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The Problem

* Tradeoff between parallelism and communication cost in a
map-reduce computation.

* The finer we partition the work of the reducers so that more
parallelism can be extracted, the greater will be the total
communication between mappers and reducers.

* Limited bandwidth
* Limited resources(memory, processing units...)
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Why important

* Explore the bounds on the cost of map-reduce
computation.

* Optimize the algorithms for problem.
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Previous Work

 First work that addresses the tradeoff between reducer size and
communication cost in one round Map-Reduce computations.

* Theta-join implementation by Map-Reduce: only one special
case.

* Limit the input size of any reducer: limits consideration to
algorithms that we might think of as truly parallel.
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* A model of problems that can be solved 1n a single round
of map-reduce computation.

Two Parameters

* Replication rate r: average number of key-value pairs to
which each mput 1s mapped by the mappers.

* Reducer size p: the maximum number of inputs that one
reducer can receive.
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Tradeoff
* Determine the best algorithm for a problem where:

r=f(q)

* Cost of solving the problem:

af (q)+bq(+cq”)
* Replication rate: D
Ei
Il

Model 1
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Mapping Schemas
* No reducer 1s assigned more than q inputs.

* For every output, there 1s (at least) one reducer that 1s
assigned all of the inputs for that output. We say such a
reducer covers the output. This reducer need not be
unique, and it 1s permitted that these same inputs are
assigned also to other reducers.
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. Deriving g(q): First, find an upper bound, g(g), on the num-
ber of outputs a reducer can cover if g is the number of inputs
it is given.

. Number of Inputs and Outputs: Count the total numbers
of inputs |I| and outputs |O)|.

. The Inequality: Assume there are p reducers, each receiving
gi < g inputs and covering g(g;) outputs. Together they
cover all the outputs. That is:

p
> g(a) >0 (1)
i=1

. Replication Rate: Manipulate the inequality from Equa-
tion [1]to get a lower bound on the replication rate, which

is 3 iy ai/ 1l

Note that the last step above may require clever manipulation to
factor out the replication rate. We have noticed that the following
“trick™ is effective in Step (4) for all problems considered in this
paper. First, arrange to isolate a single factor ¢; from g(g;); that is:

> 0@ 2101 = Y

Assuming 245 is monotonically increasing in g;. we can use the
fact that Vg; : ¢; < g to obtain from Equation 2}

Zq

Now, divide both sides of Equation [3| by the input size, to get a
formula with the replication rate on the left:

r= Z‘I.-l q" Q|OI (4)

Il — a(q)|I]

9(a) 5 o) )

) > 0] 3)
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T
Steps:

e Suppose the instance of the problem has |I| inputs and |O|
outputs.

e We find an upper bound, g(g), on the number of outputs any
g inputs can generate.

e If g(q)/q is monotonically increasing in g then we can com-
pute the replication rate using our recipe.

e Suppose the maximum number of inputs any reducer can
take is g. Then the replication rate is » > QI((Itll_?IIII'

Q1: Is this assumption reasonable?
M 0 ll el Q2: Can be applied to most problems or only
several specific problem? 10
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Problem |1] O] g(q) Lower bound on
Hamming-Distance-1, b-bit strings 2b % L"gﬁ (Section|3.1 ﬁ (Section 3.2
Triangle-Finding, n nodes % "—63 gq% (Section|4.1 % (Section|4.1
Sample Graphs (size s nodes) in Alon | (3) orm | n® q°? (%)“"‘2 or (,/2)*~2
Class in graph of m edges, n nodes (Section|5.2) (Sections|5.2/and|5.3)
2-Paths in n-node graph (3) "—; 8 (Sectioﬂl?4.l|) an £Section|5.4.w
Multiway Join: N bin. rels, m vars., N(3) (™) q” (17D %} (Section|5.5.1
Dom. n, parameter p from [7]

n x n Matrix Multiplication 2n? n? 4i:§ (Section|6.1b % (Section ‘6. lb

Table 1: Lower bound on replication rate » for various problems in terms of number of inputs ||, number of outputs |O|, and

maximum number of inputs per reducer q.

1
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Problem Upper bound on »
Hamming-Distance-1 b-bit strings ﬁ (Section (3.3
Triangle-Finding, n nodes O(7%) (Section|4.2|an [2,24])
Sample Graphs (size s nodes) in Alon O((ﬁ )9‘2) (Result from [2])

Class in graph of m edges, n nodes

2-Paths in n-node graph O(%) (Section5.4.2)

Multiway Join: N rels, m vars., Dom. Chain join: (n/,/q)"

n (Section|5.5.2) Star join: fact, dim. sizes f, do: Nﬂ%ﬁ%&
n x n Matrix Multiplication # for ¢ > 2n? (Section|6.2|and [18])

Table 2: Representative upper bound on the replication rate » for each problem considered in this paper. This table only presents a
representative upper bound, with a forward reference to the section that derives all upper bounds with constructive algorithms for
each problem.

Model 1
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LEMMA 3.1. For the Hamming-distance-1 problem, a reducer
of size q can cover no more than (q/2) log, q outputs.

proof in technical report: F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and
lower bounds on the cost of a map-reduce computation. CoRR, abs/1206.4377, 2012.

THEOREM 3.2. For the Hamming-distance-1 problem with in-
puts of length b, the replication rate r is at least b/ log,, q.

Hamming Distance 1 "
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e Deriving g(q): Recall that g(g) is the maximum number of
outputs a reducer can cover with q inputs. By Lemma 3.1|

g9(q) = (q/2)log, q
o Number of Inputs and Outputs: There are 2 bitstrings of
length b. The total number of outputs is (b/2)2°. Therefore

1] =2 and |O] = (5/2)2". \
e Y7, 9(gi) = |O| Inequality: Substituting for g(g:) and o T
|O| from above: f

p

> Lloga> 02 | p=
2 2 ,12,, 2

i=1

logz q

Hamming nistance 1 “
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Figure 1: Known algorithms matching the lower bounc
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Upper Bound: Splitting Algorithm

We can generalize the Splitting Algorithm so that for any ¢ > 2
such that ¢ divides b evenly, we can have reducer size 2°/¢ and
replication rate c. Note that for reducer size 2%/, the lower bound
on the replication rate is exactly
b/log,(2%/¢) = . We split each bit string w into ¢ segments,
wiws - - - We, €ach of length b/c. We will have ¢ groups of reduc-
ers, numbered 1 through ¢. There will be 2°~%/ reducers in each
group, corresponding to each of the 2°—%/¢ bit strings of length
b—b/e. Fori = 1,...,¢, we map w to the Group-z reducer that
corresponds to bit string wy - - - wi_1wiyq - - - we, that is, w with
the ith substring w; removed. Thus, each input is sent to ¢ re-
ducers, one in each of the ¢ groups, and the replication rate is c.

Hamming Distance 1 5
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e
Upper Bound for large q: Replicas on neighboring reducer

There is a family of algorithms that use reducers with large in-
put — ¢ well above 2°/2, but lower that 2°. The simplest version
| of these algorithms divides bit strings of length b into left and right

halves of length b/2 and organizes them by weights, as suggested
e by Fig. 2| The weight of a bit string is the number of 1’s in that

string. In detail, for some k, which we assume divides b/2, we
partition the weights into b/(2k) groups, each with k consecutive
weights. Thus, the first group is weights 0 through k£ — 1, the sec-
ond is weights k through 2k — 1, and so on The last group has an
.-, =, and consists of weights 2 — k through b/ 2.

the replication rate is 1 +

Hamming Distance 1 2
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Figure 2: Partitioning by weight. Only the border weights neec
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* Analysis for Hamming Distance 1 does not generalize
casily to higher distance.

* Much higher bound for number of outputs covered by a
reducer.

Hamming Distance 1 0
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* We are given a graph as input and want to find all triples of
nodes such that in the graph there are edges between each pair
of these three nodes.

* Alon Class of Sample Graphs: have the property that we can
partition the nodes into disjoint sets, such that the subgraph
induced by each partition is either:

— A single edge between two nodes, or
— Contains an odd-length Hamiltonian cycle.

Triangie Finding 18
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Figure 3:  Input/output relationship for the matrix-
multiplication problem

Matrix Multiplication
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Figure 4: The two-phase method of matrix multiplication
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Matrix Multiplication
Using Two Phases

. In the first phase, we compute z;jr = 7ijs;r for each i, 7,

and k between 1 and n. We sum the z;;1’s at a given reducer
if they share common values of ¢ and k, thus producing a
partial sum for the pair (i, k).

. In the second phase, the partial sum for each pair (z, k) is sent

from each reducer that has computed at least one z;;; for
some 7 to a reducer of the second phase whose responsibility
to to sum all these partial sums and thus compute £ .

Matrix Multiplication
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* http://www.slideshare.net/tzulitai/upper-and-lower-
bound-on-the-cost-of-a-map-reduce-computation

* http://shonan.nii.ac.jp/shonan/seminar0O11/files/2012/01/
ullman.pdf

Reference 7
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