Coordination Avoidance
in Distributed Databases

2015
PhD thesis by Peter David Bailis

presented by Slavik Derevyanko
2016/10/24

% WATERLOO

Outline

e Coordination avoidance and Invariant Confluence principle

e Examples of Invariant Confluence principle application
e Read-atomic multi-partition transactions

e Conclusions

Overview 2124 %I WATERLGO

Transaction serializabhility

e Transactions - groups of multiple operations over multiple data items
e Traditional way to deal with concurrent transactions - serializability: a database
providing serializability guarantees that the result of executing the transactions is

equivalent to some serial execution of the transactions

o Convenient for programmers - no need to reason about concurrency

o Inconvenient for databases - serializability requires coordination

e Reasons to avoid coordination - allows for greater availability of a distributed

database, lower access latency and greater scalability

Overview 3124 %I WATERLGO

Thesis statement

e Key question posed by Bailis - when is it necessary to use coordination to achieve
conflict-free parallel execution, and when is it possible to forego coordination

without compromising the safety of parallel transactions

e Thesis Statement: Many semantic requirements of database-backed applications
can be efficiently enforced without coordination, thus improving scalability,

latency, and availability.

Overview 4124 %I WATERLGO

Application side: data invariants

e Bailis proposal: instead of reasoning about data consistency on the level of read
and write operations (transactions), consider what coordination is actually
required by a given application

e Make applications define data invariants and explicitly specify what correctness
means to these applications

e Example: “each employee record is linked to a department record”

e Consider if application requires coordination, by taking into account both

application invariants and the nature of data transformation in transaction

Overview 5/ 24 %I WATERLGO

Invariant confluence test

e Invariant confluence determines whether the result of executing operations on
independent copies of data can be combined (or “merged”) into a single, coherent

(ie., convergent) copy of database state.

e Given a set of operations, a safety property that we wish to maintain over all
copies of database state, and a merge function, invariant confluence tells us

whether coordination-free execution is possible.

Overview 6./24 %I WATERLGO

Application of Invariant Gonfluence principle

IIIIIIIIIIII

|-Gonfluence proof construction

e To show a set of transactions are not invariant confluent with respect to an
invariant I - use proof by counterexample: present two I-T-reachable states with a

common ancestor that, when merged, are not I-valid.

e To show a set of transactions are invariant confluent with respect to an invariant I
use proof by contradiction: show that if a state S is not I-valid, merging two
[-T-reachable states S1 and S2 with a common ancestor state to produce S implies

either one or both of S1 or S2 must not be I-valid.

W UNIVERSITY OF
N

Application of |-C principle 824 2 WATERLGO

Invariant confluence test example

e Key question: can invariants be violated by merging independent operations?

INVARIANT: User IDs are positive
OPERATION: Save new user

MERGE : Add both records to DB
/ \)
add add
{Stu, ID=1} {Ann,ID=1}
M\\‘MERﬁﬁr/,f

{{Stu,Ip=1}, Invariant
{Ann,ID=1}} holds!

Overview

INVARIANT: User IDs are unique <=
OPERATION: Save new user

MERGE : Add both records to DB
/ \ i,
add add
{Stu,ID=1} {Ann, ID=1}
\N“‘PERGsr’//

{{Stu,10=1}, Invariant
{Ann,ID=1}} broken!

© Peter Bailis, MesosCon 2015 Keynote

0124 B WATERLGO

|-Gonfluence applied to common SQL operations

| Invariant Operation | invariant confluent? | Proof #
Attribute Equality | Any Yes 1
Attribute Inequality | Any Yes 2

| Uniqueness Choose specific value | No | 3
Uniqueness Choose some value Yes 4

| AUTO_INCREMENT Insert | No I
Foreign Key Insert Yes 6

| Foreign Key Delete | No | 7
Foreign Key Cascading Delete Yes 8
Secondary Indexing | Update Yes 9
Materialized Views | Update Yes 10
> Increment [Counter] Yes 11
< Increment [Counter] No 12
> Decrement [Counter] No 13
< Decrement [Counter] Yes 14
[NOT] CONTAINS Any [Set, List, Map] Yes 15, 16

| SIZE= Mutation [Set, List, Map] | No | 17

Table 6.1: Example SQL (top) and ADT invariant confluence along with references to

formal proofs in Section 6.2.

Application of |-C principle

10/ 24

>

UNIVERSITY OF

WATERLOO

|-Gonfluence example 1

Invariant Operation invariant confluent? | Proof #
| Uniqueness Choose specific value No | 3
Uniqueness Choose some value Yes 4

e Claim: common uniqueness invariants aren't I-Confluent (e.g,,
PRIMARY KEY and UNIQUE constraints).

e Example invariant: user IDs must be unique

e However, reads and deletions are both invariant confluent under
uniqueness invariants: reading and removing items cannot introduce
duplicates

e Case 2: the database chooses unique values on behalf of users. If
replicas assign unique IDs within their respective portion of the ID
namespace, then merging locally valid states will also be globally valid

Application of |-C principle

Proof by counterexample:

INVARIANT: User IDs are unique <
OPERATION: Save new user

MERGE: Add both records to DB
{}
/ \ N,
add add
{Stu, ID=1} {Ann, ID=1}
\MERGE/

{{Stu,10=1}, Invariant
{Ann,ID=1}} broken!

@ Peter Bailis, MesosCon 2015 Keynote

11/ 24 % WATERLOO

|-Gonfluence example 2

Claim 9: writing arbitrary values is not
invariant confluent with respect to
multi-item uniqueness constraints.

Proof: by counterexample

Overview

Invariant: only one ops on staff at a time
Operations: change staffing

staff = {“Laura”:T,
“Harry”:
“Gary":

staff.set({“Laura”:F}, staff.set({“Laura”:F},
{"Harry”:T}) “Gary”:T})
staff = {“Laura”:F, Invariant

“Harry”:T, "
“Gary”:T} Vviolated!

© Peter Bailis, 19 February 2014 SF Bay Area ACM Meetup

12/ 24 % WATERLOO

l-Gonfluence example 3

Invariant Operation invariant confluent? | Proof #
Attribute Equality | Any Yes 1
Attribute Inequality | Any Yes 2

e (Claim: Attributed equality invariants are i-confluent for any operations

e Example: every user must have a last name assigned, marking the LNAME column with a NOT NULL

constraint

e Proof by contradiction: assume two database states S1 and S2 are each I-T-reachable under per-record

inequality invariant I but that I(S1 U S2) is false. Then there must be ar & S1 U S2 that violates I (i.e., r

has the forbidden value) and such r must appear in S1, S2, or both. But, that would imply that one of S1 or

S2 is not I-valid under I, a contradiction.

Application of |-C principle

13/24

% WATERLOO

|-Gonfluence example 4

Invanant

Operation

invariant confluent? | Proof #

| AUTO_INCREMENT

e C(Claim 11: Writing arbitrary values
are not invariant confluent with

respect to sequentiality

constraints.

e Proof: by counterexample

Overview

Insert

No | 5
Consider the following transactions:

Tis = w(xq = 1); commit

Tos = wlxp = 3); commit
and the sequentiality constraint on records:
I.(D) = {max(r € D) —min(r € D) = |D| + 1}V {|D| = 0}

Now, 1. kolds over the empty database (1({}) — true), while inserting sequential new

records into independent, empty replicas is also valid:

T ({}) = {xa =1}, Lu({xa =1}) = true
Tos({}) = {xe = 3}, Tul{xe =3} — true

However, merging these states results in invalid state:
L({x, = 1}u{xy, =3} ={x, = 1,x, = 3}) = false

Therefore, {1y, Ta.} is not invariant confluent under 1.

14 /24 % WATERLOO

|-Gonfluence example 5

| Invariant Operation l invariant confluent? | Proof #
> Increment [Counter] Yes 11
< Increment [Counter] No 12

‘ > Decrement [Counter] No 13
< Decrement [Counter] Yes 14

Claim 17 Counter ADT increments are invariant confluent with respect to greater-than
constraints .

Claim 18 Counter ADT increments are not invariant confluent with respect to less-than
constraints .

Claim 19 Counter ADT decrements are not invariant confluent with respect to greater-than
constraints .

Claim 20 Counter ADT decrements are invaniant confluent with respect to less-than con-
straints .

Overview 15/ 24 % WATERLOO

|-Gonfluence example 6: foreign keys

e (Claim: Insertions under foreign key constraints are invariant
confluent
e Proof by contradiction:
o Invalid state: a record missing a corresponding record
on the opposite side of the association
o Sland S2 - correct states before the merge (no invalid
records)
o r-invalid record in merged state S
o As Sl and S2 are both valid, r must have a
corresponding foreign key record (f) that
“disappeared” during merge. Merge (in the current

model) does not remove versions, so this is impossible.

e Arbitrary deletion/modification of records is unsafe: a user
might be added to a department that was concurrently

deleted

Application of |-C principle

Invariant: each employee is in a department
Operations: add employees

dept = {{"ops”:1},

{"dev":2}} =N
employees = {} F

dl = dept.find("ops”) d2 = dept.find(“dev”)
employees.add({"Harry”:d1}) emp loyees.add({“Sue”:d2})
\ dept = {{*ops”:1}, /
a2k 1.uariant
employees = {{*Harry®:1}, L~71de!
{"Sue®:2}} " -

© Peter Bailis, 19 February 2014 SF Bay Area ACM Meetup

16/ 24 % WATERLOO

Read-atomic multi-partition transactions

IIIIIIIIIIII

Foreign keys updates

FOREIGN KEY DEPENDENCIES

NEED
ATOMIC VISIBILITY

SEE ALL OF A TXN’S UPDATES, OR NONE OF THEM

Le. in Facebook graph:

either we’re both friends,

or neither of us is

RAMP transactions

HOW TO ACHIEVE ATOMIC VISIBILITY

X=0 Y=0

“Sealable Atamic Visolty with RAMP Transactions” SIGMOD 2014

STRAWMAN: LOCKING

X=0 Y=0

“Scalable Abomic Visbily with RAMP Transactions” SIGHOD 2014

STRAWMAN: LOCKING
X=0 Y=0

a

STRAWMAN: LOCKING

STRAWMAN: LOCKING

STRAWMAN: LOCKING

ATOMIC VISIBILITY
COUPLED WITH
MUTUAL EXCLUSION

© Peter Bailis, “Coordination and the Art of Scaling”, CloudantCON 2014

18 /24

WATERLOO

“Seataie Ataric Visitny with AMP Transacors” SIGMOD 2014

Read-atomic multi-partition transactions

RAMP TRANSACTIONS
DECOUPLE

ATOMIC VISIBILITY from

MUTUAL EXERUSIAN

BASIC IDEA

LET CLIENTS RACE, but
HAVE READERS “CLEAN UP”

—

| —

BASIC IDEA

LET CLIENTS RACE, but

HAVE READERS “CLEAN UP”

TED
MULTI-VERSIONING
+ METADATA

> T >E

X=0 Y=0
BASIC IDEA
LIMITED
LET CLIENTS RACE, but MULTI-VERSIONING
HAVE READERS “CLEAN UP” + METADATA
X=1[t=124, {Y}] Y=1[t=124, {X}]

X=0

)] |

i
~
X
n

W(

<
ﬂ‘

RAMP transactions

[t=0.{}] =+ Y=0

[t=0, {11

BASIC IDEA

LET CLIENTS RACE, but
HAVE READERS “CLEAN UP"

BASIC IDEA

LET CLIENTS RACE, but
HAVE READERS “CLEAN UP”

i Viibilty with RAMS Transsesions” SIGOD 2010

X=1[t=124, {Y}]

LIMITED

MULTI-VERSIONING
+ METADATA

Y=1

“Seaiabie Atomie Vst uith

LIMITED

AP Transactions” SIGHOD 2

MULTI-VERSIONING
+ METADATA

Y=1 [t=124, {X}]

X=0 [t=0,{}] =+ Y=0 [i=0, {}]

g 8 ITEM|HIGHEST TS
X 124

W(X-1 R(X b Y 124

ER&D | Jﬂ

BASIC IDEA
LIMITED
LET CLIENTS RACE, but MULTI-VERSIONING
HAVE READERS “CLEAN UP" + METADATA
X=0 » Y=0
W(X=1) |l R(X=1)
WEY=1)
BASIC IDEA
LIMITED
LET CLIENTS RACE, but MULTI-VERSIONING
HAVE READERS “CLEAN UP” + METADATA

X=1 [t=124, {Y}]

Y=1[t=124, {X}]

X=0 [t=0,{}] =+ Y=O0 [t=0,{}]
a g ITEM|HIGHEST TS

X 124
W(X 1) R(X-1 Y 124

IaD mom ¥

© Peter Bailis, “Coordination and the Art of Scalmg CloudantCON 2014

19/24

UNIVERSITY OF

N WATERLOO

Another problem solved with RAMP transactions

Partition by
primary key (ID) How should we look up by age?

ID; 12 ID; 4712
@ KGETS) E AGE: 72 @

ID: 532
AGE: 42
ID: 892
AGE: 13
© Peter Bailis, "Scalable Atomic Visibility with RAMP
Transactions", SIGMOD 2014

RAMP transactions 20/ 24 % WATERLGO

@&,
a0
a0
e
o2

Secondary indexing

SECONDARY INDEXING

Partition by Pafﬁtion by
primary key (ID) How should we look up by age? primary key (ID)

ID: 12 ID: 412
AGE:%Z E AGE: 72 @
ID: 532

AGE: 42 @

How should we look up by age?

ID: 892 | 4PN :
IE%R | @) [R2s

L e e e

© Peter Bailis, "Scalable Atomic Visibility with RAMP
Transactions", SIGMOD 2014

RAMP transactions 21/ 24 % WATERLOO

Secondary indexing

SECONDARY INDEXING

Partition by Partition by
primary key (ID) How should we look up by age? primary key (ID) How should we look up by age?

ID; 123 ID; 412
AGE: 22 v AGE: 72 ‘@

Option lI: Global Secondary Indexing
Q Partition indexes by secondary key

532 @ W WRITE 2+ SERVERS, READ ONE
AGE: 42 scalable lookups

Partition by

secondary attribute Real-world services employ either local secondary indexing (e.g.,

Espresso [38], Cassandra, and Google Megastore’s local indexes [7])

ID: 892 | ID: 2345 | o or non-atomic (incorrect) global secondary indexing (e.g., Espresso
AGE: 13 AGE: 1 0 and Megastore’s global indexes, Yahoo! PNUTS’s proposed sec-

ondary indexes [15]). The former is non-scalable but correct, while
the latter is scalable but incorrect.

© Peter Bailis, "Scalable Atomic Visibility with RAMP
Transactions", SIGMOD 2014

RAMP transactions 22/ 24 % WATERLOO

Conclusions

IIIIIIIIIIII

Gonclusions

Use of validations (DB constraints) in Rails web-apps:

Traditional database systems suffer from Nﬁ g . ?;g;ffemes ;Conﬂduem?
; % validates_presence_o epends
coordination bottlenecks validates_uniqueness_of 440 No
validates_length_of 438 Yes
By understanding application requirements, | validates_inclusion_of 201 Yes
we can avoid coordination unless necessary | v3lidates_numericality of . o
validates_associated 39 Depends
_ validates_email 34 Yes
We can build systems that actually scale validates_attachment_content_type 29 Yes
: Pl H validates_attachment_size 29 Yes
Whlle prOVIdlng correct beha\”or validates_confirmation_of 19 Yes
Other 321 Mixed

Table 6.4: Use of and invariant confluence of built-in validations.

24 | 24 WATERLOO

Thank you!

IIIIIIIIIIII

