
Parallel Progressive
Photon Mapping on GPUs

Toshiya Hachisuka Henrik Wann Jensen

University of California, San Diego

StarCraft II ©Blizzard Entertainment

Design Garage ©NVIDIA

Offline Rendering on GPUs

• Growing interests across communities

• Rendering is highly parallel computation

• GPU is a massively parallel processor

4

V-Ray RT GPU ©Chaos Group RenderAnts [Zhou 09]

Progressive Photon Mapping (PPM)

• New rendering algorithm [Hachisuka 08, 09]

• Only method that handles specular-diffuse-specular

5

Path Tracing Bidirectional Path Tracing Metropolis Light Transport Progressive Photon Mapping

6

7

Eye Pass Photon Pass

Overview

8

Eye Pass

9

Eye Pass

10

Photon Pass

11

Photon Pass

12

Photon Pass

13

Rendering

Parallelism in PPM

• Many parts are highly parallel

• Eye ray tracing

• Photon tracing

• Rendering

...but not everything

• Collecting photons

14

Contribution

15

Entirely parallel progressive photon mapping algorithm

Method

Parallelism in PPM

• Many parts are highly parallel

• Eye ray tracing

• Photon tracing

• Rendering

...but not everything

• Collecting photons

17

Problem

18

Problem

19

Spatial Hashing

• Construction

• Discretize space into cells

• Construct a hash table with lists

• Query

• Look up overlapping cells

• Traverse lists

20

Spatial Hashing: Construction

21

Spatial Hashing: Construction

22

Spatial Hashing: Construction

23

Hash

Spatial Hashing: Construction

24

Hash

Spatial Hashing: Construction

25

Hash

Spatial Hashing: Query

26

Hash

Spatial Hashing: Query

27

Hash

Spatial Hashing: Query

28

Hash

Spatial Hashing: Query

29

Hash

Issues

• Two fundamental issues

• Construction of list is a serial process

• Number of data fetches varies per cell

30

Our Solution

31

Keep only a single element stochastically

Stochastic Hashing: Construction

32

Stochastic Hashing: Construction

33

Stochastic Hashing: Construction

34

Hash

Stochastic Hashing: Construction

35

Hash

Stochastic Hashing: Construction

36

Hash

Stochastic Hashing: Construction

37

Hash

Stochastic Hashing: Construction

38

Hash

Stochastic Hashing: Construction

39

Hash

Stochastic Hashing: Query

40

Hash

Implementation

• Do we need a list to select an element?

41

Implementation

• Do we need a list to select an element?

42

No

Implementation

• Do we need a list to select an element?

• Just overwrite to the same place in parallel

• Assume independent photon tracing

• One of them should survive in the end

43

No

Implementation

44

For all photons in parallel
HashIndex = Hash(Photon.Position)
Table[HashIndex] = Photon
AtomicInc(Count[HashIndex])

Related Work

• Photon splatting [Lavignotte 03]

• Uniform grid [Purcell 05]

• Cuckoo hashing [Alcantara 09]

• Tree data structure [Zhou 08][Fabianowski 09]

• Linked list [Thibieroz 09]

45

Results

Experiments Setup

• Hash table size = Number of points

• Implemented using GLSL and NVIDIA OptiX

• Radeon HD 4850 and GeForce GTX 290

47

Box (4k) Cognac (16k) Pool (122k) Kitchen (44k)

Random Points Test

48












      















Rendering Time: Tree

49

Stochastic Hashing: Cognac

Fabianowski09: Ring

Zou08: Glass

0 50 100 150 200

Milliseconds

Photon Tracing
Photon Map Construction
Gathering & Rendering

Faster construction & gathering

Rendering Time: CPU

50

OptiX sample (CPU & GPU)

Stochastic Hashing (GPU)

0 225 450 675 900

Milliseconds

Photon Tracing
Photon Map Construction
Gathering & Rendering

Construction alone: 30x
 Total: 5x

Additional Noise

51

1:64 table 1:1 table Full list

Robustness

52
Pa

th
 t

ra
ci

ng
PP

M

GPUSPPM

53

graphics.ucsd.edu/~toshiya

Conclusion

• Parallel progressive photon mapping

• Fast construction using stochastic hashing

• Suitable for parallel processors (aka GPUs)

• Easy to implement

54

“Please do not try this at home”

Acknowledgements

• Dan Alcantara

• NVIDIA Fellowship 2010-2011

• ompf.org forum members

55

