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Fig. 1. Integral linear operators are widely used across many graphics problems. (left) In relighting, the environment map can be represented as a 2D function
g(s, t), and the resulting surface irradiance can be parameterized as another 2D function u(x, y). The light transport can then be described by a 4D kernel
function K(x, y, s, t), such that u(x, y) = f/K(x, y,s,)g(s, t) dsdt. In our method, the kernel K is approximated as a 4D Gaussian mixture. Given an
environment map represented as a 2D Gaussian mixture, the resulting irradiance can be analytically computed as another 2D Gaussians mixture, which are
then splatted to generate the corresponding lightmap. Unlike typical precomputed radiance transfer (PRT) techniques, our approach decouples kernel storage
from the mesh or spatial grid, allowing for more flexible representation. In an equal-memory comparison, it can achieve higher-quality relighting results.

(right) Our method naturally supports the sequential application of multiple operators, as both input and output are consistently represented in the same
basis family of Gaussians. Furthermore, we show that the composition of two operators can also be analytically computed and remains closed under the

Gaussian family. This property also allows the problem to be solved in reverse order, which is beneficial in certain scenarios. As an application, we can solve the
fluorescent material interactions in spectral rendering using our closed-form approximation, resulting in significant color noise reduction under equal time.

Integral linear operators play a key role in many graphics problems, but
solutions obtained via Monte Carlo methods often suffer from high variance.
A common strategy to improve the efficiency of integration across various
inputs is to precompute the kernel function. Traditional methods typically
rely on basis expansions for both the input and output functions. However,
using fixed output bases can restrict the precision of output reconstruction
and limit the compactness of the kernel representation. In this work, we
introduce a new method that approximates both the kernel and the input
function using Gaussian mixtures. This formulation allows the integral
operator to be evaluated analytically, leading to improved flexibility in kernel
storage and output representation. Moreover, our method naturally supports
the sequential application of multiple operators and enables closed-form
operator composition, which is particularly beneficial in tasks involving
chains of operators. We demonstrate the versatility and effectiveness of our
approach across a variety of graphics problems, including environment map
relighting, boundary value problems, and fluorescence rendering.
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1 INTRODUCTION

Many problems in computer graphics, such as light transport and
boundary value problems, can be formulated using an integral linear
operator K. This operator maps an input function g(y) to an output
function u(x) using an integral,

u(x) = Klg(y)] =/K(x,y)g(y) dy, (1)

where K(x,y) is a kernel function that defines an operator. There is
typically no analytical solution to the above integral, and one needs
to rely on numerical approaches to estimate the output u(x).
Monte Carlo (MC) integration is one such numerical approach
which performs pointwise estimation of u(x,) as an average over
stochastic estimates, given a specific point x,,. The resulting estimate
is noisy due to stochastic sampling, and it is computationally costly
due to multiple evaluations of the kernel K (x, y). Instead, many prior
works in computer graphics have explored a method to precompute
the integral linear operator for a given kernel function, allowing it to
approximately take any arbitrary input function during runtime. A
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Fig. 2. Tov 1D LIGHT TRANSPORT. (a) A 1D diffuse reflector is illuminated by
a 1D area light, with a glass ball in between. (b) The reflector’s irradiance
u(x) is obtained by applying a radiance transfer operator K to the light
emission ¢g(y). (c) A common approach expands both input and output
in predefined bases — for example, Haar wavelets with thresholding for g
and tent functions for u here — so that the kernel can be represented by
a coefficient matrix. However, a poor choice of output basis can severely
limit the accuracy of the approximation. (d) Instead, we approximate the
operator directly with 2D Gaussians using the same memory as in (c). This
allows u to be solved analytically without predefined bases, and the result
is accurate as long as the approximations of K and g are good. Note that
handling general 3D caustics is more involved in terms of fitting the signals
and oeprators, and this example is meant to be purely didactic.

prominent example is precomputed radiation transfer (PRT) [Sloan
etal. 2002], which precomputes and approximates the light transport
operator K for a given fixed scene. An input environment map g(y)
(i.e., alight source) is allowed to change at runtime, enabling efficient
evaluation of the solution of light transport u(x) for a given scene.

In PRT, the input ¢g(y) and the output u(x) are both approximated
by basis expansions, so that the kernel can be approximated as a ma-
trix to convert a vector of coefficients of the input basis to a vector of
coefficients of the output basis. Different bases have been proposed
to improve its accuracy and efficiency in different scenarios [Ng
et al. 2003; Tsai and Shih 2006; Xu et al. 2013, 2022]. Beyond light
transport, functional maps [Ovsjanikov et al. 2012] formulate the
operator K for various geometry processing tasks using the same
basis expansion idea. Recent neural approaches [Azizzadenesheli
et al. 2024] represent the operator K by a neural network by taking
an encoding of the input g(y) and samples of the expected output
values u(x) and fits a network to approximate the operator K.

All those precomputation approaches involve several approxima-
tions. Basis expansions in PRT and functional maps approximate
both the input and the output as a set of coefficients of given basis
functions so that the kernel becomes a matrix. This formulation
introduces approximation errors when basis expansions cannot rep-
resent functions well. For instance, spherical harmonics used in PRT
are known to be inaccurate at representing high-frequency features.
A subtle, but important issue is that an accurate basis expansion of
the input alone (e.g., spherical harmonics expansion of a smooth
environment map) may not yield an accurate basis expansion of
the output (e.g., sharp contact shadows under a smooth illumina-
tion). Fig. 2 illustrates a didactic example with a 2D operator. In
the subfigure (c), the output is expanded using the tent basis, which

struggles to capture sharp features. Since the input can change
arbitrarily at runtime and the corresponding output is available
only after evaluating the integral linear operator, it is challenging to
determine a priori which basis functions can accurately represent
the output u(x). Neural approaches do not fundamentally circum-
vent this problem, as they still require a suitable encoding of the
input function, and their generalization beyond trained examples is
unpredictable.

We propose a new representation of integral linear operators
based on analytical integrals with a basis expansion of the kernel.
Similar to basis expansions, our representation approximates both
the input and the output as sums of basis functions. The key differ-
ence from the existing basis expansions is that we also apply a basis
expansion to the kernel K(x,y) as a higher dimensional function
and utilize analytical integration of a product of basis functions.
We propose to use Gaussian as a basis which allows us to perform
such analytical integration. The basis expansion of the output in
our method emerges from the analytical integral of the operator in
a posterior manner given the input basis and the kernel basis. This
property allows the output basis to change according to the input
basis and the kernel basis on the fly, making it adaptive to the basis
expansions for both. One can also concatenate multiple operators
into a single operator by analytical integration over multiple kernels.
Since the only approximations we introduce are basis expansions
of the input and the kernel, the output becomes accurate whenever
the input and the kernel are accurately represented by basis expan-
sions. In contrast, the existing basis expansion approaches need to
define a set of bases for the output apriori, which fundamentally
limits the accuracy of the output even when the input and the ker-
nel are accurately represented. Our representation of the kernel as
a higher dimensional function is also often more compact than a
matrix for coefficients in the existing basis expansion approaches
whenever there is spatial coherence in the space of the variables of
the K(x,y). As shown in Fig. 2(d), under equal memory constraint,
directly approximating the kernel K with 2D Gaussians yields a
more accurate operator approximation and, thus, a more precise
output prediction. We demonstrate the practical improvements our
new operator representation brought in multiple applications. To
summarize, our technical contributions are:

e We propose directly representing kernel functions as high-
dimensional Gaussian mixtures, enabling closed-form eval-
uation of integral operators.

e We show that our Gaussian mixture representation supports
closed-form composition of multiple integral operators.

e We demonstrate how our theory applies to various graph-
ics applications, supported by practical infrastructures, in-
cluding the tile-based differentiable rasterizer, culling, an
unbiased stochastic summation estimator, etc.

An open-source implementation of our method is available under
https://github.com/suikasibyl/gilo.

2 RELATED WORK

Precomputed radiance transfer. PRT [Sloan et al. 2002] precom-
putes the light transport kernel K for efficient relighting with the
environment map. A significant body of research has focused on
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Fig. 3. TRADITIONAL METHODS USE FIXED OUTPUT BASES. (a) In classical meth-
ods, the integral linear operator is approximated by expanding both the
input g and output u using basis functions ¢; and ¢/; respectively. Here, the
input bases ¢; are Gaussians, while the output bases 1/; are tent functions
defined on a uniform grid. Then the kernel K can be represented as a co-
efficient matrix k;;. (b) In many cases, the input g can be highly dynamic,
leading to significant variation in the output u. Consequently, designing
a fixed set of output bases ¢; that can accurately represent all possible
outputs is generally challenging. In the plot, the gray curve represents the
ground-truth output, while the blue curve shows an inaccurate approxima-
tion reconstructed from fixed tent basis functions.

developing various basis functions for the input (directional) do-
main Y, including spherical harmonics (SH), spherical Gaussians
(SG) [Tsai and Shih 2006; Xu et al. 2013], nonlinear wavelets [Ng
et al. 2003], and even neural basis [Xu et al. 2022]. The main focus of
those prior work is to estimate an integral u(x;) = f K(xi,y)g(y) dy
evaluated at a given point x;. We instead focus on a closed-form
solution to the operator K itself, yielding an output function u(x)
rather than a single value u(x;) at x;.

Kiivanek et al. [2004] proposed using an adaptive mesh to capture
high-frequency details in the output through training-time adaptive
subdivision. While adaptive to a given scene, their method ulti-
mately still uses a fixed set of output basis functions at runtime. In
contrast, our approach dynamically adapts the output basis to the in-
put basis on the fly. Clustered principal component analysis [Sloan
et al. 2003] and moving basis decomposition [Silvennoinen and
Sloan 2021] exploit spatial coherence to compress coefficients at
different x;, implicitly performing a basis expansion in the space
X of the output function u(x). These approaches are effective with
SH coefficients and assume a fixed set of basis across different x;.
Spherical Gaussians and nonlinear wavelets introduce varying basis
functions across different x;, thus it is nontrivial to express them by
principal component analysis or moving basis decomposition. As
we will demonstrate later, our method often compactly captures the
correlation between x and y by considering the basis expansion in
the higher dimensional space of the kernel K(x,y).

Functional maps. Functional maps [Ovsjanikov et al. 2012] model
non-rigid shape matching as linear operators between function
spaces on manifolds. Both input and output functions are repre-
sented in predefined bases, typically Laplacian eigenbases, and the
operator is expressed as a matrix, that linearly maps input coef-
ficients to output coefficients. Unlike in light transport, here the

Gaussian Integral Linear Operators for Precomputed Graphics « 251:3

kernel K may not be explicitly defined or directly estimated; in-
stead, it can be implicitly determined by the choice of descriptor
functions. For instance, correspondences can be improved by en-
forcing additional constraints [Hu et al. 2021; Magnet et al. 2022;
Nogneng and Ovsjanikov 2017; Ren et al. 2018] or by designing
handcrafted [Huska et al. 2023; Salti et al. 2014; Yan et al. 2023] or
learned features [Halimi et al. 2019; Litany et al. 2017; Roufosse et al.
2019]. We assume the kernel K is well-defined and can be estimated
pointwise in the space of X x Y, which motivates us to directly
approximate the kernel itself with high-dimensional Gaussians.

Neural approaches. Neural methods have also been used to solve
operator problems. Operator learning [Anandkumar et al. 2019; Ko-
vachki et al. 2021; Li et al. 2021; Lu et al. 2021] fits general functional
mappings using neural networks, but are typically not tailored for
linear integral operators. In graphics, neural networks have been
used to approximate light transport [Rainer et al. 2022; Ren et al.
2013], and some methods preserve linearity by maintaining the basis
expansion of the input g [Lyu et al. 2022; Raghavan et al. 2023; Yang
et al. 2023]. While these methods demonstrate strong approxima-
tion capabilities, they typically represent the kernel K implicitly
based on neural encoding of the input function and require rela-
tively expensive inference. Moreover, these methods usually opt for
point-wise output queries at specific x, making them less compatible
with the recursive composition of multiple operators. Our method
explicitly approximates the kernel K, naturally preserves linearity,
and is directly compatible with recursive operators.

Gaussian in graphics. Gaussian distributions are widely used in
rendering for their ability of compact function approximation [Jakob
et al. 2011], and support for efficient sampling [Herholz et al. 2018;
Hua et al. 2023; Vorba et al. 2014; Yan et al. 2016] and product sam-
pling [Herholz et al. 2016; Xia et al. 2020]. Key properties and
operations of high-dimensional Gaussians are provided in the sup-
plementary material. Dodik et al. [2022] used high-dimensional
Gaussians to capture spatial-directional correlations, and we also
aim to capture the input-output correlations via Gaussians. Kerbl
et al. [2023] introduced a differentiable tile-based rasterizer for ef-
ficient reconstruction and rendering of Gaussians, which we used
in our pipeline. Our work is inspired by recent advances in high-
dimensional Gaussian fitting [Diolatzis et al. 2024; Gao et al. 2025;
Yang et al. 2024]. We exploit a less used feature of Gaussians; they
support closed-form integration of two Gaussians with different
dimensions, whereas most methods typically consider the integral
of two Gaussians with the same dimensionality. To the best of
our knowledge, this feature has not been explored previously, even
beyond the domain of computer graphics.

3 INTEGRAL LINEAR OPERATORS IN GRAPHICS

Integral linear operators (Eq. (1)) serve as a unifying abstraction for
many problems in computer graphics. For example, the rendering
equation uses a radiance transfer kernel K to map emission g to out-
going radiance u, while boundary value problems involve a Poisson
kernel P [Krantz et al. 1999] that maps boundary conditions g to a
solution u. In both cases, the kernel can typically only be computed
pointwise and its integral is estimated by MC integration, making
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Fig. 4. CHALLENGES IN APPLYING MULTIPLE OPERATORS. (a) We consider the
scenario where an input function g is sequentially transformed by three
operators: K, Kz, and %K. In this specific case where all operators are
exact 2D Gaussians, our approach can compute the output of each operator
precisely, without any need for reprojection or incurring approximation
error. (b) In traditional methods, if Gaussians are used as input bases ¢
and tent functions are used as output bases i/, the resulting output cannot
be directly reused as input for the next operator. Instead, it must be re-
projected onto the input basis ¢, introducing additional approximation
error and computational overhead. The gray curves show the reference
result, while the blue curves are the inaccurate approximation obtained.

it advantageous to precompute the kernel for a variety of inputs. A
common strategy is to approximate both input g(y) and output u(x)
as weighted sums of chosen basis functions ¢ and i, as illustrated
in Fig. 3:

9(y) = ) Gigi(y), @
u(x) ~ ) Uji (), 3
J

where G; and U; are scalar coefficients. At runtime, the output u(x)
is approximated as:

u(x) ~ / K(xy) Y Gii(y) dy = Y Gi f K(xy)di(y)dy (&)

A
~g(y)
zZGi Zki,-wj<x) =Z Zeiki,- ¥ (x), )
i Jj Jj i

<[ K(xy)gi(y) dy v
where the linear integral operator K is applied to each input basis
¢i, and the result is projected onto the predefined output bases
¥j. The kernel can be compactly represented as a precomputed
coefficient matrix k;j, which encodes the contribution of each ¢;
to each ;. Approximation of the product integral with the kernel
(Eq. (5)) introduces additional approximation error besides basis
expansions. Designing bases ¢/; to reduce this additional error is
challenging since the output u depends on the runtime input g.
The challenge becomes even more pronounced in scenarios that
involve recursively applying a sequence of integral linear operators
K, l=1,...,N:

u=Kn[Kn-1l---Kilglll, O

where the sequence of kernels is determined only at runtime, al-
lowing precomputation only for individual kernels. For example, in

spectral rendering, each interaction with a surface material acts as a
linear operator; and in layered materials, each layer’s BSDF acts as a
linear operator. Since the sampled path is determined by a stochastic
random walk, the sequence of operators applied varies across paths
and is only determined after the path has been sampled.

As illustrated in Fig. 4, applying multiple operators introduces
several challenges. First, when the input and output bases ¢ and
¥ belong to different families, additional re-projection steps are
required to bridge them, increasing both computational cost and
approximation error. While using the same basis family for both
input and output can avoid re-projection, designing the output bases
¥j also becomes even more difficult, as the outputs are not only de-
pendent on the dynamic input g, but also on the stochastic sequence
of kernels applied K;. The approximation error will accumulate
throughout the sequence, so it would be even more important to
keep the approximation error of every operator as low as possible.

4 ANALYTICAL INTEGRAL LINEAR OPERATOR WITH A
HIGHER DIMENSIONAL BASIS EXPANSION

4.1 High-dimensional basis for the kernel

In many applications, the kernel K is either known analytically
or can be estimated pointwise, while the output u is generally un-
known and varies dynamically with the input. Instead of attempting
to improve the output basis expansion, we turn our attention to
the kernel K and expand it directly using high-dimensional basis
functions over the joint output-input domain (x,y):

K(xy) ~ ZKl- -oi(xy), (7)

where K; are scalar coefficients, and o; are basis functions defined
over an N} dimensional space, with N = Ny + Ny.

Similar to the previous work, we also approximate input g using
basis expansion as Eq. (2), and compute output u as:

Klg] z‘/ ZKiai(x,y))
=Y YKy [ty dy ©)

ij
=ZZKiijij(X). (10)

ij

While the output u is still represented as basis expansion, its basis
&(x) are determined a posteriori based on the input as:

Zcigm(y)) dy ®)

£i(x) = / o1(%,y)8;(y) dy. (1)

In this paper, we propose to use Ny-dimensional Gaussians as input
bases ¢ and Nx-dimensional Gaussians as kernel bases o, enabling
the integral ¢ to be analytically evaluated as an unnormalized Nx-
dimensional Gaussian, as detailed in the supplementary material. A
toy example with Nx = Ny = 1 is shown in Fig. 5. Unlike Eq. (5), our
method avoids manually designing an output basis i/ and eliminates
additional approximation error of the product integral in Eq. (5)
since the output basis & is derived in closed form.



Fig. 5. OUR METHOD, SINGLE OPERATOR. (1st row) The integral of a 2D Gauss-
ian kernel with a 1D Gaussian input yields a weighted 1D Gaussian output.
(2nd row) When both the kernel K and input g are represented as Gaussian
mixtures, the output u is also a Gaussian mixture, with each lobe computed
in closed form. Since our output Gaussian lobes are dynamically determined
by the Gaussian mixtures of the input and kernel, they adapt to the output
shapes better unlike traditional methods (Fig. 3).

4.2 Operator composition

We now turn to another key application scenario of our method,
where multiple operators K] are applied sequentially, as described
in Eq. (6) and Fig. 1 (right). When each kernel K] is represented
using our high-dimensional Gaussians, the output of each operator
remains a Gaussian mixture. The output can thus be used directly
as the input for the next operator, without incurring additional
computational cost or approximation error beyond the kernel basis
expansion, as shown in Fig. 6(a).

In certain scenarios, it is also useful to compose the operators (i.e.,
to find a composite operator K12 = Kj o K3) such that: Kiz2[g] =
K1[K2[gl]l. The new kernel K3 is defined by the following integral:

Klg(x,z):/Kl(x,y)Kz(y,z) dy. (12)

This arises, for example, in spectral rendering, where a light path
may interact with several materials before reaching the light source.
We demonstrate that when each kernel K] is approximated as an Nk -
dimensional Gaussian, the composite operator can also be computed
in closed form, result in a new group of Gaussians. This property
enables efficient evaluation of multi-operator problems in reverse
order, as illustrated in Fig. 6(b). The full derivation and resulting
expressions are provided in the supplementary material.

5 APPLICATION: ONE INTEGRAL LINEAR OPERATOR

While our theoretical formulation provides a general foundation,
the way in which the kernel is approximated, and how its analytical
properties are used, varies by application. In the following sections,
we discuss three main application scenarios.

5.1 Precomputed Poisson kernel

We first start from a lower-dimensional application: the Dirichlet
problem for the Laplace’s equation in 2D, formulated as

u(x,y) = / P(x,y.2)  g(2)dz, (13)

where the Poisson kernel $ maps the boundary condition g to the
harmonic solution u. By precomputing the Poisson kernel # for a
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Fig. 6. OUR METHOD, MULTIPLE OPERATORS. We discuss two ways to solve
problems involving multiple operators. (a) A straightforward approach is to
apply the operators sequentially to the input: first, apply operator K3 to the
input g, yielding the intermediate output u3. Then, apply operators K3 and
K successively to obtain the final output u, using the closed-form solution
illustrated in Fig. 5. (b) Alternatively, the problem can be solved in reverse
order by first composing K and K to obtain an equivalent operator Kj2,
and then further composing it with % to form %23. Finally, by analytically
applying K23 to input g, we obtain the same output u. This pipeline is
enabled by another key feature of our method: Gaussian operators can be
analytically composed, and the result remains a Gaussian mixture.
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Fig. 7. FITTING PIPELINE OF PRECOMPUTED P0OISSON KERNEL. (a) Given a rect-
angular Dirichlet boundary, we parameterize the image domain by (x, y)
and the boundary curve by z. (b) The corresponding Poisson kernel is a 3D
function P (x, y, z). (c) Each slice of P at z = z; represents (d) the solution
to the PDE with a Dirac delta source placed at boundary point z;. (e) We
approximate ¥ using a 3D Gaussian mixture. (f) During training, we con-
dition this mixture on z; to obtain 2D Gaussians, (g) which are rasterized
onto the image plane using a differentiable rasterizer. (h) We then mask out
regions outside the domain and minimize the error between the rendered
Gaussians and the corresponding kernel slice.

fixed boundary geometry, we enable efficient computation of the
solution u(x, y) for varying input boundary conditions g(z),

Fitting. As shown in Fig. 7, for a 2D boundary value problem,
the Poisson kernel forms a 3D function, which we approximate
using a 3D Gaussian mixture. For precomputation, each iteration
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Fig. 8. RUNTIME PIPELINE OF PRECOMPUTED POISSON KERNEL. At runtime, (a)
we approximate the boundary values using 1D Gaussians and combine them
with (b) the learned 3D Gaussian operators. (c) After culling low-contribution
pairs, (d) we compute 2D Gaussians using our analytical integral operator,
and (e) render the final result via Gaussian splatting.
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Fig. 9. CoMPARISON WITH FIXED OuTPUT BAsis. We compare approximate
solutions under equal memory budgets for fitting the Poisson kernel P.
Haar Top-K retains the top 6 1D Haar coefficients (by absolute value) per
vertex on a 25 X 45 grid. 1DG uses 4 1D Gaussians per vertex on the same
grid. Haar MBD compresses the first 64 1D Haar coefficients using 3 moving
basis vectors learned on a coarse 5 X 9 grid, with per-vertex coefficients
defined on the full 25 X 45 grid. Our method uses 1200 3D Gaussians and
achieves higher quality results, particularly near narrow sources.

randomly samples a boundary point z; and minimizes the error
between the conditioned Gaussians and the reference solution. The
reference Poisson kernel is precomputed on a 5123 grid using the
Walk on Spheres (WoS) method [Muller 1956], as detailed in the
supplementary material. For efficient rendering and backpropaga-
tion, we use a differentiable tile-based rasterizer [Kerbl et al. 2023],
mixing the Gaussians via additive accumulation instead of alpha
blending. To handle discontinuities from the boundary geometry,
we apply a mask over the interior domain, avoiding wasting too
many unnecessary Gaussians on fitting sharp boundary curves.

Runtime. At runtime, we approximate the boundary condition
g(y) using a 1D Gaussian mixture. The output u can then be analyt-
ically computed as a 2D Gaussian mixture using our closed-form
operator. To accelerate rendering, we discard the output Gaussian
&;;j if the three-sigma confidence regions of the input Gaussian ¢;
and the kernel Gaussian o; do not overlap. The remaining Gaussians
are splatted and masked as in training. The entire pipeline is shown
in Fig. 8.

Haar (MBD) Ours Reference
Fig. 10. MoRE INVOLVED SceNES. Our approach also handles internal oc-
cluders, open boundary curves, and detailed shapes while achieving higher-
quality reconstructions. The first two rows use 1500 Gaussians, and the
third uses 3000. Training times for these three problems are 5.25, 13.15, and
3.30 minutes with our method, compared to 8.30 minutes for MBD in all
scenes.

WoS (5 SPP) Reference

(50 SPP) (1450 SPP) Ours

Time

50ms : 14.500 ms 2 ms

Fig. 11. COMPARISON WITH WALK ON SPHERES. As a precomputation-based
method, our runtime solution is noise-free. In contrast, Walk on Spheres
(WoS), being a Monte Carlo method, exhibits significant noise and requires
considerably more time (X7250 here) to achieve comparable visual quality.

Comparison. In Fig. 9 and Fig. 10, we compare our method against
three alternatives that expand the input function g using different
basis functions: (1) nonlinear Haar wavelets [Ng et al. 2003], (2)
1D Gaussian basis functions, and (3) truncated Haar wavelets com-
pressed via moving basis decomposition (MBD) [Silvennoinen and
Sloan 2021]. Under an equal memory budget, our method delivers
higher reconstruction quality, particularly in boundary regions with
sharp or localized sources. Both our model and the MBD method
are trained on an NVIDIA RTX 4090 GPU, while the other basis
methods are computed within seconds on an Intel i7-13700.

When comparing with other precomputed methods, we use equal
memory settings to emphasize both approximation accuracy and
compactness. Unlike Monte Carlo integration, where accuracy can
improve over time by drawing more samples, the accuracy of pre-
computed methods is fixed given the chosen approximation. There-
fore, our comparisons prioritize reconstruction quality over runtime
performance. That said, our method also achieves competitive per-
formance and can easily outperform Walk on Spheres, thanks to the
precomputation of the Poisson kernel, as shown in Fig. 11.

Ablation of culling. Figure 12 illustrates how our culling strategy
can substantially reduce the number of Gaussians that need to be
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Fig. 12. INFLUENCE OF CULLING. We place a single 1D Gaussian source on
one tentacle of the Octopus. While it should technically interact with all
3D Gaussians in the kernel, most contribute negligibly. By culling kernel
Gaussians outside the 3-sigma regions, only 8% of the output Gaussians are
retained, with a minimal MSE increase of just 0.002%.

Crop
Reference

Fig. 13. DISTRIBUTION OF OUTPUT BAsIs. (a) shows the marginal Gaussians
of our fitted kernel. Near the domain boundaries, the Gaussians exhibit
anisotropic shapes aligned with the edges. However, this does not imply that
high-frequency details near the boundary cannot be represented. (b) Given
a specific input boundary condition, the resulting output Gaussians are vi-
sualized. In regions with strong localized sources, many small Gaussians are
automatically allocated to capture high-frequency details, demonstrating
the adaptive nature of our method. (c) For a different input, the output basis
again adapts, concentrating smaller Gaussians in regions with fine detail.
For clarity, we visualize an over-distilled model using only 600 Gaussians,
which does not reflect the full reconstruction capacity of our approach.

rasterized, while maintaining nearly identical output quality. In
the OcToPus scene with 500 input 1D Gaussian sources, rendering
without culling takes 11 ms, whereas enabling culling reduces the
time to just 1 ms, achieving a 11X inference speedup.

Adaptive output basis. InFig. 13, we illustrate how the output basis
is dynamically influenced by the input. When the kernel is accurately
approximated, the output basis exhibits adaptive behavior: allocat-
ing more, smaller Gaussians in regions with high-frequency content.
This adaptivity explains the superior efficiency of our method com-
pared to those relying on a fixed output basis.
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Fig. 14. INVERSE BOUNDARY VALUE PROBLEM. Our approach is fully differen-
tiable and allows direct optimization of the boundary condition to match a
given solution. Thanks to precomputation, it converges in seconds.

(b) draw a vertex sample
]

%

reference

minimize

Fig. 15. FITTING PIPELINE OF PRT. To fit the 4D Gaussian mixture, each itera-
tion consists of two steps: (a) A directional sample (s;, ¢;) is drawn from
the sphere. The corresponding reference slice K(x, y | s;, ;) K(s, t | x5, y;)
represents the lightmap under a directional light from direction (s;, ¢;). We
condition the 4D Gaussian mixture on (s;, ¢;) to obtain the predicted irradi-
ance Ky (x, y | s;, t;) and minimize the error against the reference. (b) Then,
a vertex sample is drawn on the mesh, with texture coordinates (x;, y;).
The corresponding reference slice, K (s, t | xj, y;), is the transport function
at that vertex, describing the radiance contribution from each direction.
We condition the 4D Gaussian mixture on (x;, y;) to obtain the predicted
Kn (s, t]xj, y;) and minimize the error accordingly. To reduce redundancy,
we periodically interleave optimization with Gaussian clustering.

Solving inverse problem. Our runtime pipeline, as shown in Fig. 8,
is fully differentiable. Therefore, by fixing the kernel Gaussians and
optimizing the boundary Gaussians, it can also be applied to inverse
problems: optimizing the boundary values to match a given solution.
As illustrated in Fig. 14, our method can efficiently reconstruct the
boundary values within seconds.

5.2 Precomputed radiance transfer

Next, we apply our method to precomputed radiance transfer,

wew) = [[ Kasngsasa (19

where the radiance transfer kernel K maps the environment map g
to the surface irradiance u. As shown in Fig. 1 (left), we parameterize
the environment map using octahedral mapping as ¢(s, t) and the
geometry surface using texture coordinates as u(x, y). The radiance
transfer kernel thus forms a 4D function K(x,y,s,t), which we
approximate using a 4D Gaussian mixture in our approach.

Fitting. As illustrated in Fig. 15, we fit the 4D Gaussian mixture
also by extracting 2D slices from the 4D space and minimizing
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Fig. 16. DIFFUSE GLOBAL ILLUMINATION WITH Low MEMORY BUDGET. We
approximate diffuse transport with multiple bounces in the BubpHaA scene
and relight it under two different environment maps, using different kernel
approximations with equal memory. Our method most faithfully preserves
both shadow shapes and color fidelity compared to other approaches.

the corresponding image reconstruction error. Specifically, we use
a combination of L1 and DSSIM losses. Unlike the setup in Sec-
tion 5.1, where slicing is performed solely along the input space z,
the PRT case involves two types of slicing within each iteration to
better capture the structure of the high-dimensional kernel. First,
we sample an input direction (s;, t;) and minimize the error between
the resulting lightmap K (x, y | s;, ;) and the conditional Gaussians
Ky (x,y]si, t;). Next, we sample an mesh vertex (x;,y;) and min-
imize the error between its directional contribution K(s, t | xj,y;)
and the conditional kernel Kx/(s, t | xj,y;). For a fair comparison
with the baseline methods, we follow the typical PRT setup and only
render the conditional transfer function K (s, t | xj, y;) at each mesh
vertex j. The other type of slice, K(x, y | si, ti), is then obtained by
interpolation across vertices. This ensures that our method is trained
with the same amount of information as the baselines. Please refer
to the supplementary material for further details.

To reduce redundancy in the Gaussian mixture, we periodically
interleave optimization with Gaussian clustering [Goldberger and
Roweis 2004] to merge similar components. Each surface patch
in the lightmap is trained independently, using the same masking
strategy described in Section 5.1, to prevent interference between
Gaussians from different patches.

Our approach also requires fitting the environment map with
2D Gaussian mixtures during precomputation. We also use the
differentiable rasterizer and clustering for this step; further details
are provided in the supplementary material.

Runtime. Our runtime pipeline is illustrated in Fig. 1(left). We ap-
proximate the input environment map using a 2D Gaussian mixture
and compute the output irradiance Gaussians for each surface patch.
The output Gaussians are then splatted and masked onto a lightmap,
which defaults to a resolution of 20482 in our comparisons. The
mesh is subsequently rendered using this lightmap.

Equal memory comparison. We compare our method with alter-
native approaches under an equal memory budget to approximate

Reference

*
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EL

Fig. 17. DiFFuSE GLOBAL ILLUMINATION WITH HIGH MEMORY BUDGET. We ap-
proximate diffuse transport with multiple bounces for the underlying plane
using a high memory budget. Notably, our method is able to reconstruct
sharp shadows cast by small light sources and even capture fine details such
as the gaps between leaves.
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Fig. 18. GLossy GLOBAL ILLUMINATION. We approximate glossy transport
with multiple bounces under a fixed camera view. Under an equal memory
budget, our method outperforms baseline approaches in reproducing specu-
lar highlights across different environment maps.

x1.51 x1. 01 x1.51 Memorv

the transport operator. In Fig. 16, we use 10,618 4D Gaussians to
approximate the diffuse multi-bounce light transport of a BuDDHA
mesh with 20,769 vertices. Each 4D Gaussian stores a mean (4 floats),
covariance (10 floats), and RGB weight (3 floats), following the pa-
rameterization of Diolatzis et al. [2024]. This results in an average of
8.7 floats per vertex. In comparison, even first-order spherical har-
monics (SH) require 12 floats, showing the compactness of our rep-
resentation. Despite the lower memory budget, our method achieves
higher relighting accuracy, better preserving shading details.

In Fig. 17, we approximate the light transport of a rectangular
plane using 72,649 4D Gaussians— a significantly larger budget than
in Fig. 16 — to demonstrate our method’s capability to handle large
surface patches and capture fine details. The baseline uses a 100x100
uniform grid, while our method achieves comparable resolution
with an effective storage of 123.5 floats per vertex, on par with
order-6 spherical harmonics or retaining the top 32 nonlinear Haar
coefficients. Our method also exhibits superior relighting accuracy
in this high-budget, high-detail scenarios.

In Fig. 18, we approximate glossy transport assuming a fixed cam-
era view for simplicity. Our approach again outperforms others in
reconstructing detailed highlights while using very compact storage.
To demonstrate that our efficiency does not solely come from the
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Fig. 19. VERTEX TRANSFER FUNCTION. We visualize the reconstructed transfer
functions at selected vertices using different methods. Our approach con-
sistently provides significantly more accurate approximations of the sliced
transfer functions, obtained by conditioning the 4D Gaussian mixture on
vertex texture coordinates, across various scenes and memory budgets.

octahedral parameterization or the use of Gaussian bases, we also
compare against an alternative that approximates transport using
per-vertex 2D Gaussians, with the same octahedral mapping for the
environment map. Under the same memory budget, only one 2D
Gaussian can be allocated per vertex. Despite we have used adap-
tive initialization for 2DG, a single lobe remains highly sensitive to
initialization and prone to mode collapse in many cases, leading to
poor output quality.

For all comparisons, we provide the best possible approximation
of the environment map, as our main goal is to validate the accuracy
of the operator. For example, in the BUDDHA scene, MBD compresses
the kernel using up to 17th-order spherical harmonics. Thus, we use
the same order to approximate the input environment map, using
972 floats in total. For our method, depending on the complexity,
we approximate the environment map using 100 (i.e. 800 floats), 40,
20, or 3 two-dimensional Gaussians.

Kernel approximation accuracy. Better relighting results directly
stem from more accurate kernel approximations. In Fig. 19, we visu-
alize how each method approximates a slice of the transport kernel
at the same mesh vertex. Our approach achieves significantly better
approximation under equal memory constraints, primarily because
all 4D Gaussians are shared across vertices within the same patch.
As a result, each vertex effectively fits the conditional transport
using a much larger number of basis functions.

Distributions of 4D Gaussian kernel. Efficiently reusing Gaussians
across vertices is crucial for the compactness of our approach. Ide-
ally, regions with more complex spatial-directional signals should
be represented by a larger number of 4D Gaussians, while areas
with more coherent signals can share the same set of Gaussians.
In Fig. 20, we visualize the spatial distribution of 4D Gaussians
marginalized onto the lightmap space (x, y). This demonstrates how

Gaussian Integral Linear Operators for Precomputed Graphics « 251:9

Buddha Mesh Shark Mesh

Marginal 4DG

Marginal 4DG

Fig. 20. DISTRIBUTION OF MARGINALIZED 4D GAussIANs. We visualize our
learned 4D Gaussian kernels by marginalizing them onto the texture co-
ordinate domain (x, y). Ideally, regions exhibiting high spatial-directional
coherence are assigned fewer and larger Gaussians, while areas with greater
complexity or variation receive more and smaller ones. The anisotropy of
each Gaussian indicates the local structure of the transfer function, re-
vealing how regions with similar directional responses are grouped. Our
training algorithm effectively places 4D Gaussians to form a compact and
expressive representation. Notably, denser clusters of smaller Gaussians
appear around geometric corners, while elongated anisotropic Gaussians
align with highlight regions, capturing their directional similarity.
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Fig. 21. NUMBER OF GAUSSIANS Vs. TRANSFER DETAIL. Increasing the number
of 4D Gaussians used in the kernel approximation allows more details to be
preserved. For example, in the model with fewer Gaussians, some clothing
wrinkles appear smoothed out, whereas higher-Gaussian-count models
capture these fine details more accurately.

our training strategy effectively captures correlations across the
spatial and directional domains in a compact manner.

Number of Gaussians. Existing basis representations typically
can improve approximation accuracy by increasing the number of
coeflicients, allowing higher-order basis functions to be retained.
In Fig. 21, we similarly demonstrate that using a larger number of
Gaussians can also lead to more accurate fitting. Since our approach
is mesh-independent, it offers great flexibility in balancing storage
requirements and relighting accuracy — even under one float per
vertex if necessary.

Training cost. In Table 1, we report the training times of different
methods on the SHARK scene. Our approach requires comparatively
more training time, as it employs a brute-force strategy to derive
the final set of Gaussians. Specifically, we begin by initializing five
4D Gaussians per mesh vertex and optimize them in a phase re-
ferred to as the initial train. Following this, we iteratively distill the
model by clustering the Gaussians to 75% of their current count and
fine-tuning the clustered representation. This distillation process
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Table 1. TRAINING TIME. We report the training times for all methods on
the glossy SHARK scene. SH coefficients and Moving Basis Decomposition
(MBD) training are accelerated using GPU shaders, while the nonlinear
Haar basis computation and selection run on CPU only. Both the per-vertex
2D Gaussian method and our approach use the differentiable rasterizer for
training, with Gaussian clustering performed on CPU in our method. All
models are trained on a cluster with hybrid Nvidia A40 and A100 GPUs,
and the reported times represent the total GPU-hours of all parallel jobs.

Methods SH+MBD Haar 2DG Ours
Total training time (hours) 3.84 21.86 43.48 26.08
Distillation (8 iters)
Ours Breakdown Initial train Clustering Retraining
Training hour 6.40 3.13 17.18

kernel marginalize Culling
Y= - g aam
= |

LQ_ "

Kn(x,y; s, 1) Ko (s, t)

Fig. 22. RUNTIME CULLING. We marginalize the learned 4D Gaussians onto
the environment map domain (s, ¢). At runtime, given a 2D Gaussian mix-
ture approximation of the environment map, we evaluate every pair of input
2D Gaussians and marginalized 2D Gaussians. Pairs are culled if their 3-
sigma confidence regions do not overlap.

Table 2. IMPACT oF CULLING. We report the number of output Gaussians
before and after applying our culling pass, along with the corresponding
increase in MSE. A significant portion of Gaussians can be discarded with
minimal impact on accuracy, as evidenced by only a slight increase in MSE.

Scene ilgftl;tu?scg) + culling # output GS MSE
3 — 31,854 15,660 -50.84% +0.0034%
Buddha 20 — 212,360 169,415 -20.22% +0.0872%
40 — 424,720 262,768 -38.13% +0.3203%
3 — 108,618 24,828 -77.14% +0.0015%
Shark 20 — 724,120 372,523 -48.55% +0.0073%
40 — 1,448,240 537,795 -62.86% +0.0124%

is repeated 8-9 times until the number of Gaussians is reduced to
approximately 0.5 per vertex on average. On the positive side, our
method allows for joint optimization over all positions on a tex-
ture patch at each step, which is significantly more efficient than
per-vertex serialized optimization, as used in 2DG.

Ablation of culling. To reduce the number of output 2D Gaussians,
we use the same culling strategy that avoids generating from all
possible pairs between kernel Gaussians and input Gaussians. As
shown in Fig. 22, we first marginalize the kernel Gaussians into the
environment map domain (s, t), turning them into 2D Gaussians.
We then compare their confidence regions with those of the input

Table 3. OpTimizE RUNTIME PERFORMANCE. We report the runtime cost of
rendering a 20482 lightmap using varying numbers of 2D Gaussians to
approximate the environment map. While the Naive implementation is com-
putationally expensive, our culling and merging performance optimizations
significantly reduce inference time.

Scene # input 2DG basic +culling + merging
3 37.59 ms 30.02 ms 5.51 ms
Buddha 20 184.42 ms 118.75 ms 73.23 ms
40 306.65 ms 148.49 ms 93.82 ms
3 25.80 ms 19.85 ms 5.05 ms
Shark 20 154.15ms  83.96 ms 60.76 ms
40 264.56 ms 122.84 ms 92.96 ms

Table 4. IMPACT oF LIGHTMAP REsoLUTION. We demonstrate how varying
lightmap resolutions affect rendering cost and relighting quality. In the
BuDDHA test scene, lower lightmap resolutions significantly reduce inference
time while preserving, or sometimes even improving, the MSE.

Lightmap resolution

Input 2DG 5122 10242 20482
3 1.18 ms 2.04 ms 5.51 ms
20 6.75 ms 19.50 ms 73.23 ms
40 10.37 ms 26.63 ms 93.82 ms

Reference Ours (512) Ours (1024) Ours (2048)

6.4313e-05

6.4529e-05

1.8941e-03

1.8942e-03 1.8941e-03

2D Gaussians that approximate the environment map. If the 3-sigma
confidence regions of a pair do not overlap, we discard the output
of that pair during rasterization. As shown in Table 2, this approach
allows us to cull a large number of output Gaussians in practice,
resulting in only a minimal increase in MSE. At the same time, it
significantly improves rendering speed, as demonstrated in the +
culling column of Table 3.

Inference cost and performance optimization. In addition to culling,
we further improve inference speed by merging the Gaussians from
all patches into a single splatting pass. To preserve the masking



Table 5. RUNTIME PERFORMANCE. We measure the average frametime (ms) in
our actual renderer running on an RTX 3070 Laptop GPU. For evaluation,
we use the simplest environment map containing only 3 input Gaussians,
and render lightmaps at a resolution of 5122 for our method.

Scene | SH MBD Ours

1.82 (order-1)
2.39 (order-1)

BupbpHA
SHARK

7.04 (4 basis, 324 coeffs each)  5.68
14.7 (8 basis, 121 coeffs each)  6.25

effect, each Gaussian is assigned an index indicating its correspond-
ing patch. During rasterization, we discard pixels that fall outside
the assigned patch region. This approach eliminates the need to
perform N times splatting for N patches, leading to a significant
efficiency gain, as shown in the + merging column of Table 3.

Another important factor affecting rendering performance is the
resolution of the lightmap we splat onto. While the previous com-
parisons use a 20482 resolution lightmap, Table 4 shows that using
lower-resolution lightmaps can significantly boost rendering speed,
with only minimal additional error, making it an effective trade-off
between quality and performance.

We implement the runtime rendering for both our method and all
baseline methods in a custom Vulkan renderer. The runtime perfor-
mance is reported in Table 5, and additional timings are provided in
the supplementary material.. Although our method runs at a lower
framerate, it delivers much better visual quality. We also believe
there is still significant room for further optimization of our method.
For example, by constructing a hierarchy of Gaussian operators or
applying visibility culling to discard Gaussians that are not visible
in the current viewport.

6 APPLICATION: MULTIPLE OPERATORS

We now demonstrate how our approach can be applied to scenarios
involving multiple operators.

6.1 Spectral rendering and fluorescence

In this application, we consider spectral rendering with fluorescent
materials, which involves a re-radiation process,

uo (o) =/K(/10,/1i)yi(/1i)d)ti, (15)

where the re-radiation kernel K maps the incident spectrum ;
(before interacting with the material) to the outgoing spectrum
U, (after the interaction). Although this involves only a 2D kernel,
multiple operators may be applied sequentially, since a light path
can include several light-material interactions.

Background. Spectral rendering represents the intensity of light
as a continuous function over wavelength u(A). As illustrated in
Fig. 23, each light path begins with a spectral source function g(4)
and is successively transformed by a sequence of linear operators
Ki, 1= N,...,1representing material interactions along the path.
At the camera, the resulting spectrum is integrated against the CIE
color matching functions x (1), §(4), Z(1) to compute XYZ values:

X = [#Du() dk Y = [gHud) dk; Z = [2(Du(2)dA, (16)

Gaussian Integral Linear Operators for Precomputed Graphics « 251:11

7
R,
—

XYz K Kz Kz g(A)

Fig. 23. SPECTRAL INTEGRAL. In spectral rendering, the contribution of each
light path is computed as a recursive integral over wavelength. A photon
with spectral luminance g(4) is successively transformed by a sequence of
linear operators K, each corresponding to a material interaction at a path
vertex. At the camera, the resulting spectrum is integrated against the CIE
color matching functions x(A), §(A), and Z(1) to compute final tristimulus
values. Fluorescent materials exhibit nonzero off-diagonal elements in their
operator kernels K (Ao, A;), as seen in K; and K3, enabling wavelength shifts.
In contrast, typical (non-fluorescent) materials, such as K3, have kernels
with only diagonal components, preserving the input wavelength.
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Fig. 24. Compressed re-radiation matrix. Gaussian mixtures have proven
to be effective for approximating the re-radiation matrix, offering more
accurate output spectral and consequently more faithful output colors. In
contrast, under equal memory budget, a piecewise-constant representation
will introduce significant bias in the resulting color. With multiple bounces,
the error will accumulate and lead to more significant artifacts.

which are then converted to RGB via a linear transformation. In
summary, the contribution of each path can be expressed as:

X/Y)Z = XY |Z [Ki[He - [Kn(g]], 17)

where X /Y / Z denote operators of integrating against the respec-
tive color matching functions x (1), (1), and z(A).

The influence of materials on the light spectrum can be char-
acterized by a kernel function K (4o, A;). The resulting spectrum
U, can then be computed by applying the kernel K to the input
spectrum u;, i.e. uy(do) = fK(/lo,/li)ui(/li) dA;, where A; and A,
denote the input and output wavelengths, respectively. Specifically,
a typical BSDF assumes that the wavelength remains unchanged
during interaction, so the kernel is non-zero only when A, = A;:

F) - 8(ho = 1), if Ai = Do,

0, if A; # Ao, (18)

K(o, 4i) = {
where § is the Dirac delta function. In contrast, fluorescent materials
shift the wavelength upon interaction, requiring an extension of
the BRDF to Bi-spectral Bidirectional Reflectance and Re-radiation
Distribution Function (BBRRDF) [Hullin et al. 2010], which includes
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Fig. 25. DIRECT ILLUMINATION. We render DaviD with a fluorescent material,
illuminated by light with spectral energy centered around 450 nm, with
direct illumination only. With 32 samples per pixel, our method significantly
reduces color noise with minimal overhead, even in non-fluorescent regions,
where HWSS struggles to sample wavelengths near 450 nm.

off-diagonal components. The integral in Eq. (17) is typically esti-
mated using Monte Carlo methods such as Hero Wavelength Spectral
Sampling (HWSS) [Mojzik et al. 2018; Wilkie et al. 2014].

Compact representation. Compact spectral representations are
essential in spectral rendering [Jakob and Hanika 2019; Peters et al.
2019], as dense spectra — often requiring hundreds of floats per spec-
trum — can lead to prohibitive storage demands and poor caching
performance, especially when used with textures. Fluorescent ma-
terials exacerbate this issue by introducing a two-dimensional re-
radiation matrix, which multiplies the memory burden. Hua et al.
[2023] addressed this by compressing the signal using 2D Gaussian
mixtures, demonstrating that it provides an accurate approximation
with bounded bias. As shown in Fig. 24, under equal memory con-
straints, the Gaussian mixture representation can better preserve
the output color, whereas a piecewise-constant alternative fails.

Closed-form spectral integral. Despite Hua et al. [2023] compress-
ing the re-radiation matrix with 2D Gaussians, the spectral integral
in Eq. (17) is still estimated using hero-wavelength spectral sam-
pling. This approach can lead to noticeable color noise in challeng-
ing scenarios, particularly with fluorescent materials, where the
stratification of wavelength samples often breaks down, as shown
in Fig. 25(a). To address this, we approximate all components —
emission spectra g, material kernels K, and color matching func-
tions X, 7,z — using 1D or 2D Gaussian mixtures. This enables a
closed-form evaluation of the spectral contribution in Eq. (17).

The classical functional mapping method (Eq. (5)) can also handle
scenarios involving multiple operators through straightforward
matrix multiplication. However, when using a fixed output basis, its
expressiveness is limited, just like the piecewise constant case shown
in Fig. 24, especially under equal-memory constraints. In contrast,
our approach enables analytical solutions using a Gaussian-based
matrix approximation, which has been shown to be more accurate.

Belcour et al. [2025] also address fluorescence using closed-form
Gaussian representations, approximating re-radiation matrices with
axis-aligned 2D Gaussians and enforces an upper-triangular struc-
ture by explicitly modeling the Heaviside function. In contrast, our
approach supports non-axis-aligned cases and accounts for multiple
bounces, but does not explicitly incorporate the Heaviside function.

(Our) FWD
(Our) BWD
(Our) BWD-MC
(Our) FWD-MC
10 HWSS

)
S

0 1 2 3 4 5
Max path depth

Fig. 26. INCREASING TIME WITH PATH DEPTH. Rendering times for 32 samples
per pixel with varying maximum path depths. Both our forward (FWD) and
backward (BWD) methods experience exponential growth in computation
time, making them impractical at higher depths. However, when combined
with a Monte Carlo estimator, our method maintains low rendering times.

Diagonal and off-diagonal operator representation. The diagonal
components! of the material kernel K pose a challenge for our 2D
Gaussian representation, as they correspond to measure-zero sets in
2D and cannot be directly modeled with 2D Gaussians. To address
this, we represent the diagonal part separately using a 1D Gaussian
mixture f:ﬁag, yielding a hybrid approximation:

R(his2o) = Rof(los 1)+ fing(h)- 8(o =2, (19)
—~———
2D Gaussians 1D Gaussians
where the off-diagonal term Ky is omitted for non-fluorescent
materials. We show that this hybrid operator representation retains
closed-form integration and analytical operator composition, as
shown in the supplementary material. As illustrated in Fig. 25, our
method significantly reduces color noise under direct illumination.

Operator application strategies. For multi-bounce paths, we can
analytically solve Eq. (17) in two directions, as discussed in Fig. 6.
The first approach starts from the input g, applies the last operator
to obtain u3 = K3[g], and then recursively applies the preceding
operators, such as K3 [u3], and so on. Each intermediate result re-
mains a Gaussian mixture, enabling exact and efficient propagation
without basis projection. However, this strategy requires storing the
material information for all vertices along the path during runtime.
Alternatively, we can compute the throughput of the current path by
composing the operators corresponding to each material interaction.
For example, we first composite two operators into Ki2 = Kj o K2
such that Ki2[g] = Ki1[Kz[g]], and then further extend this to
Ki23 = K12 o K3, and finally compute K23 [g]. We refer to the first
strategy as the backward, and the second as the forward method.

Stochastic summation. Another challenge in multi-bounce paths
is the exponential growth in the number of basis functions with the
number of operators. As shown in Eq. (10), the number of output
basis functions equals the product of the input and kernel basis
counts. This leads to exponential increases in computation time, as
illustrated in Fig. 26. To mitigate this, we apply a stochastic method
to sample from the output Gaussians after each operator:

Shy 1 h U &)
u(x):ZZUU~§,—j(x):E sz(—k)] (20)
im1 j=1 k=1

1Tech!nically, we treat the re-radiation matrix as a continuous 2D function rather than
a discretized matrix; however, we still borrow the terms diagonal and off-diagonal to
describe the Dirac delta components, as defined in Eq. (18).
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Fig. 27. GLOBAL ILLUMINATION. We render a scene with two different fluores-
cent materials under an equal time budget of approximately 7.5 seconds,
using a maximum path depth of 4. Hero-wavelength spectral sampling
(HWSS) achieves the highest sample count (64 SPP) but suffers from signifi-
cant color noise. In contrast, our forward (FWD) and backward (BWD) meth-
ods significantly reduce color noise, though with fewer samples per pixel.
By combining these methods with stochastic summation, our approach
achieves a favorable balance between spectral accuracy and rendering per-
formance.

where we importance sample N Gaussians from the full set of I X J
using the distribution p. Although this reintroduces some noise,
each sample represents a Gaussian rather than a point, resulting
in improved convergence [Billen and Dutré 2016; Deng et al. 2019;
Salesin and Jarosz 2019].

Implementation. We implemented our approach in PBRT-v4 [Pharr

etal. 2023], using fluorescence hero-wavelength spectral sampling [Mo-

jzik et al. 2018] with Gaussian mixture compression [Hua et al. 2023]
as the baseline (HWSS). For both HWSS and our stochastic Gauss-
ian sampling, we used N = 4 point- or Gaussian-spectrum samples
for each light path. Our sampling process is implemented using
weighted reservoir sampling (WRS) to minimize additional compu-
tational overhead. All results in this section were tested on an Intel
i7-13700 CPU.

Comparison. For direct illumination, as shown in Fig. 25, our
method significantly reduces color noise with minimal computa-
tional overhead. For global illumination, as shown in Fig. 27, both
forward (FWD) and backward (BWD) methods introduce substantial
overhead, leading to fewer samples within the same time budget.
However, they can still be beneficial in scenes dominated by color
noise from spectral integration. By combining our approach with
stochastic summation (FWD/BWD + MC), we mitigate the exponen-
tial growth in computation and achieve a greater overall variance
reduction.

7 DISCUSSION AND FUTURE WORK

Comparing generalizability to neural methods. While neural net-
works are powerful, the inherent analytical properties of our method,
and the baselines to which we compare, offer advantages in training
and generalization. For instance, these methods preserve linearity, al-
lowing training on simple basis inputs like [1,0,0,...], [0,1,0,...],
etc., and generalization to arbitrary inputs like [3,1,4,...] via lin-
earity. In contrast, standard brute-force neural networks lack this
property and require extensive training on a wide variety of input
vectors, demanding significantly more data and effort.

Gaussian Integral Linear Operators for Precomputed Graphics + 251:13

Reference

Fig. 28. INFLUENCE OF GAUSSIAN PARAMETERIZATION. The parameterization of
Gaussians can influence the results, even when using the same initialization,
training hyperparameters, loss functions, and number of iterations. For
example, NDG [Diolatzis et al. 2024] uses the upper triangular components
of the Cholesky decomposition to parameterize the covariance matrix, while
3DG [Kerbl et al. 2023] adopts a formulation based on separate rotation and
scaling matrices. At runtime, the NDG parameterization tends to produce
zigzag-like aliasing but achieves lower absolute error, whereas the 3DG
parameterization exhibits ringing artifacts yet yields better performance in
terms of squared error.

Similarly, in the multi-operator setting, our method supports
analytical composition, so each kernel can be learned independently,
and arbitrary compositions can be performed at runtime. In contrast,
neural networks must learn the composition themselves, requiring
supervision on all potential kernel combinations, which makes the
training process significantly more complex.

Output- and perception-aware operator learning. Typical PRT meth-
ods follow a largely deterministic pipeline—for example, when using
spherical harmonics or Haar wavelets, the coefficients are obtained
via explicit basis projection. In contrast, our method’s behavior de-
pends heavily on how the kernel is approximated. As shown in
Fig. 28, different parameterizations can lead to markedly different
optimized kernels. We use the NDG parameterization for most re-
sults, as it typically gives lower MSE and supports any-dimensional
Gaussians. For Fig. 13, however, we use 3DG for better visualization.

Although we employ an L1 + DSSIM loss for all our precompu-
tation, the loss function that yields the most perceptually pleasing
results remains an open question. A promising avenue for future
work is to optimize the kernel not by minimizing its sliced error,
but by directly maximizing the fidelity of the final rendered output.

Fitting high-dimensional Gaussians. While our mathematical for-
mulation supports arbitrary input dimension Ny and output di-
mension Ny, fitting kernels in high-dimensional spaces remains
a practical challenge. In current applications, we minimize errors
between 2D slices of high-dimensional data via conditional Gaus-
sians, leveraging tile-based rasterizers for efficient differentiation.
However, when reference slices are unavailable — such as in fit-
ting kernels defined on 3D point clouds — this approach breaks
down. Being able to fit all kinds of high-dimensional kernels would
significantly broaden the applicability of our approach.
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Fig. 29. EFFIcIENCY OF CLUSTERING AND OPTIMIZATION. We evaluate the train-
ing time cost with respect to the number of 4D Gaussians used in the SHARK
scene. The task of clustering Gaussians down to 75% of their current num-
ber exhibits a significant increase in computational cost as the number of
Gaussians grows. In contrast, optimizing Gaussian parameters using a dif-
ferentiable rasterizer scales more favorably with the number of Gaussians,
demonstrating better computational efficiency at larger scales.

Clustering and densification. As discussed in Table 1, a substan-
tial portion of the training cost for our PRT model arises from the
clustering and retraining of Gaussians. Currently, we use a greedy
clustering algorithm with O(N? log N) time complexity and O(N?)
space complexity, where N is the number of Gaussians. This ap-
proach becomes increasingly expensive as the number of Gaussians
grows, as shown in Fig. 29. One potential improvement is to adopt a
more scalable, parallel clustering strategy to reduce computational
overhead. Moreover, adopting the densification technique proposed
by Kerbl et al. [2023] may enable training from fewer initial Gaus-
sians, thus alleviating or even eliminating the need for expensive dis-
tillation. Balancing clustering and densification in high-dimensional
Gaussian fitting presents an interesting direction for future work.

Runtime performance. While our method achieves higher quality
under equal memory, its runtime performance is generally slower
than the baselines. Fortunately, there is significant room to improve
it. For example, better culling strategies, like visibility and occlusion
culling, can skip Gaussians not visible in PRT applications. Hierar-
chical Gaussian operators can also help, by using coarser levels for
large input Gaussians and finer levels for smaller ones, reducing the
number of output Gaussians when the input is large.

Parameterization of domains. Our method performs best when
the kernel function K can be well represented by an Nj-dimensional
Gaussian mixture. In practice, the structure of K strongly depends
on the choice of input (¥) and output (X) parameterizations. In
our examples, we simply use the default parameterizations, but ex-
ploring parameterizations more aligned with Gaussian assumptions
could improve compactness and accuracy. Another relevant concern
is that certain parameterizations can introduce extra discontinuities
into the domain — for example, the octahedral mapping of spherical
space. Investigating extensions of our analytical operator to support
other basis families, e.g., spherical Gaussians, better suited to these
domains is also an interesting direction.

8 CONCLUSION

We present a novel method for closed-form integral linear operators
by expanding kernels directly into high-dimensional Gaussian mix-
tures. Our approach compactly captures correlations across input-
output spaces and adaptively expands the output basis according
to the input structure. This formulation enables efficient, analytical
operator integration and composition, and applies broadly across
graphics problems involving single or multiple operators. We believe
this formulation opens new avenues for scalable, accurate integral
linear operator approximations in graphics and related fields.
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