
Dynamo
Amazon’s Highly-Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Werner Vogels

presented by Slavik Derevyanko

2007



Outline
● Dynamo overview and design considerations

● CAP: consistency vs availability trade-off

● Dynamo architecture

● Dynamo / Bigtable comparison

Introduction 2 / 20



● Dynamo is a highly-available large-scale distributed key-value datastore

● Used by core services powering Amazon’s e-commerce platform - shopping carts, 

best seller lists, customer preferences, product catalog, etc.

● Completely decentralized architecture - no dedicated coordination servers

● Strong fault-tolerance to server and network failures - an “always-on” experience

● Uses eventual consistency model for object replicas - sacrifices strict consistency 

for availability 

Overview

Introduction 3 / 20



Design considerations
● Most applications within Amazon only store and retrieve by primary keys - 

Dynamo offers a simple primary-key access interface - get(key), put(key, object)

● No support for advanced database features: transactions, joins, relational schema - 

dropping these features significantly improves scalability

● Weak support for ACID transactional guarantees: favors availability over 

consistency, no transaction isolation, etc.

● Stringent latency requirements (measured in 99.9th percentile of the distribution)

● Non-hostile environment - no authentication nor authorization

Introduction 4 / 20



Service-level agreements
● Amazon must deliver its functionality in 

strictly limited response time: every 

dependency in the platform needs to deliver its 

functionality within tight time bounds.

● Example: service guaranteeing that it will 

provide a response within 300ms for 99.9% of 

its requests for a peak client load of 500 

requests per second.

Introduction 5 / 20



CAP: consistency vs availability trade-off



Eric Brewer and the CAP “theorem”

A distributed system can have at most two of the three following properties: 

Consistency, Availability, and tolerance to network Partitions.

Eric Brewer

Professor, University of California, Berkeley

VP Infrastructure, Google

2000

In 2002, Gilbert and Lynch converted “Brewer’s conjecture” into a more formal 

definition with an informal proof.

CAP 7 / 21



Understanding CAP
Example of an update operation in a partitioned DB 

Two nodes on opposite sides of a partition yield a CAP C/A choice:

● Preserving availability: allowing at least one node to update state will cause the 

nodes to become inconsistent, thus forfeiting C.

● Preserving consistency: one side of the partition must act as if it is unavailable, 

thus forfeiting A.

● Preserving both C and A: only when nodes communicate, thereby forfeiting P.

CAP 8 / 21



Dynamo’s consistency guarantees
● “From the very early replicated database works, it is well known that when 

dealing with the possibility of network failures, strong consistency and high data 

availability cannot be achieved simultaneously [2, 11].” (1984, 1979).

● Availability is increased by using optimistic replication techniques - i.e. changes 

are propagating to replicates in the background - eventual consistency.

● Conflict resolution considerations:

○ when to resolve: Dynamo delays conflicts resolution until the data is read (always writable)

○ who resolves: database engine (tactics like “last write wins”), or the client app (merging carts, etc)

CAP 9 / 20



Distributed databases and CAP

CAP 10 / 21



Replica consistency with HBase

CAP 11 / 21



Dynamo architecture



Architecture comparison
Amazon Dynamo:

● Incremental scalability: automatic scaling out one host at 

a time.

● Symmetry: Every node has the same set of 

responsibilities as its peers.

● Decentralization: Design favors decentralized 

peer-to-peer techniques over centralized control. This 

leads to a simpler, more scalable, and more available 

system.

● Heterogeneity: work distribution is proportional to the 

capabilities of the individual servers. This is essential 

when adding new nodes with higher capacity

Architecture 13 / 20



Nodes partitioning
● Dynamically partitions data over the set of nodes

● Consistent hashing: the output range of a hash function is 

treated as a fixed circular space or “ring”.

● Each node in the system is assigned a random value within 

this space which represents its “position” on the ring.

● Each data item identified by a key is assigned to a node by 

hashing the data item’s key to yield its position on the ring.

● Virtual nodes: Each node can be responsible for more than 

one virtual node.

Architecture 14 / 20



Object versioning
● A put() call may return to its caller before the 

update has been applied at all the replicas

● A get() call may return many versions of the same 

object.

● Both “add to cart” and “delete item from cart” are 

put() requests in Dynamo

● Uses vector clocks in order to capture causality 

between different versions of the same object.

● A vector clock is a list of (node, counter) pairs

● Every version of every object is associated with one 

vector clock

Architecture 15 / 21



Divergent versions: when and how many?
● The number of object versions returned to the shopping cart service was profiled 

for a period of 24 hours

● During this period, 99.94% of requests saw exactly one version; 0.00057% of 

requests saw 2 versions; 0.00047% of requests saw 3 versions and 0.00009% of 

requests saw 4 versions

● The increase in the number of concurrent writes is usually triggered by busy 

robots (automated client programs) and rarely by humans

Architecture 16 / 20



Execution of get() and put() operations
● Any storage node is eligible to receive client get and put operations for any key.

● To maintain consistency among its replicas, a quorum protocol is used.

● This protocol has two key configurable values: R and W.

○ R is the minimum number of nodes that must participate in a successful read operation.

○ W is the minimum number of nodes that must participate in a successful write operation.

● Setting R and W such that R + W > N yields a quorum-like system.

● R and W are usually configured to be less than N, to provide better latency.

Architecture 17 / 20



Conclusions



Conclusions

19 / 20



Thank you!


