Parameter Estimation of BSSRDF for Heterogeneous Translucent Materials

Hiroki SoneToshiya HachisukaTakafumi KoikeCAPCOMUniversity of TokyoHosei University

Translucent Materials

≒ Highly scattering objects

Subsurface Scattering (SSS)

Notably affects to the appearance of translucent materials

side view

Monte Carlo Path Tracing

Requires long time to exactly simulate

Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF)

Functional representation of SSS (Generally, based on diffusion theory) ψ_{i}

 \mathbf{X}_{i}

side

VIEW

 \mathbf{X}_{O}

Existing BSSRDFs

- · Dipole [Jensen et al. 2001]
- · Multipole [Donner & Jensen 2005]
- · Photon diffusion [Donner & Jensen 2007]
- · Empirical BSSRDF [Donner et al. 2009]
- · Quantized diffusion [d'Eon & Irving 2011]
- · Photon beam diffusion [Habel et al. 2013]
- · Dual-beam BSSRDF [d'Eon 2014]
- · Directional dipole [Frisvad et al. 2014]
- Normalized diffusion [Burley 2015; Christensen 2015]

Focus on homogeneous (constant) media

	Heterogeneous	Fast
Monte Carlo		
BSSRDF		
Our Goal		

Related Work: Layered heterogeneous skin [Donner et al. 2008]

Heterogeneous transmittance/absorption among multiple layers (Not for diffuse reflectance of single layer)

Related Work: Real-time Heterogeneous SSS [Chen et al. 2012]

Mixing precomputed reflectance

$$R_d(\mathbf{x}_i, \mathbf{x}_o) = \sqrt{P_{\mathbf{x}_i}(r) P_{\mathbf{x}_o}(r)}$$

(precomputed) reflectance at incident and exitant points

Another Approach

Compute scattering and absorption coefficients before evaluating BSSRDF models

$$\overset{\sigma_s,\sigma_a,g}{\checkmark} ? \overset{\sigma_s^*,\sigma_a^*,g^*}{\checkmark} S(\mathbf{x}_i,\omega_i,\mathbf{x}_o,\omega_o \mid \sigma_s,\sigma_a,g)$$

Using parameters at incident and/or exitant points [Jensen et al. 2001; Jensen and Buhler 2002]

Using parameters at incident and/or exitant points [Jensen et al. 2001; Jensen and Buhler 2002]

Averages of parameters on a line [d'Eon & Irving 2011]

Averages of parameters on a line [d'Eon & Irving 2011]

Handled as homogeneous

Our Solution

*Assumption

Our Solution

*Assumption

Our Solution

Challenge

How much the light will be spread?

Blur width of light [Premože et al. 2004]

The spatial spreading of the most probable light path as predicted by the path integral

highly scattering

Sampling on complex geometries

side view

Sampling on complex geometries

side view

Sampling on complex geometries

side view

 \mathcal{X}_{O}

 \mathcal{X}_{i}

Experimentation

Plot reflectance for normally incident ray *ideal scenario for existing BSSRDF models

plot range: [15×15]

plot range: [15×15]

[Jensen et al. 2001] 41.93 sec Path tracing 34.95 min.

Our technique 4.26 min.

[Jensen et al. 2001] 41.93 sec

Path tracing 34.95 min.

Our technique 4.26 min.

Note: computation time of path tracing can be significantly increased if the object is refractive

Future Work

- Elimination of the bottle-neck due to Monte Carlo sampling
- · Mathematical or physical analysis
- Address optical properties varying along normal vector
 - · Combine with layered method [Donner et al. 2008]?

Conclusion

- Estimation of BSSRDF parameter for heterogeneous materials
 - Easy to integrate to existing rendering system
 - First step toward **practical** methods for accurately rendering heterogeneous materials

Optical Properties: σ_s

Scattering coefficient

Optical Properties: σ_a

Absorption coefficient

Optical Properties: g

Mean cosine of scattering angle

tend to **forward** scatter if g > 0

tend to **backward** scatter if g < 0

Why not weight sample?

If $\|\mathbf{x}_i - \mathbf{x}_o\|$ is small:

the ellipse also becomes small

If $\|\mathbf{x}_i - \mathbf{x}_o\|$ is large: the diffuse reflectance becomes small (exponentially decreased w.r.t. $\|\mathbf{x}_i - \mathbf{x}_o\|$)

 \rightarrow Weighted sampling cannot be significant

Reflectance is exponentially decreased w.r.t. the distance between \mathbf{x}_i and \mathbf{x}_o

[Frisvad et al. 2014]