

Experience with Global Analysis: A Practical Method for Analyzing Factors that
Influence Software Architectures

Robert L. Nord1, Dilip Soni
Siemens Corporate Research

755 College Road East
Princeton, New Jersey 08540 USA

rn@sei.cmu.edu, dilip@scr.siemens.com

1 Current Address: Software Engineering Institute, 4500 Fifth Avenue, Pittsburgh, Pennsylvania 15213USA.

Abstract

A practical method for analyzing the factors that
influence software architectures is presented. Factors
include organizational context and constraints, available
technologies, and product requirements. Analyzing the
factors uncovers a small number of issues that drive the
design of the architecture. These issues arise from the
factors that have little flexibility, a high degree of
changeability, and a global impact on the system. The
result of the analysis is a set of global strategies that
guide the architecture design.

A two-phase approach for analyzing factors and
developing architecture design strategies is given.
Experience has been gained with this approach in three
ways: (1) developing the approach during the design of
an imaging system; (2) using the approach to analyze
four systems in retrospect; (3) using the approach in new
software development projects.

Introducing global analysis into the software
development process resulted in a new global analysis
specification document that helped bridge the gap
between requirements and architecture design and
provided a place to explicitly record design rationale.

1. Introduction

Global analysis analyzes factors that globally influence
the architecture design of a system. Factors include
organizational context and constraints, available
technologies, and product requirements. This analysis
focuses on key issues that transcend boundaries between
development activities, subsystems, and architecture
views. The result of the analysis is a set of global
strategies that guide the architecture design and improve
its adaptability with respect to changes in the factors.

Successful projects prepare for change by noting the
flexibility of influencing factors and their likelihood of
change, characterizing interactions among the factors and
their impact, and selecting cost-effective design strategies
to reduce the expected impact of the changes [8].

Three categories of influencing factors are considered
during global analysis: organizational, technological, and
product.

Organizational factors arise from the business
organization. Organizational factors constrain the design
choices while the product is being designed and built.
They are external to the product, but influence it. Their
influence is important because if they are ignored, the
architecture may not be buildable.

External technology solutions are embedded or
embodied in the product. These factors are primarily
hardware and software technologies and standards. These
technological factors are external to the product being
designed. Unlike the organizational factors, however,
they can affect the product throughout its lifetime.
Further, they can change over time, so the architecture
should be designed with this changeability in mind.

Product factors are used to describe the product’s
requirements for functionality, the features seen by the
user, and nonfunctional properties. The product factors
are also subject to change over time, so the architecture
should be designed to support such changes.

In this paper, we present the concept of global analysis,
a practical method for analyzing factors that influence
software architectures. We demonstrate its role in
software architecture design and discuss its relationship to
other software development activities. We present our
experience with developing the method and its use by
others in new software development projects. We
conclude with lessons learned about the method’s value
and where further improvement is needed.

2. Related Software Development Activities

Figure 1 shows the relationship of global analysis to
software architecture design and project planning
activities.

Figure 1: Software Architecture Design and

Project Planning Activities

Global analysis complements requirements analysis
tasks. Global analysis helps focus on the important
architecture requirements; these are the quality attribute
requirements. But global analysis goes further than just
examining requirements; it includes organizational and
technological factors that are not typically included in the
requirements document.

The method helps bridge the gap between requirements
and architecture design by analyzing the impact of
requirements on important technical and business issues
that affect design. Global analysis records rationale and
provides traceability as requirements are linked to
strategies that guide design.

The description of requirements is often textual, but
more rigorous requirements analysis methods may employ
some combination of feature modeling [6], use case
modeling, or object modeling [5]. If such an approach is
used, then the artifacts will provide useful input to the
global analysis method. Features will be put in global
analysis factor tables for further analysis. Use cases show
a specific interaction between a stakeholder and the
system and provide a means to evaluate the impact of the
design decisions in providing a solution to the design
issue. Objects encapsulate system responsibilities and
will inform the choice of conceptual components in the
global analysis strategies that guide the design.

Global analysis generates issues and strategies that
guide architecture design and provide input to architecture
evaluation. Global analysis begins as the architecture is
defined and continues as the design decisions are made.
Figure 2 shows the iterative nature between global
analysis and the design tasks for any given architectural

view. Global analysis guides design decisions. As design
decisions are made, additional constraints may arise that
are in turn analyzed and in turn guide additional design
decisions.

Figure 2: Architecture Design

Global analysis complements architecture evaluation

tasks, such as the Architecture Tradeoff Analysis Method
(ATAM) [3]. Often, much time is spent at the beginning
of the evaluation capturing information about relevant
business drivers, quality attribute requirements, and
architectural approaches. Rather than record these after
the fact, the best time to capture them is as they are made
during the design activity. Global analysis captures this
information and provides design strategies and their
rationale that can be reviewed during the ATAM. ATAM
will uncover risks for which additional strategies may
need to be developed.

Global analysis provides input to project planning and
management activities. It is used to generate project
strategy conclusions that help define project goals [10].

3. Global Analysis Activities

The global analysis method consists of two phases:
Analyze the factors and Develop issues and strategies.

Figure 3: Global Analysis Activities

The process is iterative and may start with either phase.

Project
Planning:

Market
Requirements Requirements

Analysis

Risk
Analysis

How, Who,
When SW Dev.

Plan
Release
Planning

Project
Strategies

Global
Analysis

Risks &
Mitigations

Risks &
Mitigations

Issues &
Strategies

Project
Goals

Schedule
Sequence

Project Strategy
Conclusions

Organizational
Factors

Product
Factors

Evaluation Evaluation

Design Design
Architecture
Description

Technological
Factors

Software Architecture Design

Analyze Factors
1. Identify and describe the factors.
2. Characterize their flexibility and changeability.
3. Analyze their impact.

Develop Strategies
1. Identify issues and influencing factors.
2. Develop solutions and specific strategies.
3. Identify related strategies.

Analyze the Factors
1. Identify and describe the factors.

2. Characterize their flexibility and changeability.

3. Analyze their impact.

Develop Issues and Strategies
1. Identify issues and influencing factors.

2. Develop solutions and specific strategies.

3. Identify related strategies.

Organizational Factors
Technological Factors
Product Factors

Final
Design Task

Central
Design Tasks

Global
Analysis

Issue Cards

New factors,
issues, or
strategies

Organizational Factors
Technological Factors
Product Factors

Final
Design Task

Central
Design Tasks

Global
Analysis

Issue Cards

New factors,
issues, or
strategies

Phase 1: Analyze the Factors: The first phase
analyzes the factors using three steps: (1) Identify and
describe the factors; (2) Characterize the flexibility or the
changeability of the factors; and (3) Analyze the impact of
the factors.

Identify and describe the factors: Consider factors that
have a significant global influence, those that could
change during development, those that are difficult to
satisfy, and those with which you have little experience.
Can the factor’s influence be localized to one component
in the design, or must it be distributed across several
components? During which stages of development is the
factor important? Does the factor require new expertise?

Characterize the flexibility of the factors: Describe
what is negotiable about the factor. Is it possible to
influence or change the factors so that it makes your task
of architecture development easier? Use this information
when factors conflict or for some other reason become
impossible to fulfill.

Characterize the changeability of the factors: Describe
what could change about the factor, both in the near and
more distant future. In what way could the factor change?
How likely is it to change during or after development?
How often will it change? Will the factor be affected by
changes in other factors?

Analyze the impact of the factors: If the factor will
change, which of the following would be affected and
how: other factors, components, modes of operation of the
system, other design decisions.

Phase 2: Develop Issues and Strategies: The second
phase develops strategies for the architecture design using
three steps: (1) Identify issues; (2) Develop solutions and
specific strategies; and (3) Identify related strategies.

Identify issues: An issue may arise from factors in
many ways:

• limitations or constraints
 (e.g., Aggressive Schedule)

• reducing the impact of changeability
(e.g., Changes in Software Technology)

• difficult-to-satisfy product factors
(e.g., Easy Addition and Removal of Features)

• common solution to global requirements
(e.g., Implementation of Diagnostics)

Develop solutions and specific strategies: Discuss a
general solution to the issue, followed by a list of
associated strategies. The solution description records
analysis-based rationale that illustrates that the strategies
satisfy the issue. Strategies should address the issue and
one or more of the following goals:

• reduce or localize the factors’ influence
(e.g., Buy rather than build)

• reduce the impact of the factors’ changeability
(e.g., Use a pipeline for image processing)

• localize required areas of expertise (e.g., Map
independent threads of control to processes)

• reduce overall time and effort
(e.g., Use incremental development)

Identify related strategies: When a strategy belongs to
more than one issue, describe it in one place and reference
it as a related strategy in the other issues where it applies.

4. Experience with Developing the Method

We developed the approach informally while designing
the architecture of an image acquisition and processing
system. After the conclusion of the project, we developed
a more rigorous description of the method and provided
an example of its use in terms of a fictional system we call
IS2000, inspired by this and other systems we studied [4].
The IS2000 system consists of a probe that takes sensor
readings that are processed according to the type of
acquisition procedure selected by the user. The results of
the first phase are documented in a factor table. We
illustrate the factor table with an excerpt from IS2000.

 Factor Flexibility/
Changeability

Impact

O4.2 Schedule Feature Delivery
 Features are

prioritized
Negotiable Moderate impact

on the schedule
T2.1 Domain-specific Hardware Probe Hardware
 Hardware to

detect and
process signals

Upgraded every
three years as
technology
improves

Large impact on
image acquisition
and processing
components

P1.1 Features Acquisition Types
 Acquire raw

signal data and
convert into
images

New types of
acquisitions may
be added every
three years

Affects UI,
acquisition
performance, and
image processing

The organizational factor (O4.2) shows there is

flexibility in delivering features according to their priority.
For other systems these kinds of factors may not affect the
architecture, but in this system they will have a significant
impact. The technological feature (T2.1) shows that
change to the probe hardware is likely and will have a
large impact on the imaging components. The product
factor (P1.1) shows new types of acquisition algorithms
may be added during the lifetime of the system.

The results of the second phase are documented in an
issue card. We illustrate an issue card from IS2000.

Issue: Easy Addition and Removal of Acquisition Procedures
There are many acquisition procedures. Implementation of each
feature is quite complex and time consuming. There is a need to
reduce complexity and effort in implementing such features.

Influencing Factors
O4.1: Time to market is short
O4.2: Delivery of features is negotiable

P1.1: New acquisition procedures can be added every three
 years.
P1.2: New image-processing algorithms can be added on a
 regular basis.
 …

Solution
Define domain-specific abstractions to facilitate the task of
implementing acquisition and processing applications.
Strategy: Use a flexible pipeline model for image processing.
Develop a flexible pipeline model for implementing image
processing. Use processing components as stages in the
pipeline. This allows the ability to introduce new acquisition
procedures quickly by constructing pipelines using both old and
new components.
Strategy: Introduce components for acquisition and image
processing.
 …
Strategy: Encapsulate domain-specific data.
 …

Related Strategies
See also Encapsulate domain-specific hardware.

We performed a retrospective analysis on four systems

with the aid of the architects who designed the systems
[4][9]. We interviewed the architects to understand the
process they used to go from requirements to design. We
solicited feedback on the approach to ensure that the
artifacts captured the design rationale of their systems.

These systems come from domains such as
instrumentation and control, signal processing, central
monitoring, and communication. They vary in size,
complexity, and have different system characteristics that
influenced the architecture design such as fault tolerance,
multiprocessing, safety critical, real-time performance,
interoperability, distribution, heterogeneity.

The following table lists typical categories of
influencing factors based on our observations. Within
each category there will be a number of factors. For
example, the schedule (O4) will record the time to market
and how features are to be delivered; performance (P3)
will record latency and bandwidth considerations.

Organizational

Technological

Product

O1: Management

T1: General-
purpose Hardware

P1: Features

O2: Staff Skills

T2: Domain-
specific Hardware

P2: User Interface

O3: Development
Environment

T3: Software
Technology

P3: Performance

O4: Schedule

T4: Architecture
Technology

P4: Recovery

O5: Budget T5: Standards P5: Diagnostics

The following table gives an indication of the kinds of
strategies we found in the systems we examined.

Organizational

Technological

Product

Reuse existing
components

Encapsulate
hardware

Use feature-based
components

Build rather than
buy

Separate
processing,
control, and data

Separate the user
interaction model

Make it easy to add
or remove features

Use vendor-
independent
interfaces

Separate time-
critical components

5. Experience with Using the Method

We have taught the global analysis method in courses

and have observed its use as it has been applied to four
additional systems as part of a forward-engineering
software development process.

 A B C D
Application data

mgt.
image
mgt.

business
mgt.

automation
mgt.

Factors
 Org. 14 9 28 28
 Tech. 8 7 22 14
 Product 7 11 28 25
Issues 11 3 19 23
Strategies 24 21 100 64

System A is representative of the way global analysis

was applied. System A is a software system for acquiring
and processing meter data from electrical, gas, and water
meters [10]. System A performs calculations on the meter
data and the results are sent to a utility’s billing system. A
global analysis specification was produced.

Factor tables were adopted as is. They are recorded in
tables in a global analysis specification document.
Columns record the factor name, description, flexibility
and changeability, and impact.

Experience with System A provided evidence of the
generality of the original collection of factors and
categories. The author of the global analysis document
was able to cut and paste many of the factors from the
IS2000 system and make minor modifications to adapt the
analysis to his situation. An example of such a
technological factor was the database system. Although
marketing specified Oracle 8 be used it was known that it
would change over time. New database versions would
become available and some customers would prefer
databases from other vendors. The strategy for dealing
with this factor was to design a layer in the architecture to
isolate and encapsulate the database so that the effect of

changes could be localized and accommodated in the
future.

Experience with System A reinforced the importance
of considering organizational factors in addition to
traditional requirements and enhanced the collection of
project management strategies. An example of such an
organizational factor was that company management
wanted to get the product to market as quickly as possible.
Since the market was changing rapidly, it was important to
provide users with a subset of features so that they can
provide feedback. The strategy employed to address this
factor was to develop products incrementally so that
scheduled release dates could be met.

Experience with System A suggested improved support
for additional topics such as product lines. An example of
such a product factor was to support a product line in the
market place. The graphical user interface must
accommodate many types of users for different
applications. A web-based GUI was employed so that
additional flexibility could be achieved as new
applications are added and location independence
achieved for the various user populations. The
performance of the system must scale for higher-end
applications so a scalable distributed platform was
necessary to meet these more stringent calculation time
requirements.

A summary of issues and strategies was documented.
The summary provided a listing of the issue name with a
short description, factor cross-reference by number, and
strategy name. Issue cards were not documented.

The strategies have implications for the project
management. Strategies were analyzed and consolidated
to develop project strategy conclusions about how the
system should be designed and developed. This short list
of major project strategies served as guiding principles for
all the development team members. These project
strategies helped define the project goals and risks that
must be mitigated for success.

System B is similar in scope to System A and yielded
similar conclusions. Systems C and D continued to
expand our repertoire of factors and strategies; but the
large number of factors and strategies that needed to be
considered challenged us to think about new ways of
managing and ordering this information. We address this
in the following section where we discuss lessons learned.

6. Lessons Learned

What value did global analysis add that wasn’t present

before global analysis was used?
Introducing global analysis into the software

development process of new projects resulted in a global
analysis specification document that helped bridge the gap
between requirements and architecture design and

provided a place to explicitly record design rationale. The
process of global analysis also can be used to build
stakeholder consensus. In one case, a global analysis
workshop was held to elicit feedback from stakeholders,
discuss conflicting stakeholder requests and possible
tradeoffs, and prioritize the factors.

Global analysis strategies advocated the adoption of an
architectural pattern or style, provided design guidelines
(encapsulation, separation of concerns), placed constraints
on elements of the systems, or introduced additional
structure. In essence, the strategies yielded a set of
constraints on the architecture design in terms of
prescribing a collection of component types and their
patterns of interaction. These building blocks were
developed from software engineering principles and the
experience of building previous products. Component
types, their relationships, properties, and constraints
define an architectural pattern or style. As experience
grows these patterns may be codified and the architect
could select common patterns from a repository. The
patterns embody a set of predefined design decisions.
Constraints that emerge during global analysis could be
used to select the appropriate ones.

Another benefit is improved documentation of the
system. Design decisions between and within views of the
architecture and the supporting rationale are recorded.
The strategies are linked backward to requirements and
forward to design decisions to provide traceability and
validation [2].

 In addition to guiding architecture design, it was not
surprising to see the outputs of global analysis used by
project management, since architecture plays a central role
in software development activities. Issues and strategies
provide input for project strategies that are used in release
planning and scheduling in the software development
plan. Issues also capture risks that the project manager is
interested in tracking. Global analysis helps identify
project and technical risks and suggest strategies for
mitigating them.

What should be changed as a result of using global
analysis in practice?

Many of the systems we examined had characteristics
of product lines. Global analysis takes on an even more
prominent role in product line design. The architect must
characterize how the influencing factors vary among the
products within a product line. The architect develops and
selects strategies in response to these factors to make
global decisions about the architecture that allows the
developers of the products to make uniform decisions
locally. Guiding the developers in this way ensures the
integrity of the architecture. This is an iterative process.
During the design, certain decisions feed back into the
global analysis, resulting in new strategies.

Since product lines focus on variations among
products, it would be advantageous to have separate

columns for flexibility, changeability, and variation so that
more guidance can be offered and the characterization and
its type of impact can be more precisely captured.

Strategies suggest solutions for addressing a problem
highlighted by an issue. As the architect selects a strategy,
it is being evaluated in a continuous activity that we call
global evaluation. Later on, these decisions could be
evaluated during an architecture evaluation exercise. It
would be beneficial while the issue is being articulated to
also link it to an evaluation technique such as scenarios
that would provide criteria for successfully meeting the
requirement. It makes sense to do so as the issue is being
formed and input gathered from the architect and relevant
stakeholders rather than being captured after the fact
during an evaluation exercise.

What wasn’t used from global analysis and needs
better elaboration?

Issue cards were not explicitly documented. The
information they were meant to capture is therefore
missing: text describing the problem and explaining
tradeoffs and the degree of difficulty, text describing the
factors in relation to the problem, and the solution
statement.

Instead of the issue cards, a summary of issues and
strategies table was used. This could be because the first
time global analysis was used the document was written
by the project manager. This experience showed the need
for two views of the global analysis information. Using
the summary of strategies served the project management
view well, but trying to use it for the architecture view in
lieu of the issue cards resulted in a number of problems.
This was seen in a subsequent project where an architect
used the global analysis document of the first as a
template.

A problem with not using issue cards is that the
summary table is not easy to read, especially the factor
numbers. Instead of using numbers, it would be more
readable to include the factor name with a link to the
factor description and analysis. Issue cards help cross-
reference information among the factors relevant to
particular issues. Without their use, the factor table is
used to pick up the slack. But because it was not designed
for this purpose, the global tradeoffs and issues are more
difficult to discern. For example, factor tables are used to
address tradeoffs, such as schedule vs. quality and
function. The impact column is used to address analysis
and the solution. Issues tend to get grouped into factor
categories instead of being cross-cutting across factors.

What needs further study for improving the global
analysis method?

Issue cards were inspired by design patterns [7].
Further study and codification of the artifacts is needed to
see them effectively adopted in practice.

A catalog of common factors, issues, and strategies is
emerging. The original list of factors and categories was

not meant to be exhaustive but illustrative. These factors
were inspired by standards such as ISO/IEC 9126, the SEI
taxonomy on software development risks, and our
experience with numerous case study systems. Some of
the additional factors we have seen include: legacy
systems, global development, project engineering (for
product lines), internet architecture technology (e.g.,
middleware, clients, and servers), scalability, and
usability.

Similarly the list of issues and strategies were meant to
be illustrative. Strategies are drawn from software
engineering principles (loose coupling and high cohesion,
separation of concerns, encapsulation), heuristics,
patterns, and styles. As experience grows these strategies
may be codified [1].

It would be useful to identify a core set of factors,
issues, and strategies applicable to all systems. They
could be used to derive a global analysis checklist used in
conjunction with a template that the architect would use as
an integral part of design and not be viewed as an extra
documentation obligation.

A better articulation of the solution field in the issue
card is needed, explaining the dependencies and tradeoffs
among the strategies and how they might be used
separately or in conjunction with one another.

There is value in creating a global analysis document at
the beginning of architecture design to support
management functions. However, global analysis is not
meant to be a static document but one that evolves as the
architecture is designed. The architect needs better
support in this iterative process.

The global analysis data needs to be presented in
different ways to different stakeholders. For example, we
saw examples of how strategies were grouped by issues,
by project recommendations and by architecture structure
that they influence.

7. Conclusions

This paper has presented our experiences with a
practical approach for analyzing the factors that influence
software architecture. Approaches we have observed tend
to focus on the functional requirements. But it is the
quality attributes and constraints from the organization
and the underlying technology that most strongly shape
the architecture. These organizational, technological, and
product factors are analyzed in global analysis. We have
presented examples of factors based on experience and
see a role for a catalog of such factors.

Global analysis helps the architect make the conceptual
leap from the requirements to architecture design. Global
analysis identifies factors that influence the architecture
and yields a set of constraints on a collection of
architecture design element types and their patterns of

interaction. Global analysis also helps the architect record
design decisions made between and within views of the
architecture and the supporting rationale.

These factors are constantly changing. We found that
successful architects analyze factors that have a global
influence to produce an architecture that localizes the
effects of change. Global analysis aids the architect in
designing for change and building flexibility into the
software.

To help the architect in this process, we have provided
a two-phase approach for analyzing factors and
developing strategies. The process is iterative and may
start with either phase. We have provided factor tables
and issue cards to capture the information.

We have validated and gained experience with this
approach in three ways. First we developed the approach
informally while designing the architecture for an image
acquisition and processing system. Second, we did a
retrospective analysis of four existing systems,
interviewing the architects to understand the process they
used to go from requirements to design, and getting their
feedback on the resulting global analysis approach and the
artifacts captured for their systems. Third, global analysis
is being taught in courses and used in new software
development projects. The result is the production of
global analysis documents that are used by the architect,
project manager, and other stakeholders. The benefits
they have realized include: documented factors and design
strategies that guide the architecture design; inputs for
developing project strategy conclusions, goals, and risks;
and improved documentation of the architecture. These
applications give us confidence that the approach is
practical and helpful.

8. References

[1] Bass, L., M. Klein, F. Bachmann, “Quality Attribute

Design Primitives and the Attribute Driven Design
Method.” 4th Conference on Product Family Engineering.
Bilbao, Spain, 4 October 2001.

[2] Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, R. Nord, J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley,
Boston, 2002.

[3] Clements, P., R. Kazman, and M. Klein, Evaluating
Software Architectures: Methods and Case Studies,
Addison-Wesley, Boston, MA, 2002.

[4] Hofmeister, C., R. Nord, D. Soni, Applied Software
Architecture, Addison-Wesley, Reading, MA, 2000.

[5] Jacobson, I., M. Griss, and P. Jonsson, Software Reuse:
Architecture Process and Organization for Business
Success, Addison Wesley Longman, New York, NY, 1997.

[6] Kang, K.C., S.G. Cohen, J.A. Hess, W.E. Novak, and A.S.
Peterson, Feature-Oriented Domain Analysis Feasibility
Study (CMU/SEI-90-TR-21), Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA,
1990.

[7] Meszaros, G., and J. Doble, A Pattern Language for
Pattern Writing, 1997. URL:
http://www.hillside.net/patterns/

[8] Nord, R.L., C. Hofmeister, D. Soni, “Preparing for Change
in the Architecture Design of Large Software Systems,”
Position paper accepted at the TC2 First Working IFIP
Conference on Software Architecture (WICSA1), 1999.

[9] Nord, R.L., “Meeting the Product Line Goals for an
Embedded Real-Time System,” In Proceedings of the 3rd
International Workshop on the Development and Evolution
of Software Architectures of Product Families, 2000.

[10] Paulish, D.J., Architecture-Centric Software Project
Management: A Practical Guide, Addison-Wesley, Boston,
MA, 2002.

