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Rendering translucent materials using Monte Carlo ray tracing is compu-
tationally expensive due to a large number of subsurface scattering events.
Faster approaches are based on analytical models derived from diffusion
theory. While such analytical models are efficient, they miss out on some
translucency effects in the rendered result. We present an improved ana-
lytical model for subsurface scattering which captures translucency effects
that are present in the reference solutions but remain absent with existing
models. The key difference is that our model is based on ray source diffusion,
rather than point source diffusion. A ray source corresponds better to the
light that refracts through the surface of a translucent material. Using this
ray source, we are able to take the direction of the incident light ray and
the direction toward the point of emergence into account. We use a dipole
construction similar to that of the standard dipole model, but we now have
positive and negative ray sources with a mirrored pair of directions. Our
model is as computationally efficient as existing models while it includes
single scattering without relying on a separate Monte Carlo simulation, and
the rendered images are significantly closer to the references. Unlike some
previous work, our model is fully analytic and requires no precomputation.
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1. INTRODUCTION

Rendering of translucent materials, such as skin, foods, minerals,
and many other natural materials, has many important use cases
in computer graphics. For more than a decade, the dipole approxi-
mation for subsurface scattering [Jensen et al. 2001] has proven to
be a fast practical way of rendering such materials. This standard
dipole model is however built upon a number of assumptions which
are often violated. One significant assumption is that incident light
is directionally uniform. This assumption is evident from the fact
that the standard dipole model is a function only of the distance
between the point of incidence and the point of emergence. The
same assumption has been used in recently introduced analytical
models [d’Eon and Irving 2011]. The lighting distribution in realistic
scene configurations, however, is rarely directionally uniform.

We introduce a directional dipole model for subsurface scattering
which produces images that are closer to path traced references. Our
model is a fully analytical BSSRDF that does not assume direction-
ally uniform incident illumination. The derivation of our model is
based on a new analytical solution to the diffusion equation for a ray
of light in a highly scattering medium with infinite extent [Menon
et al. 2005a; 2005b]. To handle boundary conditions, we extend this
ray source solution to a dipole construction, namely a mirrored pair
of directional sources. This construction is inspired by the standard
dipole model [Jensen et al. 2001].

Conventionally, single scattering is separated out from a model for
subsurface scattering. The ray source we use enables us to include
approximate single scattering in our model. We can thereby evaluate
complete subsurface scattering effects without relying on a separate,
potentially costly evaluation of single scattering based on Monte
Carlo ray tracing. Thus, while our inclusion of directional effects
adds some costs in a rendering, the inclusion of single scattering
balances these additional expenses, and outweighs them when light
sources are small (or singular). Figure 1 highlights our results.

2. RELATED WORK

The most general approach for rendering participating media is to
solve the radiative transfer equation by Monte Carlo ray tracing
(path tracing) [Rushmeier 1988]. This approach becomes extremely
costly for highly scattering media, where the average number of
scattering events (and thus the number of rays to be traced) is very
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standard dipole quantized diffusion our directional dipole unbiased path tracing

RMSE = 0.169, SSIM = 0.775 RMSE = 0.147, SSIM = 0.785 RMSE = 0.0610, SSIM = 0.823 reference

Fig. 1. Stanford bunny made of white grapefruit juice [Narasimhan et al. 2006]. It was rendered using different models for subsurface scattering. In the standard
dipole [Jensen et al. 2001] and in quantized diffusion [d’Eon and Irving 2011], accurate single scattering was added using unbiased path tracing [Rushmeier
1988]. Our model captures translucency effects that are present in the full path tracing but not in the results of the other analytical BSSRDF models.

large. Hanrahan and Krueger [1993] pioneered efficient rendering
of highly scattering translucent materials. They combined analytical
single scattering in layers [Blinn 1982] with refractive boundaries
and path traced multiple scattering. Stam [1995] introduced diffu-
sion theory to evaluate multiple scattering using a finite element
method. Dorsey et al. [1999] adapted a general Monte Carlo method
called volume photon mapping [Jensen and Christensen 1998] for
subsurface scattering. A fully analytical BSSRDF for subsurface
scattering was first introduced to graphics by Jensen et al. [2001].
We refer to their model as the standard dipole in this paper. Our
model is similar to the standard dipole in the sense that it is also
fully analytic and does not use numerical approximation.

The standard dipole was combined with photon mapping by Don-
ner and Jensen [2007]. They introduced an extended source model,
which means that the standard dipole solution is integrated along
the refracted ray. This method is referred to as photon diffusion.
Although photon diffusion can take oblique incidence into account,
the additional integration requires a larger number of samples than
an analytical model such as the standard dipole or our model. D’Eon
and Irving [2011] recently introduced an analytical extended source
model. As in the standard dipole, they assume that light is normally
incident. To solve the integral along the ray in the normal direction,
they use a functional approximation based on a sum of Gaussians.
In work concurrent with ours, Habel et al. [2013] showed that such
integrals can be approximated efficiently using Monte Carlo inte-
gration instead of this functional approximation. Their algorithm is
similar to photon diffusion and therefore takes oblique incidence
into account. The key difference in our model is that we start from a
fundamentally different solution of the diffusion equation for a ray
of light in an infinite medium [Menon et al. 2005a; 2005b]. This so-
lution enables us to derive the first analytical BSSRDF model which
can take the directions of incident light rays into account. Unlike
the other methods discussed here, our method does not require an
expensive integration of the solution along the refracted ray.

Special case solutions for the diffusion equation are often derived
for fluence (scalar irradiance in a volume) inside a medium with
no boundary. It is however important to consider boundary condi-
tions in computer graphics, where we are interested in the radiance
emerging at the boundary. One popular approach to handle boundary
conditions is the dipole approximation [Farrell et al. 1992; Jensen
et al. 2001]. The dipole approximation was originally developed for
handling light normally incident on a semi-infinite medium with a
planar surface. We relax the assumption of normal incidence.

standard dipole directional dipole

Fig. 2. A standard dipole model uses two point sources to handle boundary
conditions. The points are displaced along the normal at the point of inci-
dence. Our model uses two directional sources that are displaced along the
normal of a plane containing the points of incidence and emergence.

The dipole model has been improved in a number of ways such
as multipole [Wang 1998; Donner and Jensen 2005] and quadpole
constructions [Kienle 2005; Donner and Jensen 2007]. Our model
extends a directional source solution [Menon et al. 2005a; 2005b]
to a dipole construction with a positive and a negative ray source
(Figure 2). To the best of our knowledge, our work introduces a
dipole extension with directional sources for the first time.

While our focus in this paper is to find an improved analytical
model for subsurface scattering, another approach is to use pre-
computation. Donner et al. [2009] introduced a method which pre-
computes solutions to the radiative transfer equation as a canonical
tabulated solution. Yan et al. [2012] proposed another precomputa-
tion method for highly scattering media using a spherical Gaussian
approximation. Both approaches relax the assumptions made in the
models based on diffusion theory at the cost of storing precomputed
tables. Unlike these methods, our model remains fully analytic. As
such, the implementation of our model is trivial and incurs no extra
memory cost or additional precomputation time.

3. THEORY

To have subsurface scattering in a surface rendering method, we use
the general form of the rendering equation [Jensen et al. 2001]:

Lo(xo, ~ωo) = Le(xo, ~ωo) + Lr(xo, ~ωo) = Le(xo, ~ωo)

+

∫
A

∫
2π

S(xi, ~ωi;xo, ~ωo)Li(xi, ~ωi)(~ωi · ~ni) dωi dA , (1)

where Lo(xo, ~ωo) is the outgoing (or emergent) radiance in the
direction ~ωo from the location xo on the surface A of a medium,
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Li(xi, ~ωi) is the radiance incident on the surface A at the location
xi from the direction ~ωi, and ~ni is the surface normal at xi. The
term Le is the emitted radiance while Lr is the reflected radiance.
The function S is a Bidirectional Scattering-Surface Reflectance
Distribution Function (BSSRDF).

The BSSRDF is defined by the factor of proportionality between
an element of emergent radiance dLr(xo, ~ωo) and an element of
incident flux dΦi(xi, ~ωi) [Nicodemus et al. 1977]

S(xi, ~ωi;xo, ~ωo) =
dLr(xo, ~ωo)

dΦi(xi, ~ωi)
. (2)

Typically, the BSSRDF is split into three terms: reduced intensity
(direct transmission), single scattering, and multiple scattering [Han-
rahan and Krueger 1993; Jensen et al. 2001]. Previous models for
subsurface scattering focus on the definition of the multiple scat-
tering term and leave the remaining terms to be computed sepa-
rately using other methods (or the other way around [Hanrahan and
Krueger 1993]). However, this separation is not always convenient.
To date, there is seemingly no accurate and efficient method for
rendering single scattering in translucent materials (that is, opti-
cally thick media with smooth, refractive boundaries). We are only
aware of approximate methods for single scattering which assume a
BSDF configuration [Blinn 1982; Hanrahan and Krueger 1993], ap-
proximate transmission distance [Jensen et al. 2001], non-refractive
boundaries [Sun et al. 2005], an optically thin medium [Walter et al.
2009], or rough boundaries [Habel et al. 2013]. To get accurate
single scattering, we have to rely on path tracing, which can be
computationally expensive.

Instead of splitting the BSSRDF in three terms, we formulate
our model such that it includes single scattering based on the delta-
Eddington (δE) approximation [Joseph et al. 1976]. In this approx-
imation, the part of the single scattering that continues along the
refracted ray is moved to the reduced intensity term SδE . We then
consider multiple scattering and the remaining single scattering to
be the diffusive part of the BSSRDF Sd. The full BSSRDF in this
approximation becomes

S = T12(Sd + SδE)T21 , (3)

where T12 and T21 are the Fresnel transmittance terms at the loca-
tions where the radiance enters and exits the medium, respectively.

The modified reduced intensity term SδE is defined as the usual
reduced intensity term but using a modified set of scattering proper-
ties [Joseph et al. 1976]:

σ̃s = σs(1− g2) , σ̃t = σ̃s + σa , g̃ = g/(g + 1) , (4)

where σa is the absorption coefficient, σs is the scattering coeffi-
cient, and g is the asymmetry parameter (the mean cosine of the
scattering angle). These δE scattering properties replace the cor-
responding scattering properties in the standard definition of the
reduced intensity term. We return to the definition of this modified
reduced intensity in Sections 3.1 and 3.2.

Overview. In the following, we describe how we derive Sd. The
main idea is to consider both the origin and the direction of the
refracted light ray within the medium. We can then use a solution
to the diffusion equation where this ray is the source term. This
solution gives us a formula for estimating the fluence at any point
in the surrounding medium. Unlike existing models that use point
sources, this formula is not only a function of distance, but also a
function of the angle between the ray direction and the direction
toward the position that we are interested in. Once this solution
is established, we consider boundary conditions by introducing a

dipole with ray sources, and use the formula to find the radiance
emerging from the medium at a point on the boundary. This leads to
a new analytical BSSRDF which takes the direction of the incident
light and the direction toward the point of emergence into account.

3.1 Diffusion Theory for a Ray of Light

As in previous work, we derive the diffusive part of the BSSRDF Sd
using diffusion theory. This is usually done by finding a special case
solution for the classic diffusion equation, which is [Ishimaru 1978]

(D∇2 − σa)φd(x) = −q(x) + 3D∇ ·Q(x) , (5)

where φd(x) =
∫
4π
Ld(x, ~ω

′) dω′ is the diffusive part of the flu-
ence, D is the diffusion coefficient, and q and Q are zeroth and first
order source terms.

The standard dipole model [Jensen et al. 2001] uses the solution
of the diffusion equation for a point source in an infinite medium.
Consequently, the diffusive part of this model depends only on the
distance between the points of incidence and emergence. The direc-
tion of the incident light ray affects only the Fresnel transmittance
term. Our key contribution is a new BSSRDF model based on a
more recent solution to the diffusion equation for a ray of light in an
infinite medium [Menon et al. 2005a; 2005b]. Our model thus takes
the directions of incident light rays into account.

Consider a ray from the origin along the z-axis in a Cartesian xyz
coordinate system. In the δE approximation, the reduced intensity
(or directly transmitted) light due to this source is

Lri(x, ~ω) = Φδ(x)δ(y)Θ(z)e−σ̃tzδ(~ω − ~ωz) , (6)

where Φ is the radiant flux of the source. We have set x = (x, y, z)
while ~ωz is the direction of the z-axis and Θ(z) is the Heaviside
step function which is 1 when z ≥ 0 and 0 otherwise (it defines a
half-line starting at the origin). This ray source leads to the following
zeroth and first order source terms:

q(x) = σ̃sΦδ(x)δ(y)Θ(z)e−σ̃tz (7)
Q(x) = g̃q(x)~ωz , (8)

These terms would be simpler if we were using an isotropic point
source, especially the first order source term Q(x), which would
then be zero. With Equation 8, we can more accurately repre-
sent the anisotropy of the radiance. The region around the origin
where anisotropy is important grows with the asymmetry param-
eter g [Bevilacqua and Depeursinge 1999]. This anisotropy is not
accurately represented by the extended source models [Donner and
Jensen 2007; d’Eon and Irving 2011; Habel et al. 2013] since they
rely on (an integration of) the isotropic point source solution.

As in the standard dipole, we assume that the point of estimation
is not too close to sources and boundaries (|x| � 1/σs) and that the
medium is a weak absorber (σa � σs). Inserting the source terms
(7–8) into the diffusion equation (5) and making these assumptions,
we reach an approximate directional solution for a ray of light in an
infinite medium [Menon et al. 2005a; 2005b]:

φ′d(r, θ) =
Φ

4πD

e−σtrr

r

(
1 + 3D

1 + σtrr

r
cos θ

)
, (9)

where σtr =
√
σa/D is the effective transport coefficient, r = |x|

is the distance from the point of incidence, and θ is the angle with
the ray direction (see Figure 3);

cos θ = z/r = (x · ~ωz)/r . (10)

It is interesting to note that, for a ray of light which is perpen-
dicular to the direction toward the point of interest (cos θ = 0),
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Fig. 3. Dipole configuration of our model. It is similar to the dipole with
point sources, but we have ray sources. The direction ~ω12 of the refracted
ray is used for the real source (blue). We mirror this direction in a modified
tangent plane to find the direction ~ωv of the virtual source (red). The modified
tangent plane contains xo −xi, and it is perpendicular to the plane spanned
by ~ni and xo − xi. The origin of the virtual source is displaced along the
normal of this modified plane. Note that θ 6= θv and r 6= rv .

Equation 9 turns into the point source solution which is used in
existing analytical BSSRDF models [Jensen et al. 2001; d’Eon and
Irving 2011]. We use a prime ′ to indicate that a solution disregards
boundaries (φ′d above and also S ′d in the following).

Suppose we have incident radiance Li(xi, ~ωi) and let it refract
into a scattering material to get the transmitted radiance

Lt(xi, ~ω12) = η−2 T12Li(xi, ~ωi) , (11)

where η = η2/η1 is the relative refractive index and ~ω12 is the
direction of the refracted ray given by the law of refraction applied
to ~ωi. To use a refracted ray of arbitrary origin and direction as the
ray source in our model, we have x = xo − xi and the following
setup for Equation 9 (see Figure 3):

Φ = T12Φi , ~ωz = ~ω12 , r = |x| , cos θ =
x · ~ω12

r
.

3.2 Emergent Radiance

We now briefly return to the reduced intensity term and then de-
scribe how we obtain the emergent radiance from the fluence using
approximations that were also used by d’Eon and Irving [2011].

Due to the delta-Eddington approximation, the transmitted radi-
ance (11) and the radiance due to δE reduced intensity (6) enable
us to indirectly define the modified reduced intensity part of the
BSSRDF SδE . The δE modified direct transmission emerging from
the medium is

Lr,δE(xo, ~ωo) = η2T21e
−σ̃tsLt(xri, ~ω21) , (12)

where xri = xo − s ~ω21 is the only point on the surface that can
contribute to this reduced intensity term, s is the distance from xo to
this point, and ~ω21 is the direction of the ray from inside the medium
refracting to the direction ~ωo according to the law of refraction. This
term is easily evaluated using traditional ray tracing.

To get an expression for the diffusive part of the BSSRDF, we
must relate the fluence to the emergent radiance. The emergent
radiance Lr,d due to diffuse subsurface scattering is given by

Lr,d(xo, ~ωo) = η2 T21Ld(xo, ~ω21) . (13)

Combining the diffusion approximation [Ishimaru 1978] with Fick’s
law of diffusion [Fick 1855], the diffusely scattered radiance is

Ld(x, ~ω) =
1

4π
φd(x)− 3

4π
D ~ω · ∇φd(x) (14)

withD = 1/(3σ′t), where σ′t = σs(1−g)+σa is called the reduced
extinction coefficient.

The relationship between Ld and the diffusive part of the BSS-
RDF Sd is given by Equations 2–3 and 13:

T12SdT21 = η2
d(T21Ld)

dΦi
. (15)

Assuming that the diffusive light at the point of emergence no longer
depends on the outgoing direction due to a large number of scattering
events, we have Sd(xi, ~ωi;xo, ~ωo) = Sd(xi, ~ωi;xo). Integrating
over outgoing directions, we get

T12Sd(xi, ~ωi;xo)4πCφ(1/η) =
dMd(xo)

dΦi(xi, ~ωi)
, (16)

where Md is the diffuse radiant exitance and Cφ is a function of η
which relates to hemispherical integration of the Fresnel transmit-
tance (see Appendix A). The η2 factor cancels out because 1/η was
chosen as the argument of Cφ [Aronson 1995]. The diffuse radiant
exitance is

Md(xo) =

∫
2π

T21Ld(xo, ~ω21)(~no · ~ωo) dωo , (17)

where ~no is the surface normal pointing outward at the point of
emergence such that the integral is over the hemisphere with ~no ·
~ωo > 0. Inserting the expression for Ld (14), we get an integral
that has been investigated many times before [Haskell et al. 1994;
Aronson 1995; Kienle and Patterson 1997]. The solution is

Md(xo) = Cφ(η)φd(xo)− CE(η)D~no · ∇φd(xo) , (18)

where Cφ and CE are in Appendix A. Equation 18 was also used in
the BSSRDF model of d’Eon and Irving [2011].

As opposed to previous work, we now use the diffuse fluence
from the directional solution (9). The gradient of this expression is

∇φ′d =
Φ

4πD

e−σtrr

r3

(
~ω12 3D(1 + σtrr)− x (1 + σtrr)

− x 3D
3(1 + σtrr) + (σtrr)

2

r
cos θ

)
. (19)

Inserting the directional solution (9) and its gradient (19) into Equa-
tion 18, we get an expression for the diffuse radiant exitance Md.
When this is inserted in Equation 16, we obtain an expression for
the diffusive part of the BSSRDF when disregarding boundaries:

S ′d(x, ~ω12, r) =

1
4Cφ(1/η)

1
4π2

e−σtrr

r3

[
Cφ(η)

(
r2

D
+ 3(1 + σtrr)x · ~ω12

)
− CE(η)

(
3D(1 + σtrr) ~ω12 · ~no

−
(
(1 + σtrr) + 3D 3(1+σtrr)+(σtrr)

2

r2
x · ~ω12

)
x · ~no

)]
,

(20)

where T12 and the flux Φ cancel out since Φ = T12Φi, and we take
the derivative with respect to Φi. The factor (4Cφ(1/η))−1 is the
normalization factor also used by d’Eon and Irving [2011].
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3.3 Boundary Conditions

The BSSRDF derived above (20) disregards boundaries in the sense
that it was derived for a ray of light in an infinite medium. Since our
purpose is to render media with boundaries, we need to take bound-
ary conditions into account. Like existing BSSRDF models [Jensen
et al. 2001; d’Eon and Irving 2011], we assume a semi-infinite
medium with a flat boundary and apply the resulting model to arbi-
trary boundary conditions.

We note that any approximate boundary conditions, including
ours and the ones that are used for existing models, are more or less
empirically based. It is widely acknowledged [Aronson 1995, for
example] that comparison with full solutions of the radiative transfer
equation is the only reasonable way to evaluate the appropriateness
of approximate boundary conditions. In the following, we provide
reasoning behind each of our choices but only as motivation. We
validate our final model via numerical experiments in Section 5.

3.3.1 Dipole configuration. There are many sensible ways to
incorporate the boundary in diffusion theory, and one has to make
a number of decisions when building a new model [Haskell et al.
1994]. One common approach is to let the fluence vanish at the
boundary of the medium. This is achieved by introducing a virtual
source which is the real source mirrored in the surface tangent
plane; a configuration commonly referred to as a dipole. Unlike the
standard dipole [Jensen et al. 2001], we have a dipole of ray sources.
This influences how the sources should be positioned in the dipole.
Figure 3 illustrates the configuration we have chosen.

The diffusion approximation matches the exact solution better if
the fluence vanishes at an extrapolated boundary, that is, a boundary
which is the same as the actual boundary but displaced outward in
the normal direction [Glasstone and Edlund 1952; Davison 1958;
Haskell et al. 1994; Aronson 1995]. The orthogonal distance from
the actual boundary to this extrapolated boundary is called the ex-
trapolation distance de. Existing models use de = 2D. This standard
approximation for de was originally derived from diffusion theory
for non-absorbing media with non-refractive boundaries (η = 1).
Comparing with exact calculations of de for this and other types of
media, Aronson [1995] found that 2D is imprecise in all cases. We
thus use an approximation which is closer to the right de for weakly
absorbing media with non-refractive boundary [Davison 1958]

de = 2.131D/
√
α′ , (21)

where α′ = σ′s/σ
′
t is the reduced scattering albedo which is the

ratio of the reduced scattering coefficient σ′s = σs(1 − g) to the
reduced extinction coefficient σ′t = σ′s + σa.

If the boundary of the medium has a mismatch of refractive in-
dices (η1 and η2, see Figure 3), we must multiply the extrapolation
distance by a reflection parameter A [Groenhuis et al. 1983]. When
the real source is mirrored in the extrapolated boundary, the displace-
ment of the virtual source becomes 2Ade. The reflection parameter
A is related to hemispherical integrals over the Fresnel transmit-
tance [Aronson 1995]. We use the same reflection parameter as
d’Eon and Irving [2011]. A convenient way to express A is

A(η) =
1− CE(η)

2Cφ(η)
. (22)

3.3.2 Modified tangent plane. Since our source is directional,
we also need to mirror the direction as well as the origin. While
one obvious choice of mirroring plane is the tangent plane, which
is defined by ~ni, we found that this choice leads to an inaccurate
solution if the assumption of a flat boundary is violated (which in
practice is almost always the case). Instead, we mirror the source

using a modified tangent plane with normal

~n∗i =


~ni , for xo = xi

xo − xi
|xo − xi|

× ~ni × (xo − xi)

|~ni × (xo − xi)|
, otherwise .

(23)

As we will demonstrate in Section 6.2, this choice in particular
eliminates issues in backlit regions. These issues are due to exagger-
ated directional effects caused by the assumption of a semi-infinite
medium. The modification basically ensures that cos θ only changes
in the virtual source as if the geometry were planar. Note that the
modified normal is used only to set the position and the direction of
the virtual source. The normal used for Fresnel and cosine terms is
not affected. If the boundary is actually flat, or, more generally, if
the point of emergence lies in the tangent plane defined by ~ni, the
modified normal equals the normal at the point of incidence.

3.3.3 Distance to the real source. In the standard dipole, the
real source is placed at the average depth zr = 1/σ′t = 3D of
the first scattering event straight below the surface (1/σ′t is often
referred to as one transport mean free path). This is a first order
approximation of the multipole which captures scattering due to a
normally incident light ray [Eason et al. 1978]. This displacement
of the real source leads to a modified distance to the real source
dr =

√
r2 + z2r which is based on the assumption that the ray is

normally incident on a planar surface [Jensen et al. 2001].
Since our source resembles the actual light ray more than it re-

sembles the first scattering event, we do not displace the real source.
This choice introduces a singularity in the model for r = 0 (Equa-
tion 9 is valid only for r � 1/σs). It also leads to overestimation in
the region close to the singularity where the assumption of uniform
emergent radiance is invalid. In Appendix B, we explain how to deal
with this singularity by comparing our solution to similar solutions
based on exact transport theory. Although the theoretical reasoning
might be complicated, the final solution is quite simple. We correct
the distance to the real source using

d2r =

{
r2 +Dµ0(Dµ0 − 2de cosβ), for µ0 > 0 (frontlit)
r2 + 1/(3σt)

2 , otherwise (backlit) ,
(24)

where σt = σa + σs, µ0 = −~no · ~ω12, and the other cosine term is

cosβ = − sin θ
r√

r2 + d2e
= −

√
r2 − (x · ~ω12)2

r2 + d2e
. (25)

When introducing a distance correction, we must consider
whether the denominator of cos θ (appearing in Equations 9 and
19) should be affected by the correction or not. Based on numerical
experiments, we have found that correction of the denominator leads
to smaller error. We therefore do not explicitly write cos θ in the S ′d
function (20), as the denominator is then corrected by simply using
dr as the r argument of S ′d for the real source.

3.3.4 Our BSSRDF. Putting it all together, the diffusive part of
our BSSRDF is

Sd(xi, ~ωi;xo) = S ′d(xo − xi, ~ω12, dr)− S ′d(xo − xv, ~ωv, dv) , (26)

where xv = xi + 2Ade~n
∗
i , dv = |xo − xv|, and ~ωv = ~ω12 −

2(~ω12 ·~n∗i)~n∗i (see Figure 3). To obtain the full BSSRDF, we add the
modified reduced intensity term SδE and multiply by the Fresnel
transmittances T12 and T21 (Equation 3).
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Fig. 4. Diffuse reflectance curves for a ray normally incident on planar, non-refractive semi-infinite media with σs = 1 cm−1 but with different absorption
properties (σa is specified above each plot). The ray is incident at the origin. The graphs plot diffuse reflectance Rd at positions along the x-axis for different
models (identified in the legends using the abbreviations specified in Figure 7). Note that each vertical axis uses a log-scale with a different range.

4. IMPLEMENTATION

Just like other BSSRDFs, our model can be used in a number of
rendering approaches. The only major difference is that our model
takes directions into account. Approaches which assume irradiance
as input need relatively minor modification in order to use our model.
We implemented our model in the following two approaches.

Direct Monte Carlo integration. As described by Jensen et
al. [2001], it is possible to use a BSSRDF in a Monte Carlo ray
tracer. We integrate the BSSRDF in a progressive path tracer by
distributing points evenly across the surface of the translucent object
using a dart throwing technique. A new set of points is sampled
iteratively, and, for every sampled surface point, the incident illumi-
nation is sampled from one direction. When a ray hits a translucent
material, we loop over all surface samples and accept or reject them
using a Russian roulette with the exponential term in the BSSRDF,
exp(−σtrr), as the probability of acceptance.

Hierarchical integration. The hierarchical integration method
for the standard dipole model [Jensen and Buhler 2002] works well
with our model. Our implementation is almost the same as the origi-
nal method. The only difference is that the irradiance computation
is no longer separable from the evaluation of the BSSRDF. Each
irradiance sample will be a list of differential irradiance samples
instead of its sum at the same location. We also use the same set of
directions across all irradiance samples in order to spatially cluster
them without any change in the original algorithm. Each evaluation
of the BSSRDF now goes over the list and takes directions into ac-
count. The number of evaluations of the BSSRDF increases with this
approach. One possible optimization would be to extend clustering
to take into account directions, so that we can also cluster samples
across directions. We chose a simpler approach of utilizing the ex-
isting implementation of the hierarchical integration method. In the
results we present, we used 16 directional samples by importance
sampling the environment map.

5. RESULTS

We implemented the standard dipole [Jensen et al. 2001], quantized
diffusion [d’Eon and Irving 2011], the better dipole [d’Eon 2012],
and our model all with the two approaches mentioned in Section 4.
The results in Figures 1, 7, and 8 were rendered using direct Monte
Carlo integration. The results in Figure 11 were rendered using
hierarchical integration. Optical properties measured by Jensen et

al. [2001] and Narasimhan et al. [2006] were used as input parame-
ters. To validate our model, we compare with full solutions of the
radiative transfer equation using unbiased path tracing [Rushmeier
1988]. Single scattering is computed using the same unbiased path
tracing approach, and it is added to all the results of the existing
models but not to the results of our model.

One common approach to compare BSSRDFs is to plot spatially
resolved diffuse reflectance Rd for a ray which is normally incident
on a planar semi-infinite medium. In this case, xi and ~ωi are fixed
so that we have

Rd(xo) =

∫
2π

S(xi, ~ωi;xo, ~ωo)(~ωo · ~no) dωo . (27)

Considering a non-refractive medium with its surface in the xy-
plane and a BSSRDF which does not depend on ~ωo, we have
Rd(x, y) = πSd(x, y). Figure 4 shows diffuse reflectance curves
for media with different albedos as produced by all the models
we tested. We fixed σs = 1 cm−1 and tested σa = 0.01 cm−1,
0.1 cm−1, 1 cm−1 with η1 = η2 = 1 and g = 0. Our model
produces curves that are similar to existing models with slight over-
estimation. If we take the curves of quantized diffusion and add
approximate diffuse single scattering [Habel et al. 2013] instead of
path traced single scattering, we get curves which are very close to
ours. This suggests that the overestimation in our model is due to ap-
proximation in single scattering. Note that the deviation of our model
in the tail of the curve for highly absorbing media (σa = 1 cm−1)
is in fact very small in its scale. Moreover, as we demonstrate in our
other results, the slight deviations in these diffuse reflectance curves
are not as significant as the missing directional effects.

To demonstrate the missing directional effects, we also compare
diffuse reflectance curves for oblique incidence. Figure 5 uses the
same configuration as Figure 4, except that we now change the angle
of incidence away from 0◦. The x-axis is in the plane of incidence.
We tested the medium with σa = 0.01 cm−1, and we included the
other models to verify that single scattering has minor directional
effects. In these plots, only our model captures the characteristic
distortion of the curve according to the angle of incidence, especially
at 60◦. Figure 6 visualizes the region around the peak as 2D plots
over the surface of the medium. The curves in Figure 5 correspond
to horizontal slices through the middle of the plots in Figure 6. In the
2D plots, we compare our model with quantized diffusion plus path
traced single scattering and with unbiased path tracing. While both
analytical models do not perfectly match the path traced reference,
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Fig. 5. Diffuse reflectance curves for a ray obliquely incident on a planar, non-refractive semi-infinite medium. The ray is incident at the origin at different
angles with the normal (the angles are specified above each plot), and the x-axis is in the plane of incidence. Curves are plotted for the same models as in
Figure 4. We used σs = 1 cm−1 and σa = 0.01 cm−1.
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Fig. 6. False-color images visualizing Rd(x, y) in the region
[−2 cm, 2 cm] × [−2 cm, 2 cm]. These 2D slices have the same
configuration as the plots in Figure 5. The first row is quantized diffusion
plus path traced single scattering (qntzd), the second row is our directional
dipole (ours), and the third row is unbiased path tracing (ptrace). The angles
of incidence are at the top. We used σs = 1 cm−1 and σa = 0.01 cm−1.
Our model varies significantly with the angle of incidence, while quantized
diffusion varies only due to single scattering.

our model distorts the reflectance according to the angle of incidence
as in the reference, especially along the x-axis (parallel to the plane
of incidence). The quantized diffusion slices exhibit only very slight
variations which are all due to the added single scattering.

Although diffuse reflectance plots for semi-infinite media can be
informative, what is more important in practice is the accuracy of
rendered images in more complex cases with refractive boundaries
that are not flat. Figure 7 compares rendered images of simple shapes

with different materials. Figure 9 plots the root-mean-squared er-
ror (RMSE) and the structural similarity index (SSIM [Wang et al.
2004]) of the corresponding high dynamic range images (using
perceptually uniform encoding for SSIM [Aydın et al. 2008]). Our
model produces results that are significantly closer to path traced
references when the material is highly forward scattering. For such
cases, directionality of incident light is important since light gener-
ally maintains its initial direction over longer distances. This makes
the directional effects non-negligible in the resulting radiance distri-
bution. For isotropically scattering materials (first four materials),
existing models are comparable to our model. We however note that
this is true only if accurate path traced single scattering is added to
the existing models (Figure 9, full color). The error nearly doubles
if single scattering is not added (Figure 9, faded color).

Figure 1 shows the bunny model rendered with the white grape-
fruit juice material as an example of more complex geometries. The
result of our model is again closer to the path traced reference. In
particular, our model captures bright scattered highlights which are
missing in existing models. Figure 8 shows the same scene configu-
ration with the marble material. For this material, existing models
tend to work well, yet our model is still more accurate than the other
models. The squared differences between BSSRDF results and the
path traced references in Figures 1 and 8 are visualized in Figure 10.
Figure 11 demonstrates renderings with image-based lighting using
hierarchical integration. Our model captures details of the geometry
that are highlighted by the directionality of the incident illumination.
These details are lost with the existing models.

It is noteworthy that a model which has fairly accurate diffuse
reflectance curves does not necessarily produce accurate rendered
images. Although our model has normal incidence curves which are
slightly less accurate (Figure 4), the rendered images are generally
more accurate than if we use the existing models. This discrepancy is
due to the fact that the existing models do not consider the direction
toward the point of emergence (Figure 6) nor does diffuse reflectance
curves capture it (Figure 5), and also that fundamental assumptions
such as semi-infinite media are not valid in practice.

In direct Monte Carlo integration, there is little practical differ-
ence in using our model instead of the standard (or better) dipole.
For each evaluation of the BSSRDF, we simply replace a single
scattering evaluation by a few additional arithmetic operations in the
diffusive part. It is significantly faster to evaluate our BSSRDF than
to evaluation the quantized diffusion BSSRDF. In order to make the
evaluation costs of quantized diffusion of the same order of magni-
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Fig. 7. Simple test cases comparing the standard dipole model (dipole) [Jensen et al. 2001], the better dipole model (btpole) [d’Eon 2012], quantized diffusion
(qntzd) [d’Eon and Irving 2011], our model (ours), and the reference solutions rendered by path tracing (ptrace). Path traced single scattering was added to the
existing models but not to ours. Materials used are all from measured values [Jensen et al. 2001; Narasimhan et al. 2006]. The results of our model are closer to
the path traced references or equally good, while the rendering times are shorter as our model includes single scattering.

standard dipole quantized diffusion our directional dipole unbiased path tracing
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Fig. 8. Same scene configuration as Figure 1 but with marble [Jensen et al. 2001]. Although existing models work rather well for this material, our model is
still closer to the path traced reference solution in terms of error. Perceptually, our result seems too smooth. This is due to the assumption that emerging light is
diffuse. The same assumption is used in the other analytical models, but, for those models, the problem is partly mitigated by the path traced single scattering.
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Fig. 9. Objective image quality measurements for the renderings in Figure 7.
Every measurement for an existing model (full color) is accompanied by a
measurement where path traced single scattering is excluded (faded color).
Our model outperforms the other models, except if materials have high
albedo and scatter isotropically, then the other models can be equally good
when single scattering is added.
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Fig. 10. Squared differences of BSSRDF results versus references.
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Fig. 11. Image based lighting of the Happy Buddha model with the materials also used in the simple test cases (Figure 7). The images were rendered using
hierarchical integration of the quantized diffusion model [d’Eon and Irving 2011] plus single scattering added by separate Monte Carlo ray tracing (top row) and
our model (bottom row). We excluded Fresnel reflection in order to better highlight the differences between the two models.
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Fig. 12. Diffuse reflectance curves for a ray incident at a 45◦ angle without
adding path traced single scattering to the existing models. Both the stan-
dard dipole and the better dipole now miss a sharp peak around the origin.
While the quantized diffusion model maintains the sharp peak, there is no
characteristic shifting of the profile due to the oblique angle of incidence.

tude as the other models, we needed to implement the radial caching
technique of d’Eon and Irving [2011]. This technique cannot be used
in the same way with our model due to the dependency on directions.
Similarly, in our current implementation of hierarchical integration,
we must (as opposed to existing models) evaluate the diffusive part
of our BSSRDF for every direction of incident illumination that we
consider. On the other hand, the single scattering which is added
separately to the existing models also depends on directions, and its
cost is thus also proportional to the number of directional samples.
Usually, the number of directional samples must be very large to
obtain noiseless single scattering.

In terms of rendering time, full unbiased path tracing in common
scenes with a refractive medium and a small light source (Figures 1
and 8) takes days using one CPU. Excluding multiple scattering in
our path traced results was only a factor of four or less faster. In a
scene with a large light source (Figures 7 and 11), path tracing is
up to two orders of magnitude faster, but still takes several hundred
seconds. It is thus very expensive to add single scattering in the
existing models, where it can easily take up 90% of the total ren-
dering time. One option to reduce the computational costs of single
scattering is to use some approximation, as suggested in previous
work [Hanrahan and Krueger 1993; Jensen et al. 2001; Habel et al.
2013]. Such approximation however introduces further error in the
rendered images. This makes our model even more favorable in
terms of accuracy. Figure 12 shows the consequences in the diffuse
reflectance curves if we exclude single scattering.

In most cases, path traced single scattering makes the total ren-
dering time of existing models larger than if our model is used.
However, this is not the case in Figure 11, as we used hierarchical
integration and the light source is large (due to the environment map
we used). The images in the bottom row of Figure 11, which were
rendered with our model using 16 directions and 4 samples per pixel,
took 18–20 minutes each on a 3.4 GHz CPU (Intel Core i7-2600)
using a single thread. As a representative of the existing models,
quantized diffusion with radial caching and with added single scat-
tering produced each of the images in the top row of Figure 11 in
13–14 minutes. Thus, in this unfavorable case of Figure 11, our
model is a factor 1.4 more expensive than the existing models.

6. DISCUSSION

6.1 Negative values

In some cases, our model can return a negative value. Figure 13 illus-
trates such cases with the index-matched boundary. We have found
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Fig. 13. Negative values appear in our model at grazing incidence. These
2D slices are similar to those in Figure 6, but with different absorption
coefficients and angles of incidence (the values are specified at the bottom).
The regions enclosed by a white contour have been clamped to zero. For
highly absorbing media, our model can return negative values for even
smaller angles. No configuration in Figure 6 has such a clamped region.

current model strictly planar unmodified tangent

Fig. 14. Comparison of our current model, our model if we assume a strictly
planar boundary, and our model if we use the tangent plane at the point of
incidence instead of the modified tangent plane. The images are close ups of
the bunny in Figure 8 without Fresnel reflections to highlight the differences.
The strictly planar variant is close to the current model, but misses subtle
details and slightly overestimates. The use of the modified tangent plane is
important for our model to work well.

that our model tends to return a negative value when the albedo is
low and the angle of incidence is large. It is mainly a consequence
of the approximations in the ray source solution (Equation 9). Our
current solution is to simply clamp the final value to zero if it is
negative. We have not found a case where clamping causes visible
artifacts. We also note that negative values rarely occur if a medium
has an index of refraction larger than the surrounding medium as is
commonly the case.

6.2 Strictly planar model and modified tangent plane

Since our boundary conditions are approximative, as in the existing
models, it is possible to consider some other theoretically reasonable
variations of the final model in Equation 26. For example, while our
model uses distances and angles computed directly from given loca-
tions and directions, we could assume a strictly planar configuration
(with ~no always perpendicular to x in Equation 20) and compute
distances and angles accordingly. This approach is used in existing
analytical models [Jensen et al. 2001; d’Eon and Irving 2011; d’Eon
2012]. As explained before, we could also mirror sources according
to the normal at the point of incidence (~ni) instead of the normal of
the modified tangent plane (~n∗i).

Figure 14 compares such potential variants of our model. This
comparison demonstrates that, if we assume a strictly planar bound-
ary as in the existing models, we would slightly blur illumination
features that are present with our current model. Moreover, we have
found that the strictly planar variant as well as the variant without the
modified tangent plane usually overestimate illumination in backlit

difference reciprocal difference reciprocal

Fig. 15. Taking the average of two evaluations of our model with the
variables of incoming and outgoing light swapped around would make our
model reciprocal. The difference from the non-reciprocal image in Figure 11
depends on the material.

regions. Although this result does not conclude that our choices are
fundamentally better than other variants, we have found that it is
rather difficult to improve upon the final model so that accuracy is
improved across all our test cases.

6.3 Reciprocity

Unlike the standard dipole model and the quantized diffusion model,
both of which only depend on the distance, our model is not recipro-
cal. In other words, swapping variables for a point of incidence and
a point of emergence does not result in the same value in our model.
If a reciprocal model is desirable (e.g., for bidirectional rendering
algorithms), one can take the average of two evaluations of our
model with swapped variables. Figure 15 shows images rendered
with this modification. For highly scattering materials (right), we
have found that our model is close to reciprocal, meaning that this
modification would not result in significant changes in rendered im-
ages. For thinner media (left), however, this modification produces
some differences in rendered images. We have not fully investigated
whether these differences are generally desirable or not in terms of
accuracy. All other results in this paper do not use this modification.

6.4 Limitations

Since we still make a number of assumptions to derive our model, it
does not perfectly match the results of path tracing. This is evident in
Figure 6, for example. Our model also does not reproduce emergent
radiance distributions that are not uniform. In addition, our model
does not distinguish between materials with different scattering
coefficients (σs) and asymmetry parameters (g) if they result in the
same reduced scattering coefficient (σ′s = σs(1− g)), except in the
correction of the distance to the real source (Section 3.3.3).

We emphasize again that, similar to other models, our model
is derived under the assumption of a planar semi-infinite medium.
The modified tangent plane does not remove this limitation. This
assumption is known to have issues in a number of cases such as
sharp boundaries and thin features. Extensions of our model to
quadpole and multipole constructions to alleviate those issues are
interesting future work.

7. CONCLUSION

We introduced a novel BSSRDF which comes closer to path traced
references than existing models. Our model is built upon a new
analytical solution to the diffusion equation which enables us to
take the direction of incoming light into account. We explained
how to derive a practical BSSRDF by extending this solution into
a dipole of real and virtual ray sources. Our work significantly
improves the accuracy of an analytical model based on diffusion
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theory. Improvement over existing models is especially significant
for highly forward scattering materials, where the directionality
of the incident illumination is more important. We believe that
our model is a valuable addition to the existing set of analytical
BSSRDFs. Since our model is fully analytic, application to real-
time rendering is very promising as compared with models based
on numerical integration.
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APPENDIX

A. FRESNEL INTEGRALS

In Section 3.2, we need hemispherical integrals of the Fresnel
transmittance T . More specifically, we need to evaluate the cosine-
weighted hemispherical integral of T21 multiplied by the Ld in
Equation 14. To do this, we use the following functions

Cφ(η) =
1

4π

∫
2π

T21(η, θo) cos θo dω (28)

CE(η) =
3

4π

∫
2π

T21(η, θo) cos2θo dω , (29)

where cos θo = ~no · ~ωo. In the following, we leave out the argu-
ment of the C-functions to shorten notation. The C-functions are
easily written in terms of Fresnel reflectance R instead of Fresnel
transmittance, since T = 1−R. This means that

Cφ =
1

4π

(
π −
∫
2π

R21(η, θo) cos θo dω

)
=

1

4
(1− 2C1) (30)

CE =
3

4π

(
2π

3
−
∫
2π

R21(η, θo) cos θo dω

)
=

1

2
(1− 3C2). (31)

D’Eon and Irving [2011] also use the functions Cφ and CE , and
they provide the following convenient polynomial approximations
to ease their evaluation:

2C1≈


0.919317− 3.4793η + 6.75335η2 − 7.80989η3

+ 4.98554η4 − 1.36881η5, η < 1

−9.23372 + 22.2272η − 20.9292η2 + 10.2291η3

− 2.54396η4 + 0.254913η5, η ≥ 1

3C2≈



0.828421− 2.62051η + 3.36231η2 − 1.95284η3

+ 0.236494η4 + 0.145787η5, η < 1

−1641.1 + 135.926
η3

− 656.175
η2

+ 1376.53
η + 1213.67η

−568.556η2 + 164.798η3 − 27.0181η4 + 1.91826η5, η ≥ 1.

B. DISTANCE CORRECTION

Our distance correction is inspired by more general versions of the
standard dipole and the relation between these diffusion dipoles and
similar solutions from more exact transport theory. The main idea is
to see how our model without the distance correction differs in terms
of the distance between the points of incidence and emergence. We
limit our investigation to the planar semi-infinite medium which is
also the case that we considered when configuring the dipole.

Suppose we orient our coordinate system such that the xy-plane is
the surface and the ray is incident at the origin with the z-axis along
−~no. Assuming that the medium exhibits isotropic scattering and
that the solution is independent of outgoing direction, the emergent
radiance Lr(xo, ~ωo) becomes an integral over z from 0 to∞ of a
Hankel transform of a Green function which is Fourier transformed
in the x and y coordinates [Williams 1982]. Analytical evaluation of
a diffuse reflectance integral like this is difficult except in the special
cases of a point source [Elliott 1955] and a ray source in the normal
direction [Williams 2009]. In these two “monopole” solutions which
incorporate a planar boundary, an approximate analytical evaluation
of the diffuse reflectance integral is possible if the radial distance is
corrected to

R2 = r2 + (z′ + de)
2 , (32)

where z′ is the depth of the point source or the internal ray source.
For z′ = 0, Elliott [1955] observed that the d2e term in Equation 32
essentially deals with the boundary in a way somewhat similar to
what the standard dipole does. The main difference is that radial dis-
tance is corrected in the transport solution, whereas, in the standard
dipole, the diffuse reflectance integral is approximated by displac-
ing the real source (z′ = zr) and mirroring it in an extrapolated
boundary to place the virtual source (instead of d2e). Our approach
is motivated by this observation; we retain the extrapolated bound-
ary by the virtual source, but we also introduce a radial distance
correction for the real source.

It has been observed in work based on the diffusion dipole that
the distance correction should change if the point of emergence is
not in the tangent plane [Fretterd and Longini 1973] or if the ray is
incident at an oblique angle [Wang and Jacques 1995]. The radial
distance correction from transport theory (Equation 32) also needs
modification in these cases, since z′ and de are no longer taken in
the same direction. Then, considering triangle geometry,

R2 = r2 + z′2 + d2e − 2z′de cosβ , (33)

where we approximate cosβ as in Equation 25.
Considering Elliott’s comparison of the transport solution and the

diffusion dipole, we do not include the d2e term in our radial distance
correction as this part is included with the virtual source. At oblique
incidence, the diffuse reflectance integral can be reformulated as an
integral along the refracted ray. This integral can be approximated
to first order by choosing an offset D∗ along the refracted ray. Then

z′ = D∗|µ0| with µ0 = −~ω12 · ~no , (34)

whereD∗ = D if the surface is frontlit (µ0 > 0) andD∗ = 1/(3σt)
if the surface is backlit (µ0 ≤ 0). The use of D∗ instead of 3D was
determined empirically. Our corrected radial distance for the real
source is then Equation 24, where we in the backlit case, due to
some minor issues along sharp edges, decided to set the correction
term as if light were normally incident with xo located along the
normal direction (such that µ0 = −1 and cosβ = sin θ = 0).
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