A Progressive Error Estimation Framework for Photon Density Estimation

Toshiya Hachisuka^{*} Wojciech Jarosz^{†*} Henrik Wann Jensen^{*}

*University of California, San Diego †Disney Research Zürich

Blender Foundation | <u>www.bigbuckbunny.org</u>

Quiz

Quiz

Importance of Error Estimation

• 'Guesswork' does not work!

Importance of Error Estimation

- 'Guesswork' does not work!
- Key element for many applications
 - Predictive rendering (e.g., lighting engineering)
 - Error-driven computation
 - Theoretical error analysis

Definition of Error

Difference between computed and exact

 $E_i = L_i - L$

Definition of Error

• Difference between computed and exact

$E_i = L_i - L$ Unknown

10

• Path Tracing [Kajiya 86]

• Photon Density Estimation [Jensen 96][Walter 98]

• Progressive Photon Mapping [Hachisuka et al. 08]

Number of Samples

Error estimation in biased methods is challenging

 $E_i = ?$

 Variance-based estimation for unbiased methods [Lee et al. 85][Purgathofer 87][Tamstorf et al. 97]

- Variance-based estimation for unbiased methods [Lee et al. 85][Purgathofer 87][Tamstorf et al. 97]
- Deterministic error bound in restricted cases [Ward et al. 88][Walter et al. 05]

- Variance-based estimation for unbiased methods [Lee et al. 85][Purgathofer 87][Tamstorf et al. 97]
- Deterministic error bound in restricted cases [Ward et al. 88][Walter et al. 05]
- Bias reduction [Myszkowski 97][Schregle 03]

- Variance-based estimation for unbiased methods [Lee et al. 85][Purgathofer 87][Tamstorf et al. 97]
- Deterministic error bound in restricted cases [Ward et al. 88][Walter et al. 05]
- Bias reduction [Myszkowski 97][Schregle 03]
- Heuristic error estimation [Walter 98]

Contribution

Error estimator for photon density estimation

Difference between computed and exact

 $E_i = L_i - L$

Bias-Noise decomposition

 $E_i = L_i - L = B_i + N_i$

Photon Mapping

Bias-Noise decomposition

 $E_i = L_i - L = B_i + N_i$

Progressive Photon Mapping

• Can we estimate E_i ?

• Can we estimate E_i ?

Probably Not

$E_i = L_i - L$

$$L = L_i - E_i$$

 $L = L_i - E_i$

Estimating error is as difficult as estimating radiance

• Can we estimate bounds of E_i ?

 $E_{\min,i} \leq E_i \leq E_{\max,i}$

• Can we estimate bounds of E_i ?

$E_{\min,i} \leq E_i \leq E_{\max,i}$

Probably Not

Integration of a rectangular function

 $\int F(x) \mathrm{d}x = 1$

• Integration of a rectangular function

• Integration of a rectangular function

Integration of a rectangular function

 $\int F(x) \mathrm{d}x = 1$

• Integration of a rectangular function

Error Estimation in Monte Carlo Methods

Integration of a rectangular function

Error is not bounded

Error Estimation in Monte Carlo Methods

Probability $(E_{\min,i} \leq E_i \leq E_{\max,i}) = 90\%$

Drop a few cases where $E_{\min,i} \leq E_i \leq E_{\max,i}$ is false

Stochastic Error Bounds

- Bounds that are true with some probability
- Well-known concept in computational statistics

$$P(E_{\min,i} \le E_i \le E_{\max,i}) = 1 - \beta$$

Stochastic error bound

User-defined Confidence

 $L_i - L = E_i = B_i + N_i$

• Subtract bias

$L_i - L - B_i = E_i - B_i = N_i$

Noise follows the t-distribution

 $L_i - L - B_i = E_i - B_i = N_i$

 $P(-N_b \le N_i \le N_b) = 1 - \beta$

$$N_b = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}}$$

• Add back bias

$L_i - L = E_i = B_i + N_i$

$P(-N_b + B_i \le E_i \le N_b + B_i) = 1 - \beta$

$$N_b = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}}$$

• Take the absolute value

$L_i - L = E_i = B_i + N_i$

$P(|E_i| \le |N_b| + |B_i|) \le 1 - \beta$

$$N_b = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}}$$

$$\begin{array}{l} L_i - L = E_i = B_i + N_i \\ \text{Stochastic error bound} & \text{User-defined} \\ Probability \\ \hline P(|E_i| \leq E_{b,i}) \leq 1 - \beta \end{array}$$

$$E_{b,i} = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}} + |B_i|$$

$L_i - L = E_i = B_i + N_i$

 $P(|E_i| \le E_{b,i}) \le 1 - \beta$

$$E_{b,i} = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}}$$

Error due to Noise

$L_i - L = E_i = B_i + N_i$

$P(|E_i| \le E_{b,i}) \le 1 - \beta$

Challenges

$$E_{b,i} = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}} + |B_i|$$

• B_i (bias) is unknown

Challenges

$$E_{b,i} = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}} + |B_i|$$

- B_i (bias) is unknown
- Variance estimation assumes i.i.d.
 - independent and identically distributed
 - not true in progressive photon mapping

Bias Estimation

- B_i (bias) is unknown
- Well-known approximation [Silverman 86]

$$B_i \approx k_2 R_i^2 \Delta L$$

- k_2 constant
- R_i search radius
- ΔL Laplacian of radiance

Bias Estimation

- B_i (bias) is unknown
- Well-known approximation [Silverman 86]

$$B_i \approx k_2 R_i^2 \Delta L$$

$$k_2$$
 constant

 R_i search radius

 ΔL Laplacian of radiance

Unknown

Kernel-based estimation of Laplacian

 $L_{i}(x) = \frac{\sum K(x_{p} - x) f_{r}(x, \omega, \omega_{p}) \Phi(x_{p}, x)}{\pi R_{i}^{2}}$

Kernel-based estimation of Laplacian

 $\Delta L_{i}(x) = \frac{\sum \Delta K(x_{p} - x) f_{r}(x, \omega, \omega_{p}) \Phi(x_{p}, x)}{\pi R_{i}^{2}}$

Kernel-based estimation of Laplacian

 $\Delta L_{i}(x) = \frac{\sum \Delta K(x_{p} - x) f_{r}(x, \omega, \omega_{p}) \Phi(x_{p}, x)}{\pi R_{i}^{2}}$

Extended to progressive photon mapping

Kernel-based estimation of Laplacian

 $\Delta L_{i}(x) = \frac{\sum \Delta K(x_{p} - x) f_{r}(x, \omega, \omega_{p}) \Phi(x_{p}, x)}{\pi R_{i}^{2}}$

Extended to progressive photon mappingApplicable to any order

Kernel-based estimation of Laplacian

 $\Delta L_{i}(x) = \frac{\sum \Delta K(x_{p} - x) f_{r}(x, \omega, \omega_{p}) \Phi(x_{p}, x)}{\pi R_{i}^{2}}$

Extended to progressive photon mapping

- Applicable to any order
- Convergent

Variance Estimation

- Variance estimation assumes i.i.d.
 - not true in progressive photon mapping

dependency

Variance Estimation

- Two key observations
 - Photon tracing itself is independent
 - Dependency is only in radius reduction

Variance Estimation

- Two key observations
 - Photon tracing itself is independent
 - Dependency is only in radius reduction

Bias-corrected radiance

$$L'_{i} = L_{i} - B_{i}$$

Variance
$$\approx \frac{\sum L'_{i}^{2} - \frac{\left(\sum L'_{i}\right)^{2}}{i}}{i - 1}$$

Key Points

- Approximate stochastic error bounds
- Convergent derivative estimator
- Bias/Noise estimators valid for PPM

Experiments Setup

- Progressive Photon Mapping [Hachisuka et al. 08]
- 15k photons per pass
- Three test scenes with full global illumination

Calculated Probability of Bounds $P(|E_i| \le E_{b,i}) \le 1 - \beta$

within 5% deviation

Bounded Pixel Visualization Bounded/Not bounded

Noise-Bias Ratio

Automatic Rendering Termination

Stochastic Bound Per Pixel (50%)

$P(|E_i| \le E_{b,i}) \le 50\%$

Stop rendering if $Average[E_{b,i}] < E_{thr}$ User-specified allowable error

Automatic Rendering Termination

specified: 0.25 actual: 0.1916 specified: 0.125 actual: 0.09294 specified: 0.0625 actual: 0.04482

1.3 times overestimation on average

Automatic Rendering Termination

Future Work

• Various applications of error estimates

Future Work

- Various applications of error estimates
 - Better stopping criterion
- Various applications of error estimates
 - Better stopping criterion
 - Error-driven adaptive sampling

- Various applications of error estimates
 - Better stopping criterion
 - Error-driven adaptive sampling
 - Optimal search radius based on error

- Various applications of error estimates
 - Better stopping criterion
 - Error-driven adaptive sampling
 - Optimal search radius based on error
 - ... and many more

- Various applications of error estimates
 - Better stopping criterion
 - Error-driven adaptive sampling
 - Optimal search radius based on error
 - ... and many more
- Extension to stochastic PPM [Hachisuka et al. 09]

- Various applications of error estimates
 - Better stopping criterion
 - Error-driven adaptive sampling
 - Optimal search radius based on error
 - ... and many more
- Extension to stochastic PPM [Hachisuka et al. 09]
- More accurate bias estimation

Conclusion

- Error estimation for photon density estimation
 - General and non-heuristic (gives an error-bar)
 - Estimator applies to progressive photon mapping

Conclusion

- Error estimation for photon density estimation
 - General and non-heuristic (gives an error-bar)
 - Estimator applies to progressive photon mapping

• Take-home message:

First step toward answering: "How many photons are enough?"

Acknowledgements

- ATI fellowship 2008-2009
- Youichi Kimura (Studio Azurite): modeling
- Matus Telgarsky, Daniel Hsu (UCSD): discussion

Thank You

