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Offline Rendering on GPUs

• Growing interests across communities

• Rendering is highly parallel computation

• GPU is a massively parallel processor
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V-Ray RT GPU ©Chaos Group RenderAnts [Zhou 09]



Progressive Photon Mapping (PPM)

• New rendering algorithm [Hachisuka 08, 09]

• Only method that handles specular-diffuse-specular
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Eye Pass
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Eye Pass
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Photon Pass
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Photon Pass
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Photon Pass
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Rendering



Parallelism in PPM

• Many parts are highly parallel 

• Eye ray tracing 

• Photon tracing

• Rendering

...but not everything

• Collecting photons
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Contribution
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Entirely parallel progressive photon mapping algorithm



Method



Parallelism in PPM

• Many parts are highly parallel 

• Eye ray tracing 

• Photon tracing
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• Collecting photons
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Problem
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Problem
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Spatial Hashing

• Construction

• Discretize space into cells

• Construct a hash table with lists

• Query

• Look up overlapping cells

• Traverse lists
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Spatial Hashing: Construction
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Spatial Hashing: Construction
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Spatial Hashing: Construction

23

Hash



Spatial Hashing: Construction
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Spatial Hashing: Construction
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Spatial Hashing: Query
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Spatial Hashing: Query
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Spatial Hashing: Query
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Hash



Spatial Hashing: Query
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Hash



Issues

• Two fundamental issues 

• Construction of list is a serial process

• Number of data fetches varies per cell
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Our Solution
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Keep only a single element stochastically



Stochastic Hashing: Construction
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Stochastic Hashing: Construction
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Stochastic Hashing: Construction
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Stochastic Hashing: Construction

35

Hash



Stochastic Hashing: Construction
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Stochastic Hashing: Construction
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Stochastic Hashing: Construction
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Stochastic Hashing: Construction
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Stochastic Hashing: Query
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Implementation

• Do we need a list to select an element?
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Implementation

• Do we need a list to select an element?
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Implementation

• Do we need a list to select an element?

• Just overwrite to the same place in parallel

• Assume independent photon tracing

• One of them should survive in the end

43

No



Implementation
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For all photons in parallel
HashIndex = Hash(Photon.Position)
Table[HashIndex] = Photon
AtomicInc(Count[HashIndex])



Related Work

• Photon splatting [Lavignotte 03]

• Uniform grid [Purcell 05]

• Cuckoo hashing [Alcantara 09]

• Tree data structure [Zhou 08][Fabianowski 09]

• Linked list [Thibieroz 09]
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Results



Experiments Setup

• Hash table size = Number of points

• Implemented using GLSL and NVIDIA OptiX

• Radeon HD 4850 and GeForce GTX 290
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Box (4k) Cognac (16k) Pool (122k) Kitchen (44k)



Random Points Test
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Rendering Time: Tree
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Stochastic Hashing: Cognac

Fabianowski09: Ring

Zou08: Glass

0 50 100 150 200

Milliseconds

Photon Tracing
Photon Map Construction
Gathering & Rendering

Faster construction & gathering



Rendering Time: CPU
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OptiX sample (CPU & GPU)

Stochastic Hashing (GPU)

0 225 450 675 900

Milliseconds

Photon Tracing
Photon Map Construction
Gathering & Rendering

Construction alone: 30x
 Total: 5x



Additional Noise
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Robustness
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GPUSPPM
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graphics.ucsd.edu/~toshiya



Conclusion

• Parallel progressive photon mapping

• Fast construction using stochastic hashing

• Suitable for parallel processors (aka GPUs)

• Easy to implement
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“Please do not try this at home”
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