
Deep Combiner for Independent and Correlated Pixel Estimates

JONGHEE BACK, Gwangju Institute of Science and Technology, South Korea

BINH-SON HUA, VinAI Research, Vietnam and VinUniversity, Vietnam

TOSHIYA HACHISUKA, The University of Tokyo, Japan

BOCHANG MOON, Gwangju Institute of Science and Technology, South Korea

(c) NFOR using (b)

CONFERENCE

(d) Ours using (b) and (c) (e) KPCN using (b) (f) Ours using (b) and (e)

relMSE 0.1560 relMSE 0.0073 relMSE 0.1345 relMSE 0.0102

(a) Reference, 1M spp (g) Reference, 1M spp(b) Path tracing, 64 spp

relMSE 24.7838

(j) GPT-L1 using (i)

BOOKSHELF

(k) Ours using (i) and (j) (l) GPT-L2 using (i) (m) Ours using (i) and (l)

relMSE 0.1634 relMSE 0.0203 relMSE 0.1289 relMSE 0.0170

(h) Reference, 1M spp (n) Reference, 1M spp(i) Path tracing, 64 spp

relMSE 3.0510

Fig. 1. Our framework allows us to combine two diferent types of images, independent pixel estimates (e.g., path traced images) and correlated pixel estimates

(e.g., denoised images), and reduces remaining errors (residual noise or systematic errors) of the existing methods such as Nonlinearly weighted First-Order

Regression (NFOR) [Biterli et al. 2016], Kernel-Predicting Convolutional Networks (KPCN) [Bako et al. 2017], and Gradient-domain Path Tracing with L1 and

L2 reconstruction (GPT-L1 and GPT-L2) [Ketunen et al. 2015]. The numbers are the relative mean squared error (relMSE) [Rousselle et al. 2011].

Monte Carlo integration is an eicient method to solve a high-dimensional

integral in light transport simulation, but it typically produces noisy im-

ages due to its stochastic nature. Many existing methods, such as image

denoising and gradient-domain reconstruction, aim to mitigate this noise by

introducing some form of correlation among pixels. While those existing

methods reduce noise, they are known to still sufer from method-speciic

residual noise or systematic errors. We propose a uniied framework that

reduces such remaining errors. Our framework takes a pair of images, one

with independent estimates, and the other with the corresponding corre-

lated estimates. Correlated pixel estimates are generated by various existing

methods such as denoising and gradient-domain rendering. Our framework

then combines the two images via a novel combination kernel. We model our

combination kernel as a weighting function with a deep neural network that

exploits the correlation among pixel estimates. To improve the robustness of

our framework for outliers, we additionally propose an extension to handle

multiple image bufers. The results demonstrate that our uniied framework

can successfully reduce the error of existing methods while treating them as

black-boxes.

CCS Concepts: · Computing methodologies → Ray tracing.

Authors’ addresses: Jonghee Back, Gwangju Institute of Science and Technology, South
Korea; Binh-Son Hua, VinAI Research, Vietnam and VinUniversity, Vietnam; Toshiya
Hachisuka, The University of Tokyo, Japan; Bochang Moon, Gwangju Institute of
Science and Technology, South Korea.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The deinitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3414685.3417847.

Additional Key Words and Phrases: Combination Kernel, Monte Carlo Ray

Tracing

ACM Reference Format:

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2020.

Deep Combiner for Independent and Correlated Pixel Estimates. ACM Trans.

Graph. 39, 6, Article 242 (December 2020), 12 pages. https://doi.org/10.1145/

3414685.3417847

1 INTRODUCTION

Monte Carlo (MC) rendering [Kajiya 1986] has been recognized

as a powerful tool for light transport simulation, which has been

widely adopted in production rendering recently [Pharr 2018]. MC

rendering can simulate a variety of lighting efects by randomly

sampling light paths and averaging their contributions in every

pixel. Pixel estimates in MC rendering are typically independent of

each other. The main problem is that it outputs noisy pixel estimates,

which also stem from its random nature. In general, a large number

of samples (thus a considerable amount of computation time) are

needed to reduce such noise to an imperceptible level.

A popular class of noise reduction methods in MC rendering is

image-space denoising [Overbeck et al. 2009; Sen and Darabi 2012].

Its main advantage is that it can handle diferent types of random

noise generated by complex lighting efects without sufering from

the complexity of light transport. Learning-based denoising [Bako

et al. 2017; Chaitanya et al. 2017; Gharbi et al. 2019; Xu et al. 2019]

has achieved an impressive level of noise reduction recently. The

denoising process typically introduces correlation among pixels

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417847
https://doi.org/10.1145/3414685.3417847
https://doi.org/10.1145/3414685.3417847

242:2 • Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

since each denoised pixel is a weighted sum of independent pixel

estimates. Common to all the existing denoising methods, however,

is that they tend to leave residual noise or blur high-frequency

details, especially when a small number of samples are used.

On a diferent line of research, gradient-domain rendering [Ket-

tunen et al. 2015; Lehtinen et al. 2013] can also suppress MC noise by

estimating image gradients using correlated path sampling. Gradient-

domain rendering performs a screened Poisson reconstruction [Bhat

et al. 2008] to obtain a inal image from those estimated gradients.

Similar to denoising, pixel estimates in the gradient-domain ren-

dering are correlated. Unlike denoising, however, Poisson recon-

struction allows us to achieve unbiased estimates while signiicantly

reducing noise. The errors in gradient-domain rendering instead

show up as dipole artifacts, which are the results of the difusion

of errors in inaccurate gradients. The reconstruction with the L1

norm can reduce the dipole artifacts, but it will reintroduce bias in

the form of energy loss.

We propose a uniied framework that can reduce the artifacts of

correlated pixel estimates in the existing methods. Correlated pixel

estimates in this paper cover various types of pixel estimates, such as

those in denoising, gradient-domain rendering, and even correlated

sampling methods. We observe that such existing methods generally

introduce positive correlation across pixels. This observation leads

us to design a combination kernel, which takes the independent

and correlated pixel estimates as inputs and produces an improved

output by weight-averaging the inputs while taking account of

the correlation. The combined estimator allows us to reduce the

remaining errors in the existing correlated pixel estimators. To

summarize, our contributions are:

• Uniied framework that improves the output of the existing

methods, where diferent forms of errors exist;

• Weighted combination kernel that exploits spatially-varying

correlations across pixels;

• Multi-bufered kernel that improves the robustness against out-

liers in independent and correlated pixel estimates;

• Deep neural network which estimates the weights of our kernel

robustly for diferent types of correlated pixel estimates.

We demonstrate that our approach is able to boost various denois-

ing/correlated sampling methods by reducing their speciic types

of errors. These results are achieved through a uniied framework,

without tailoring our method to a speciic technique.

2 RELATED WORK

We classify the related work into three categories. We design our

method to be orthogonal to any of those; Our method can take

the output of any of those existing methods as an input to further

improve the accuracy. A reader may refer to Zwicker et al. [2015]

for a comprehensive overview of other denoising methods and Hua

et al. [2019] for a survey of gradient-domain rendering.

Denoising for Independent Pixel Estimates. Image denoising for

independent pixel estimates has a long history [McCool 1999].

A common approach is to take well-established image ilters de-

signed for reducing noise in photography. Such examples include a

cross-bilateral ilter [Li et al. 2012; Sen and Darabi 2012], non-local

means [Rousselle et al. 2012, 2013], wavelet thresholding [Over-

beck et al. 2009] and non-local Bayes [Boughida and Boubekeur

2017]. They all modiied the existing image ilters to incorporate

rendering-speciic information (e.g., per-pixel variance). As an alter-

native to the iltering formulation, Moon et al. [2014] investigated

a local regression theory where pixel colors are locally-itted on a

feature space spanned by G-bufers (normals, textures, and depths).

This regression approach has recently been improved by using

higher-order polynomials [Moon et al. 2016] or non-local means

weighting [Bitterli et al. 2016].

Recently, many methods take advantage of machine learning

approaches to derive data-driven ilters. Kalantari et al. [2015] pi-

oneered such an approach by using a neural network to output

parameters of the existing image ilters. Bako et al. [2017] proposed

a denoising framework that exploits a convolutional neural net-

work where its last layer produces denoising weights. Chaitanya et

al. [2017] suggested using a recurrent neural network to incorporate

temporal coherence in interactive rendering. Gharbi et al. [2019]

found that a simpler network can be used for learning a splatting il-

ter kernel, and Xu et al. [2019] adopted the concept of an adversarial

network to replace a numerical error metric for training.

While somemodernmethods have demonstrated signiicant noise

reduction, common to all is that the denoised images tend to have

over-blurred high-frequency details or residual noise such as low-

frequency noise. We aim at reducing such remaining errors with a

post-processing method. The inputs to our framework are the noisy

input (e.g., the path traced image) and the corresponding denoised

output, and additional rendering-speciic features (e.g., normals, tex-

tures, and depths). Note that pixel estimates after denoising are cor-

related since denoising methods introduce some correlation among

pixels. For this application, our framework does not require us to

take any additional sample, since correlated estimates are produced

from independent estimates by denoising. We model a denoising

method as a black-box function that outputs correlated but iltered

pixel estimates from independent pixel estimates.

Correlated Sampling. Since denoising methods output correlated

pixel estimates in the end, another logical approach is to modify the

rendering process itself to directly output correlated pixel estimates.

Unlike denoising methods, this approach can avoid introducing bias

by carefully controlling the sampling process in rendering. Keller

and Heidrich [2001] presented such an approach by tiling the same

sampling patterns across the image. Bekaert et al. [2002] introduced

a path-reuse technique that shares the sampled light transport path

across multiple pixels. Rather than paths themselves, Sadeghi et

al. [2009] proposed to reuse the same sequence of random numbers

for each pixel. Bauszat et al. [2017] generalized the path-reuse tech-

nique to improve the robustness in rendering glossy surfaces. They

all tend to suppress random noise when compared to independent

pixel estimates. While correlated sampling can achieve unbiased

estimates with less noise, the output images often sufer from a

diferent kind of errors, structured noise. The existing denoising

methods cannot remove such structured noise efectively since they

all assume independent pixel estimates as their input. Our frame-

work addresses this problem of structured noise for the irst time

by explicitly modeling correlated pixel estimates as our input.

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

Deep Combiner for Independent and Correlated Pixel Estimates • 242:3

(a) CRN

64 spp

(b) NFOR

64 spp

(using (a))

(c) KPCN

64 spp

(using (a))

(e) Reference

relMSE 0.1069 relMSE 0.0789 relMSE 0.1079 relMSE 0.0046

relMSE 1.1377 relMSE 0.3545 relMSE 0.9817 relMSE 0.0339

(d) Ours for CRN

64 spp

64K spp

1M spp

Fig. 2. Equal-sample comparisons with NFOR and KPCN. The denoising

results ((b) and (c)) are generated by NFOR and KPCN, respectively, where

we used the CRN image (a) as their input. Our results (d) with 64 spp are

generated using two inputs; a path traced image with 32 spp and a CRN

result with 32 spp. The quality improvement from NFOR and KPCN over

their input (a) is not significant, as these methods assume independent

pixel estimates. With the same number of samples, our method produces

much-improved results (d) by explicitly taking the correlation into account.

Gradient-Domain Rendering as a Hybrid. A promising alterna-

tive is gradient-domain rendering [Lehtinen et al. 2013]. Gradient-

domain rendering can be thought of as a hybrid of image denoising

and correlated sampling. In the irst step of gradient-domain ren-

dering, image-space gradients are estimated by a form of correlated

sampling called shift mapping. Shift mapping is carefully designed to

reduce noise in the gradient estimates while remaining unbiased. In

the second step, a screened Poisson reconstruction is conducted to

output the inal image using the gradient estimates and independent

pixel estimates. Kettunen et al. [2015] later showed that this pro-

cess could be seen as low-pass iltering via a minimization problem.

Unlike the denoising methods, this process is tightly coupled with

estimated gradients to achieve unbiased denoising when formulated

as an L2 minimization.

While being unbiased, the L2 minimization tends to produce

structured noise (dipole artifacts). A biased reconstruction with L1

minimization is thus suggested as a practical alternative [Kettunen

et al. 2015; Lehtinen et al. 2013]. While the L1 minimization is suc-

cessful at suppressing dipole artifacts, it causes a loss of brightness

(bias) in the resulting images. Despite some recent advances [Guo

et al. 2019; Kettunen et al. 2019], the images from gradient-domain

rendering can still sufer from either bias or structured noise, espe-

cially when gradient estimates are erroneous.

Since our method also takes both correlated and independent

estimates to produce the inal image, it can also be interpreted as

a reconstruction algorithm in gradient-domain rendering. Unlike

gradient-domain rendering, however, we make minimal assump-

tions regarding the input, and thus the correlated pixel estimates

do not need to be gradient estimates. As a result, our method can

use both input and output of gradient-domain reconstruction as our

input, in order to reduce the remaining errors in the reconstructed

image (e.g., dipole artifacts for L2 and energy loss for L1).

3 STATISTICAL MODEL AND MOTIVATION

We formally describe our statistical models and show a motivating

example to explain our approach. We consider independent pixel

estimates and correlated pixel estimates diferently.

3.1 Independent Pixel Estimates

Let us consider a model where pixels are independently estimated

in an unbiased manner. An image that follows this model can be

generated by an unbiased MC rendering technique such as path

tracing. Under this model, each pixel estimate �� is expressed as

�� = �� + �� , (1)

where �� is the ground truth value with a center pixel � , and �� is

the error. Since �� is an unbiased estimate of �� , the expected error

is zero (i.e., � [��] = 0). Having independent pixel estimates means

that there is no correlation among errors in neighboring pixels.

Considering a set of neighboring pixels Ω� around the pixel � , it

means that cov(�� , ��) = 0 for any � ∈ Ω� . Note that the neighboring

set Ω� does not include the pixel � . This model has also been widely

used as a model of the input to the existing denoising methods.

3.2 Correlated Pixel Estimates

Let us consider another model where pixel estimates are locally

correlated. As we mentioned in Section 2, the correlation between

pixel estimates can be introduced in various ways. Unlike the model

for independent pixel estimates where we consider each pixel esti-

mate independently (Eq. 1), we model the diference between two

correlated pixel estimates �� and �� as

�� − �� = �� − �� + ��� , (2)

where ��� is the error from the diference �� − �� . Similar to the

model for independent pixel estimates, this model assumes that the

expected value of ��� is zero (� [���] = 0) and thus �� −�� is unbiased.

This model, however, assumes that cov(�� , ��) ≠ 0 for any � ∈ Ω� .

In other words, the pixel estimates �� and �� are correlated under

this model.

This model holds exactly for unbiased methods (e.g., gradient-

domain reconstruction with L2 minimization and correlated sam-

pling) since � [�� − ��] = �� − �� . For biased methods, we generally

have � [�� − ��] ≠ �� − �� since each pixel value is biased. The bias

of this diference � [�� −��] − (�� − ��), however, is typically smaller

than the bias of individual pixel value (e.g., energy loss in Fig. 1 (j)).

We thus assume that this model approximately holds for the biased

methods.

Fig. 2 shows an example of the correlated pixel estimates gener-

ated by sharing a common random number (CRN) sequence across

pixels. One could attempt to reduce the structured noise in the

CRN image using state-of-the-art denoisers such as a irst-order

regression (NFOR [Bitterli et al. 2016]) and a learning-based de-

noiser (KPCN [Bako et al. 2017]). For KPCN, we train its network

using CRN images. As can be seen, the existing denoisers (NFOR

(b) and KPCN (c)) fail to reduce structured error present in corre-

lated images (i.e., (a)) since none of them considers the correlation

among pixel estimates. This observation motivates us to design a

new technique that can reduce such artifacts by considering the

correlation.

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

242:4 • Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

(a) PT

64 spp

(independent est.)

relMSE 2.9148 relMSE 2.7103 relMSE 1.2849 relMSE 0.0239

relMSE 0.4052 relMSE 0.2087 relMSE 0.1045 relMSE 0.0107

(b) CRN

64 spp

(correlated est.)

(c) Ours for CRN

128 spp

(uniform weights)

(d) Ours for CRN

128 spp

(our weights)

(e) Reference

64K spp

1M spp

Fig. 3. Comparisons between combination results with uniform (c) and our

weighting (d). Bothmethods use the same inputs (a) and (b). The results with

uniform weighting (c) still have some structured artifacts since neighboring

pixels with a low correlation are simultaneously utilized for our combination

process. On the other hand, our weighted kernel (d) considers heterogeneous

correlation by assigning diferent weights to neighboring pixels according

to its correlation. As a result, the results (d) from our weighted kernel show

much improved quality.

3.3 Combined Estimator

For a given pixel � , let us consider taking a sum of the independent

pixel estimate �� and the diference of correlated pixel estimates

�� − �� as

�� + (�� − ��) = (�� + ��) + (�� − �� + ���) = �� + �� + ��� . (3)

Since � [�� + �� + ���] = �� under our assumptions (� [��] = 0 and

� [���] = 0), this sum serves as yet another estimate of pixel � in

addition to its independent estimate �� . Since one can construct

a similar estimate �� + (�� − ��) for any � ∈ Ω� , let us consider

combining all the possible estimates via a weighted sum:

1

��

(

���� +
∑

�∈Ω�

�� (�� + �� − ��)

)

, (4)

where�� ,�� > 0 are positive weights allocated to pixel � and � and

�� = �� +
∑

�∈Ω�
�� . We show that this estimator can be derived

from a least-squares minimization problem in the next section. The

main challenge is to estimate �� and �� that minimize the error

of the combined estimator. It is challenging since cov(�� , ��) can

signiicantly vary per pixel and also per method. We leverage a deep

learning model that estimates�� and�� to address the challenge.

4 COMBINATION KERNEL

Our method takes both independent pixel estimates� and correlated

pixel estimates � as inputs, and outputs a weighted sum of the two

pixel estimates. We show how the weighted sum (Eq. 4) that we

mentioned in the last section is actually minimizing the weighted

sum of squared errors (Sec. 4.1). For determining proper weights,

we utilize a deep neural network (Sec. 4.2). We also provide an error

analysis of our estimator to further study the behavior of the esti-

mator (Sec. 4.3). Finally, we extend our estimator to utilize multiple

image bufers to improve the robustness against outliers (Sec. 4.4).

4.1 Derivation

Given the statistical models (Eq. 1 and 2) for our inputs, our goal

is to estimate the ground truth color �� at each center pixel � . Let

us use �� and �� to denote unknown parameters that we estimate,

which are corresponding to the ground truth �� and �� at center

pixel � and neighboring pixel � , respectively. We then deine the

residual (error) of each pixel in � and � as

� (��) ≡ �� − �� ,

� (��) ≡ �� − �� ,

� (�� − ��) ≡ (�� − ��) − (�� − ��) .

(5)

Given these residuals, we estimate �� and �� which minimize the

sum of squared residuals:

�� =
1

2
���

2 (��) +
∑

�∈Ω�

���
2 (��) +

∑

�∈Ω�

���
2 (�� − ��), (6)

where�� and�� are given positive weights for pixel � and � , respec-

tively. The function above can be minimized by setting its gradients

with respect to the parameters zero:

���

���
= �� (�� − ��) + 2

∑

�∈Ω�

�� {(�� − ��) − (�� − ��)} = 0,

���

���
= −�� (�� − ��) +�� {(�� − ��) − (�� − ��)} = 0.

(7)

By rearranging the second equation with respect to �� =
1
2 (�� −

�� + �� + ��) and plugging this into the irst equation, we reach to a

combination kernel in a closed-form:

�̂� =
1

��

(

���� +
∑

�∈Ω�

���� +
∑

�∈Ω�

�� (�� − ��)

)

, (8)

where�� is a normalization term (i.e.,�� = �� +
∑

�∈Ω�
��). Note

that the derived formula (Eq. 8) is indeed equivalent to the weighted

sum estimator we already introduced (i.e., Eq. 4). In other words,

using �̂� as the output for pixel � minimizes the weighted sum of

residuals for given �� and �� . Note that, since this combination

kernel is localized, we can run our kernel per pixel independently

to produce all the pixel colors in the inal image.

Importance of �� and �� . While our formulation allows us to

use any positive weights �� and �� , the weights should be deter-

mined so that the estimation error of our output, (�̂� − ��)
2, can

be minimized. To highlight the importance of determining proper

weights, Fig. 3 shows an example result of our combination kernel.

We have generated independent pixel estimates by varying random

sequences per pixel, which is a standard approach for MC rendering.

For correlated pixel estimates, we render an image sampled with

CRN for all the pixels. The baseline approach ((c) of the igure) uses

uniform weights (e.g.,�� = �� = 1). In this case, some neighboring

pixels that have a low correlation with its center pixel are equally

leveraged to get a combined pixel color, which leads to a minor

quality improvement compared to the input image. It implies that

the correlation among pixel colors can vary signiicantly, and the

uniform weighting cannot handle such a spatially varying nature of

correlation. On the other hand, proper weights make a signiicant

improvement over the results with uniform weights by considering

locally varying correlations. How to determine the kernel weights

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

Deep Combiner for Independent and Correlated Pixel Estimates • 242:5

Combination kernel Combined image

Kernel predicting layers

Independent pixel estimates

(e.g., path traced image)

Correlated pixel estimates

(e.g., denoised image)

Features

(e.g., G-buffers)
Kernel weights

Fig. 4. Overview of our framework. We use a kernel-predicting network that takes both independent and correlated pixel estimates as network inputs. We also

pass rendering-specific features (normal, texture, and depth bufers) to the network as additional inputs. The deep-learning network generates the parameters

(i.e., weights) for our combination kernel so that our kernel combines the independent and correlated pixel estimates using the weights.

in the direction of reducing the estimation error is discussed in the

following section.

4.2 Estimating Kernel via a Neural Network

To evaluate our estimator (Eq. 8), it is ideal for estimating the opti-

mal weights that minimize the error of �̂� . To this end, we employ

supervised learning that computes estimated optimal parameters

for a given reconstruction kernel using training dataset with refer-

ence images. This approach is inspired by the work of Kalantari et

al. [2015] that estimates optimal parameters for a denoising ilter.

Speciically, we train a network to minimize a loss function L

with respect to the parameters �� ≡ [�� ,��]:

�̂� = argmin
��

1

�

�
∑

�=1

L (�� , � (�� , �� , �� ;��)) , (9)

where �� and �� are a reference color and feature vector (e.g., nor-

mal, texture, and depth) at pixel � . The function � is our combined

estimator in Eq. 8.

Fig. 4 illustrates an overview of this process, where we use a deep

convolutional network to estimate the parameters. Our network

architecture is built upon the kernel-predicting convolutional net-

work (KPCN) [Bako et al. 2017], where the last convolution layer

produces kernel weights for a reconstruction. Our network, however,

is used for entirely diferent purpose than denoising.

We use six convolution layers, each of which has one hundred of

5 × 5 convolution kernels. The activation function is the rectiied

linear unit (ReLU). For the loss function, we use the relative mean

squared error [Rousselle et al. 2011]. Note that KPCN allows us to

use an arbitrary feature vector, and thus one can exploit additional

information (e.g., additional G-bufers from secondary rays) as the

network input. Nevertheless, we limit our additional feature �� to

be same as the feature used in KPCN [Bako et al. 2017], to evaluate

our main contribution, combined estimator, in a fair manner.

4.3 Error Analysis

We analyze the mean squared error (MSE) of our combined out-

put �̂� (Eq. 8), � [(�̂� − ��)
2], which can be decomposed into the

variance var(�̂�) and squared bias (� [�̂�] − ��)
2. To simplify our

analysis, we assume that the weights�� and�� are given and ixed.

Strictly speaking, the weights for our kernel are computed using the

independent and correlated pixel estimates, and thus these are also

random variables. Therefore our derived errors in this section are

an approximation. We further assume that the independent pixel

estimates � and the correlated pixel estimates � are independent of

each other. Given the assumptions, the bias has the following form

(its derivations in Appendix A.1):

� [�̂�] − �� ≈
1

��

∑

�∈Ω�

��� [���] , (10)

where � [���] = � [�� − ��] − (�� − ��). Unlike the statistical model

in Eq. 2, here we assume that � [���] can be non-zero. If unbiased

correlated pixel estimates (e.g., GPT-L2) are given as our input, the

bias is zero regardless of the weights�� . Otherwise, we would like

the weights to be aware of the presence of this bias.

The variance var(�̂�) can be derived using some elementary ma-

nipulations (see Appendix A.2), and it has the form:

var
(

�̂�

)

≈
1

� 2
�

[

�2
� var(��) +

∑

�∈Ω�

�2
� var(��) +

(

∑

�∈Ω�

��

)2

var(��)

+
∑

�, � ∈Ω�

��� � cov
(

�� , � �
)

− 2

(

∑

�∈Ω�

��

)

∑

�∈Ω�

��cov (�� , ��)

]

.

(11)

Both expressions (Eq. 10 and 11) provide a theoretical interpreta-

tion on our combination kernel. For example, the variance expres-

sion above indicates that the variance of our result can decrease

when including the neighboring pixels � that have a high covariance

��� (�� , ��) between �� and �� . The bias expression shows that the

weight�� should be small when the bias of �� − �� is large.

As an alternative to the deep learning approach, one may consider

using this error analysis to estimate optimal weights that minimize

the MSE. However, we have found that this alternate approach is

challenging since MSE representations include ground truth colors

and variances. The gap between the expected version � [(�̂� − ��)
2]

and actual error (�̂� − ��)
2 can also be very large for a pixel � in

which outlier samples are included. Our deep learning approach

addresses this challenge by learning how to determine the weights

to minimize the actual MSE in the training data.

4.4 Multi-Bufered Combination Kernel

We extend our kernel (Eq. 8) to a multi-bufered combination kernel

so that our estimator becomes robust against outliers (i.e., spike

noise). Technically, our combination kernel can down-weight neigh-

boring pixels � that contain outliers, but the noise can remain if the

center pixel � itself is an outlier as the correlation between the pixel

� and any of the neighboring pixels will be small in this case.

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

242:6 • Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

(a) PT

32 spp

(independent est.)

relMSE 0.2942 relMSE 0.0207 relMSE 0.0142 relMSE 0.0035

relMSE 0.7896 relMSE 0.0903 relMSE 0.0395 relMSE 0.0112

(b) GPT-L1

32 spp

(correlated est.)

(c) Ours for (b)

32 spp

(single-buffer)

(d) Ours for (b)

32 spp

(multi-buffer)

(e) Reference

64K spp

64K spp

Fig. 5. Results of our single and multi-bufered combination kernels for

GPT-L1 reconstruction (b). The single-bufered kernel (c) improves the GPT-

L1 results, but it still leaves spike noise. Our extension to a multi-bufered

kernel (d) resolves this issue and produces much improved results.

To mitigate this issue, we adopt sample binning [Back et al. 2018].

Sample binning splits a set of samples into mutually exclusive sub-

sets per pixel, and the average of the samples in each subset is stored

at each bin. Unless outliers are present in all the bins, we are able

to down-weight the sub-averages that contain outliers.

Let us denote ��,� and ��,� are the sub-averages stored at the �-th

bin (� = 1, ..., �) from independent pixel estimates, and also ��,� and

��,� are the sub-averages from correlated pixel estimates. For the

multi-bufered pixel estimates, we extend the least-squares residuals

for the single-bufer (Eq. 5) into:

� (��,�) ≡ ��,� − �� ,

� (��,�) ≡ ��,� − �� ,

� (��,� − ��,�) ≡ (��,� − ��,�) − (�� − ��) .

(12)

The objective function using the extended residuals is as follows:

�� =

�
∑

�=1

[

1

2
��,��

2 (��,�
)

+
∑

�∈Ω�

��,�

(

�2
(

��,�
)

+ �2
(

��,� − ��,�
)

)

]

(13)

where��,� and��,� are the kernel weights allocated to each pixel �

and � at the �-th bin, respectively. The least-squares solution that

minimizes this objective function can be derived analogously to

the single-bufered combination kernel (Eq. 8) and we reach to our

combination kernel for multi-bufered inputs

�̂� =
1

��

�
∑

�=1

[

��,���,� +
∑

�∈Ω�

��,���,� +
∑

�∈Ω�

��,�

(

��,� − ��,�
)

]

(14)

where�� =
∑�
�=1

(

��,� +
∑

�∈Ω�
��,�

)

. This multi-bufered combi-

nation kernel is similar to its single-bufered one (Eq. 8), as its inal

formulation is simply to sum the single-bufered kernel for �-th

independent and correlated pixel estimates. Since our process is

localized within Ω� , the total number of parameters (��,� and��,�)

per pixel is � × (|Ω� | + 1). We set � = 4 based on an empirical study.

The details are in the supplementary document.

Given the formulation of our extended kernel, we need to mod-

ify our neural network to produce the extended weights. Fortu-

nately, this extension is straightforward, thanks to the generality of

Fig. 6. Training and validation scenes.

KPCN [Bako et al. 2017]. Speciically, we amend the last convolu-

tion layer in the network so that it produces � × (|Ω� | + 1) weights

instead of (|Ω� | + 1) weights. �-pairs of independent and correlated

pixel estimates (instead of the single-pair of pixel estimates) are also

fed into the network. Fig. 5 compares the results from single and

multi-bufered kernels. The single-bufered kernel (Eq. 8) reduces

the remaining errors in the GPT-L1 results, but still leaves some

spike noise. On the other hand, our multi-bufered kernel (Eq. 14)

removes the spike noise more efectively.

5 EXPERIMENTAL SETUP

Network Input. We use path tracing to generate independent pixel

estimates and various existing methods to generate correlated pixel

estimates. For denoising methods (e.g., NFOR, KPCN, GPT-L1 and

GPT-L2), correlated pixel estimates are generated by denoising the

independent pixel estimates (i.e., the path-traced image). In this case,

we do not need to take additional samples, since the actual input to

both our framework and denoising methods is the same (i.e., noisy

path-traced image). For correlated sampling such as CRN, we need

to take additional samples to generate correlated pixel estimates.

In this case, we used the same sample count for both independent

and correlated pixel estimates (i.e., � /2 for independent estimates

and � /2 for correlated estimates given the total � samples). In

addition to the independent and correlated pixel estimates, we also

put G-bufers (normal, texture, and depth bufers), obtained during

rendering easily, to the network so that estimated kernel weights

take account of the high-frequency details captured by the features.

For amulti-bufered combination kernel,� independent and corre-

lated pixel estimates are passed to the network. For the independent

pixel estimates and non-denoising methods (e.g., CRN), we split sam-

ples into � bufers uniformly and store the averages of the samples

in each sub-bufer (e.g., ��,� for independent pixel estimates and ��,�
for non-denoising methods). For the denoising methods (e.g., NFOR,

KPCN, GPT-L1 and GPT-L2) that compute their denoising weights,

we compute the denoising kernel using all the samples irst, then

share this kernel among all � bufers. Each �-th value at pixel � is

computed as ��,� = �̄���,� +
∑

�∈Ω�
�̄���,� without recomputing the

weights separately. For the other denoising methods (e.g., Bayesian

Collaborative Denoising (BCD) [Boughida and Boubekeur 2017])

that do not build its pixel-based weights explicitly, we apply the de-

noising into each of partially-averaged independent pixel estimates,

and use the denoised images as correlated pixel estimates.

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

Deep Combiner for Independent and Correlated Pixel Estimates • 242:7

spp / time / relMSE 40 spp / 48.5 s / 0.0055 64K spp36 spp / 47.8 s / 0.0035 52 spp / 45.5 s / 0.0461 48 spp / 44.3 s / 0.0039

BATHROOM

spp / time / relMSE 54 spp / 51.0 s / 0.0275 1M spp48 spp / 49.8 s / 0.0203 70 spp / 48.7 s / 0.0482 66 spp / 47.6 s / 0.0179

BOOKSHELF

spp / time / relMSE 48 spp / 48.9 s / 0.0156 64K spp42 spp / 48.1 s / 0.0099 64 spp / 48.0 s / 0.0286 60 spp / 46.8 s / 0.0078

KITCHEN

spp / time / relMSE 50 spp / 42.4 s / 0.1374 1M spp42 spp / 41.0 s / 0.0082 70 spp / 40.0 s / 0.0854 66 spp / 39.4 s / 0.0101

CONFERENCE

(b) NFOR (c) Ours for NFOR(a) Reference (d) KPCN (e) Ours for KPCN (f) Reference

Fig. 7. Equal-time comparisons with NFOR and KPCN. Our framework takes the results of the denoisers and their inputs as our inputs, and reduces the

errors in the correlated pixel estimates. For example, we reduce the bias in the over-blurred regions (e.g., the rack in kitchen for NFOR and the shadows in

conference for KPCN). Also, our combination kernel removes the splotches or spike noise for the conference scene.

Training Details. We trained a single neural network that infers

the parameters of our combination kernel using independent and

correlated pixel estimates. We did not train a separate network

per tested method to demonstrate the generality of our frame-

work across diferent types of methods. The dataset contains input-

reference pairs for six scenes (in Fig. 6) from random views. We

used ive types of correlated pixel estimates from CRN, GPT-L1

and GPT-L2 [Kettunen et al. 2015], NFOR [Bitterli et al. 2016], and

KPCN [Bako et al. 2017]. Input images generated with 64 or 256

samples per pixel, and path tracing with 16� samples per pixel

was used to produce the reference images. We extracted 276 image

patches of 128 × 128 size randomly from 1280 × 720 images. Given

the coniguration, we rendered 240 images for each method, and

thus the total number of images is 1200. We then split the dataset

into training (70% of the data) and validation (30% of the frames)

sets. Note that test scenes, used for comparing our method with

existing approaches, are not included in the training dataset. We

implemented our network using Tensorlow [Abadi et al. 2015] and

trained it on a Linux machine with NVidia GTX 1080 Ti graphics

card. The size of mini-batch was set to ten, and we trained our net-

work with Adam optimizer [Kingma and Ba 2014] with a learning

rate of 0.0001 for 50 epochs and it took 24 hours for training time.

We use a combination window size of 15 × 15, and thus the number

of our kernel weights per pixel is 4 × (|Ω� | + 1) = 900 given � = 4.

6 RESULTS AND DISCUSSIONS

We have tested our framework on a PC with Intel Xeon CPU E5-

2687W and NVidia GTX 1080 Ti graphics card. Speciically, we

(a) CRN

76 spp / 54.9 s

relMSE 0.1024

74 spp / 54.8 s

relMSE 0.0043

64K spp

(b) Ours for CRN (c) Reference

84 spp / 51.4 s

relMSE 0.2860

80 spp / 50.0 s

relMSE 0.0131

64K spp

Fig. 8. Same-time comparisons with CRN, which introduces unbiased but

structured noise. The reported spp for our method is the sum of the num-

ber of samples used for generating our independent and correlated pixel

estimates. Our technique combines independent and correlated pixel esti-

mates via a weighted combination kernel and removes the structured noise

efectively while exploiting the inter-pixel correlation in the CRN images.

demonstrate that our technique is orthogonal to diferent types of

existing methods categorized in Sec. 2 while reducing heteroge-

neous errors of the methods. Particularly, we evaluate our method

with diferent types of input with correlated pixels: 1) denoising

(NFOR and KPCN) for independent pixel estimates, 2) images ren-

dered by correlated sampling (CRN), and 3) images generated by

gradient-domain sampling and reconstruction (GPT-L1 and GPT-L2).

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

242:8 • Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

spp / time / relMSE 56 spp / 86.2 s / 0.0117 64K spp54 spp / 84.8 s / 0.0025 56 spp / 86.4 s / 0.0111 54 spp / 84.2 s / 0.0025

BATHROOM

spp / time / relMSE 70 spp / 99.4 s / 0.1457 1M spp66 spp / 98.3 s / 0.0199 70 spp / 98.6 s / 0.1099 66 spp / 97.7 s / 0.00166

BOOKSHELF

spp / time / relMSE 62 spp / 86.6 s / 0.0452 64K spp60 spp / 85.6 s / 0.0078 62 spp / 86.0 s / 0.0313 60 spp / 85.2 s / 0.0082

KITCHEN

spp / time / relMSE 68 spp / 72.7 s / 0.1842 1M spp66 spp / 71.4 s / 0.0069 68 spp / 72.2 s / 0.3594 66 spp / 70.9 s / 0.0075

CONFERENCE

(b) GPT-L1 (c) Ours for GPT-L1(a) Reference (d) GPT-L2 (e) Ours for GPT-L2 (f) Reference

Fig. 9. Equal-time comparisons with the gradient-domain rendering. Our method reduces the dipole artifacts in GPT-L2 and spike noise in GPT-L1, and also

restores the lost energy in GPT-L1 for the bookshelf scene.

(a) BCD

160 spp / 102.2 s

relMSE 0.0336

144 spp / 101.3 s

relMSE 0.0130

1M spp

(b) Ours for BCD (c) Reference

144 spp / 104.3 s

relMSE 0.0101

132 spp / 103.9 s

relMSE 0.0059

64K spp

Fig. 10. Equal-time comparisons with Bayesian Collaborative Denoising

(BCD). Despite not being trained on correlated pixel estimates from BCD,

our combination for BCD can restore the high-frequency details while

reducing the residual noise in the scenes.

Additionally, we test two methods, Bayesian Collaborative Denois-

ing (BCD) [Boughida and Boubekeur 2017] and Progressive Photon

Mapping (PPM) [Hachisuka et al. 2008], which were not trained

with our network. For a fair comparison with KPCN, we retrained

its network using our training data (Fig. 6).

We render four test scenes (bathroom, bookshelf, kitchen,

and conference). All the scenes have challenging lighting settings

where most of the parts are illuminated by indirect lighting. For

the bookshelf and conference scenes, we test how our method

enhances existing techniques as they exhibit spike noise, which

remains a challenging problem for denoising techniques. Most parts

in the kitchen scene are glossy, which introduces glossy interrelec-

tions and highlights. It can be challenging to denoising methods

because G-bufers cannot capture such illumination efects.

We compare the performance of all methods using the relative

mean squared error (relMSE) [Rousselle et al. 2011]. Each method

has been executed ten times, and we report its average error. When

our technique is compared with existing methods, we also report

the total rendering time, which include both sampling and recon-

struction time. Note that our framework incurs an overhead, which

includes the inference time for combining independent and corre-

lated pixel estimates. For example, the inference of our network (i.e.,

combining time) takes 1.4 seconds on average, given the tested 1280

× 720 image resolution.

Equal-Time Comparisons with Image Denoising. Fig. 7 shows that

NFOR tends to blur high-frequency details at locations where the

feature bufers fail to capture such information, e.g., the glossy high-

lights in bookshelf and the rack in kitchen. Our method restores

such details when taking the result of NFOR as our input. KPCN pro-

duces sharper images than the NFOR due to its non-linear weights

learned by a neural network. However, it leaves some residual noise

(e.g., the structure in bookshelf) or blurs some high-frequency

details (e.g., the shadows in the conference). Our framework en-

hances the KPCN results while removing residual noise and reducing

its bias. For challenging scenes such as bookshelf and conference,

our multi-bufered combination kernel removes the outlier artifacts

in NFOR and KPCN. We emphasize that the training scenes for

KPCN and ours are the same.

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

Deep Combiner for Independent and Correlated Pixel Estimates • 242:9

(a) PPM

598.6 s

relMSE 0.0328

598.6 s

relMSE 0.0040

64K spp

(b) Ours for PPM (c) Reference

595.5 s

relMSE 0.0146

594.2 s

relMSE 0.0044

1M spp

Fig. 11. Equal-time comparisons with Progressive Photon Mapping (PPM).

Our method (b) combines independent pixel estimates from path tracing

and correlated pixel estimates from PPM, and results in much-reduced noise

in both high and low frequencies compared to the original PPM (a).

Equal-Time Comparisons with Correlated Sampling. As shown

in Fig. 8, while CRN introduces inter-pixel correlation to reduce

random noise, such correlated sampling sufers from structured

artifacts. However, when the pair of the independent and correlated

pixel estimates are combined via our kernel, the combined results

have much fewer artifacts than the CRN results.

Equal-Time Comparisons with Gradient-Domain Rendering. In

Fig. 9, we evaluate our method with GPT-L2 and GPT-L1. The GPT-

L2 produces unbiased results, but the results are not visually pleas-

ing due to its dipole artifact. When our technique is applied to the

GPT-L2 reconstruction, the inal output is biased. Nevertheless, we

signiicantly improve its result both numerically and visually while

removing the dipole artifacts. GPT-L1 reconstruction, recommended

by [Kettunen et al. 2015], outputs biased but more visually pleasing

results than the GPT-L2 results. However, this reconstruction suf-

fers from energy loss, especially at locations where many outliers

exist (see bookshelf). Our technique, applied to the GPT-L1 recon-

struction, restores noticeable energy loss and thus reduces its bias.

Technically, the approximation error, ���� (�� − ��) of our statistical

model for correlated pixel estimates (Eq. 2) can be much lower than

the biases of the correlated pixel colors, since the biases, ���� (��)

and ���� (��) at center pixel � and � , tend to be similar for the energy

loss case. Furthermore, our method reduces the remaining spike

noise in GPT-L1 results, thanks to our multi-bufered kernel.

Equal-Time Comparisons with Untrained Correlated Pixel Estimates.

We evaluate how our framework generalizes to two unseen corre-

lated pixel estimates in training: Bayesian Collaborative Denoising

(BCD) [Boughida and Boubekeur 2017] and Progressive Photon

Mapping (PPM) [Hachisuka et al. 2008]. As shown in Fig. 10, our

combination for BCD restores blurred high-frequency details (see

the bookshelf scene) and reduces residual noise efectively.

Our method mainly aims to improve the results of the existing

methods (e.g., NFOR) that use path tracing as the core light trans-

port algorithm, but applying our combination kernel to photon

mapping [Jensen 1996], can also be interesting since the biased light

transport algorithm can introduce a correlation due to its density

estimation. Fig. 11 shows same-time comparisons with a consistent

(b) KPCN

param. 5.8M

1M spp

(c) KPCN

param. 10.1M

(d) Ours for (b)

param. 5.8+3.3M

(e) Reference(a) PT, 128 spp

relMSE 4.3229 relMSE 0.0486 relMSE 0.0332 relMSE 0.0083

Fig. 12. A comparison with the modified KPCN (c) that has a larger number

of parameters (10.1M) than that of our network combined with the original

KPCN (total 9.1M). Our combination still outperforms the modified KPCN

significantly, showing that our improved result is achieved by exploiting

inter-pixel correlations, not just simply by the increased network capacity.

photon mapping algorithm (i.e., PPM). We set its kernel reduction

ratio to 0.7 and use 1� photons per its photon generation pass. We

use multiple primary rays per pixel for PPM mainly for the anti-

aliasing and split the primary sample colors evenly to � bufers,

which are the correlated input images to our network. We generate

independent pixel estimates using path tracing, and for this process,

we adjust its sample count per pixel so that its sampling time is

equal to the time spent for our other input (i.e., correlated pixel

estimates). As shown in Fig. 11, our combined results have much

fewer residual errors (e.g., low-frequency artifacts) than the results

of the previous technique, even without any additional training.

Network Capacity. In our experiments, the capacity of our net-

work, denoted by the number of network parameters, is smaller

than typical learning based denoisers, e.g., KPCN. However, when

our approach is combined with a learning-based denoiser, the total

capacity becomes larger than the capacity of the input denoiser. In

Fig. 12, we compare our combination with a modiied KPCN with

a larger capacity to verify that our improvement does not directly

come from the increased capacity. Speciically, we have retrained

the KPCN with an increased number of kernels (from 100 to 140)

in each layer so that the modiied KPCN has a larger number of pa-

rameters (10.1M) than our combination (9.1M for both our network

and the input denoiser). As can be seen, the modiied KPCN results

in an improved result compared to the original one, but this alone

still has a much higher error than our method.

Numerical Convergence. Fig. 13 shows the convergence of four

denoising methods (NFOR, KPCN, GPT-L1 and GPT-L2) with and

without our technique, where relMSE values are reported over run-

ning times on a log-log scale. The convergence results indicate that

our method consistently improves the numerical accuracy of the

existing methods. For the conference scene where severe outliers

present, the existing methods have some luctuations even if we av-

erage relMSE values frommultiple runs (e.g., ten times). Our method

has smaller variations over time thanks to the outlier handling with

our multi-bufered kernel.

Relation to Image Boosting. When our technique is applied to a

denoising, our method has a similarity with boosting [Milanfar 2013;

Talebi et al. 2012] which reduces a denoising bias at the expense of

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

242:10 • Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

(a) Image denoisers

BO
OK
SH
EL
F

(b) Gradient-domain rendering

BO
OK
SH
EL
F

10
2

10
3

10
-2

10
-1

re
lM

S
E

GPT-L1

Ours for GPT-L1

GPT-L2

Ours for GPT-L2

BO
OK
SH
EL
F

10
2

10
-2

10
-1

re
lM

S
E

NFOR

Ours for NFOR

KPCN

Ours for KPCN

BA
TH
RO
OM

BO
OK
SH
EL
F

10
2

10
3

10
-3

10
-2

re
lM

S
E

GPT-L1

Ours for GPT-L1

GPT-L2

Ours for GPT-L2

BO
OK
SH
EL
F

10
2

10
3

10
-3

10
-2

10
-1

re
lM

S
E

NFOR

Ours for NFOR

KPCN

Ours for KPCN

CO
NF
ER
EN
CE

BO
OK
SH
EL
F

10 2 10 3

running time (sec)

10 -2

10 -1

10 0

re
lM

S
E

GPT-L1

Ours for GPT-L1

GPT-L2

Ours for GPT-L2

BO
OK
SH
EL
F

10 2

running time (sec)

10 -2

10 -1

re
lM

S
E

NFOR

Ours for NFOR

KPCN

Ours for KPCN

KI
TC
HE
N

BO
OK
SH
EL
F

10
2

10
3

10
-2

10
-1

re
lM

S
E

GPT-L1

Ours for GPT-L1

GPT-L2

Ours for GPT-L2

BO
OK
SH
EL
F

10
2

10
-2

10
-1

re
lM

S
E

NFOR

Ours for NFOR

KPCN

Ours for KPCN

Fig. 13. Numerical convergences over time on a log-log scale. Our method

consistently improves numerical accuracy of the existing methods.

K
P

C
N

O
u
rs

(s
in

g
le

-b
u
ff
e
r)

(a) Color image (b) Rel. squared bias (c) Rel. variance (d) Rel. MSE

B
o
o
s
ti
n
g

M
o
d
if
ie

d
 K

P
C

N

0 >0.20.1

0.0078 0.0037 0.0115

0.0042 0.0061 0.0103

0.0057 0.0039 0.0096

0.0029 0.0022 0.0050128 spp

Fig. 14. Comparisons with image boosting techniques for KPCN. We vi-

sualize the relative errors that scale the squared bias (b), variance (c), and

MSE (d) by a factor of 1/(�2
�
+ 0.01) .

increasing a variance as a post-denoising. Speciically, our single-

bufered kernel (Eq. 8) can be reformulated into:

�̂� = �� +
1

��

∑

�∈Ω
′
�

�� (�� − ��), (15)

where we change the set Ω� of the neighboring pixels into Ω
′

� that

includes the pixel � . Our reformulated equation can be interpreted

as a form of image boosting, as it applies a kernel�� to the denoising

residuals, �� −�� , and adds the processed residuals to the input value

�� . Nonetheless, the main diference is in determining the weights

relMSE 0.2942 relMSE 0.0207 relMSE 0.0035

relMSE 5.9443 relMSE 0.2182 relMSE 0.0331

(a) PT, 32 spp

(independent est.)

(d) Reference(b) GPT-L1, 32 spp

(correlated est.)

(c) Ours for GPT-L1

(using (a) and (b))

1M spp

64K spp

Fig. 15. Failure cases. Our combination kernel assumes enough correlation

exists in a local image region, but our correlated input (b) from GPT-L1

reconstruction does not have enough correlation. Our method improves

the existing method by handling both noise and bias, but our result (c) still

contains noticeable noise due to the lack of enough correlation.

�� . A typical form of boosting assigns the weights �� to be the

same with the weights of an input denoiser. Our method, however,

does not restrict the weights to be the same as a denoising method,

and a separate network estimates the parameters in order to reduce

both the bias and variance in a denoised image. Fig. 14 visualizes the

squared bias and variance of our single-bufered kernel and boosting

that uses the same weights for the KPCN denoiser. In addition to

simple boosting, we have also tested an extended KPCN (third row

in Fig. 14), where we have retrained a modiied KPCN network to

include a boosting layer so that its predicted kernel can be further

optimized.

As shown in the igure, boosting (second row) reduces the bias of

its input denoiser (i.e., KPCN) but results in a higher variance. The

modiied KPCN (third row) produces numerically improved results

due to its lower variance than boosting, but its variance is still

slightly higher than that of the original KPCN (irst row). Note that

the bias term dominates the relative MSE in this scene. For scenes

(e.g., the bookshelf scene) where strong outliers exist, we found

that both boosting variants introduced higher MSE values than an

unmodiied KPCN due to a noticeable increase in the variance term.

On the other hand, our technique reduces both errors efectively

and produces more accurate results than the tested alternatives.

Moreover, our approach can be exploited in more general scenarios

(not just a post-denoising).

Limitations and Future Work. Our method relies on the assump-

tion that there is enough correlation in correlated pixel estimates.

Fig. 15 shows failure cases of our assumption, where positive cor-

relations among pixels are not enough for reducing the residual

variance efectively. In this case, our method leaves some remaining

noise. To analyze our technique more thoroughly with the cases

where our statistical assumption breaks, we conduct a study while

varying the inputs to the network, as shown in Fig. 16. The ifth and

sixth columns ((e) and (f) in Fig. 16) show the network outputs when

there is no inter-pixel correlation in the correlated pixel estimates

�. Speciically, the results in Fig. 16 (e) are generated by making

the � to be the same with the independent pixel estimates �, and

the � in the other case (Fig. 16 (f)) is set with another path traced

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

Deep Combiner for Independent and Correlated Pixel Estimates • 242:11

relMSE 1.4641 relMSE 2.8210 relMSE 2.8868 relMSE 0.0712 relMSE 0.0719 relMSE 0.0300 relMSE 0.0132 1M spp

relMSE 0.2018 relMSE 0.3982 relMSE 0.4054 relMSE 0.0155 relMSE 0.0542 relMSE 0.0198 relMSE 0.0080 64K spp

(a) PT, 128 spp (e) Result, 128 spp

(y=(a), z=(a))

(f) Result, 128 spp

(y=(b), z=(c))

(g) Result, 128 spp

(y=(d), z=(d))

(i) Reference

relMSE 0.0098

relMSE 0.0048

(b) PT, 64 spp (c) PT, 64 spp (d) GPT-L2, 128 spp

(using (a))

(h) Ours, 128 spp

(y=(a), z=(d))

Fig. 16. Results by varying the independent � and correlated pixel estimates �, which are the inputs to our combination kernel. This study shows the worst

cases of our combination kernel, where the key assumptions, inter-pixel independence and correlation in � and � break. The results in (e) and (f) show a case

where there is no correlation among adjacent pixels in �. The outputs in (g) are generated from another worst scenario where independence assumption for �

breaks. The combination kernel in the extreme cases produces high-frequency noise ((e) and (f)) or fails to remove correlated artifacts (g), and thus its results

have higher numerical errors than our results (h) generated with valid inputs.

image. In both cases, the combination results leave very noticeable

high-frequency noise due to the absence of inter-pixel correlation.

We also test a scenario where the independence assumption on

the � breaks. Speciically, we generate the results in the seventh

column ((g) in Fig. 16) by setting the � with a correlated image (e.g.,

GPT-L2 results). In this case, the combination kernel fails to efec-

tively reduce the correlated artifacts, as our kernel does not model

the covariance terms of adjacent pixel colors in the �. This study

indicates that the performance of our technique heavily depends on

the assumptions. This is mainly because our combination kernel is

designed to exploit inter-pixel independence and correlation in the

� and �, respectively. A related future research direction would be

designing a sampling technique that introduces a strong correlation

among adjacent pixels, as the enhanced sampling can make our

combination stronger.

We propose a new combination kernel whose parameters rely

on a deep learning method, and thus our result inherits its funda-

mental problem, i.e., generalization. We demonstrate our technique

behaves well for the diferent types of correlated pixel estimates,

even though our learning architecture is built upon the simple net-

work [Bako et al. 2017]. It, however, does not indicate that our

chosen network architecture is ideal. We would like to explore more

powerful architectures (e.g., U-Net [Ronneberger et al. 2015]) to

make our combinations more efective. Additionally, we would like

to investigate a spatio-temporal extension of our kernel so that

temporal correlation in adjacent frames can be exploited.

7 CONCLUSION

In this work, we propose a uniied framework for combining inde-

pendent and correlated pixels estimates in Monte Carlo rendering.

Our key observation is that previous techniques introduce pixel

correlation in their output images, either directly via correlated

sampling or indirectly via image denoising. Our framework exploits

such correlation, leading to improved performance when being ap-

plied as a post-processing step on existing correlated sampling and

denoising methods. As a key technical contribution, we formulate a

weighted combination kernel with a neural network that deals with

heterogeneous inter-pixel correlations in correlated pixel estimates.

We also extend our kernel to support multiple bufers, making it

more robust to outliers. We design our framework to be orthogonal

to correlated sampling and denoising techniques and demonstrate

its robustness by applying it to a wide variety of methods. We show

that our framework can be complementary to the prior methods

while reducing their reconstruction errors.

ACKNOWLEDGMENTS

We appreciate the reviewers for their valuable comments (espe-

cially for a connection with image boosting). We also thank Wenzel

Jakob for Mitsuba renderer [Jakob 2010], Benedikt Bitterli for pub-

lic scenes [Bitterli 2016], and the following authors and artists for

each scene: Mareck, Jay-Artist, Wig42, NovaZeeke, Eric Veach, Mi-

ika Aittala, Samuli Laine, Jaakko Lehtinen and Tiziano Portenier

(training scenes in Fig. 6), nacimus (bathroom), Tiziano Portenier

(bookshelf), Anton Kaplanyan (kitchen), Anat Grynberg and Greg

Ward (conference). BochangMoon is a corresponding author of the

paper. This work was supported by NRF (MSIT, 2020R1A2C4002425)

and Cross-Ministry Giga KOREA grants (MSIT, GK20P0300).

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jefrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geofrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems.

Jonghee Back, Sung-Eui Yoon, and Bochang Moon. 2018. Feature Generation for
Adaptive Gradient-Domain Path Tracing. Computer Graphics Forum 37, 7 (2018),
65ś74.

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convolu-
tional Networks for Denoising Monte Carlo Renderings. ACM Trans. Graph. 36, 4,
Article 97 (2017), 14 pages.

Pablo Bauszat, Victor Petitjean, and Elmar Eisemann. 2017. Gradient-Domain Path
Reusing. ACM Trans. Graph. 36, 6, Article 229 (2017), 9 pages.

Philippe Bekaert, Mateu Sbert, and John Halton. 2002. Accelerating Path Tracing by
Re-Using Paths. In Proceedings of the 13th Eurographics Workshop on Rendering
(EGRW ’02). 125ś134.

Pravin Bhat, Brian Curless, Michael Cohen, and C. Lawrence Zitnick. 2008. Fourier
Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems. In

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

242:12 • Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

Proceedings of the 10th European Conference on Computer Vision: Part II (ECCV ’08).
114ś128.

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.
Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David

Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted
First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics
Forum 35, 4 (2016), 107ś117.

Malik Boughida and Tamy Boubekeur. 2017. Bayesian Collaborative Denoising for
Monte Carlo Rendering. Computer Graphics Forum 36, 4 (2017), 137ś153.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-
tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.
ACM Trans. Graph. 36, 4, Article 98 (2017), 12 pages.

Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM
Trans. Graph. 38, 4, Article 125 (2019), 12 pages.

Jie Guo, Mengtian Li, Quewei Li, Yuting Qiang, Bingyang Hu, Yanwen Guo, and Ling-
Qi Yan. 2019. GradNet: Unsupervised Deep Screened Poisson Reconstruction for
Gradient-Domain Rendering. ACM Trans. Graph. 38, 6, Article 223 (2019), 13 pages.

Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive Photon
Mapping. ACM Trans. Graph. 27, 5, Article 130 (2008), 8 pages.

Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek
Nowrouzezahrai, Elmar Eisemann, and Toshiya Hachisuka. 2019. A Survey
on Gradient-Domain Rendering. Computer Graphics Forum 38, 2 (2019), 455ś472.

Wenzel Jakob. 2010. Mitsuba renderer.
Henrik Wann Jensen. 1996. Global Illumination using Photon Maps. In Rendering

Techniques ’96. Springer Vienna, Vienna, 21ś30.
James T. Kajiya. 1986. The rendering equation. In ACM SIGGRAPH ’86. 143ś150.
Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning

Approach for Filtering Monte Carlo Noise. ACM Trans. Graph. 34, 4, Article 122
(2015), 12 pages.

Alexander Keller and Wolfgang Heidrich. 2001. Interleaved Sampling. In Proceedings of
the 12th Eurographics Workshop on Rendering Techniques. 269ś276.

Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep Convolutional
Reconstruction for Gradient-Domain Rendering. ACM Trans. Graph. 38, 4, Article
126 (2019), 12 pages.

Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and
Matthias Zwicker. 2015. Gradient-domain Path Tracing. ACM Trans. Graph. 34, 4,
Article 123 (2015), 13 pages.

Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations (2014).

Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo
Aila. 2013. Gradient-domain Metropolis Light Transport. ACM Trans. Graph. 32, 4,
Article 95 (2013), 12 pages.

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for
adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6, Article 194 (2012),
9 pages.

Michael D. McCool. 1999. Anisotropic Difusion for Monte Carlo Noise Reduction.
ACM Trans. Graph. 18, 2 (1999), 171ś194.

Peyman Milanfar. 2013. A Tour of Modern Image Filtering: New Insights and Methods,
Both Practical and Theoretical. IEEE Signal Processing Magazine 30, 1 (2013), 106ś
128.

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering Based on
Weighted Local Regression. ACM Trans. Graph. 33, 5, Article 170 (2014), 14 pages.

Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016. Adaptive
Polynomial Rendering. ACM Trans. Graph. 35, 4, Article 40 (2016), 10 pages.

Ryan S. Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive Wavelet
Rendering. ACM Trans. Graph. 28, 5, Article 140 (2009), 12 pages.

Matt Pharr. 2018. Guest Editor’s Introduction: Special Issue on Production Rendering.
ACM Trans. Graph. 37, 3, Article 28 (2018), 4 pages.

O. Ronneberger, P.Fischer, and T. Brox. 2015. U-Net: Convolutional Networks for
Biomedical Image Segmentation. InMedical Image Computing and Computer-Assisted
Intervention (MICCAI) (LNCS), Vol. 9351. Springer, 234ś241.

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive Sampling and
Reconstruction Using Greedy Error Minimization. ACM Trans. Graph. 30, 6, Article
159 (2011), 12 pages.

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive Rendering with
Non-local Means Filtering. ACM Trans. Graph. 31, 6, Article 195 (2012), 11 pages.

Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust Denoising using
Feature and Color Information. Computer Graphics Forum 32, 7 (2013), 121ś130.

Iman Sadeghi, Bin Chen, and HenrikWann Jensen. 2009. Coherent path tracing. Journal
of Graphics, GPU, and Game Tools 14, 2 (2009), 33ś43.

Pradeep Sen and Soheil Darabi. 2012. On Filtering the Noise from the Random Pa-
rameters in Monte Carlo Rendering. ACM Trans. Graph. 31, 3, Article 18 (2012),
15 pages.

Hossein Talebi, Xiang Zhu, and PeymanMilanfar. 2012. How to SAIF-ly boost denoising
performance. IEEE transactions on image processing 22 (12 2012), 16.

Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang.
2019. Adversarial Monte Carlo Denoising with Conditioned Auxiliary Feature
Modulation. ACM Trans. Graph. 38, 6, Article 224 (2019), 12 pages.

Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent advances
in adaptive sampling and reconstruction for Monte Carlo rendering. Computer
Graphics Forum 34, 2 (2015), 667ś681.

A APPENDIX

A.1 Bias of Our Combination Kernel

The expectation of �̂� (Eq. 8) can be represented in the form:

� [�̂�] = �

[

1

��

(

���� +
∑

�∈Ω�

���� +
∑

�∈Ω�

�� (�� − ��)

)]

≈
1

��

(

��� [��]+
∑

�∈Ω�

��� [��]+
∑

�∈Ω�

�� (� [�� − ��])

)

=
1

��

(

���� +
∑

�∈Ω�

���� +
∑

�∈Ω�

�� (�� − �� + � [���])

)

= �� +
1

��

∑

�∈Ω�

��� [���] .

In the equation above, � [���] = � [�� − ��] − (�� − ��). The equation

in the second line is approximated from the one in the irst line, by

assuming that theweights�� and�� are constant. Consequently, the

bias of our combination kernel, � [�̂�] − �� ≈ 1

��

∑

�∈Ω�
��� [���],

which is a weighted sum of � [���].

A.2 Variance of Our Combination Kernel

The variance var(�̂�) of our estimator can be approximated under

two assumptions (constant weights and independence between �

and �) as the following:

var(�̂�) = var

[

1

��

(

���� +
∑

�∈Ω�

���� +
∑

�∈Ω�

�� (�� − ��)

)]

≈
1

� 2
�

[

�2
� var(��)+

∑

�∈Ω�

�2
� var(��)+var

(

∑

�∈Ω�

�� (�� − ��)

)]

.

In the equation above, the last term contains the correlated random

variables �� and �� , and thus this can be further decomposed by

considering the covariance between the values:

var

(

∑

�∈Ω�

�� (�� − ��)

)

= var

(

∑

�∈Ω�

����

)

+ var

(

∑

�∈Ω�

����

)

− 2cov

(

∑

�∈Ω�

���� ,
∑

�∈Ω�

����

)

=

(

∑

�∈Ω�

��

)2

var(��) +
∑

�, � ∈Ω�

��� � cov
(

�� , � �
)

− 2

(

∑

�∈Ω�

��

)

∑

�∈Ω�

��cov (�� , ��) .

By plugging this into the equation (Eq. 11), we have the inal variance

representation for our combination kernel.

ACM Trans. Graph., Vol. 39, No. 6, Article 242. Publication date: December 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 Statistical Model and Motivation
	3.1 Independent Pixel Estimates
	3.2 Correlated Pixel Estimates
	3.3 Combined Estimator

	4 Combination Kernel
	4.1 Derivation
	4.2 Estimating Kernel via a Neural Network
	4.3 Error Analysis
	4.4 Multi-Buffered Combination Kernel

	5 Experimental Setup
	6 Results and Discussions
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Bias of Our Combination Kernel
	A.2 Variance of Our Combination Kernel

