PowerGraph

Distributed Graph-Parallel Computation on Natural Graphs
Lingyun (Luke) Li

Large-scale graph-structured computation

e Central to tasks ranging from targeted advertising to natural language
processing
e Billions of vertices, edges and extremely rich data

Social Media Science Advertising

Existing Graph-Parallel Abstractions

e A sparse graph G ={V,E}

e A vertex-program Q which is executed in parallel on each vertexv € V

e Q(v) interact with neighboring instances Q(u) where (u,v) € E

e Communication through shared-state in GraphLab, or messages in Pregel

Existing Graph-Parallel Abstractions

e GAS: three conceptual phases of a vertex-program: Gather, Apply, and Scatter

e Constrain the interaction of vertex program to a graph structure to enable the
optimization of data-layout and communication

e Rely on each vertex having a small neighborhood to maximize parallelism and
effective partitioning to minimize communication

Natural Graphs

e Commonly found in the real-world

e Highly skewed power-law degree distributions

e Poor performance on existing distributed graph computation systems

“111--‘-
R E R, P
e L e = s
3 s =S
s ~:3% -

Skewed Power-Law Degree Distribution

Most vertices have relatively few neighbors while a few have many neighbors

°
e Star like graph
1010 ‘
More than 102 vertices b 4
108()«_/ have one neighbor.
) LY
o) .
S .
5 1o High-Degree
& Vertices o °
3 10°
&
s |
Z 10°
AltaVista WebGraph
o | 1.4B Vertices, 6.6B Edges &
8

0 2 I ;
10 10 Degree 10 10 9

Challenges of Natural Graphs

e Partitioning
o GraphLab and Pregel depend on graph partitioning to minimize
communication and ensure work balance.
o Performs poorly on power-law graphs

CPU 1 CPU 2

Challenges of Natural Graphs

e Work imbalance
e Communication
o Communication asymmetry
o Generate and send many identical messages

NS
0——

Machine 1 Machine 2

Challenges of Natural Graphs

e Storage
o Locally store the adjacency information for each vertex
o Storage linear in degree of vertex

e Computation
o No parallelism within individual vertex-programs
o limiting scalability on high-degree vertices

PowerGraph

e GAS decomposition to distribute a single vertex-program over multiple
machines

e Vertex partitioning: effectively distribute large power-law graphs

e Eliminates the degree dependence of the vertex-program

GAS Decomposition

Gather (Reduce)

Accumulate information
about neighborhood

User Defined:
» Gather(@—@) > >

rell-bT

r»: @3, D3,
é &

Apply
Apply the accumulated
value to center vertex

User Defined:
> Apply(@.2) > D

Scatter

Update adjacent edges
and vertices.

User Defined:

» Scatter(@O-@) > —

Update Edge Data &
Activate Neighbors
33

J

PageRank

gather (D,, D), D)) :
return Dy.rank / #outNbrs (v)

sum(a, b): return a + b
apply (D,, acc):
rnew = 0.15 + 0,85 % ace
D,.delta = (rnew - D,.rank)/
toutNbrs (1)
D, .rank = rnew

// 8scatter_nbrs: OUT_NBRS

scatter (D, D), Dy) :
if(|D,.delta|>€) Activate (v)
return delta

Distribution of A PowerGraph Vertex-Program

Machine 1 Machine 2

Gather Ai V
= 71 .

Machine 3 Machine 4

Distribution of A PowerGraph Vertex-Program

Machine 1 Machine 2
/Master
Gather ’5"’
HEA BB a

Ao LSt

Machine 3 Machine 4

Distribution of A PowerGraph Vertex-Program

Machine 1 Machine 2

.Lé / Master V
] %

Machine 3 Machine 4

Apply

Distribution of A PowerGraph Vertex-Program

Machine 1 Machine 2

t / Master V

Apply

! '

Machine 3 Machine 4

Distribution of A PowerGraph Vertex-Program

Machine 1 Machine 2

K
Scatter 4 T

Machine 3 Machine 4

Balanced Vertex-Cut

e Evenly assign edges to machines
e Store edge only once
e Edge data do not need to be communicated

e Allow vertices to span multiple machines

e Changes to a vertex must be copied to all the machines it spans

e Storage and network overhead depend on the number of machines spanned
by each vertex.

e Theorem: For any edge-cut, we can establish a vertex cut that requires strictly
less communication and storage

Balanced Vertex-Cut

e Random
e Greedy

o Assign edge (u, v) to the machine that already contains vertex u or v
o Assign to least loaded machine if there are multiple choices to ensure work balance
o Two implementations:
m Coordinated:
e Coordination between machines
e higher quality cuts
e Slower
m Oblivious
e No coordination
e Low quality cuts
e Faster

Balanced Vertex-Cut

18-

*.,u" -
Predictedm_',."’f‘_’..'.----°-----------
S5 14f et
S o
O Random;ifr‘-“' et
S 10 A0 77" Oblivious
— O '
0 X
T 6° Coordinated-_
12_
8 16 32 48 64

#Machines

(a) Replication Factor (Twitter)

1000
800r
Coordinated
600 oy
Oblivious
400:° Random -
200t o "o
G, A o o
O L L L L L
8 16 a2z 48 64
#Machines

(b) Ingress time (Twitter)

Abstraction Comparison: Work Imbalance

»530_ _k__f____f____,...--f-GraphLab Fan-in
2 25+
P Pregel(Piccolo) Fan-in
o 207 i
S
g 15¢ ; PowerGraph Fan-in
E \ /
~ 107
g _

1.8 1.9 2 2.1

oL

(a) Power-law Fan-In Balance

Work Imbalance (stdev)

8]
o

N
&

W
o

N
o

—k
o

——Pregel(Piccolo) Fan-out

GraphlLab Fan-out

PowerGraph Fan—out

—
©
N j
n
—
N
n

(b) Power-law Fan-Out Balance

Abstraction Comparison: Communication Volume

15 ' ' ' 15
m m ___—Pregel (Piccolo)
S Graphlab 9]
é 10 / é’ 10¢ Graphlab
/" Pregel (Piccolo)
S / 3 PowerGraph
(,f / / PowerGraph (;) / P
g g / oy, £ s N
© i o
L= - =
2 \L @) ;
T t—— . - *
98 1.9 2 2.1 2.2 98 1.9 2 2.1 2.2
o ol

(¢) Power-law Fan-In Comm. (d) Power-law Fan-Out Comm.

Abstraction Comparison: Runtime

w
o
w
o

Pregel (Piccolo)
el
Graphlab

L
o

Graphlab

/

N N
o

Pregel (Piccolo)

NN
=

PowerGraph (Random)
Powe rGraph (Coord.)

-

/
PowerGraph (Random) /

PowerGraph (Coord.)"

—h
—h
o

§

One iter runtime(seconds)
o

One iter runtime(seconds)
(@)

% — — #
9 2 2.1 2.2
04

ﬁ
¢

2

> .

O g4I
=D
Co

8 1.9 2.0

SN *»

(a) Power-law Fan-In Runtime (b) Power-law Fan-Out Runtime

Summary

e Problem: Computation on large-scale Nature Graphs is challenging
o High-degree vertices
o Low quality edge-cut partition

e Solution: PowerGraph
o GAS Decomposition: distribute vertex programs
o Balanced Vertex-Cut: partition natural graphs
o Outperforms existing Graph-Parallel systems

Other Contributions

e A delta caching procedure which allows computation state to be dynamically
maintained

e A theoretical characterization of network and storage

e A high-performance open-source implementation of the PowerGraph
abstraction

e A comprehensive evaluation of three implementations of PowerGraph on a
large EC2 deployment using real-world MLDM applications

Thank you!

