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Bidirectional Surface Scattering 
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Existing BSSRDF Model
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Our BSSRDF Model
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Previous Models
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Previous Models

• Dipole [Jensen et al. 2001]

• Multipole [Donner & Jensen 2005] 

• Quantized diffusion [d’Eon & Irving 2011]

• Precomputed BSSRDF [Donner et al. 2009] [Yan et al. 2012]

• Photon diffusion [Donner & Jensen 2007] [Habel et al. 2013]
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Dipole

22



Dipole

Approximate solution 
[Reynolds et al. 1976]

23



Dipole

24



Dipole

25



Dipole

Virtual

Real
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Dipole

Diffuse BRDF Dipole BSSRDF

[Jensen et al. 2001]27
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Multipole

[Donner & Jensen 2005]36
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Quantized Diffusion
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Quantized Diffusion

39



Quantized Diffusion
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Quantized Diffusion

Dipole Quantized Diffusion

[d’Eon & Irving 2011]41
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Precomputed BSSRDF
An Empirical BSSRDF Model

Craig Donner⇥ Jason Lawrence† Ravi Ramamoorthi ‡

Toshiya Hachisuka§ Henrik Wann Jensen§ Shree Nayar⇥
⇥Columbia University † University of Virginia ‡ UC Berkeley § UC San Diego

Monte Carlo Path
Tracing (30 hours)

Diffusion Dipole + Single Scattering (10 min) Our Model + Single Scattering (30 min) Single Scattering Only
Figure 1: Although the appearance of orange juice is dominated by low-order scattering events, it is not accurately predicted by a single
scattering model alone (lower right). Adding the contribution from high-order multiple scattering using the diffusion dipole (left) still fails
to capture these effects and produces visible color artifacts. Numerical methods such as Monte Carlo path tracing (upper right) or photon
mapping are accurate, but do not provide an explicit model of the BSSRDF and require long rendering times. Our proposed model is compact,
efficient to render and can accurately express the complex spatial- and directionally-dependent appearance of these types of materials.

Abstract

We present a new model of the homogeneous BSSRDF based on
large-scale simulations. Our model captures the appearance of
materials that are not accurately represented using existing single
scattering models or multiple isotropic scattering models (e.g. the
diffusion approximation). We use an analytic function to model
the 2D hemispherical distribution of exitant light at a point on the
surface, and a table of parameter values of this function computed
at uniformly sampled locations over the remaining dimensions of
the BSSRDF domain. This analytic function is expressed in elliptic
coordinates and has six parameters which vary smoothly with sur-
face position, incident angle, and the underlying optical properties
of the material (albedo, mean free path length, phase function and
the relative index of refraction). Our model agrees well with mea-
sured data, and is compact, requiring only 250MB to represent the
full spatial- and angular-distribution of light across a wide spectrum
of materials. In practice, rendering a single material requires only
about 100KB to represent the BSSRDF.

1 Introduction

Light propagates into and scatters within all non-metallic materi-
als. This subsurface scattering is common in many liquids—such
as orange juice, coffee or milk, and in solids—such as gemstones,
leaves, wax, plastics and skin. It gives materials their characteristic
colors, and provides a soft, translucent appearance. Accurate and
compact models of the way light interacts with these materials are
necessary to efficiently render them.

Light scattering in translucent materials is described by the bidi-
rectional scattering surface reflectance distribution function S (the
BSSRDF [Nicodemus et al. 1977]). The BSSRDF defines the gen-
eral transport of light between two points and directions as the ratio
of the radiance Lo(⇥xo,⇥⇤o) exiting at position ⇥xo in direction ⇥⇤o to
the radiant flux �i(⇥xi,⇥⇤i) incident at⇥xi from direction ⇥⇤i:

dLo(⇥xo,⇥⇤o)
d�i(⇥xi,⇥⇤i)

= S(⇥xi,⇥⇤i;⇥xo,⇥⇤o|⇥s, ⇥a, g, �), (1)

where S depends on the optical properties of the material—the scat-
tering and absorption coefficients ⇥s and ⇥a, the relative index of
refraction � , and g ⇤ [�1 : 1] which parameterizes the anisotropy
of the phase function.

1.1 Related Work

Numerical techniques such as Monte Carlo path tracing [Kajiya
1986; Jensen et al. 1999] are capable of simulating general BSS-
RDFs. However, these methods are expensive, often requiring
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Photon Diffusion

[Donner & Jensen 2007]51



Photon Beam Diffusion

[Habel et al. 2013]52



Photon Diffusion

Dipole Photon Diffusion

[Donner & Jensen 2007]53
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Previous Models
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Previous Models

• Considers incoming light direction

• Requires no precomputation

• Relies on numerical integration

• Dipole [Jensen et al. 2001]

• Multipole [Donner & Jensen 2005] 

• Quantized diffusion [d’Eon & Irving 2011]

• Precomputed BSSRDF [Donner et al. 2009] [Yan et al. 2012]

• Photon diffusion [Donner & Jensen 2007] [Habel et al. 2013]
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Contributions

• First BSSRDF which...

• Considers incoming light direction

• Requires no precomputation

• Provides fully analytical function
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Directional solution 
[Menon et al. 2005]
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Mirror direction
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Offset location

66



Virtual

Real
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Original Dipole

Virtual

Real
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Virtual

Real

Directional Dipole
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Two Challenges

• Mirroring sources is unstable

• Singularity at the real source
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Mirroring plane

Unstable Mirroring
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Mirroring plane

Unstable Mirroring
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Modified Mirroring Plane
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Modified mirroring plane
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Two Challenges
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Singularity

O(r�3)
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Distance Correction

• Inspired by the correction technique in 
computational physics [Elliot 86]

r0 =
p

r2 + z02

corrected distance distance correction factor
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Results
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Simple Test Cases

• Various measured materials

• Comparisons with Monte Carlo simulation

• Highly directional lighting
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Simple Test Cases

0

0͘1

0͘2

0͘3

apple choc�milk marble potato skin1 soy�milk grapefruit whole�milk

RMSEstandard�dipole
better�dipole
quantized
our�model
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Directional Effect

• Incident angle: 30°

Quantized Ours
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Directional Effect

• Incident angle: 45°

Quantized Ours
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Directional Effect

• Incident angle: 60°

Quantized Ours
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Image Based Lighting

Quantized Ours90



Image Based Lighting
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Image Based Lighting

Quantized Ours92



Failure Case
• Low albedo materials (e.g., Cranberry juice)

Dipole Ours93



Conclusions

• First BSSRDF which...

• Considers incoming light direction

• Requires no precomputation

• Provides fully analytical solution

• Far more accurate than previous models
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http://cs.au.dk/~toshiya/dirpole_tr.pdf

Thank You
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