
Searchable Encryption from Secure Enclaves

Sajin Sasy
University of Waterloo, Canada

ssasy@uwaterloo.ca

Sergey Gorbunov
University of Waterloo, Canada
sgorbunov@uwaterloo.ca

ABSTRACT
A searchable encryption scheme (SE) allows a client to
upload an encrypted collection of documents to a remote
server, while preserving basic search functionality. Over
the last decade a number of SE schemas were proposed
satisfying various security and efficiency trade-offs. We
introduce a new searchable encryption scheme that leverages
recent advances in secure processor technologies. Our
construction is proven secure in a strong simulation model,
has leakage profile smaller than most previously known
searchable encryption schemas that rely on pure-crypto
approaches. We implement our construction using modern
Intel SGX-enabled processors that offer creation of secure
enclaves. We describe our prototype implementation and
present evaluation of our construction. Our evaluations
show that the construction is practical for many real world
applications. For instance, we are able to search for boolean
formulates over 14 GB Wikipedia datasets in under 15 ms.

1. INTRODUCTION
With the abundance of data generated in today’s world,

storing data has become a major concern in every field. Thus
leading to a trend in outsourcing data storage, sparkling
new security challenges. Today, the concern isn’t just
storing the data itself, but being able to securely perform
computations on this data as and when the need arises.
Classical encryption schemes fail to satisfy this desired
functionality property. A searchable encryption scheme aims
to solve this problem for document-type datasets. On a high
level, it allows a client to “encrypt” and upload a dataset
of documents to a remote server while supporting efficient
searches. The goal of a searchable encryption is to balance
between security and efficiency, by allowing a well defined
leakage on the dataset that is protected.

Since its introduction [24], searchable encryption (SE)
has been constructed satisfying various security flavors and
efficiency properties [10, 11, 12, 15, 19]. At the minimum, SE
must satisfy the following properties: sublinear search time

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

for arbitrary boolean formulas (e.g., [9, 16]), and ability to
delete and update any document on the remote server (e.g.,
[8, 18, 19]). Moreover, the schemes must be secure against,
at least, adaptive chosen ciphertext attacks.

Each SE scheme proposed to date has an explicitly
defined leakage profile. Leakage profile captures what
information about the document set is revealed to the server
in the steady-state and during query searches. In a recent
study, Cash et al. [7] surveyed leakage profiles of popular
SE schemes. Their least leaky profile reveals encrypted
inverted index sizes and query occurrence pattern. That
is, when a server searches for a query q, it learns the
access pattern of the query which identifies the documents
containing keywords from the query. Leakier profiles reveal
all keyword occurrence patterns in the steady-state (without
query searches), keyword orders, and more. The authors
acknowledge that even the least leaky profile is not provably
secure for many real world applications. They demonstrated
attacks aiming to recover query information and more. File
injection attacks on SE were presented by Zhang et al. [27]
also compromising query privacy. Although this models a
stronger adversary with the ability to insert documents into
the database itself.

In light of the recent attacks on SE, it remains an
intriguing open problem to construct searchable encryption
schemes with smaller leakage profiles. Inspired by the
recent advances in secure hardware, we ask ourselves how
these advances could improve the domain of searchable
encryption. In this work, we present a new searchable
encryption scheme which makes use of encrypted memory
enclaves and other standard cryptographic primitives.

Secure enclaves are small encrypted memory containers,
introduced on Intel Skylake and AMD processors [1, 13].
These processors are enabled with new instruction sets that
allow the isolation of a program in a small encrypted mem-
ory region that cannot be compromised by IT operators,
malware, viruses, and even physical attacks.

Constructing a searchable encryption schema with such
secure enclaves pose a non-trivial challenge because of
multiple factors. To start with, enclaves are upper bounded
to a memory limit of 128 MB.1 Moreover, we have to inves-
tigate the leakages that arise from such constructions and
ensure provable-security of our schema. Provable-security
is essential, so that we avoid multiple security problems
that arise when composing even standard cryptographic

1The 128 MB limit is that of Intel SGX at the time of writing
this paper. In the later versions of SGX, it is possible to
bypass this limitation subject to high performance penalties.

10.1145/1235

primitives into complex protocols (for example, all TLS/SSL
protocols use standard crypto primitives, yet understanding
their formal security guarantees is a complex and ongoing
task).

1.1 Our results
We construct a searchable encryption scheme leveraging

secure Intel SGX enclaves, prove its security in a strong
simulation setting, and provide basic evaluation results.
In our architecture we consider the client and the secure

Figure 1: High level architectural diagram of our searchable
encryption schema. Green boxed entities are part of our
trusted computing base. The enclave code is responsible for
data decryption and query processing.

hardware on the server side to be part of the trusted
computing base (the components marked distinctively in
Figure 1). We consider the server as a malicious entity
that can view all the interactions happening between the
client, the secure hardware module and the database with
which the secure hardware interacts. Moreover the server
can even deviate from the SSE protocol in any way it desires
in attempts to glean more information. However, the secure
hardware in our construction is modeled as a virtual black
box.

Our proof uses double-encryption proof techniques, where
in order to simulate the correct functionality, we introduce
two “encryption tracks”[20]. Our results demonstrate that
our construction offers optimal efficiency for many real-world
applications. For instance, on a 14GB Wikipedia dataset we
are able to execute single-keyword searches in less than 15
ms.

We show how we can efficiently provide support for
boolean query searches as well, while providing a clearly
defined leakage, which is smaller than any of the previously
known searchable encryption schemes that are as efficient.
Specifically, for boolean query searches, our leakage is
limited to the result set size of the query and the result
set sizes for each of the keywords in the query. For single
keyword queries the leakage is just the result set size of the
query.

We also provide a discussion on how our schema compares
with other existing searchable encryption schemas [4, 9, 10,
12, 15, 16, 24, 25]. Furthermore, we outline a few possible
extensions and additional advanatages of our scheme such as
multi-user support and key-rotations, and note how secure
enclaves simplify such extensions for our construction.

Our construction leverages secure hardware technologies
modelling it as a virtual black-box. However, it is known
that Intel SGX does not provide this property as is. That is,
it has a few known side-channels based on timing and access
pattern on 4KB blocks. We envision interesting follow-up

works to ours that address these side-channels for our search-
able encryption scheme using various known cryptographic
techniques (e.g., oblivious algorithms, ORAM).

1.2 Related Works
Over the past decade there have been several works in

the broad domain of searchable encryption, thus offering us
various flavours of searchable encryption to pick from. In
the symmetric key searchable encryption setting, after its
introduction by Song et al. [24], several other constructions
were proposed satisfying various security levels [4, 8, 9,
10, 15, 16, 12]. Among them, the most relevant one
being Curtmola et al. [12], which introduced the notion
of adaptive semantic security for searchable encryption. A
similar security notion was used by Cash et al. [8, 9] in
their work, which produced efficient constructions over it.
Moreover, the notion of multi-user searchable encryption
has been explored by Curtmola et al. and Cash et al.[8,
12]. Meanwhile there have been few seachable encryption
constructions that spawn from public key encryptions as
well. The work of Boneh et al. [6] set the stage for public key
encryption with keyword search (PEKS), following which
there have been several other works [3, 21] which try to refine
and improvise PEKS. While there exists generic solutions
that can provide better security guarantees over the data in
consideration, such as ORAM [26] and fully-homomorphic
encryption [14], they are extremely inefficient due to large
computational and storage overheads.

Also, a number of works addressed a more general ques-
tion of computing SQL queries over encrypted data [2, 23].
The work of Arvind et al. [2] used a combination of standard
encryption primitives and secure hardware to support SQL
query searches. We note that data structures and search
algorithms for SQL queries is very different than those used
in document search applications.Moreover, these encrypted
SQL database systems lack formal security proofs, which
resulted in recent attacks breaking some of these systems
for selected applications [17, 22].

2. PRELIMINARIES

2.1 Notation
In this section we describe the notation used later on

throughout the paper. We use S
$−→ r to denote that r

is assigned an element from set S selected uniformly at
random. Idi is used to represent a file identifier for a file i,
and Wi represents a set of keywords w that are present in this
particular file. We denote a collection of files as a dictionary
DB , for convenience we think of it as processed and stored
in the format of (wi, Indwi)

N
i=1, where N is the total number of

unique words, and Indwi is the list of all file indexes in which
keyword wi is present. We note that in the processing phase
this list Idwi is sorted for efficient computation of boolean
queries on these lists. For any keyword wi, DB[wi] returns
the corresponding index list Indwi for it. EDB is another
dictionary where for any string s, EDB[s] is its value. In our
context, key s will correspond to an “encrypted” keyword
identifier and EDB[s] will correspond to an encrypted list

of file indices containing the keyword. We use T[x]
$−→ y to

return value y from table T, if the table T is empty for input
x we sample a new y by flipping coins and storing it in that
location for future use.

For any string x, for simplicity, we let x denote an
encryption of x under a symmetric or public key algorithm.
We consider queries in the form of boolean formulae string,
and are represented by f, where f consists of q keywords
separated by the boolean AND or OR operations, with the
order of execution specified by appropriate bracketing. I is a
subset of EDB, it consists of few records of EDB that secure
hardware requests to process a query. R is the final result for
a query which is a list of file indexes that match the query.
σf represents the access pattern of a query f and is the set of
indexes or records of a EDB that are retrieved for processing
a query with boolean formula f, i.e. for a q keyword query,
σf = (i1, . . . , iq), where i is an index in EDB. For simplicity,
we also refer to Indwi , the index list corresponding to a
keyword wi as the result set of the keyword wi.

2.2 Secure Hardware
In our model, we assume the server hosting the encrypted

database has access to the secure hardware defined below.
Our definition for secure hardware follows the model defined
by Barbosa et al. [5]. A secure hardware scheme HW for
a class of programs Q consists of the following polynomial
time algorithms:

• HW.Setup(1λ, aux) : The HW.Setup algorithm takes as
input the security parameter and an auxiliary initial-
ization parameter aux. It outputs public parameters
pub along with a secret key skHW and an initialization
state init.st

• HW.Loadinit.st(pub,Q) : The HW.Load algorithm loads
a program into a secure container. The HW.Load takes
as input a possibly non-deterministic program Q ∈ Q
and some global parameters pub. It first creates a
secure container and loads Q into it with an initial
state init.st and finally output a handle to this as hdlQ.

• HW.Run&Attest(hdlQ, in) : This algorithm takes in the
hdlQ, corresponding to a container with the program Q
and executes it with an input in. The secure container
has access to the secret key skHW and outputs a tuple Φ
= (tagQ, in, out, π) where out is Q(in), π is a proof that
can be used to verify the output of the computation
and tagQ is a program tag that can identify the
program running inside the secure container is indeed
the program Q itself.

• HW.Verify(pub,Φ) : This is the attestation verification
algorithm, which takes as input the pub and Φ =
(tagQ, in, out, π). It outputs 1 if π is a valid proof that
Q(in) = out, when the program Q is run inside a secure
container. It outputs 0 if the verification fails.

The public parameters pub includes the verification key
vkHW for the secure hardware’s secret signing key skHW. Ex-
cept HW.Verify, the other three algorithms are probabilistic.
In the above definition, only HW.Run&Attest has access to
the secret key skHW, and not even the programs running
the secure containers have access to skHW, thus preventing
adversaries from running malicious programs trying to learn
skHW. We refer the reader to Appendix A for correctness and
security definitions of the secure hardware.

2.3 Searchable Encryption

Definition 2.1. A searchable (symmetric) encryption scheme
consists of a set of 4 primary p.p.t. algorithms : SSE
= (Cl.Setup, Cl.GenSearchTkn, Srv.Search,Cl.DecResult) de-
fined as follows. (We use Cl and Srv prefixes for algorithms
run on the client and server nodes, respectively).

Pre-processing.
We allow a pre-processing phase on the server that

produces short public parameters pub that can be associated
with it.These public parameters are implicitly known to all
algorithms below.2 This pre-processing phase corresponds
to setting up the secure hardware at the server, specifically it
constitutes executing the HW.Setup and HW.Load algorithm
with a program P for searchable encryption. Hence, algo-
rithms that run on Srv implicitly has access to the output
of preprocessing, i.e. the handle to program P, hdlP. The
server can hence execute HW.Run&Attest(hdlP, .). We also
make a note that the program P is a public parameter and
contains no secrets.

Cl.Setup(params,DB)→ (K,EDB) : the client setup algo-
rithm takes server parameters params and a collection
of files in the form DB and outputs an encrypted
searchable database EDB and the secret key K, which
is kept by the client.

Cl.GenSearchTkn(K, f)→ Tf : the search token generation
algorithm takes as input a secret key K and a boolean
search formula f (over a set of keywords w1, ..,wq) and
outputs a search token Tf .

Srv.Search(EDB,Tf)→ R : the search algorithm on the
server takes the database EDB and the search token
Tf , and outputs an encrypted collection of file indices
R that satisfy the formula f.

Cl.DecResult(K,R)→ R : the client decrypts the encrypted
collection of file indices R with key K to obtain the
index set in clear.

Comparison with other SE definitions.
We note a few deviations of our notion with other SE

definitions [9, 12]. First of all, we allow the server to run
a pre-processing phase to produce some public parameters
pub which can be used to identify the secure hardware it
hosts. In addition, in our syntax the result of the search
algorithm is a collection of encrypted indices. To decrypt
it, the client needs to run a decryption algorithm using the
secret key K. This variant of SE was used also by Cash et
al. [9]. Often, SE is defined such that the search algorithm
returns the index set RS in clear [4, 8, 12, 15].

Correctness.
We say that the SSE scheme is correct if the search

protocol returns the set of identifiers corresponding to
files matching the search formula, except with negligible
probability. For an SSE scheme SSE , we define the

2Looking ahead, these public parameters will correspond to
a manufacture-produced hardware attestation (verification)
key.

game CorSSEA (λ), which has access to the oracles cor-
responding to the Cl.Setup, Cl.GenSearchTkn, Srv.Search
and Cl.DecResult algorithms. Given any DB as an input
database, the game can then set up EDB by executing
Cl.Setup(DB) → EDB. The game can then be adaptively
queried with different f, for which the game then executes
Cl.DecResult(K, Srv.Search(EDB,Cl.GenSearchTkn(f))) → R.
If in any query execution, the client outputs a R dif-
ferent from DB(f)3, the game outputs 1, else the game
outputs 0. We say that an SSE scheme is correct if
Pr[CorSSEA (λ) = 1] ≤ neg(λ).

Security.
We recall security of the searchable encryption scheme

based on the real/ideal simulation paradigm defined by a
leakage function L from previous works [9, 11, 12]. Formally,
L captures the view of the adversary (the server), or what it
can learn about the underlying queries and database while
interacting with a secure schema. The security definition
states that the view of an adversary can be simulated given
just the output of L. For any two stateful p.p.t. algorithms
A and S we define games RealSSEA (λ) and IdealSSEA,S (λ).

• RealSSEA (λ):

1. The adversary A(1λ) provides the challenger with
a collection of files DB. The challenger runs
Cl.Setup(srv.params,DB) → EDB and gives EDB
to the adversary.

2. The adversary A gets oracle access to the the
function Cl.GenSearchTkn(K, f), where it can spec-
ify any boolean query formula f and get the
corresponding search token Tf

3. The adversary searches using these tokens by
evoking the Srv.Search algorithm and gets the
corresponding R.

4. Eventually the adversary outputs a bit b.

• IdealSSEA,S (λ):

1. The adversary A(1λ) chooses a collection of files
DB. The simulator S is given leakage L(DB) and
it outputs EDB, which is given to the adversary.
The game also initializes a counter i = 0 and an
empty list f .

2. The adversary A gets oracle access to simulated
token-generation function S(·), where it can spec-
ify any function f and get a corresponding token
Tf , computed as follows. For any query f made by
an adversary, the simulator gets leakage L(DB, f)
on which it produces simulated Tf which is passed
back to the adversary.

3. The adversary searches on the database using
these tokens with the Srv.Search algorithm and
gets the corresponding R.

4. Eventually the adversary outputs a bit b.

We say SSE is secure with respect to a leakage function L if
for all adversaries A there is a simulator S which makes use
of L, such that |Pr[RealSSEA (λ) = 1] − Pr[IdealSSEA,S (λ) =
1]| ≤ negl(λ).
3Here DB(f) is a shorthand notation for representing the
actual result for the query from the plaintext database.

2.4 Additional Basic Cryptographic Primitives
We make use of three basic cryptographic primitives.

A public key encryption schema (PKE = (PKE.KeyGen,
PKE.Enc, PKE.Dec) with efficiently testable decryption un-
der the correct secret key (i.e. it is possible to check if the
right key is used to decrypt a ciphertext). A symmetric
key encryption schema (SKE = (SKE.KeyGen, SKE.Enc,
SKE.Dec) with pseudo-random ciphertexts. And finally, we
use standard pseudo-random functions in our construction
(F). We describe in detail the security definitions of the
aforementioned primitives in Appendix B.

3. OUR SE FROM SECURE ENCLAVES
In this section, we provide the construction for our SSE

schema.

3.1 Preprocessing
Prior to the execution of the main algorithms defined

below, our construction has a preprocessing phase. In
this phase the server node, sets up its secure hardware
component by performing the following:

1. Run HW.Setup(1λ, aux) to get a verification key vkHW,
a secret key skHW and the initialization state init.st. We
recollect that aux is an auxiliary input parameter that
is set by the environment, by default it is an empty
string. aux plays the crucial role of bootstrapping a
secure hardware with a public key without a corre-
sponding secret key, and is essential for our security
proof.

2. Parameters skHW and init.st remain secretly stored in
the secure hardware, while vkHW is made public and is
added to pub.

3. Initialize the secure hardware module with the pro-
gram P and execute HW.Loadinit.st(P)→ hdlP, to obtain
a handle for the secure container loaded with P. Here
P is the program for searchable encryption that we
want to load on the secure hardware, we give a detailed
description of P in Section 3.6.

4. Generate a public/secret key pair inside the secure
container by invoking HW.Run&Attest(hdlP, 1)→ Φinit.
Note that here Φinit = (tagP, 1, (PK), π) proves that the
key pair was generated within the container by execut-
ing the program P verifiable by the measurement tagP,
with input 1 and produced the output PK. The proof
π is a signature over the other these three components
with skHW, which is verifiable by the vkHW in the public
parameters pub. Φinit is infact the server parameters
params that we mention in Section 2.3, which the client
uses in its Cl.Setup. PK is a pair of public keys that are
generated by HW.Run&Attest(hdlP, 1) and is added to
the public parameters pub. Output Φinit.

3.2 Client Setup
Cl.Setup algorithm is the client side algorithm for produc-

ing an encrypted searchable database EDB for a collection
of files DB. It also produces the encrypted database keys,
which can be decrypted by the secure hardware to operate
over the EDB. Cl.Setup (Φinit,DB)→ (K,EDB) performs the
following steps :

1. Verify Φinit with HW.Verify(pub,Φinit) → v. If v = 0,
output ⊥ and abort.

2. Generate a secret encryption key SKE.KeyGen(1λ) →
KE, for encrypting the database which we will hence-
forth refer to as the database key.

3. Initiate empty EDB.

4. Generate key {0, 1}λ $−→ Kf for the PRF F.

5. For each keyword wi, we extract Idwi which is the
sorted4 list of all document identifiers containing
keyword wi and store ‘encrypted’ tuples of (wi, Idwi).
That is, ∀ wi ∈ DB

• SKE.Enc(KE, Idwi)→ Idwi .

• F(Kf ,wi)→ wi.

• Insert (wi, Idwi) into EDB.

6. Parse PK from pub, where PK→ (pk1, pk2).

7. Encrypt the database key KE and the PRF key Kf with
the public keys 5 generated by the secure container.

• PKE.Enc(pk1, (KE,Kf))→ k1,

• PKE.Enc(pk2, (KE,Kf))→ k2.

8. Let α = ((k1, k2),EDB). Output α.

3.3 Token Generation
The Cl.GenSearchTkn provides the client with encrypted

search tokens for each of its search query formula f which is
undecipherable for the server. Cl.GenSearchTkn (K, f) → Tf

performs the following steps :

1. Encrypt the query formula f under the primary keys
given by the secure container PK. Instead of encrypt-
ing just the query formula f, we encrypt (f, |R|,mode).
The additional fields are required for our security
proof. Here mode is a bit that indicates to the program
P the method of processing (simulated / real) and |R|
leaks the size of the result set in the simulation mode.

• PKE.Enc(pk1, (f, 0, 0))→ f1

• PKE.Enc(pk2, (f, 0, 0))→ f2

• (f1, f2)→ Tf .

2. Output (Tf).

3.4 Searching
The Srv.Search algorithm is used by the server to execute

the search over a search token Tf which it receives from the
client. In depth, Srv.Search(EDB,Tf) does so by performing
the following steps:

4Maintaining this list of document identifiers in a sorted
fashion enables us to perform boolean query operators on
keyword searches in time linear to the list sizes of keywords
involved.
5We remind the reader that we need to use a pair of public
keys for our security proof.

1. Execute the program P in the secure container by
invoking

HW.Run&Attest(hdlP,Tf)→ Φ1

where (Φ1 = tagP,Tf , Id, π1). We recollect that all Srv
algorithms have access to hdlP (as mentioned in Section
3.1). Here, π1 is a proof that P is executed inside
the secure hardware with input Tf and produces the
output Id, which is verifiable by the client with the
vkHW in pub. The Id corresponds to a list of encrypted
keywords, which are part of the query f.The program
P requires the corresponding file identifier list for these
keywords before it can continue executing the query.

2. Initiate empty list I, I is an intermediary list in
processing the query, which provides the program P
with its requirements to complete executing the query.

3. ∀ i ∈ Id, Append(I , EDB[i]).

4. The server provides the secure container with the
required records of EDB and invokes

HW.Run&Attest(hdlP , I)→ Φ2

to finish the query processing, where Φ2 := (tagP, I,R, π2).
Here π2 is a proof that P is executed inside the secure
hardware with input I and produces the output R.

5. Output (Φ1,Φ2).

3.5 Client Decryption
The client decrypts the results R received from the server

using the Cl.DecResult algorithm. Cl.DecResult(K, (Φ1,Φ2))
→ R does the following :

1. Verify Φ1 and Φ2 by executing HW.Verify(pub,Φ1) →
v1 and HW.Verify(pub,Φ2) → v2. If v1 = 0 or v2 = 0,
output ⊥ and abort.

2. Decrypt the result set with KE, SKE.Dec(K,R)→ R

3. Output R

3.6 Description of Program P

We now describe the program P that is loaded in the
secure container on the server. P is a stateful program that
processes the inputs in it receives, to produce outputs with
verifiable proofs that they were executed by this particular
program loaded in a secure container. The Program P can
be thought of as an algorithm that functions in the following
fashion based on the input it is invoked with:

1. When P is invoked for the first time after it is loaded
in the secure container, it generates public key pairs
for the client to securely communicate with it. This
corresponds to our pre-processing phase. So if in = 1:

• The P was loaded with aux which provides an
option for the environment to set public keys pk1
and/or pk2 for it. If aux does not have pk1 set
(pk1 =⊥), then:

– PKE.KeyGen(1λ)→ (pk1, sk1)

• If pk2 is not set in aux (pk2 =⊥):

– PKE.KeyGen(1λ)→ (pk2, sk2)

• (pk1, pk2)→ PK, (sk1, sk2)→ SK 6

• Set stateP := (pk, sk).

• Output only the public key PK.

2. The program is invoked with the input α when the
client sets up the database on the server. If in = α :

• From α, decrypt K :

– PKE.Dec(sk1, k1)→ K/ ⊥
– If ⊥, PKE.Dec(sk2, k2)→ K/ ⊥
– If ⊥, Output ⊥ and abort.

(Recollect that K here is the pair (KE,KF)).

• Output 1

3. When the server receives search tokens from the client
of the form (Tf). If in = (Tf)

• Decrypt the search token:

– If PKE.Dec(sk1,Tf)→⊥
and PKE.Dec(sk2,Tf)→⊥,
output ⊥ and abort.

– Else one of the above decrypts to (f, |R|,mode).

• Insert (stateP, (|R|,mode))

• if mode = 0 :

– f → (w1, ..,wq)

– ∀ wj ∈ (w1, ..,wq) :

◦ F(KF,wj)→ wj

– (w1,. . .,wq)→ Id

• if mode = 1 :

– f → (i1, . . . , iq)

– (i1, . . . , iq)→ Id

• Output Id

4. If in = I:

• Parse stateP to get (|R|,mode)

• Initiate empty R and L

• if mode = 0 :

– ∀ Idwi ∈ I :

◦ SKE.Dec(KE, Idwi)→ Idwi

◦ Append (L, Idwi)

– Compute(f, L) → R, where Compute is an al-
gorithm that takes the individual lists from L
and performs the corresponding set operators
on them as specified by f. 7

– SKE.Enc(KE,R)→ R

• if mode = 1 :

– {0|1}|R| := R

• Output R

6If the public key pk1 was set by the environment, then
secret key sk1 =⊥. Similarly for pk2 and sk2.
7We note that Compute has a complexity linear in the size of
the result set sizes of the individual keywords, and is hence
optimal. NOT operator can be handled by the same trick
used in literature, which is to maintain a token that maps
to all the file identifiers in the database and compute the
exclusive disjunction of that special token with the queried
keyword.

4. SECURITY PROOF SKETCH
In this section we provide the sketch of the security proof

for our construction. We limit ourselves in the interest of
space, we direct the interested readers for detailed proof
arguments to our full paper. However, first we formally
define our leakage function L:

• L(DB): the inherent structure of DB leaks the number
of unique keywords N in it, and the size of index lists
for each of those keywords |DB[wi]|

• L(DB, f): for every query f of q keywords against DB,
the size of the query |f|, size of the result set |R| as
well as size of the individual result set of each keyword
|R1|, ..., |Rq| is leaked. Moreover the access pattern σf

is leaked which corresponds to the list of records or
indexes of DB which are accessed to respond to the
query. The access pattern σf has slightly lesser size as
that of the query formula f. It contains the encrypted
indexes corresponding to the keywords in EDB that are
retrieved for a query f.

We prove the security of our model by starting off with
RealSSEA and sequentially modifying it over a series of
indistinguishable hybrids to convert it into a model that is
identically distributed as IdealSSEA,S .

Let A be an arbitrary adversary. We define a simulator
algorithm S as follows.

• S(L(DB)): given the leakage L(DB)→ (N, |DB(wi)|mi=1),
S creates a simulated EDB, as shown below:

– Generate an encryption key, SKE.Gen(1λ)→ KE

– for i in 1 to N:

◦ {0|1}m(λ) → ew 8

◦ SKE.Enc(KE, {0}|DB(wi)|)→ ei

◦ EDB[ew] := ei

• S(L(DB, f)): given the leakage L(DB, f)→ (|f|, |R|, σf),
S creates a simulated Tf , represented as T′f , as shown
below :

– Pad access pattern, (σf , {0}|f|−|σf |)→ f′

– PKE.Enc(pk, (f′, |R|, 1))→ T′f

We note that the correctness of our searchable encryption
schema still holds in the simulated setting, by use of these
simulated tokens with mode set to 1. In short, when
a simulated token (f′, |R|, 1) is received by program P, it
generates a random response from the ciphertext space of
the symmetric key encryption with same length as that of
the actual result set. Moreover, from f′ it mimics the access
pattern that the real search token would have induced on
the encrypted database. From our definition of searchable
encryption, the server only sees the encrypted result set
for each query. Hence correctness in the simulated setting
corresponds to the server seeing results for each query having
the same size as that in the real setting.

Theorem 4.1. If E is an IND-CPA secure secret key
encryption scheme, PKE is an IND-CCA2 secure public key
encryption scheme with DecTest property and HW is an
AttUNF secure hardware scheme, then SSE is an L-secure
searchable encryption scheme according to Definition 2.3.
8m(λ) is the output size of the PRF F

H0 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB :

SKE.Enc(KE, Idwi
) → Idwi

F(Kf , wi) → wi

Insert (wi,Idwi
) into EDB.

params: PK → (pk1, pk2)

PKE.Enc(pk1, (KE, Kf)) → K1
PKE.Enc(pk2, (KE, Kf)) → K2
(K1, K2) → K

Return (K, EDB)

H1 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB :

SKE.Enc(KE, Idwi
) → Idwi

F(Kf , wi) → wi

Insert (wi,Idwi
) into EDB.

params: PK → (pk1, pk
t
2)

PKE.Enc(pk1, (KE, Kf)) → K1

PKE.Enc(pkt2, (KE, Kf)) → K2

(K1, K2) → K

Return (K, EDB)

H2 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB :

SKE.Enc(KE, Idwi
) → Idwi

F(Kf , wi) → wi

Insert (wi,Idwi
) into EDB.

params: PK → (pk1, pk
t
2)

PKE.Enc(pk1, (KE, Kf)) → K1

PKE.Enc(pkt2, (0
λ, 0λ)) → K2

(K1, K2) → K

Return (K, EDB)

H3 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB :

SKE.Enc(KE, Idwi
) → Idwi

F(Kf , wi) → wi

Insert (wi,Idwi
) into EDB.

params: PK → (pk1, pk2)

PKE.Enc(pk1, (KE, Kf)) → K1

PKE.Enc(pk2, (0
λ, 0λ)) → K2

(K1, K2) → K

Return (K, EDB)

H4 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB :

SKE.Enc(KE, Idwi
) → Idwi

F(Kf , wi) → wi

Insert (wi,Idwi
) into EDB.

params: PK → (pkt1, pk2)

PKE.Enc(pkt1, (KE, Kf)) → K1

PKE.Enc(pk2, (0
λ, 0λ)) →

K2
(K1, K2) → K

Return (K, EDB)

H5 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB :

SKE.Enc(KEIdwi
) → Idwi

T[wi]
$−→ wi

Insert (wi,Idwi
) into EDB.

From params: PK →
(pkt1, pk2)

PKE.Enc(pkt1, (KE, Kf)) → K1

PKE.Enc(pk2, (0
λ, 0λ)) → K2

(K1, K2) → K

Return (K, EDB)

H6 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB :

SKE.Enc(KE, Idwi
) → Idwi

T[wi]
$−→ wi

Insert(wi,Idwi
) into EDB.

params: PK → (pkt1, pk2)

PKE.Enc(pkt1, (0
λ, 0λ)) → K1

PKE.Enc(pk2, (0
λ, 0λ)) → K2

(K1, K2) → K

Return (K, EDB)

H7 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB :

SKE.Enc(KE, 0
|Idwi |) → Idwi

T[wi]
$−→ wi

Insert (wi,Idwi
) into EDB.

params: PK → (pkt1, pk2)

PKE.Enc(pkt1, (0
λ, 0λ)) → K1

PKE.Enc(pk2, (0
λ, 0λ)) → K2

(K1, K2) → K

Return (K, EDB)

H8 : Cl.Setup(params, DB):

SKE.KeyGen(1λ) → KE.

{0, 1}λ $−→ Kf
Initiate EDB.
∀ wi ∈ DB:

SKE.Enc(KE, 0
Idwi
|
) → Idwi

T[wi]
$−→ wi

Insert (wi,Idwi
) into EDB.

params: PK → (pk1, pk2)

PKE.Enc(pk1, (0
λ, 0λ)) → K1

PKE.Enc(pk2, (0
λ, 0λ)) → K2

(K1, K2) → K

Return (K, EDB)

Figure 2: Changes in Cl.Setup algorithm over the hybrids

Proof. We construct a simulator S as described above
and show that the RealSSEA (λ) experiment is indistinguish-
able from the IdealSSEA,S (λ) experiment produced by the
simulator algorithm S. S has access to the aforementioned
leakages. To prove the theorem, we proceed by defining
a series of hybrids, and proving that these hybrids are
computationally indistinguishable from one another.

Hybrid 0 : This is identical to the RealSSEA (λ) experi-
ment.

Hybrid 1: In this hybrid, the simulator S samples a
temporary public key pkt2 by PKE.KeyGen → pkt2. It then
sets this pkt2 in the hardware during the preprocessing phase
by setting it in the auxiliary input aux to HW.Setup. Note
that by setting pkt2 at HW.Setup, the hardware no longer
holds the secret key corresponding to the public key pkt2,
and hence cannot decrypt anything under that encryption.
However correctness still holds from the dual encryption
track, since the program P can still decrypt what it obtains
under pk1.

Claim 4.1.1. Hybrid 0 and Hybrid 1 are identically dis-
tributed.

Proof. The only difference between the two hybrids is
where pk2 is sampled. In both the hybrids, this happens
in the pre-processing phase, which is outside the view of an
adversary. Hence an adversary cannot differentiate if the
public key was set through aux during HW.Setup or was
sampled by the program P. Since both the public keys are
sampled in the same way, the outputs of both these hybrids
are identically distributed.

Hybrid 2: As in Hybrid 1, except that during Cl.Setup,
pkt2 is used to encrypt zeroes instead of the two keys KE and

Kf . Similarly in Cl.GenSearchTkn, the simulator S uses pkt2
to encrypt the simulated token (f′,|R|,1) instead of (f, 0, 0).
Here f′ corresponds to the access pattern σf padded to
the size of f. |R| corresponds to the size of the encrypted
index list for the query in consideration. Both of these are
generated by the simulator from the leakage L(DB, f).

Claim 4.1.2. Hybrid 1 and Hybrid 2 are computation-
ally indistinguishable assuming IND-CCA2 security of the
public-key encryption scheme.

Hybrid 3: As seen from the Figure 2, in Hybrid 3, the
simulator removes pkt2 from aux thus replacing the pkt2 with
pk2 in both Cl.Setup and Cl.GenSearchTkn. Hence the secure
hardware now has access to key sk2 again.

Hybrid 4: In Hybrid 4, during the pre processing phase
S generates a temporary public key pkt1 and sets pkt1 in
aux. However, the difference in this transition is the secure
hardware no longer has secret key sk1. Correctness is still
maintained through the encryptions under pk2, using sk2
as the hardware does have that. In program P, since P
no longer holds the secret key sk1, P uses sk2 to decrypt
the encryption of the query under pk2. However this is
undetectable to the server and the client, since from our
assumptions of secure hardware we have that the output of
P is oblivious of the intermediate steps taken by the secure
hardware.

Claim 4.1.3. Hybrid 2 and Hybrid 3 are identically dis-
tributed.

Claim 4.1.4. Hybrid 3 and Hybrid 4 are identically dis-
tributed.

H0 : Cl.GenSearchTkn(params, f):

PKE.Enc(pk1, (f, 0, 0)) → f1
PKE.Enc(pk2, (f, 0, 0)) → f2
(f1, f2) → Tf
Return (Tf)

H1 : Cl.GenSearchTkn(params, f):

PKE.Enc(pk1, (f, 0, 0)) → f1

PKE.Enc(pkt2, (f, 0, 0)) → f2

(f1, f2) → Tf
Return (Tf)

H2 : Cl.GenSearchTkn(params, f):

PKE.Enc(pk1, (f, 0, 0)) → f1

PKE.Enc(pkt2, (f
′, |R|, 1)) → f2

(f1, f2) → Tf
Return (Tf)

H3 : Cl.GenSearchTkn(params, f):

PKE.Enc(pk1, (f, 0, 0)) → f1

PKE.Enc(pk2, (f
′, |R|, 1)) → f2

(f1, f2) → Tf
Return (Tf)

H4 : Cl.GenSearchTkn(params, f):

PKE.Enc(pkt1, (f, 0, 0)) → f1

PKE.Enc(pk2, (f
′, |R|, 1)) →

f2
(f1, f2) → Tf
Return (Tf)

H5 : Cl.GenSearchTkn(params, f):

PKE.Enc(pkt1, (f, 0, 0)) → f1

PKE.Enc(pk2, (f
′, |R|, 1)) →

f2
(f1, f2) → Tf
Return (Tf)

H6 : Cl.GenSearchTkn(params, f):

PKE.Enc(pkt1, (f
′, |R|, 1)) → f1

PKE.Enc(pk2, (f
′, |R|, 1)) →

f2
(f1, f2) → Tf
Return (Tf)

H7 : Cl.GenSearchTkn(params, f):

PKE.Enc(pkt1, (f
′, |R|, 1)) →

f1
PKE.Enc(pk2, (f

′, |R|, 1)) →
f2
(f1, f2) → Tf
Return (Tf)

H8 : Cl.GenSearchTkn(params, f):

PKE.Enc(pk1, (f
′, |R|, 1)) → f1

PKE.Enc(pk2, (f
′, |R|, 1)) →

f2
(f1, f2) → Tf
Return (Tf)

Figure 3: Changes in Cl.GenSearchTkn algorithm over the hybrids

Proof. The same argument as that of changing from
Hybrid 0 to Hybrid 1 applies to both these transitions.

Hybrid 5: In this hybrid, we replace the labels generated
by the F function with randomly generated labels. If there
exists an adversary A that can distinguish between these
two hybrids, we can use A to create an adversary B that
can break the PRF-sec property of the PRF function F.

Note that the correctness is maintained through the sim-
ulator sending simulated tokens and receiving the simulated
encrypted results back from the secure hardware (while
replicating the access patterns of an actual query since the
access pattern is embedded within this simulated token).
Therefore the correctness is independent of the labels, and
hence correctness is still maintained in this hybrid.

Claim 4.1.5. Hybrid 4 and Hybrid 5 are computationally
indistinguishable assuming the security of pseudorandom
function F.

Hybrid 6: In this hybrid, during Cl.Setup, pkt1 is used to
encrypt zeroes instead of the two keys KE and Kf . Similarly
in Cl.GenSearchTkn, the simulator S uses pkt1 to encrypt the
simulated token (f′,|R|,1) instead of (f, 0, 0).

Claim 4.1.6. Hybrid 5 and Hybrid 6 are identically dis-
tributed.

Hybrid 7: In this hybrid, EDB is made up of encryption
of zeroes instead of the index lists.

Claim 4.1.7. Hybrid 6 and Hybrid 7 are computationally
indistinguishable assuming the security of IND-CPA secure
symmetric encryption schema.

Hybrid 8: In this hybrid, during the pre-processing
phase, S does not set pkt1 in aux.

Claim 4.1.8. Hybrid 7 and Hybrid 8 are identically dis-
tributed.

This transition is exactly as those from hybrids 0 to 1, 2 to
3 and 3 to 4. The indistinguishability argument too remains
the same. Correctness is maintained in the same simulated
fashion as it has been since Hybrid 4. But note that since
sk1 is available to the secure hardware, correctness switches
back to encryptions under pk1.
This hybrid is identical to IdealSSEA,S (λ).

5. IMPLEMENTATION AND
EVALUATION

We implemented our proposed SSE scheme on a Dell
Optiplex 7040 machine with 64GB RAM, with an Intel Core
i5-6500 processor which supports Intel SGX. While we do
make use of Intel SGX for our implementation, the scheme
is agnostic to the underlying trusted hardware module. In
order to evaluate our scheme against a large data set, we
picked a Wikipedia snapshot from September 2006, which
has 14 GB of text content. We preprocessed9 the data from
it’s original HTML format to a pure text format using a
Python script, and for convenience brought it down to a
more compact form.

The client and server were coded in C++, with help of
OpenSSL libraries for the cryptographic operations on the
client side, and the IntelSGX tcrypto library for the secure
hardware on the server side. In our implementation, we used
keyed SHA256 as the PRF for the keywords, and the client
and server communicated with AES 128 GCM which served
as an encrypted channel.

The server hosted a MongoDB database which stored
the database that mapped encrypted keyword identifiers to
encrypted index lists (or result set) corresponding to that
keyword. We used MongoDB 3.2 which offers the ability to
keep databases in memory.10

Figure 4 shows the time taken for boolean queries against
the selectivity of one keyword, while using a fixed keyword
for the other. This graph is inspired by the evaluation in
Cash et al.[9]. For performing this experiment we picked
two fixed keywords for α and β and then sampled keywords
from our corpus to obtain keywords with random selectivity.
The graph clearly shows how the query time scales with the
more selective of the two keywords. Note that the response
times for even the most selective keywords are significantly
cheaper than those shown by the best state of the art
paper [9].Figure 5 shows the CDF graph of our schema
against thousand search queries of single keywords, each of
these queries were picked from a pool of keywords with a
result set size of a thousand. This graph is indicative of
the performance efficiency our schema achieves, searchable

9Preprocessing involved removing all reference links and
redundant keywords

10We ran experiments with the database stored in disk as
well. We noticed that using our SSD in conjunction with
MongoDB’s indices resulted in query responses that were
higher by about a few tens of ms per index retrieved.

Figure 4: Search Time (in sec) for queries containing a pair of
keywords with the first keyword being either α or β while varying
selectivity of the second keyword γ.

Figure 5: Cumulative Distribution Function(CDF)

encryption as a primitive is most useful in an application
where keywords can be used to identify a small sets of
documents that contain it. We see that our schema is
thus suitable for logging applications or document search
applications (e.g., medical research papers, encyclopedias,
etc.) where querying is predominantly performed over
infrequent keywords.

6. COMPARISON WITH RELATED WORK
Golle et al. [16] was the first work in searchable encryption

that took a concrete step towards conjunctive searches.
They proposed two constructions, one based on DDH and
the later on bilinear pairings, the former was expensive
in terms of search token size itself.11 However their work
had several drawbacks and was far from being a practically
deployable solution, a major concern being the fact that
server had to do work linear to the number of encrypted
documents stored for each query. Their model assumes
documents to be split into fixed m words. Their leakage

11The search tokens itself were split into two pieces, a ”proto-
capability”, which was the size of the number of documents
and a query token itself which depended on the number of
keywords in the document

function is limited to keywords being searched for by a search
token and the set of documents that do correspond to the
search token. Similarly Ballard et al. [4], proposed two
constructions, one which made use of Shamir’s secret sharing
and the other which was based on bilinear pairings, both of
them plagued with the same problem of search time linear
in the size of total documents stored in the system.

Cash et al. [9], produced the current state of the art work
in searchable encryption with support for boolean queries,
which performed searches significantly faster than that of
any previous construction, and went on to scale their work
to extremely larger databases [8]. However, all of this was
achieved by deviating from the security notion set in place
by [4, 16]. In their work, the boolean query is reordered
to set the first keyword to be the least selective keyword
for optimal performance. The rest of the keywords are then
tested for membership in the result set of the first keyword.
Hence their leakages for boolean queries are extremely fine
grained, as the result set of file indexes containing the first
keyword is revealed as is to the server. Additionally, the
server also learns whether or not each of the other queried
keywords(that are part of the boolean query), is present in
the files that are part of the result set of the first key word.12

Furthermore, this allows a server to infer results of queries
that have not been queried by the client, but derived by
permuting over the queried keywords of different boolean
queries as described in Section 4 by D.Cash et al[9]. We note
that the inference is limited to queries that have the same
first keyword as any of the previous queries that originate
from the client, but it is still a significantly powerful leakage
to expose to an adversary. In our construction although we
leak the result set sizes of each individual keyword in the
query, this is leaked at steady state anyway in the EDB for
all keywords in both constructions.

All the searchable encryption constructions to our knowl-
edge so far (for both boolean queries as well as single
keyword search), beyond access pattern leakages, have a
search pattern leakage as well, since the search tokens
generated are deterministic in nature, i.e. for a repeated
query the same token will be repeated, and can inherently
leak the user’s search pattern. However with the SGX
acting as a trusted entity in the interaction, this correlation
between searches can be broken, by taking advantage of a
probabilistic encryption scheme. To our knowledge this is
the first SSE scheme that does not entail a search pattern
leakage. 13

Moreover the constructions of Cash et al. [8, 9] induce
an additional round of communication between the server
and the client. This additional round arises in order to
allow the server to deblind the index values corresponding to
the index list for files that have the first keyword in them.
In our construction we do away this additional overhead.
However all the aforementioned properties become available
to us with a secure hardware module acting as a trusted
entity in the interactions between the server and the client.
This involves the overhead and mandate of setting up this

12This arises from the nature of the XSet data structure they
use, simply put, a Bloom-filter to test if a particular keyword
exists in a file, which leaks the presence of individual words
in a file with each boolean query.

13Currently the search pattern can still be inferred from the
leaked access pattern, but this can be resolved by using an
ORAM for accesses.

secure hardware on the server.

7. CONCLUSION
In this work we constructed the first provably secure

searchable encryption schema that leverages advances in
modern processor technologies. Our construction is the first,
to our knowledge, which is not vulnerable to search pattern
leakages. The proposed schema performs single keyword
searches in sub linear or optimal time complexity. Boolean
keyword searches perform in time complexity upper bounded
by the sum of sizes of the individual result sizes of each
keyword in the query. We discuss and compare our works
with other contemporary searchable encryptions in Section 6
and even elucidate some additional advantages of our works
in Appendix C.

8. REFERENCES
[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.

Innovative technology for cpu based attestation and
sealing.

[2] A. Arasu, S. Blanas, K. Eguro, R. Kaushik,
D. Kossmann, R. Ramamurthy, and R. Venkatesan.
Orthogonal security with cipherbase. Citeseer.

[3] J. Baek, R. Safavi-Naini, and W. Susilo. Public key
encryption with keyword search revisited. In
International conference on Computational Science
and Its Applications, pages 1249–1259. Springer, 2008.

[4] L. Ballard, S. Kamara, and F. Monrose. Achieving
efficient conjunctive keyword searches over encrypted
data. In International Conference on Information and
Communications Security, pages 414–426. Springer,
2005.

[5] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi.
Foundations of hardware-based attested computation
and application to sgx. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P),
pages 245–260. IEEE, 2016.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with keyword
search. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages
506–522. Springer, 2004.

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart.
Leakage-abuse attacks against searchable encryption.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages
668–679. ACM, 2015.

[8] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla,
H. Krawczyk, M. Rosu, and M. Steiner. Dynamic
searchable encryption in very-large databases: Data
structures and implementation. In 21st Annual
Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February
23-26, 2014, 2014.

[9] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C.
Roşu, and M. Steiner. Advances in Cryptology –
CRYPTO 2013: 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, chapter Highly-Scalable
Searchable Symmetric Encryption with Support for
Boolean Queries, pages 353–373. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[10] Y.-C. Chang and M. Mitzenmacher. Privacy
Preserving Keyword Searches on Remote Encrypted
Data, pages 442–455. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[11] M. Chase and S. Kamara. Structured Encryption and
Controlled Disclosure, pages 577–594. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved
definitions and efficient constructions. Journal of
Computer Security, 19(5):895–934, 2011.

[13] T. W. David Kaplan, Jeremy Powell. Amd memory
encryption.

[14] C. Gentry. Computing arbitrary functions of
encrypted data. Communications of the ACM,
53(3):97–105, 2010.

[15] E.-J. Goh. Secure indexes. Cryptology ePrint Archive,
Report 2003/216, 2003.
http://eprint.iacr.org/2003/216.

[16] P. Golle, J. Staddon, and B. Waters. Applied
Cryptography and Network Security: Second
International Conference, ACNS 2004, Yellow
Mountain, China, June 8-11, 2004. Proceedings,
chapter Secure Conjunctive Keyword Search over
Encrypted Data, pages 31–45. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[17] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart,
and V. Shmatikov. Breaking web applications built on
top of encrypted data. Cryptology ePrint Archive,
Report 2016/920, 2016.
http://eprint.iacr.org/2016/920.

[18] F. Hahn and F. Kerschbaum. Searchable encryption
with secure and efficient updates. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 310–320,
New York, NY, USA, 2014. ACM.

[19] S. Kamara, C. Papamanthou, and T. Roeder.
Dynamic searchable symmetric encryption. In
Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12,
pages 965–976, New York, NY, USA, 2012. ACM.

[20] M. Naor and M. Yung. Public-key cryptosystems
provably secure against chosen ciphertext attacks. In
Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 427–437.
ACM, 1990.

[21] M. Nateghizad, M. Bakhtiari, and M. A. Maarof.
Secure searchable based asymmetricencryption in
cloud computing. Int. J. Advance. Soft Comput. Appl,
6(1):2014, 2014.

[22] M. Naveed, S. Kamara, and C. V. Wright. Inference
attacks on property-preserving encrypted databases.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages
644–655. ACM, 2015.

[23] R. A. Popa, C. Redfield, N. Zeldovich, and
H. Balakrishnan. Cryptdb: protecting confidentiality
with encrypted query processing. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 85–100. ACM, 2011.

[24] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In

http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2016/920

Proceedings of the 2000 IEEE Symposium on Security
and Privacy, SP ’00, pages 44–, Washington, DC,
USA, 2000. IEEE Computer Society.

[25] E. Stefanov, C. Papamanthou, and E. Shi. Practical
dynamic searchable encryption with small leakage.
2014.

[26] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path oram: an extremely
simple oblivious ram protocol. In Proceedings of the
2013 ACM SIGSAC conference on Computer &
communications security, pages 299–310. ACM, 2013.

[27] Y. Zhang, J. Katz, and C. Papamanthou. All your
queries are belong to us: The power of file-injection
attacks on searchable encryption. In 25th USENIX
Security Symposium (USENIX Security 16), pages
707–720, Austin, TX, 2016. USENIX Association.

APPENDIX
A. SECURE HARDWARE

Correctness.
A HW scheme is correct if the following holds, for all Q ∈

Q and all in in the input domain of Q ,

• Correctness of Run : out = Q(in) if Q is deterministic.
More generally, ∃ random coins r (sampled in run time
and used by Q) such that out = Q(in).

• Correctness of Attest and Verify :
Pr[HW.Verify(pub,Φ) = 0] = negl(λ)

where :
HW.Setup→ (pub, skHW, init.st),
HW.Loadinit.st(pub,Q)→ hdlQ),
HW.Run&AttestskHW(hdlQ, in) → φ for φ = (tagQ, in, out, π).
The probability is taken over the random coins of the proba-
bilistic algorithms HW.Setup, HW.Load and HW.Run&Attest.

Security.
The security of the hardware denoted by attestation

unforgeability (AttUnf), is defined similarly to the unforge-
ability security of a signature scheme. Informally it says
that no adversary can produce a tuple φ = (tagQ, in, out, π)
that verifies correctly and out = Q(in) without querying the
inputs (hdlQ, in) . The security of HW is formally defined by
the following security game :

Definition A.1. (AttUnf-HW) : Consider the following
game between a challenger C and an adversary A :

1. A provides an aux

2. C runs the HW.Setup(1λ, aux) algorithm to obtain the
public pub and returns them to A, while keeping the
secret key skHW and init.st secret in the secure hardware.

3. C then initializes a list query = {}.
4. A can now run HW.Load(pub,Q) through C, with any

program Q ∈ Q and gets back hdlQ.

5. A can then run HW.Run&Attest(in,Q) on any input in
in the domain of Q and get back φ = (tagQ, in, out, π).
For every run, the tuple (tagQ, in, out) is added to the
list query.

6. Finally, the adversary outputs a forged output φ∗ =
(tag∗Q, in

∗, out∗, π∗)

We say that an adversary wins the above game if :

1. HW.Verify(pub, φ∗) = 1

2. (tag∗Q, in
∗, out∗) /∈ query

The HW scheme is secure if no adversary can win the
above game with non-negligible probability.

Some other important properties of the secure hardware
that we impose in our model are :

• Any user only has blackbox access to these algorithms
and hence cannot procure the internal secret key
skHW, initial state init.st or intermediary states of the
programs running inside secure containers.

• The output of the HWRun&Attest is succinct: it does
not include the full program description for instance.

• We also require the hdlQ’s to be independent of init.st.
In particular, for all aux, aux′ :

HW.Setup→ (pub, skHW, init.st)
HW.Setup→ (pub′, sk′HW, init.st

′)

the outputs of HW.Loadinit.st(pub,Q) and HW.Loadinit.st(pub
′,Q)

are identically distributed.

B. ADDITIONAL BASIC CRYPTO PRIMI-
TIVES

B.1 Public Key encryption
A public key encryption scheme PKE over a message space
M consists of three p.p.t. algorithms satisfying the following
semantics.

PKE.KeyGen(1λ): The key generation algorithm takes in
a security parameter and outputs public and private
secret keys (pk , sk).

PKE.Enc(pk,msg): The encryption algorithm takes in a key
sk and a message msg ∈M and outputs the ciphertext
ct.

PKE.Dec(sk, ct): The decryption algorithm takes in a key sk
and a ciphertext ct and outputs the decryption msg.

Correctness..
A public key encryption scheme PKE is correct if for all

msg ∈M,

Pr
[
PKE.Dec

(
sk,PKE.Enc(pk,msg)

)
6= msg

]
= negl(λ)

where (pk, sk) ← PKE.KeyGen(1λ) and the probability is
taken over the random coins of the probabilistic algorithms
PKE.KeyGen,PKE.Enc.

An encryption scheme provides data confidentiality. So,
it should prevent an adversary from learning which message
is encrypted in a ciphertext. The security of E is formally
defined by the following security game.

Security..
Let A be a p.p.t. adversary and consider the following

game between a challenger and the adversary.

• The challenger run the (pk, sk)← PKE.KeyGen(1λ) and
gives the public key pk to the adversary.

• The adversaryA outputs a pair of messages (msg0,msg1)
of its choice, the challenger replies with PKE.Enc(pk,msgb),
for a randomly chosen bit b.

• The adversary finally outputs its guess b′.

The advantage of adversary in the above game is

AdvEnc(A) := Pr[b′ = b]− 1

2

A public key encryption scheme PKE is secure if there is
no adversary A which can win the above game with non-
negligible advantage.

We also require an additional property from PKE schemes:
a ciphertext when decrypted with an ”incorrect” secret key
should output ⊥ when all the algorithms are honestly run.
We call this DecTest property.

Definition B.1. (DecTest Property of PKE). A PKE
scheme PKE has the DecTest property if for all λ and
msg ∈M

Pr

[
PKE.Dec(sk′,PKE.Enc(pk,msg)) 6=⊥

]
= negl(λ)

where (pk, sk) and (pk′, sk′) are generated by running
PKE.KeyGen(1λ) twice, and the probability is taken over the
random coins of the probabilistic algorithms PKE.KeyGen
and PKE.Enc.14

B.2 Symmetric Key Encryption
A symmetric key encryption scheme SKE over a message

space M consists of three p.p.t. algorithms satisfying the
following semantics.

SKE.KeyGen(1λ): The key generation algorithm takes in a
security parameter and outputs secret key (sk).

SKE.Enc(sk,msg): The encryption algorithm takes in a key
sk and a message msg ∈M and outputs the ciphertext
ct.

SKE.Dec(sk, ct) The decryption algorithm takes in a key sk
and a ciphertext ct and outputs the decryption msg.

We require an additional property for our SKE scheme:
a ciphertext produced from this schema should be indistin-
guishable from a random string of the same length. We call
this IndRandom property.

Definition B.2. (IndRandom Property of SKE). A SKE
scheme SKE has the IndRandom property if for all λ and
msg ∈ M, the following two experiments are indistinguish-
able for all efficient distinguishers D:

• RealD: The challenger C samples a key SKE.KeyGen(1λ)→
K.D chooses any message m ∈ M, receives the chal-
lenger outputs SKE.Enc(K,msg). The experiment out-
puts whatever D outputs, which is a bit.

• RandD: D chooses and m ∈ M, the challenger C
randomly samples {0|1}(λ,|m|) 15 and outputs that. The
experiment outputs whatever D outputs, which is a bit.

14A simple heuristic approach of providing this property
to a PKE scheme is by padding the message with 0λ

before encrypting it, and checking the suffix for 0λ during
decryption.

15(λ, |m|) is a function that returns the size of the ciphertext
produced by SKE with security parameter λ and message m

We say that SKE is IndRandom secure if for all p.p.t
distinguishers D:

|Pr[RealD(1λ) = 1]− Pr[RandD(1λ)]| = negl(λ)

We note that the security definitions for SKE are analogous
to that of those in PKE except that in SKE the adversary is
given access to an encryption oracle.

B.3 Pseudo-Random Functions
A function F : {0, 1}k(λ) × {0, 1}n(λ) → {0, 1}m(λ), where

the first argument is called the seed of the Pseudo-Random
Function and the second is the input. A PRF F is said to
be a secure PRF (i.e. exhibits sec-PRF property) if for all
efficient distinguishers D, the following two experiments are
indistinguishable:

• RealD : The challenger C, samples a k from {0, 1}k(λ).C
instantiates an oracle Oreal(x), which returns F(x, k)

when invoked. D chooses any x from {0, 1}n(λ) and has
access to the oracle. The experiment returns whatever
D outputs, which is a bit.

• RandD : D chooses any x from {0, 1}n(λ) and has access
to an oracle Orand, which when invoked produces output
T[x]. The experiment returns whatever D outputs,
which is a bit.

We say that F is a Pseudo Random Function if for all p.p.t
distinguishers D:

|Pr[RealD(1λ) = 1]− Pr[RandD(1λ)]| = negl(λ)

C. OTHER ADVANTAGES
Our construction has several other advantages over prior

constructions. We briefly mention some of them in this
section.

1. Multi-user or multi-client searchable encryption has
been addressed in the past [12]. Our construction
can also be used to solve the problem of multi-user
searchable encryption as well. One can envision how
the program P that is loaded can be designed to have
an authentication layer which allows access to the
searchable database. This way handling multi-user
applications simply collapses to authenticating users at
the secure hardware.

2. A general security measure for searchable encryption
is key rotation. This is performed in order to re-
randomize the encrypted data after it has been used
extensively (in order to prevent statistical inferences)
and/or to cope with compromised keys. While it has
not been addressed at depth in literature, this would
be a time consuming process for the client. However
under our schema, the secure hardware can have its
own module for key rotation, and it need not be tied to
the keys of the client. Implying that key rotations can
be performed oblivious to the client which is extremely
useful in cases where key rotation was required due to
extensive usages. Client key compromises face the same
adversities as it did traditionally.

3. Our schema can be extended to support dynamicity by
a simple layering trick as done by D.Cash et al. [8]

	Searchable Encryption from Secure Enclaves

