di�erence/volume/element ideas [Fedkiw
et al. 2001; Foster and Fedkiw 2001; Stam 1999]. Lagrangian meth-
ods instead use degrees of freedom that move along with the �uid,
often using either meshfree particles such as in smoothed particle
hydrodynamics [Desbrun and Gascuel 1996; Müller et al. 2003] or
time-evolving meshes that must be adapted when they become too
deformed [Clausen et al. 2013; Misztal et al. 2013]. Hybrid meth-
ods, which use both Lagrangian particles and Eulerian grids, have
become popular because they can o�er both the convenience and ef-
�ciency of Eulerian grids and the accurate advection of Lagrangian
particles [Jiang et al. 2015; Zhu and Bridson 2005].

We rely, in part, on tracing �ow characteristics backwards in
time for potentially long periods, reminiscent of a family of recent
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