
Fast Fully Oblivious
Compaction and Shuffling

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Processor

Memory

PRM

Rest of
Memory

P

P

1

Background

● TEEs enable secure execution of programs on
a remote server; secure confidentiality and
integrity guarantees

Processor

Memory

PRM

Rest of
Memory

P

P

● Vulnerable to side-channel attacks that violate
confidentiality guarantees

1

Background

● TEEs enable secure execution of programs on
a remote server; secure confidentiality and
integrity guarantees

Processor

Memory

PRM

Rest of
Memory

P

P

● Vulnerable to side-channel attacks that violate
confidentiality guarantees

● Our goal: Design algorithms that run in TEEs
without being vulnerable to such side-channels

1

Background

● TEEs enable secure execution of programs on
a remote server; secure confidentiality and
integrity guarantees

Processor

Memory

PRM

Rest of
Memory

P

1. Gather Data

2. Decrypt

3. Shuffle

4. Analyze
In Prochlo, the shuffle hides individual contributions within the
anonymity set of all user submissions.

Prochlo [1] is designed for privacy-
preserving telemetry, error reporting,
and software profiling.

2

TEE Application: Prochlo

[1] - Bittau, A. et al., “Prochlo: Strong Privacy for Analytics in the Crowd". SOSP, 2017.

TEE side-channels

Processor

P

PRM
Rest of Memory

Observing memory access patterns trivially reveal the shuffle permutation

3

Our Contributions

In this work, we present:
● Fully Oblivious Algorithms for:

– Shuffling (ORShuffle and BORPStream)
– Order-preserving Tight Compaction (ORCompact)

● FOAV: A tool to ensure that obliviousness persists in the
final binary executed by the processor

4

Levels of Obliviousness

Processor

P
Rest of Memory

PRM

5

Processor

P
Rest of Memory

PRM

5

Levels of Obliviousness

Processor

P
Rest of Memory

External-Memory Oblivious: Access to data outside of the PRM are
independent of any secret data.

PRM

5

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

External-Memory Oblivious: Access to data outside of the PRM are
independent of any secret data.

PRM

5

Levels of Obliviousness

Processor

P

PRM
Rest of Memory

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

1) External-Memory

5

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

PRM

5

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
i. Page

OS is responsible for page table management; Page-granular attacks induce
page faults to extract memory locations accessed by the program.

PRM

5

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
i. Page
ii. Cacheline

Recent attacks extract the precise address of the 64B cacheline loaded
during a page fault.

PRM

5

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
i. Page
ii. Cacheline
iii. Subcacheline

Recent attacks extract the precise address of the 64B cacheline loaded
during a page fault.

PRM

5

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
i. Page
ii. Cacheline
iii. Subcacheline

Control-Flow oblivious: Secret-dependent control flow branches leak
information about the underlying secret; ensure that the program has no
secret-dependent control-flow branches.

PRM

if (secret-dep clause)

5

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
i. Page
ii. Cacheline
iii. Subcacheline

3) Control-flow
PRM

if (secret-dep clause)

Fully Oblivious: A program is fully oblivious if it satisfies all above
definitions of obliviousness.

5

Levels of Obliviousness

Order-Preserving Tight Compaction

A B C D E F G H

B D E F C H A G

Goal: Bring all the marked items to the start of the array

6

Algorithm Complexity Constant Parallel

Goodrich
(2011) n lgn 1

Asharov et al.
(2018) n >2228

Dittmer & Ostrovsky
(2020) n ~9405.7

ORCompact
(2022)

n lgn 1/2

7

Order-Preserving Tight Compaction Algorithms

Check out our full paper for details of the ORCompact algorithm, proofs of correctness and obliviousness

ORCompact Time Evaluation

5.2x improvement

8

With a fixed block size
b = 8 bytes

Oblivious Shuffling

● Melbourne Shuffle

● Stash Shuffle (Prochlo)

● In practice, Batcher’s Sorting Network (1968) is used
– To shuffle, attach random tags to the items to sort

– For simplicity, we call this Bitonic Shuffle

Processor

P
Rest of
Memory

PRM

Assumes PRM as private
unobservable memory

9

A B C D E F G H

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H
–

–

●

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H
–

–

●

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H
–

–

●

●

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H
–

–

●

●

B C E H A D F G

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H
–

–

●

●

●

●

B C E H A D F G

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H
–

–

●

●

●

●

B C E H A D F G

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H
–

–

●

●

●

●

B C E H A D F G

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H

B C E H A D F G

C E B H A F D G

–

–

●

●

●

●

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H

B C E H A D F G

C E B H A F D G

–

–

●

●

●

●

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H
–

–

●

●

●

●

– else:
● Sample
●

B C E H A D F G

C E B H A F D G

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H

B C E H A D F G

C E B H A F D G

b=1 b=1 b=0 b=0

E C H B A F D G

E C H B A F D G

–

–

●

●

●

●

– else:
● Sample
●

10

Oblivious Recursive Shuffle (ORShuffle)

A B C D E F G H

B C E H A D F G

C E B H A F D G

b=1 b=1 b=0 b=0

E C H B A F D G

E C H B A F D G

–

–

●

●

●

●

– else:
● Sample
●

Oblivious Recursive Shuffle (ORShuffle)

complexity
 parallel step complexity

10

● Inspired by BORP, redesigned for streaming settings; i.e. when packets to shuffle arrive intermittently.

● As items to shuffle arrive, they are assigned a random destination bucket label, and routed
through the Butterfly Routing Network (BRN) of MergeSplit Nodes (MSN) to their bucket

MSN

11

BORPStream

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MSN

MergeSplitNode
● Each MSN can have a fan of f; i.e. f incoming and outgoing connections

● MSNs evict packet to their f output streams in a round robin fashion

● Maintain a small local buffer to handle routing correctness

● For an incoming packet, the MSN obliviously scans the buffer, and picks an
item destined for the current eviction stream, or else sends out a dummy

MergeSplit Node

12

Local buffer

BORPStream Phase 1

● Packets are routed through the
BRN of MSNs as they arrive along
with a dummy packet

● Failure probability (2-80) depends
on if the MSN buffer overflows
(Details of computing the failure
probability, correctness and
obliviousness of BORPStream in
the full version of our paper.)

● Note failures are silent and do
NOT leak information

MSN

MSN

MSN

MSN

MSN

MSN

13

BORPStream Phase 2

● ORCompact to bring all the real
items to the start of the bucket

● Drop all the dummy items in each
bucket

● ORShuffle to randomize locations
of reals in each bucket

● Merge all the shuffled buckets to
produce obliviously shuffled output

Compact

Compact

Compact

Compact

Drop dummies

Drop dummies

Drop dummies

Drop dummies

Shuffle

Shuffle

Shuffle

14

BORPStream

MSN

MSN

MSN

MSN

MSN

MSN

● When data to be shuffled arrive intermittently BORPStream enables partial shuffling of items

● BORPStream can be tuned to minimize total time (V1) or Phase 2 time alone (V2)

● BORPStream has an O(n lg2 n) complexity

Compact
Drop

dummies
Shuffle

Phase 1 Phase 2

15

With a fixed block size
b = 8 bytes

16

Shuffle Algorithms Evaluation

1.8x improvement

2.5x improvement

With a fixed block size
b = 8 bytes

17

Shuffle Algorithms Evaluation

With a fixed number of
items, n = 220

1.4x improvement

18

Shuffle Algorithms Evaluation

With a fixed number of
items, n = 220

1.4x improvement

4.2x improvement

19

Shuffle Algorithms Evaluation

Fully Oblivious Assembly Verifier (FOAV)

● Instrument C/C++ source to insert assembly
comments to state if a variable is “safe”

● FOAV analyzes the output assembly to verify control
flow obliviousness

● It tracks all the conditional jump instructions, and
their flag-manipulating instruction (FMI) to ensure
that operands of the FMI are marked safe

20

Summary

● Introduced efficient fully oblivious algorithms for:
– Order-preserving tight compaction: ORCompact
– Shuffling: ORShuffle and BORPStream

● Ensure obliviousness at assembly level: FOAV
● Code: https://crysp.uwaterloo.ca/software/obliv/

21

https://crysp.uwaterloo.ca/software/obliv/

M1 M2 Flag

OSWAP(M1, M2, Flag)

J K 0 / 1

M1 M2

Flag

J K

0

M1 M2

K J

Flag 1

8

Oblivious Swap (OSWAP)

With a fixed number of
items, n = 220

Bitonic, ORShuffle, and
BORPStream V2 Total time

31

Shuffle Algorithms Evaluation

ORCompact(D,M):
–

–

–

–

–

–

●

A B C D E F G

ORCompact (,)

B C A G F D E

OROffCompact (,,z)

B D E G F C A

0 41 52 63

m = 1
n

1
 = 3 n

2
 = 4

z = 2

12

ORCompact

ORCompact OSWAP Evaluation

 ~1/2 #OSWAPs

8

● O (n logn) shuffle algorithm
● Client-Server model, with private unobservable memory on client side

Merge
Split

At layer i, MergeSplits are
performed on buckets
that are 2i apart, based

on the ith MSB

0*

1*

00*

01*

Private
unobservable
memory for
MergeSplit

21

Bucket Oblivious Random Permutation (BORP)

Merge
Split

Merge
Split

0*

1*

Shuffle Algorithms Evaluation

With a fixed block size
b = 8 bytes

1.8x improvement

28

Shuffle Algorithms Evaluation

Goodrich Oblivious Compaction

BORPStream Parameters

BORPStream OSWAP and Efficiency

● BORPStream V2 incurs in total 4x more OSWAPS than BitonicShuffle
➔ Phase2 alone only incurs about 1/2 the number of OSWAPS as Bitonic

and ORShuffle

● PRM is 90 MB; using more incurs expensive PRM paging overheads
● BORPStream is more locality efficient than BitonicShuffle/ORShuffle

➔ Phase1: PRM stores just memory corresponding to the MSNs
➔ Phase2: BORPStream operates over each bucket at a time

Processor

Memory

PRM

Rest of
Memory

P

P

● Data within PRM remain encrypted at all times

● P can have its own key pair enabling users to
send private data to P, that only P can decrypt.

● Enables mutually mistrusting parties to share
and compute on data with privacy guarantees

1

Trusted Execution Environments (TEEs)

● TEEs enable secure execution of programs on
a remote server; secure confidentiality and
integrity guarantees

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

