Frequency Analysis and Dual Hierarchy for Efficient Rendering of Subsurface Scattering

David Milaenen

Weta Digital Université de Montréal **Laurent Belcour**

Unity Labs Université de Montréal Jean-Philippe Guertin

Université de Montréal

Toshiya Hachisuka

University of Tokyo

Derek Nowrouzezahrai

McGill University Université de Montréal

$$L_o(x_o, \omega_o) = \int_A \int_{2\pi} S(x_i, \omega_i, x_o, \omega_o) L_i(x_i, \omega_i) (n \cdot \omega_i) d\omega_i dA(x_i)$$

Classical Dipole [Jensen et al. 2001]

Directional Dipole [Frisvad et al. 2014]

Beam Diffusion [Habel et al. 2013]

Quantized-Diffusion [d'Eon and Irving 2011]

$$L_o(x_o, \omega_o) = \int_A \int_{2\pi} S(x_i, \omega_i, x_o, \omega_o) L_i(x_i, \omega_i) (n \cdot \omega_i) d\omega_i dA(x_i)$$

$$L_o(x_o, \omega_o) = \int_A \int_{2\pi} S(x_i, \omega_i, x_o, \omega_o) L_i(x_i, \omega_i) (n \cdot \omega_i) d\omega_i dA(x_i)$$

$$L_o(x_o, \omega_o) = \int_A \int_{2\pi} S(x_i, \omega_i, x_o, \omega_o) L_i(x_i, \omega_i) (n \cdot \omega_i) d\omega_i dA(x_i)$$

$$L_o(x_o, \omega_o) = \int_A \int_{2\pi} S(x_i, \omega_i, x_o, \omega_o) L_i(x_i, \omega_i) (n \cdot \omega_i) d\omega_i dA(x_i)$$

Observations

- Costly double integral per pixel
 - Directional integral (just like BSDFs)
 - Spatial integral (specific to BSSRDFs)

- Result is often smooth
 - Individually solving each pixel is wasteful

- Costly double integral per pixel
 - Directional integral (just like BSDFs)
 - Spatial integral (specific to BSSRDFs)
- Result is often smooth
 - Individually solving each pixel is wasteful

$$L_o(x_o, \omega_o) = \int_A \int_{2\pi} S(x_i, \omega_i, x_o, \omega_o) L_i(x_i, \omega_i) (n \cdot \omega_i) d\omega_i dA(x_i)$$

$$L_o(x_o, \omega_o) = \int_A \int_{2\pi} I_{x_o, \omega_o}(x_i, \omega_i) d\omega_i dA(x_i)$$

$$L_o\left(x_o, \omega_o\right) = \int_A \int_{2\pi}$$

$$I_{x_o,\omega_o}(x_i,\omega_i)$$

 $d\omega_i dA\left(x_i\right)$

Illumination function

$$L_o(x_o, \omega_o) \approx \frac{1}{N} \sum_{k=1}^{N} I_{x_o, \omega_o}(x_{i,k}, \omega_{i,k})$$
Illumination sample

$$L_o(x_o, \omega_o) \approx \frac{1}{N} \sum_{k=1}^{N} I_{x_o, \omega_o}(x_{i,k}, \omega_{i,k})$$
Illumination sample

Cost: $\mathcal{O}(N)$

- Hierarchical [Jensen and Buhler 2002]
 - O Vectors [Frisvad et al. 2014]
 - O Radiance bin [d'Eon and Irving 2011]
- Multidimensional Lightcuts [Walter et al. 2006]
- Illumination cuts [Bus et al. 2015]
- Double hierarchy
 - O Micropolygon grid [d'Eon and Irving 2011, PRMan]
 - O GI VPL clustering [Jarabo et al. 2015]

$$L_o(x_o, \omega_o) \approx \frac{1}{N} \sum_{k=1}^N I_{x_o, \omega_o}(x_{i,k}, \omega_{i,k})$$

$$L_o\left(x_o,\omega_o
ight) \; pprox \; rac{1}{M} \sum_{k=1}^{M} C_{x_o,\omega_o}(x_{i,k},\omega_{i,k})$$

$$L_o\left(x_o,\omega_o
ight) \; pprox \; rac{1}{M} \sum_{k=1}^{M} C_{x_o,\omega_o}(x_{i,k},\omega_{i,k})$$
 Clustered sample

$$\operatorname{Cost}: \mathcal{O}(N) \longrightarrow \mathcal{O}(M)$$

Observations

- Costly double integral per pixel
 - Directional integral (just like BSDFs)
 - Spatial integral (specific to BSSRDFs)
- Result is often smooth
 - Individually solving each pixel is wasteful

Smooth

$$L_o\left(x_o,\omega_o\right)$$

$$\approx$$

Smooth
$$L_o(x_o,\omega_o) \approx \frac{1}{M} \sum_{i=1}^M C_{x_o,\omega_o}(x_{i,k},\omega_{i,k})$$

Frequency analyses of light transport

- Theory [Durand et al. 2005]
 - Acquired Materials [Bagher et al. 2012]
 - o Defocus, Motion Blur [Belcour et al. 2013]
 - Participating media [Belcour et al. 2014]
 - Animation cache [Dubouchet et al. 2017]
 - Global Illumination [Belcour et al. 2017]

A Frequency Analysis of Light Transport: from Theory to Implementation. [Belcour 2017].

Frequency analyses of light transport

- Theory [Durand et al. 2005]
 - Acquired Materials
 [Bagher et al. 2012]
 - Can we use such analyses for clustering
 - Paboth pixels and illumination samples?
 - Animation cache
 - Global Illumination
 [Belcour et al. 2017]

A Frequency Analysis of Light Transport: from Theory to Implementation. [Belcour 2017].

Contributions

- Clustered integration for translucent objects
 - Both pixels and illumination samples
 - Using a dual-tree structure
 - Based on novel frequency analysis
 - Supports any BSSRDF models

I. Illumination sampling

I. Illumination sampling

I. Illumination sampling

III. Clustered pixels

III. Clustered pixels

IV. BSSRDF contribution

IV. BSSRDF contribution

Outgoing radiance bandwidth

a) Outgoing radiance bandwith computation

a) Outgoing radiance bandwith computation

b) BSSRDF bandwidth

Image

Predicted bandwidth

Simultaneous refinement

0

Predicted bandwidth

Pixel clusters

Results

(a) BUNNY

(b) BUNNY (CLOSE-UP)

Results

- Subpixel variation will not be detected faithfully
 - Aliasing can cause wrong clustering
 - Need more conservative bandwidth estimation

- Manual clustering for separated objects
 - One tree per "separated" translucent object is needed
 - Same for any existing approaches

 Translucent objects often exhibit smoothness across pixels due to their blurring nature

- Smoothness is exploited via clustering
 - Dual-tree structure for pixels and illumination samples
 - Frequency analysis concervatily predicts cluster sizes

