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● Our goal: Design algorithms that run in TEEs 
without being vulnerable to such side-channels
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1. Gather Data

2. Decrypt

3. Shuffle

4.  Analyze
In Prochlo, the shuffle hides individual contributions within the 
anonymity set of all user submissions.

Prochlo [1] is designed for privacy-
preserving telemetry, error reporting,
and software profiling. 
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TEE Application: Prochlo

[1] - Bittau, A. et al., “Prochlo: Strong Privacy for Analytics in the Crowd". SOSP, 2017.



TEE side-channels
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Observing memory access patterns trivially reveal the shuffle permutation
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Our Contributions

In this work, we present:
● Fully Oblivious Algorithms for:

– Shuffling (ORShuffle and BORPStream)
– Order-preserving Tight Compaction (ORCompact)

● FOAV: A tool to ensure that obliviousness persists in the 
final binary executed by the processor 
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independent of any secret data.

1) External-Memory
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1) External-Memory

2) Protected-Memory

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

PRM
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1) External-Memory

2) Protected-Memory
i.  Page

OS is responsible for page table management; Page-granular attacks induce
page faults to extract memory locations accessed by the program.

PRM
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during a page fault. 
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1) External-Memory

2) Protected-Memory
i.  Page
ii. Cacheline
iii. Subcacheline

Control-Flow oblivious: Secret-dependent control flow branches leak
information about the underlying secret; ensure that the program has no 
secret-dependent control-flow branches.

PRM

if (secret-dep clause)
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1) External-Memory

2) Protected-Memory
i.  Page
ii. Cacheline
iii. Subcacheline

3) Control-flow
PRM

if (secret-dep clause)

Fully Oblivious: A program is fully oblivious if it satisfies all above 
definitions of obliviousness.
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Levels of Obliviousness



Order-Preserving Tight Compaction

A B C D E F G H

B D E F C H A G

Goal: Bring all the marked items to the start of the array
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Algorithm Complexity Constant Parallel

Goodrich
(2011) n lgn 1

Asharov et al.
(2018) n >2228

Dittmer & Ostrovsky 
(2020) n ~9405.7

ORCompact 
(2022)

n lgn 1/2
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Order-Preserving Tight Compaction Algorithms

Check out our full paper for details of the ORCompact algorithm, proofs of correctness and obliviousness



ORCompact Time Evaluation

5.2x improvement
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With a fixed block size
b = 8 bytes



Oblivious Shuffling

● Melbourne Shuffle

● Stash Shuffle (Prochlo)

● In practice, Batcher’s Sorting Network (1968) is used
– To shuffle, attach random tags to the items to sort

– For simplicity, we call this Bitonic Shuffle

Processor

P
Rest of 
Memory

PRM

Assumes PRM as private 
unobservable memory
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Oblivious Recursive Shuffle (ORShuffle)
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Oblivious Recursive Shuffle (ORShuffle)

complexity    
              parallel step complexity            
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● Inspired by BORP, redesigned for streaming settings; i.e. when packets to shuffle arrive intermittently.

● As items to shuffle arrive, they are assigned a random destination bucket label, and routed
through the Butterfly Routing Network (BRN) of MergeSplit Nodes (MSN) to their bucket

MSN
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MergeSplitNode
● Each MSN can have a fan of f; i.e. f incoming and outgoing connections

● MSNs evict packet to their f output streams in a round robin fashion

● Maintain a small local buffer to handle routing correctness

● For an incoming packet, the MSN obliviously scans the buffer, and picks an 
item destined for the current eviction stream, or else sends out a dummy 

MergeSplit Node
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Local buffer



BORPStream Phase 1

● Packets are routed through the 
BRN of MSNs as they arrive along 
with a dummy packet

● Failure probability (2-80) depends 
on if the MSN buffer overflows
(Details of computing the failure 
probability, correctness and 
obliviousness of BORPStream in 
the full version of our paper.)

● Note failures are silent and do 
NOT leak information

MSN

MSN

MSN

MSN

MSN

MSN
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BORPStream Phase 2

● ORCompact to bring all the real 
items to the start of the bucket

● Drop all the dummy items in each 
bucket

● ORShuffle to randomize locations 
of reals in each bucket

● Merge all the shuffled buckets to 
produce obliviously shuffled output

Compact

Compact

Compact

Compact

Drop dummies

Drop dummies

Drop dummies

Drop dummies

Shuffle

Shuffle

Shuffle
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BORPStream

MSN

MSN

MSN

MSN

MSN

MSN

● When data to be shuffled arrive intermittently BORPStream enables partial shuffling of items

● BORPStream can be tuned to minimize total time (V1) or Phase 2 time alone (V2)

● BORPStream has an O(n lg2 n) complexity 

Compact
Drop 

dummies
Shuffle

Phase 1 Phase 2
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With a fixed block size
b = 8 bytes
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Shuffle Algorithms Evaluation

1.8x improvement



2.5x improvement

With a fixed block size
b = 8 bytes

17

Shuffle Algorithms Evaluation



With a fixed number of 
items, n = 220

1.4x improvement
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Shuffle Algorithms Evaluation



With a fixed number of 
items, n = 220

1.4x improvement

4.2x improvement
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Shuffle Algorithms Evaluation



Fully Oblivious Assembly Verifier (FOAV)

● Instrument C/C++ source to insert assembly 
comments to state if a variable is “safe”

● FOAV analyzes the output assembly to verify control 
flow obliviousness

● It tracks all the conditional jump instructions, and 
their flag-manipulating instruction (FMI) to ensure 
that operands of the FMI are marked safe

20



Summary

● Introduced efficient fully oblivious algorithms for:
– Order-preserving tight compaction: ORCompact
– Shuffling: ORShuffle and BORPStream

● Ensure obliviousness at assembly level: FOAV
● Code: https://crysp.uwaterloo.ca/software/obliv/

21

https://crysp.uwaterloo.ca/software/obliv/




M1 M2 Flag

OSWAP(M1, M2, Flag)

J K 0 / 1

M1 M2

Flag

J K

0
 

M1 M2

K J

Flag 1
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Oblivious Swap (OSWAP)



With a fixed number of 
items, n = 220

Bitonic, ORShuffle, and 
BORPStream V2 Total time

31

Shuffle Algorithms Evaluation



ORCompact(D,M):
–

–

–  

–

–

–

●

A B C D E F G

ORCompact (,)

B C A G F D E

OROffCompact (,,z)

B D E G F C A

0 41 52 63

m = 1
n

1
 = 3 n

2
 = 4

z = 2
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ORCompact



ORCompact OSWAP Evaluation

 ~1/2 #OSWAPs 
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● O (n logn) shuffle algorithm
● Client-Server model, with private unobservable memory on client side

Merge
Split

At layer i, MergeSplits are 
performed on buckets 
that are 2i apart, based 

on the ith MSB

0*

1*

00*

01*

Private 
unobservable 
memory for 
MergeSplit

21

Bucket Oblivious Random Permutation (BORP)

Merge
Split

Merge
Split

0*

1*



Shuffle Algorithms Evaluation

With a fixed block size
b = 8 bytes

1.8x improvement
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Shuffle Algorithms Evaluation



Goodrich Oblivious Compaction



BORPStream Parameters



BORPStream OSWAP and Efficiency

● BORPStream V2 incurs in total 4x more OSWAPS than BitonicShuffle
➔ Phase2 alone only incurs about 1/2 the number of OSWAPS as Bitonic 

and ORShuffle

● PRM is 90 MB; using more incurs expensive PRM paging overheads
● BORPStream is more locality efficient than BitonicShuffle/ORShuffle

➔ Phase1: PRM stores just memory corresponding to the MSNs
➔ Phase2: BORPStream operates over each bucket at a time
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● Data within PRM remain encrypted at all times

● P can have its own key pair enabling users to 
send private data to P, that only P can decrypt.

● Enables mutually mistrusting parties to share 
and compute on data with privacy guarantees

1

Trusted Execution Environments (TEEs)

● TEEs enable secure execution of programs on 
a remote server; secure         confidentiality and 
integrity guarantees
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