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We present a new adaptive photon tracing algorithm which can handle illumination settings that are considered difficult for photon
tracing approaches such as outdoor scenes, close-ups of a small part of an illuminated region, and illumination coming through a small
gap. The key contribution in our algorithm is the use of visibility of photon path as the importance function which ensures that our
sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments
in Markov chain Monte Carlo methods: adaptive Markov chain sampling and replica exchange. Using these techniques, each photon path
is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We
have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility information in a natural
way when a photon path contributes to a measurement point. We demonstrate that the final algorithm is strikingly simple, yet effective

at sampling photons under lighting conditions that would be difficult for existing Monte Carlo ray tracing based methods.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

General Terms: Algorithms
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1. INTRODUCTION

Developing efficient and robust global illumination algorithms has
been an active area of research in computer graphics over the last 25
years. Current state-of-the-art algorithms are based on Monte Carlo
ray tracing. These algorithms solve the rendering equation [Kajiya
1986] and handle complex geometries, materials, and lighting condi-
tions. However, there are scene configurations where many of the
Monte Carlo ray tracing algorithms become highly inefficient. An
example would be the interior of a room illuminated by sunlight
through the window. If the exterior scene geometry is relatively
large, efficiently generating light paths through the window that
contribute to the rendered image becomes challenging. Another
example would be detailed caustics patterns from a headlight of a
car or strong indirect illumination coming from an adjacent room
through a small gap.

To address difficult lighting scenarios, a number of improved
sampling algorithms have been developed. The most successful
ones are based on Markov chain Monte Carlo methods which were
introduced by Veach and Guibas [1997] in computer graphics, who
developed the Metropolis light transport method. Metropolis light
transport improves the efficiency of light path sampling by gener-
ating a new light path by a small perturbation of the previous light
path. Unfortunately, unbiased Monte Carlo ray tracing methods,
including Metropolis light transport, become highly inefficient for
specular-diffuse-specular light paths from small light sources [Veach
1998; Hachisuka et al. 2008]. This is inconvenient as most natural
scenes with light bulbs or sunlight exhibit such light paths. An
example includes rendering of a glass illuminated by sunlight with a
diffuse surface below the glass.

Recently, Hachisuka et al. [2008] presented progressive photon
mapping as a robust alternative to unbiased Monte Carlo ray tracing
methods. Progressive photon mapping can handle specular-diffuse-
specular light transport robustly, however, it becomes inefficient in
scenes where only a small part of the lit surfaces can bee seen in the
rendered image. In general, this type of scene is problematic for any
photon tracing based methods including progressive photon mapping

and the original photon mapping algorithm [Jensen 1996]. To ad-
dress this issue, Fan et al. [2005] proposed a Markov chain sampling
method to improve photon tracing in such scenarios. Unfortunately,
their method uses path tracing from the eye to seed the sampling
process, and it is still inefficient for specular-diffuse-specular light
transport similarly to unbiased Monte Carlo ray tracing methods.

In this paper, we propose a simple, automatic and robust photon
tracing algorithm that extends the types of scenes that can be ren-
dered efficiently with photon tracing based methods. The key idea
is a new importance sampling function solely based on the visibil-
ity information of each photon path. In order to generate samples
from this importance function, we apply two recent developments
in Markov chain Monte Carlo methods: adaptive Markov chain
sampling and replica exchange. Adaptive Markov chain sampling
adjusts the parameters of the mutation strategies adaptively and re-
moves the need for a user to tweak sampling parameters. Applying
replica exchange to progressive photon mapping provides an au-
tomatic mixture of uniform random samples and Markov chains,
and ensures that photon paths do not get stuck at local peaks of the
importance function. Our method is effective in many cases and
strikingly simple to implement. Figure 1 highlights the results of
our algorithm on a close-up of a caustic pattern created by a cognac
glass. In summary, our contributions are the following.

—-Use of visibility as an importance function in path space, which
significantly simplifies the implementation.

—Introduction of adaptive Markov chain Monte Carlo methods to
rendering, which makes the algorithm parameter-free.

—Application of replica exchange Monte Carlo method, which
provides an automatic mixture of uniform random samples and
Markov chains.

This is a preprint of the paper “Robust Adaptive Photon Tracing using Photon Path Visibility” by Hachisuka and Jensen which has been accepted with minor

revisions to ACM Transactions on Graphics on 16-Mar-2011.
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Fig. 1. Cognac glass illuminated by a directional light source. The figure compares rendered images using progressive photon mapping with the
same rendering time (120 min), but with different photon tracing algorithms. The images on the top row are rendered using random sampling
of photons, which become increasingly noisy as we zoom into the caustic. Using our photon tracing method (bottom row), we can focus tracing
photon paths into the region that contributes to the image without any portal, and render the close-ups with less noise in the same rendering
time. Note that no other existing global illumination methods can render illumination under the cognac glass accurately, since this illumination
comes from specular-diffuse-specular paths from a light source with zero solid angle. The combination of progressive photon mapping and our
photon tracing technique is the first method that works effectively and robustly in this kind of scene. The stripe patterns in the caustic are not
artifacts of our method - they are caused by the tessellation of the cognac glass.

2. RELATED WORK

Many rendering algorithms use photon tracing in various forms for
solving the light transport problem [Arvo 1986; Dutré et al. 1993;
Jensen 1996; Lafortune and Willems 1993; Veach and Guibas 1995].
Most recently, Hachisuka et al. [2008] proposed progressive photon
mapping which solves the light transport problem by using pro-
gressive accumulation of photons. Our method uses progressive
photon mapping as its rendering algorithm since it can robustly
render scenes that are difficult to render with other methods (e.g.,
reflections of caustics from a directional light source).

Photon tracing methods can however become inefficient when
only a small part of the illuminated scene is visible. Veach and
Guibas [1997] addressed a related problem by introducing the
Metropolis light transport method as an application of Markov chain
Monte Carlo methods to rendering. Their assumption is that, given
a sampled light path that we already know contributes to the image,
similar light paths will be likely to contribute to the image as well.
Under this assumption, Metropolis light transport generates a new
path by slightly perturbing the previous path. They demonstrated
that this strategy works well in difficult settings including illumi-
nation coming through a small gap. Markov chain Monte Carlo
methods have been successfully used in other forms as well such
as multiple-try Markov chain Monte Carlo methods [Segovia et al.
2007] and energy redistribution path tracing [Cline et al. 2005].

Most related to our work is the method by Fan et al. [2005], who
applied Metropolis light transport to photon tracing. In order to
obtain the full information of a photon path including whether it
contributes to the image, they proposed to directly sample a com-
plete path from the path space that connects a light source and the
eye. Common to existing MCMC rendering methods and their work,
however, is that they all use sampling on the exact path space. This
unfortunately becomes inefficient in the presence of some light paths,

such as specular-diffuse-specular paths from small light sources.
This is because such paths will have nearly zero volume (or zero
in the case of point light sources or directional light sources) in the
path space [Veach 1998]. These paths are rather common in the
real world such as illumination coming from the filament in a light
bulb. Our method avoids this issue by sampling a blurred path space
using progressive photon mapping, where blurring vanishes as we
add more samples.

Our algorithm uses two advancements in Monte Carlo sampling
algorithms: adaptive Markov chain Monte Carlo methods [Haario
et al. 2001] and replica exchange [Swendsen and Wang 1986]. It
has been known that the mutation parameters, thereby mutation ker-
nels affect the performance of Markov chain Monte Carlo methods
significantly, which are usually tuned by users. Adaptive Markov
chain Monte Carlo methods automate this process by using informa-
tion obtained from past samples and self-learning the importance
function. In this paper, we introduce adaptive Markov chain Monte
Carlo methods to rendering. As far as we know, our method is the
first application of adaptive Markov chain Monte Carlo methods in
rendering.

The replica exchange method uses multiple target distributions, or
an extended space of the target distribution with auxiliary parameters,
in order to introduce inter-distribution mutations. This alleviates the
problem of a Markov chain being trapped within a single mode in a
multi-modal distribution by taking a “detour” of the Markov chain
through different distributions. Kitaoka et al. [2009] applied this al-
gorithm to modify the original Metropolis light transport method by
defining multiple target distributions based on a heuristic separation
of light paths (e.g., direct illumination, indirect illumination, caustics
etc). We provide a formulation of replica exchange Monte Carlo
method in the context of our visibility function. The key difference
is that our formulation results in a strikingly simple algorithm that is
independent from scene settings.



3. METHOD
3.1 Overview

The overall idea of our algorithm is to define a visibility function of
photon paths and to perform importance sampling on this visibility
function. We define the space of this function as a hypercube similar
to the one that was proposed by Kelemen et al [2002]. Note that
a point in this space corresponds to a set of random numbers. We
then employ local importance sampling for choosing light sources
and sampling BRDFs and Russian roulette, in order to generate a
photon path from given random numbers. In order to efficiently
sample this function, we propose a combination of adaptive Markov
chain sampling and replica exchange as we will describe in the next
sections.

3.2 Sampling Space and Visibility Function

We first define our sampling space and the importance function.
Given a photon path, #, in the hypercube, we define a photon path
visibility function, V (i), where V (ii) = 1 if any photon due to this
photon path contributes to the image and V (i) = 0 otherwise. The
importance function is simply the normalized version of this vis-
ibility function V (i), which is F (id) = %") where V, = [V (4)di.
Figure 2 illustrates the definition of our sampling space and visibil-
ity function. The use of this function has the additional advantage
that there is no local peak in the function, which is prone to high
autocorrelation of samples in Markov chain Monte Carlo methods
(e.g., a chain gets stuck in a very bright path). We can also easily
evaluate V (i) by checking if a photon path splats any photon into
any of measurement points in the photon splatting implementation
of progressive photon mapping that we describe below.

V(u) in the hypercube Light Paths

Fig. 2. Sampling space of our method. We define a function V(x) in the
hypercube of random numbers. The function returns 1 if a corresponding
photon path contributes to the image (the green point in the shaded region)
and 0 otherwise (the red point outside the shaded region).

3.3 Photon Splatting Implementation

In this variation of progressive photon mapping, we construct an
acceleration data structure of measurement points, not a photon map.
In the succeeding photon passes, instead of storing photons as a pho-
ton map, we perform a range query over measurement points at each
photon’s position. In other words, this algorithm is splatting photons
into the measurement points, instead of gathering photons at each
measurement point. We then apply the radius reduction and the flux
correction normally to all of the affected measurement points. The
radiance estimation at each measurement point can be done as usual.
Resampling of measurement points in stochastic progressive photon
mapping is done after tracing a user-specified number of photons,
which controls the frequency of eye ray tracing. We use this splat-
ting implementation throughout the paper, in order to immediately
utilize the visibility information of the current photon path to the
next photon tracing.
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4. REPLICA EXCHANGE MONTE CARLO
4.1 Overview

The replica exchange Monte Carlo method is an extended ensem-
ble Monte Carlo method where we sample Markov chains from
multiple distributions simultaneously (refer to Iba [2001] for an
overview of this class of algorithms). The basic idea is facilitating
exploration of the sampling space by bridging multiple distant peaks
using another smooth importance function. For example, if we use
a regular Markov chain Monte Carlo method to sample from an
importance function with two peaks separated by zeros, the Markov
chain can get trapped within one peak for many iterations. The
replica exchange Monte Carlo method can avoid this problem by
introducing an extra Markov chain, for instance, from a uniform
distribution. Even if a Markov chain gets stuck in one peak, this
chain can be exchanged with another Markov chain in the uniform
distribution without changing the resulting sample distribution using
replica exchange. Figure 4 illustrates this idea. We first describe a
general formulation of replica exchange Monte Carlo method in the
following and explain our formulation in the next.

Given a set of multiple importance functions, Fi (ii),...,Fp(i),
we define a set of independently generated samples from each func-
tion as U = {i,... ,iip}. Under these definitions, U can be consid-
ered a single sample from the following product function;

. Y
F(U) =[] Feliix), (1)
k=1

where iy, is a sample (or a state of the Markov chain) in the impor-
tance function Fy.

The key idea of the replica exchange Monte Carlo method is to
perform an inter-distribution exchange such that the above product
distribution of samples remains unchanged. This can be achieved by
exchanging states of two chains, #; and ii;, with the probability

r (i, 1) = min M
@) =min (1 T )

As aresult, each sequence of Markov chain i, still distributes accord-
ing to Fy (i), but possibly with a better exploration of the sampling
space due to inter-distribution exchanges. This formulation sub-
sumes the large step mutation used by Kelemen et al. [2002] with a
theoretical formulation using the product distribution.

Kitaoka et al. [2009] has applied the replica exchange Monte
Carlo method to the light transport problem in the context of improv-
ing Metropolis light transport, where they defined target distributions
of separated light paths in the heuristic order of difficulty. This sep-
aration is highly scene dependent and its implementation becomes
relatively complex compared to the regular Metropolis light trans-
port algorithm. Our algorithm is far simpler than their work in terms
of implementation and independent from scene configurations.

(€5

4.2 Our Formulation

Although the replica exchange Monte Carlo method can use mul-
tiple importance functions, we only use two functions: the target
importance function F (i) as defined by the visibility function and a
constant function /(i) = 1. Note that even though F (if) only returns
either zero or 1/V, without any local peak, samples in standard
Markov chain Monte Carlo methods can still be trapped within one
region in the hypercube for a large number of iterations (e.g., only
sampling light from one window out of two windows in a room).
We therefore consider two Markov chains i and iy from F (i)
and /(). Using Equation 2, we exchange those two chains across
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the distributions with probability (i, iir );

i) = S, )

F(iip)I(iiy)

For general importance functions, this equation needs computation
of multiple probability density at arbitrary sample locations as in
Equation 2. However, we can simplify the equation in our method
since we know that the sample iir always returns F (iip) = V% by

definition and I(ii;) = I(iir) = 1;

F(ip)1
r(iiy, fi) = (,"’1) = V(i)- @)
V.

The end result is straightforward. Since the sample #; is from uni-
form sampling, there is no need to keep track of a Markov chain of
iir; if uniform independent sampling generates a useful path (when
r (i, i) =V (idy) = 1) we replace the current photon path, other-
wise, we keep the current photon path and mutate normally (when
r (i, dp) = V(idy) = 0). This formulation results in an automatic
mixture of uniform sampling and Markov chain sampling based on
how frequent we obtain V (ii;) = 1.

4.3 Progressive Estimation of the Normalization Term

Using the uniform distribution in the formulation of replica exchange
Monte Carlo method gives us another benefit. By counting the sam-
ples from the uniform distribution, we can compute the normaliza-
tion term V, in a progressive fashion which is usually computed in
a separate pass in existing Markov chain Monte Carlo rendering
methods. We can estimate the normalization term as

Ny v
v, :/V(ﬁ)dﬁz _Lv@=1 5)

)
N, total

where Nj y ;-1 is the number of visible paths from uniform distri-
bution, and N, 1o¢y] is the total number of generated paths from a
uniform distribution. Note that Ni total 18 in fact equal to the total
number of generated photon paths from F(ii) because we always
generate a sample from the uniform distribution (Figure 3). Since
this value is already kept for the purpose of radiance computation,
the above computation of V. requires keeping only one additional
value, NI,V([i):l- This normalization constant, V., just uniformly
scales the radiance estimate computed for each pixel.

5. ADAPTIVE MARKOV CHAIN MONTE CARLO
5.1 Overview

One notable difficulty in Markov chain Monte Carlo methods is
that the optimal mutation strategy is problem dependent. For ex-
ample, if we render an object on a plane with a point light source,
depending on the relative size of the plane and the object, ranges
of photon paths that intersect with the object and/or the plane in
the hypercube changes dramatically. In general, no single preset of
mutation strategies will work well in all scene settings. We could
have as many mutation strategies as possible to hope that at least
one of them is effective, but this approach wastes computation on
other ineffective mutations. Adaptive Markov chain Monte Carlo
methods provide a way to automatically adjust mutation strategies
during the computation by learning the importance function as we
sample. Since adaptive Markov chain Monte Carlo methods in gen-
eral cover many different variations, we only provide an overview of
the method that we use, which is a controlled Markov chain Monte

Carlo method [ Andrieu and Robert 2001]. For a more comprehen-
sive overview of other methods, readers can refer to a survey such
as the one by Andrieu and Thoms [2008].

The idea of a controlled Markov chain Monte Carlo method is
to adjust the parameters of given fixed mutation strategies based
on the previous samples. Given a vector of the initial parameter
values, 6, a controlled Markov chain Monte Carlo method updates
the parameters values é,- as;

éi+1:§i+H(i7§i7ﬁi7'“7ﬁl)7 (6)

where i;,...,u; are all samples up to the ith iteration and H is a
function that computes the changes of the parameters according to
this history of samples and the last parameter values 6;. One impor-
tant condition that H needs to satisfy in order to keep the sample
distribution intact is diminishing adaptation principle [ Andrieu and
Thoms 2008];

1imH(i,9i,ﬁi,...,1'4‘1):0. (7)

i—yo0
There are many possible approaches to adapt the parameters while
satisfying this condition, but one simple approach that is used in ex-
isting adaptive Markov chain Monte Carlo methods is changing the
parameters such that an acceptance ratio of Markov chains reaches
the desired value. The acceptance ratio (or acceptance rate) is the
fraction of accepted mutations over all the mutations. For separable
functions, the optimal asymptotic acceptance ratio has been derived
23.4% [Roberts et al. 1997]. We can thus simplyify Equation 6 as:

61 = 6;+H(i,A",A)), (8

where A* is the target acceptance ratio and A; is the acceptance ratio
of samples up to i.

While it is true that our importance function will not be separable
in many scenes, previous work confirmed that using 23.4% works
well in practice with nonseparable functions [Rosenthal et al. 2008].
Furthermore, the general principle that the acceptance ratio should
not be too high or too low is applicable to any functions, so any
target acceptance ratio that is not too close to 0% or 100% will
work as we will demonstrate in the results section. We therefore
use A* =23.4% in all the examples that we show in this paper. The
key is that the same target acceptance ratio will work well for many
settings and the user does not need to tweak the target acceptance
ratio scene by scene as we will demonstrate.

5.2 Our Formulation

In this paper, we use a simple form of a controlled Markov chain
Monte Carlo method, which adjusts a single mutation parameter in
a power function. A mutation of each coordinate of a given point is
done by adding

Au = sgn(28 — el ©)

to each coordinate while keeping the result within (0, 1) by wrapping
around the value in this range. 6; is the adaptive mutation size at
the ith Markov chain, sgn(x) is a function that returns the sign of
x, and &) and &; are uniform random numbers within (0,1). The
mutation size is a global value that is maintained throughout the
sampling process. Note that 6; = oo corresponds to uniform random
sampling which generates as large mutation as possible, and 6; =0
corresponds to staying at the same position all the time.

The acceptance probability of a mutated path is easily computed
since the mutation is symmetric and V (i) = 1 in our method. Specif-
ically, given a set of mutations as a vector A = (Au,...,Au), the



acceptance probability is

alii+ AT 7) = F(;‘;(;)M) - V(i(;)Aﬁ) —V(@+Ai), (10)

which simply means that a mutation is accepted if the mutated path is
visible. In contrast to existing Markov chain Monte Carlo rendering
methods, there is no need for generating another random number to
decide whether we accept a mutation or not.

We compute the acceptance ratio, A;, by counting the number of
accepted mutations and dividing this value by the total number of
mutations. We then update 6; as follows:

9i+1:9i+’}/i(Ai—A*). (11)

where % = 1/i and 6; = 1. The intuition behind this equation is that
the acceptance ratio that is too large (A; —A* > 0) would indicate
that the mutation size is too small, thus we increase the mutation
size, and likewise the acceptance ratio that is too small (4; —A* < 0)
indicates that the mutation size is too large, so we decrease the
mutation size. Note that the difference A; — A* can never converge
to zero in some scenes — e.g., a scene where all paths are visible
(A; = 100%). However, using ¥ = 1/i ensures that we always sat-
isfy Equation 7. Another condition for the convergence of adaptive
Markov chain Monte Carlo sampling, bounded convergence, re-
quires that the product of the state space and the space of mutations
to be finite, which is always satisfied in practice since floating point
numbers have finite state space. The only parameter, A*, is “em-
bedded” into the algorithm and users will not touch it, thus our
algorithm is parameter-free.

6. ALGORITHM

The pseudocode of the algorithm is shown in Figure 3. The main
modification to the existing implementation of progressive photon
mapping in our case is to change the photon tracing procedure to
use a set of given random numbers instead of generating them on
the fly. The rest of the algorithm was implemented without any
large modification to the existing framework since we do not need
to compute probability density of paths in our importance function.

MutationSize < 1, Accepted < 1, Mutated <— 0, UniformCount + 1
repeat
CurrentPath <~ UNIFORM()
until ISVISIBLE(CurrentPath)
for i < 1 to NumTotalPhotons
UniformPath <~ UNIFORM()
if ISVISIBLE(UniformPath)
then {CurrentPath < UniformPath
UniformCount < UniformCount + 1
CandidatePath <— MUTATE(CurrentPath, MutationSize)
Mutated < Mutated + 1

do if ISVISIBLE(CandidatePath)
else th CurrentPath < CandidatePath
Accepted <— Accepted + 1

R < Accepted/Mutated

MutationSize <— MutationSize + (R — 0.234) /Mutated
SPLAT(CurrentPath)
DispPLAY (UniformCount/)

Fig. 3. Our photon tracing algorithm. UNIFORM() samples a hypercube
using uniform random numbers, and MUTATE() returns a mutated path
with a given mutation strategy parameter (MutationSize). SPLAT() finds
nearby measurement points of each photon and accumulates photon statistics.
ISVISIBLE() returns true if the given photon path splats any photon into any
of measurement points and false otherwise. DISPLAY() takes its argument
as a scaling factor, and computes pixel values using current photon statistics.
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Fig. 4. Example of the replica exchange Monte Carlo method with two distri-
butions. The target distribution (left), F(x), can have multiple distant peaks
that are difficult to sample with regular Markov chain Monte Carlo methods.
The replica exchange Monte Carlo method can improve exploration of a
Markov chain by combining a uniform distribution with inter-distribution
exchanges (right).

7. RESULTS

‘We have implemented a uniform random photon tracing algorithm
and our algorithm using the splatting variation of stochastic progres-
sive photon mapping [Hachisuka and Jensen 2009]. All the scenes
have been rendered on a 2.67GHz Intel Core 17 920 using one core.
The alpha value is 0.7 as in the original progressive photon mapping
work [Hachisuka et al. 2008]. We trace 200K photons per eye ray
tracing pass. The initial radii are manually chosen for each scene as a
constant value to get approximately four pixel-wide contribution on
the image from each photon at the beginning. This manual tweaking
of the initial radii is orthogonal to our claim that the proposed photon
tracing algorithm is automatic and parameter-free. The resolution
of the images is 5122 except for Figure 13 which uses 640 x 480.
Table I summarizes various statistics of our experiments. The calcu-
lated acceptance ratio is 23.4% for all scenes except the ones where
our method does not provide improvement (Cornell and Box).

Figure 1 compares rendered images of a cognac glass illuminated
by a directional light source with different zoom ratios. The caustic
below the glass exhibits a specular-diffuse-specular path. Due to
the fact that this path is generated from a directional light source,
existing unbiased Monte Carlo ray tracing methods cannot render
this scene since the probability that a path started from the eye hits
a directional light source is zero and vice versa. To demonstrate
the effect of our sampling method, we zoom into the caustic such
that the visible illuminated region becomes increasingly small. This
means that many photons land outside the view with uniform photon
sampling. Our method focuses photons into the visible region, and
we can obtain significantly less noisy images in the same rendering
time regardless of the viewpoint. The ratios of visible photons in
Table I also show that our method focuses increasingly more photons
compared to uniform photon sampling.

Figure 5 shows a sequence of rendered images of a room illu-
minated through a glass window by a directional light source. The
graph shows relative root mean square errors of the images. The im-
ages rendered by our method quickly converge to visually pleasing
results compared to uniform photon sampling. Our method also has
lower numerical error in the same rendering time as shown in the
graph of Figure 6.

Figure 7 highlights the effect of the adaptive Markov chain Monte
Carlo method. A mutation size that is too large results in an image
with as much noise as the image rendered using uniform sampling,
and mutation size that is too small is noisy as well compared to
the adaptive mutation size. Our photon tracing method based on
adaptive Markov chain Monte Carlo gives us the result shown in the
third image from the left of Figure 7 without any tuning of param-
eters. Note that, in a regular Markov chain Monte Carlo method,
we generally cannot know which mutation size works well unless
we actually try a wide range of mutation size (0.01 to 4.0 in our
example) and compare rendered images. Our method automates this
process based on the current scene setting.

F(x)
Uniform
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Fig. 5. Sequences of rendered images of a room (with permission of Youichi Kimura) illuminated by a directional light source . The top row
shows the results with uniform sampling and the bottom row shows the results with our method using the same rendering time (1, 15, 30, and
60 min from left to right). Our photon tracing method robustly and automatically handles scenes that are considered difficult to render with
existing photon tracing approaches. The illumination is coming through the glass window and only photon tracing approaches can handle such
paths without ignoring specular reflections and refractions at the window.
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Fig. 6. Color coded error images of Figure 5 and the graph that compares the average errors of rendered images with uniform sampling and our
method. Our method not only generates visually smoother images, but also results in more accurate solutions in the same rendering time.

We also demonstrate the effect of replica exchange in Figure 11.

‘We rendered the same scene with and without the replica exchange
procedure. In this example, we fixed the mutation size to isolate
the consequence of using the adaptive mutation. Without replica
exchange, photon paths can be trapped within one of the windows
for many iterations due to isolated regions of V (i) = 1. The replica
exchange Monte Carlo method alleviates this issue, resulting in more
visually plausible images in the same rendering time.

We show the effect of target acceptance ratio in Figure 8. We
have rendered the same scene as in Figure 12 using different target

acceptance ratios (from left to right: 5%, 23.4%, 40%, and 90%).

Note that differences in the middle two images (23.4% and 40%)
are rather small, which indicates our method is not very sensitive

to the target acceptance ratio. However, the images with extreme
target acceptance ratios (close to 0% or 100%) are noisier than the
image with the target acceptance ratio of 23.4%. As mentioned
ealier, similar results have been observed in other applications in
computational statistics [Rosenthal et al. 2008] and we confirmed
that this is also the case in our method through numerical examples.

Figure 9 shows examples where our method will not provide a
benefit as most of the paths are already visible. For such scenes,
sample correlation introduced by a Markov chain Monte Carlo sam-
pler would just result in additional rendering artifacts. The results
however show no visible negative effect when we compared our
method to uniform sampling. This is because the exchange by uni-
form random sampling happens often in this type of scene, and our



algorithm automatically uses uniform random sampling for most
of the photons (refer to the pseudocode in Figure 3). At the same
time, the adaptive Markov chain Monte Carlo method automatically
increases the mutation size to decrease sample correlation. The
mutation sizes shown in Table I for Cornell and Box therefore are
thus noticeably larger than other scenes.

Table I provides a rough idea of the cases where we will see bene-
fits using our photon tracing method. The column of “Visible Photon
Ratio” shows how many times more photons become visible using
our method. For the scenes that show no benefit (Cornell and Box),
the ratio is less than 10. As we can see in Figure 5 and Figure 6, the
Room scene already shows some benefit with our method, and the
ratio is 41.9, thus the ratio may need to be more than a few tens to
obtain improvement using our method.

Since we use a hypercube of random numbers as the sampling
space, our method can handle local lighting similar to Metropo-
lis light transport without any modification as shown in Figure 12.
Figure 13 visually verifies that our method preserves robustness of
progressive photon mapping, thus being able to handle scenes that
are difficult to the unbiased methods. None of the images using the
unbiased methods are visually converged, thus the differences in
the shape of caustics developing in the result of Metropolis light
transport and our results are due to error of the solution.

Scene Triangles Visible Photons Ratio Time Mutation Size
Cognac0 16456 103.1 120 0.274
Cognacl 16456 363.8 120 0.176
Cognac2 16456 885.2 120 0.174
Cognac3 16456 910.4 120 0.168
Cognac4 16456 3284.2 120 0.056

Pocket Watch 152434 270.3 90 0.194
Room 160400 419 60 0.253
Cornell w/door 730 55.9 90 0.096
Cornell 36 2.0 90 9.852
Box 3462 39 90 3.877
Buddha (far) 378731 6.67 90 0.173
Buddha (near) 378731 544 90 0.106

Table I. Statistics of our experiments. The table shows the number of tri-
angles, the ratio of the number of visible photons in total between our
method/uniform sampling (larger value means more photons are visible in
our method), the rendering time in minutes, and the adaptive mutation size at
the end of the rendering process. Cognac(0-4) correspond to different zoom
ratios (far to near). Buddha (far/near) corresponds to the far/near viewpoint.

8. DISCUSSION
8.1 Comparisons with Other Importance functions

In a regular implementation of Metropolis light transport, the impor-
tance function is usually given as the brightness of each path [Veach
and Guibas 1997; Kelemen et al. 2002]. Using this importance func-
tion, each importance sampled path contributes the same brightness
to the image. This importance function achieves sampling accord-
ing to outgoing radiance within each pixel toward the eye. This
choice is motivated by picking a probability density function that is
proportional to the integrand which results in zero variance.

The important fact is that the samples are distributed over the im-
age. This essentially means that we solve multiple integrations with
different integrands at the same time by distributing each sample ac-
cording the brightness of the path. As a result, bright pixels get more
samples compared to dark pixels as we mentioned in Section 3.2,
which results in poor stratification of samples over the image. Energy
redistribution path tracing [Cline et al. 2005] improves stratification
of samples by starting multiple independent chains from stratified
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screen-space samples on the image. However, even if those initial
points are well distributed, succeeding Markov chains can get stuck
in paths with very large brightness for many iterations. Cline et al.
thus proposed post-process filtering, which unfortunately makes the
algorithm inconsistent (i.e., does not converge to the correct solu-
tion). Although our target function does not provide stratification on
the image, the function does not have any local peak that is prone to
this issue. Isolated visible paths can still lead to this issue, however,
the replica exchange Monte Carlo method alleviates the problem in
such cases since the exchange results in a completely different path
as soon as we find another visible path by uniform sampling.
Interesting observations on alternative target functions have re-
cently been made by Hoberock and Hart [2010]. They proposed
a multi-pass algorithm that adjusts the importance function using
information from previous passes, such as brightness and variance
of each pixel. Their work also supports our claim that just using the
brightness of each path is not necessarily the optimal choice. They
additionally pointed that a constant importance function does not
work because no importance sampling will be employed, which may
be confusingly similar to our importance function. The important
distinctions are that our function is applied to photon tracing and
our function returns O for invisible photon paths. Since photons are
naturally distributed according to incoming radiance if proper local
importance sampling and Russian Roulette are done (i.e., photon
density is equal to radiance), our method still employ importance
sampling of incoming radiance, even with our simple target function.

8.2 Limitations

One limitation of our method is that it ignores flux variations due to
BRDFs. For example, if a scene has a highly glossy material, just
using visibility information will not resolve this flux variation due
to the glossy BRDF lobe. Figure 10 demonstrates such an example
scene, where most of noise is due to a highly glossy BRDF. Although
our method still provides visible improvement when we render the
close-up of the same scene, it does not resolve noise due to the
glossy BRDE. Note that this particular example scene itself might
be efficiently rendered with other methods, such as path tracing with
the next event estimation, but we chose this scene to highlight the
limitation of our method. One possible solution is to use stochastic
progressive photon mapping to perform importance sampling of a
BRDF from the eye, which resolves this flux variation. However,
this solution is not perfect. Ideally, we would like to sample photon
paths according to its contribution to the image, which cannot be
achieved by stochastic progressive photon mapping in a general
setting.

Another limitation is that the adaptive procedure is done globally.
Using locally adaptive mutation parameters might improve conver-
gence speed as was proposed in existing computational statistics
literatures [Andrieu and Thoms 2008]. For example, we might be
able to use an adaptive grid to store mutation parameters locally, and
use and update those parameters according to the current state (i.e.,
position in the hypercube). This however could be challenging as
our sampling space is in high dimensional space, where the cost of
storing any local estimation including adaptive mutation parameters
is often prohibitive and reliable estimation is difficult due to the
curse of dimensionality.

As we mentioned above, our algorithm does share the limitation
with the other Markov Monte Carlo chain rendering algorithms that
the samples are not stratified over an image. It is interesting to
investigate as future work whether the adaptive importance function
proposed by Hoberock and Hart [2010] is applicable to our method
in order to improve stratification.
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Fig. 7. The effect of adaptive mutation size. A pocket watch is illuminated by a hemispherical light source and a directional light source and is
rendered with depth-of-field. Illumination on the dial-plate is due to caustics from the glass cover and the metal lid. The images shown are
rendered by uniform random sampling (the leftmost image) and our photon tracing method (right three images) in the same rendering time.
The second image uses mutation size that is too small (d; = 0.01) and the fourth image uses mutation size that is too large (d; = 4.0). The
adaptive Markov chain Monte Carlo method used in our method (the third image) produces the least noisy result without any parameter tuning.

L

Fig. 8. Close-ups of rendered images using different target acceptance ratios. We have rendered the same scene as in Figure 12 using different
target acceptance ratios (from left to right: 5%, 23.4%, 40%, and 90%) using the same rendering time (90 min). Each calculated acceptance
ratio achieved is the same as the given target acceptance ratio. The target acceptance ratios closer to 0% or 100% result in slightly noisier
images (leftmost and rightmost), but using intermediate values would not affect the efficiency of our algorithm (middle two).

8.3 Dynamic Target Distribution

One theoretical difficulty of applying any Markov chain Monte Carlo
method to progressive photon mapping is that the target distribu-
tion, thereby the importance function, changes as the number of
samples increases. This is because progressive photon mapping
updates the radii of the measurement points to ensure convergence
to the correct solution. In our approach, this results in changes of the
region where V (i) = 1. Although we have not found any apparent
failure cases, the theoretical behavior of Markov chain Monte Carlo
methods on the dynamic target distribution in progressive photon
mapping is not fully analyzed. Our combination with the adaptive
Markov chain Monte Carlo method further complicates this theo-
retical validation. Convergence of the normalization term may also
require careful theoretical analysis. In this paper, we thus do not
claim provable convergence to the correct solution using our photon
tracing algorithm.

However, since we always use the current radii to distribute the
photon power, the contribution is at least computed based on the
current distribution. It is only the stationary sample distribution
that is not analyzed. This separation might be helpful for further
theoretical analysis. We also believe that, even without a formal
theoretical validation, our method will be useful for many practical
applications that do not require theoretical guarantees of consistency.
In the end, provable convergence is only a theoretically appealing
property as we cannot take infinite number of samples in practice.
We see practical benefits of using our method through numerical
experiments as we have demonstrated.

Fig. 9. Rendered images of scenes where our method does not provide ben-
efits. Our method (top) still performs as well as uniform random sampling
(bottom) does in the same rendering time (90min). Note that Box scene is
the one that is demonstrated to be rendered robustly only with progressive
photon mapping [Hachisuka et al. 2008].



Fig. 10. Example scene where flux variations due to BRDFs is the main
source of rendering error. The statue (with permission of VC-ISTI) is ren-
dered using a modified-Phong model with the exponent 100 under a hemi-
spherical light and a directional light source using uniform random sampling
(left column) and our method (right column). Although our method shows
improvement in the close-up images (bottom row), our method performs
approximately the same with the distant viewpoint (top row) as it does not
resolve flux variations due to BRDFs.

Fig. 11. Effect of replica exchange. We rendered Sibenik cathedral (with
permission of Marko Dabrovic) with a directional light source as the only
light source with (left) and without (right) replica exchange. Without replica
exchange, samples can get stuck within a small region (i.e., single window)
for long time, resulting in a solution with very high correlation of samples.

Fig. 12. Cornell box with a small gap with a door. The images are rendered
with uniform sampling (left) and our method (right) in 90 min. Our method
works under local lighting without any modifications to the algorithm.
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9. CONCLUSION

We have presented a new photon tracing algorithm using a simple
and effective importance function based on the visibility of photon
paths. Our algorithm uses recent developments in Markov chain
Monte Carlo methods. The resulting algorithm does not have any
parameters that require fine tuning by the user, and its implementa-
tion is strikingly simple. We have demonstrated that our algorithm
efficiently handles scenes that are difficult for existing photon trac-
ing approaches, while still keeping the efficiency for simple scenes.
The combination of our algorithm and progressive photon mapping
is an effective, unified, and robust solution to many light transport
configurations. Although we used progressive photon mapping in
this paper, we expect that the same importance function can be used
for the original photon mapping and other Monte Carlo ray tracing
methods to improve the efficiency of photon tracing.
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