THE CQL CoNTINuouS QUERY LANGUAGE:
SEMANTIC FOUNDATIONS AND QUERY EXECUTION

Arvind Arasu and Shivnath Babu and Jennifer Widom
University of Stanford

presented by Weichen Wang
2016.10.26
far] UNIVERSITY OF

%y WATERLOO

OUTLINE

» Data Streams Overview

» The Linear Road: A Benchmark
» The Formal Model
» Design Goals
» Streams, Relations and Operators
» Semantics for Continuous Query
» (Continuous Query Language (CQL)
» Specification
» Implementation: STREAM

» Future Works

DATA STREAMS

» (Continuous streams of data elements (may be unbounded)
» Telecommunications
» Sensor networks (road network, weather stations)
» Transaction logs
» Financial applications
» Router traffic

» Tweets

» DSMS = Data Stream Management System

continuous
query

stored data
on disk

query processor

DATA STREAM MANAGEMENT SYSTEM (DSMS)

DBMS DSMS

» Persistent relations » Transient streams
(and persistent relations)

» (One-time query » (Continuous queries

» Random access » Sequential access

» Only current state matters > Historical data matters

100 Miles

;GG ———+———+—— Hwy0
Seg0 Segl Seg 98 Seg 99 4

Figure 1: The Linear Road highway system

THE LINEAR ROAD: A BENCHMARK

> a hypothetical road traffic management application for DSMS

» adaptive, real-time computation of vehicle tolls based on traffic
conditions.

> toll = basetoll X (numVehicles — 150)%, if there is congestion.
» The simplified Linear Road application in this paper has:

> A single input stream: the stream of positions and speeds
of vehicles

» A single continuous query computing the tolls

» A single output stream of the tolls

THE FORMAL MODEL: STREAMS

Definition: A stream S 1s a (possibly infinite) bag (multiset) of elements <s, 7>, where

s 1s a tuple belonging to the schema of S and 7 € T 1s the timestamp of the element.
> Base stream: a source data stream that arrives at the DSMS
» Derived stream: an intermediate stream produced by query operators
» Tuple of a stream: the data (non-timestamp) portion of a stream
> S up to t: the bag of elements in stream S with timestamps <t
> l.e., {<s, T>€ S: 1<t}
» S at r: the bag of elements in stream S with timestamps =71
» l.e.,{<s, T>€ S : =7

Example: In the Linear Road application, there is just one base stream containing vehicle
speed-position measurements, with schema:

- PosSpeedStr(vehicleld, speed, xPos, dir, hwy)

THE FORMAL MODEL: RELATIONS

Definition: A relation R 1s a mapping from 7T to a finite but unbounded
bag of tuples belonging to the schema of R.

» Relation : a time-varying bag of tuples

» Instantaneous relation: a relation in the traditional bag-of-tuples sense
> R 1s a relation = R(t) 1s an instantaneous relation.

» Base relation: an input relation from source data

» Derived relation: a relation produced by query operators

Example: In the Linear Road application, the toll for a congested segment
depends on the current number of vehicles in the segment, which can be
represented in a derived relation:

- SegVolRel(segNo, dir, hwy, numVehicles)

THE FORMAL MODEL: OPERATORS

» Stream-to-relation operator: produce a relation from a stream

» Relation-to-relation operator: produce a relation from one or
more other relations

» Relation-to-stream operator: produce a stream from a relation

Stream—to—Relation , ,
S Relation—to—Relation

— T
~ ~

- S ~ // \\ e T —— /'—‘\\
~ N ~ ™~ .
/ \\ // \ \\
!‘ Streams) 'I\ Relations /I)
_ _//< >_ //< ///
~—— ~_) -~ — S —~

Relation—to—Stream

Figure 2: Operator classes and mappings used in abstract semantics

» Stream-to-stream operators are absent

THE FORMAL MODEL: CONTINUOUS SEMANTICS

> @ : a query of type-consistent composition of operators.
> S;..S,: Input streams to the 1nnermost operators of @. (n > 0)
> R;. R, input relations to the innermost operators of @. (m > 0)

Definition: The result of continuous query @ at time t 1s the result of @ once
all inputs up to 7 are “available”. There are two cases:

~

Case 1: The outermost operator in @ 1s relation-to-stream, producing a
stream S. The result of @ at time 71s S up to 7, produced by recursively

applying the operators comprising @ to streams S;... S, up to r and relations
R; R, uptor.

Case 2: The outermost operator in @ 1s stream-to-relation or relation-to-
relation, producing a relation R. The result of @ at time 7 1s R(z), produced
by recursively applying the operators comprising @ to streams S;. S, uptor
and relations R;.. R,, up to r.

Example: Q(S1, R, Rg) = 01(02(S1), O3(R1, Re))

THE FORMAL MODEL: TIME ADVANCES

Time “advances” to 7 from 7 — 1 when all inputs up to 7 — 1 have been

processed. Assumptions:

~

streams arrive 1n timestamp order

» relations are updated 1n timestamp order

~

no timestamp “skew” across streams or relations

Example: In the Linear Road application, the sequence of operators
producing derived relation SegVolRel conceptually produces, at every
time instant T, the instantaneous relation SegVolRel(t) containing the

current number of vehicles 1n each segment.

> SegVolRel(t) cannot be produced until all elements on input stream
SegVolRel(segNo, dir, hwy, numVehicles) with timestamp < r have

been received.

CQOL: DESIGN GOALS AND STRATEGIES

Design Goals

» To exploit well-understood relational semantics.

> To keep queries simple to write and easy to understand.
General Design Strategy

> Support a large number of relation-to-relation operators, with a
small set of stream-to-relation and relation-to-stream operators

» Reuse the formal foundations and huge body of implementation
techniques for relation-to-relation languages such as relational

algebra and SQL

CAL: STREAM-T0O-RELATION OPERATORS

All stream-to-relation operators in CQL are based on a sliding
window.

» A sliding window of a stream 1s a window that at any point of time
contains a historical snapshot of a finite portion of a stream.

» Time-based sliding window:
Rr(t) = {s|<s, > € SA(max{t-T, 0} <1 <r1)}
Example:“PosSpeedStr [Range 10 Seconds]” 1s a time-based
sliding window of 10 seconds over input stream PosSpeedStr.

» Tuple-based sliding window:
Rn(T)={s|<s, T> &€ SA (T’ 1s the largest N timestamps<t)}

» Partitioned sliding window:
Ryna(T)={s | <s, T> & SA(T 1s the largest N timestamps<t for all
<s”, > S s.t. A(s”)=A(s))}. A 1s a partition function.

CQL: RELATION-TO-RELATION OPERATORS

All relation-to-relation operators in CQL are derived from traditional

relational queries expressed 1n SQL.

» Anywhere a traditional relation is referenced in a SQL query, a

relation can be referenced in CQL.

Example: for the Linear Road application, consider this CQL query:

Select Distinct vehicleld
From PosSpeedStr [Range 10 Seconds]

CQL: RELATION-TO-STREAM OPERATORS

CQL has three relation-to-stream operators:

» [stream (for “insert stream”):
Istream(R) = U ((R(1) — R(t—1)) x {71})
720
» Dstream (for “delete stream”):
Dstream(R) = U (R(t—1)— R(7)) x {1}
7>0

» Rstream (for “relation stream”):

Rstream(R) = U (R(1) x {7})

>0

CQL: SYNTACTIC SHORTCUTS AND DEFAULTS

» Default Windows (Unbounded)

» Default Relation-to-Stream Operators (Istream)

Example:

Select Istream(™) oelect *
From PosSpeedStr [Range Unbounded] From PosSpeedStr
Where speed > 65 Where speed > 65

TollStr

VehicleSegEntryStr
} CongestedSegRel SegVolRel

ActiveVehicleSegRel

SegSpeedStr

|

PosSpeedStr

Figure 3: Derived relations and streams for Linear Road queries

LINEAR RoAD IN COL

> SegSpeedStr(vehicleld, speed, segNo, dir, hwy):
Select vehicleld, speed, xPos/1760 as segNo, dir, why
From PosSpeedStr

~» ActiveVehicleSegRel(vehicleld, segNo, dir, hwy):
Select Distinct L.vehicleld, L.segNo, L.dir, L.hwy
From SegSpeedStr [Range 30 Seconds] as A,
SegSpeedStr [Partition by vehicleld Rows 1] as L
Where A.vehicleld = L.vehicleld

> VehicleSegEntryStr(vehicleld, segNo, dir, hwy):
Select Istream(*) From ActiveVehicleSegRel

> CongestedSegRel(segNo, dir, hwy):
oelect segNo, dir, hwy
From SegSpeedStr [Range 5 Minutes]
Group By segNo, dir, hwy
Having Avg(speed) <40

LINEAR RoAD IN COL

> SegVolRel(segNo,dir,hwy,numVehicles):
Select segNo, dir, hwy, count(vehicleld) as numVehicles
From ActiveVehicleSegRel
Group By segNo, dir, why

> TollStr(vehicleld, toll):
Select Rstream(E.vehicleld,
basetoll* (V.numVehicles-150) * (V.numVehicles-150) as toll)
From VehicleSegEntryStr [Now] as E, CongestedSegRel as C,
SegVolRel as V
Where E.segNo = C.segNo and C.seglNo = V.seglNo and
E.dir = C.dir and C.dir = V.dir and
E.hwy = C.hwy and C.hwy = V.hwy

STREAM: A COL IMPLEMENTATION

Goals for query execution plans

» Modularity and extensibility with general interface for operators

and synopsis structures

» Efficient execution model that captures the combination of streams

and relations

» Hasy experimentation with different strategies for crucial system
components, including operator scheduling, overtflowing state to
disk, sharing state and computation among multiple continuous

queries, etc.

STREAM: INTERNAL REPRESENTATION

> Both streams and relations are represented as sequences of
tagged tuples.

» Sequences are append-only.
» Sequences are always in nondecreasing order by timestamp.
» Operators are connected with queues.
» A queue connects 1ts input operator to its output operator
» Synopses are used to store intermediate states of an operator
» All tuple data are stored in synopses and 1s not duplicated

» Some synopses simply point to data 1n other synopses.

STREAM: QUERY OPERATORS

Name

Operator Type

Description

seq-window

stream-to-relation

Implements time-based, tuple-based,
and partitioned windows

select relation-to-relation | Filters tuples based on predicate(s)
project relation-to-relation | Duplicate-preserving projection
binary-join relation-to-relation | Joins two input relations

mjoin relation-to-relation | Multiway join from [VNBO03|
union relation-to-relation | Bag union

except relation-to-relation | Bag difference

intersect relation-to-relation | Bag intersection

antisemijoin relation-to-relation | Antisemijoin of two input relations
aggregate relation-to-relation | Performs grouping and aggregation

duplicate-eliminate

relation-to-relation

Performs duplicate elimination

i-stream relation-to-stream | Implements Istream semantics
d-stream relation-to-stream | Implements Dstream semantics
r-stream relation-to-stream | Implements Rstream semantics

stream-shepherd

system operator

Handles input streams arriving
over the network

stream-sample

system operator

Samples specified fraction of tuples

stream-glue

system operator

Adapter for merging a stream-
producing view into a plan

rel-glue

system operator

Adapter for merging a relation-
producing view into a plan

shared-rel-op

system operator

Materializes a relation for sharing

output

system operator

Sends results to remote clients

Table 1: Operators in STREAM query plans

outlput
& An owipul operator sends Query results
12 a chient process over The network.

quews
Ouewness are used 1o pass tuples Between
operators.

stream - shepherd
The Suresam Shepherd operator Tor a

stream S is the centrad Gearing house

stream - gueue
A gueue that is uwsed 10 receive a raw
streamm amriving over the network. Tuples .

H
*
58
g, Som
2
y

Operator That sits on Top of a COLVIEW
That is & derived stream. This operator ..

i-stream
Implements ISTREAM semantics. Sends
mservions while gropping deletions.

project
Duplicate - presen ing projection.

sSynopsis
A Symopsis stores ren - ime state

reqguired bry some operator in a guery

- stream
Implements RSTREAM semantics. Sends a
smapshot of ts redation at every Limme

“ An operator which performs a join of Two
input relations.

seq - Wwandow
A window operalor implements one of More
uple, time, Or partitioned Wwindows. YOou

shared-rel-op
’ This eperator materializes a relation
whose imsertions and deletions arrfve i
rel-glue
‘ Operator that siis on top of a COLVIEW
that is 2 derived relation. This

duplicate - eliminate
Duplicate shimination operator.
select

¢ Oupuis a subset of s Input Tuples
based om a MNNter predicate.
o

aggregate
Operator Tor grouping and aggregation.

(UERY OPTIMIZATION AND FUTURE WORKS

Hard-coded heuristics:

» Push selections below joins.

» Use indexes for synopses on join and aggregate operators.
» Share synopses within query plans whenever possible.

techniques
Future Works:

» one-time and dynamic cost-based optimization of CQL queries
» leverage techniques on tradition relational systems

» coarser-grained adaptive query optimization techniques
» Monitor streams and system behavior

» reconfigure query plans and reconfigure query plans over time

THANK You!

0 40 LOF § V0K G500 O 0 OMO.I0 ¢ ., 0. 0N 0ND IO BLeSe L0 "eriage SN0 O 0L STFOTORE U0 ST SLO 0 . .0 & 0.0 0 0MNe 0. G O 0 VNS O 0. 68040 TN O, OGNS S 00 ¢ 00 VL e OGNS 00T FFOLIG N0 TON0 L0 0L @ PV 6N 0. J0Ne Ghe e O &0 U Nere

Questions?

Reference
1. http://www.edshare.soton.ac.uk/14234/1/15 - Data Streams.pptx

2. http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf
3. http://www.desertislesgl.com/wordpress1/wp-content/uploads/2015/11/SlidingWindows.jpg

http://www.edshare.soton.ac.uk/14234/1/15_-_Data_Streams.pptx
http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf

