
Consider a randomized mechanism 𝓜 that is (𝝐,𝛅)-DP, and a
mechanism 𝓜' that uses samples of size m from a dataset with
n elements using any of the following methods:
1) Sampling without Replacement (SWO)
2) Poisson Sampling
3) Shuffle-based Sampling

For i = [1, k]:
Test&Replicate(i,j)

Setup next
element to
replicate

1 2 3 4 5 6

A D F C E B

j

e enext

ℓ
2

A

1

ℓ

F A

3

3
F

II

III

IV

Repeat and till = nIVIII ℓ

V
Obliviously
shuffle the

sampled array

Decrypt and
sort by the

sample indices

C

1

A C C

32 21

A

3

Informally, Privacy Amplification of Differential Privacy states that
𝓜' with SWO or Poisson sampling provides an order of O()
smaller epsilon than the popularly used Shuffle-based sampling.

√m/n

Algorithm for Oblivious Sampling Without Replacement (SWO)

Input : A dataset (D)
of n records

Output : k = n/m samples
of size m from D. (k=3)

Goal: Obtain samples of size m. (m=2)

1 2 3 4 5 6

B D FA C E
1 2 3 4 5 6

A BF

Constraint: Hide sample identity.
Memory access patterns of the algorithm
execution should not reveal any information
about the elements in any sample.

F A F

1 2 3 4 5 6

ℓ
A D F C E B

ℓ

Oblivious Sampling Algorithms for Private Data Analysis
Sajin Sasy and Olga Ohrimenko

Enable data scientists to query data while providing strong
privacy guarantees on user data.
Trusted Execution Environments (TEE) restricts data access and
protects data while its computed upon.
TEEs can leak data access patterns which lead to privacy loss.

Goal & Motivation

MNIST

DP MNIST

DP CIFAR-10

CIFAR-10

Experimental Results

�

𝝐

𝝐

Shuffle SWO Poisson

97.50 (98.33) 97.47 (98.31)97.43 (98.31)

94.06 (94.10) 94.03 (94.05) 94.10 (94.01)

9.39 2.13 0.82

79.6 (83.2)

73.4 (72.3)

79.0 (82.9)

9.39 4.89

72.5 (71)

Full Paper

Privacy via Sampling and Differential Privacy

Samples must be hidden for
privacy amplification results to hold!

Oblivious Poisson sampling algorithm
Security analysis
More-detailed experiments

For more information:
ssasy@uwaterloo.ca oohrim@microsoft.com

Threat Model / Framework Architecture

p
1

p
2

p
3

n, m
Initialize

PRPs

(6, 2)

1 2

1

1 2

2

3

3

3

4

4

4

5

5

56

6

6

1 2 3 4 5 6

A D F C E B

Private
Memory

1 2 3 4 5 6j

e enext

ℓ
1

B A

ℓ

ℓ

D

j

e enext

ℓ
1 1

B B

Test &
Replicate

(1, 1)
1

2 A D F C E B

Test &
Replicate

(2, 1)

Test &
Replicate

(3, 1)

A

1

1 2 3 4 5 6

A D F C E B

j

e enext

ℓ
1

B A

1

ℓ

j

e enext

ℓ
1

B D

2

F A

3

3

1 2 3 4 5 6

A D F C E B

j

e enext

ℓ
6

A

1

B A

6

3
C F C C C

1 32 2

FVI

Algorithm Correctness
We prove that the algorithm returns samples of size m drawn
truly randomly from the n elements, upto an injective and
random key mapping.

Oblivious
Shuffle

A

A

F
C
C
C

1

1

3

3 A

A

3

3
1

1

C

C

C

F

2

2 2

2

Test &
Replicate

(i, j)

This tool checks if sample i,
contains key at index j with the
PRPs generated with Initialize
and replicates the key if true.

Contributions
Introduce Private Sampling-Based Query Framework
Take advantage of Differential Privacy and Privacy Amplification
from sampling
Design secure sampling for hiding sample identity: oblivious
sampling
Design efficient dataset sampling algorithms
Experimental evaluations of accuracy of machine learning
models trained with minibatches produced by sampling instead
of shuffling

TEE

Data
Interface

Query
Interface

User
Data

Infrastructure
Provider

Data
Scientists

Oblivious
Shuffle

D

A

E

B

F

C

A
D

F
C

E
B

I

k iterations of Test & Replicate for index j
produces a copy of j for every sample it appears
in. Each copy is created with its sample index.

NOTE: All the
elements and
sample indices
are encrypted
by the TEE and
only in clear in

private
memory which
is not visible to
the adversary.

Instantiate k permutations of n using Pseudo Random
Permutations (PRP), effectively contributing the

indices for the sample.

Shuffle the array without memory access patterns
leaking any information about the output permutation

This shuffle breaks the correlation of
which elements go to which samples.

