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Large-scale graph-structured computation

e Central to tasks ranging from targeted advertising to natural language
processing
e Billions of vertices, edges and extremely rich data

Social Media Science Advertising




Existing Graph-Parallel Abstractions

e A sparse graph G ={V,E}

e A vertex-program Q which is executed in parallel on each vertexv € V

e Q(v) interact with neighboring instances Q(u) where (u,v) € E

e Communication through shared-state in GraphLab, or messages in Pregel




Existing Graph-Parallel Abstractions

e GAS: three conceptual phases of a vertex-program: Gather, Apply, and Scatter

e Constrain the interaction of vertex program to a graph structure to enable the
optimization of data-layout and communication

e Rely on each vertex having a small neighborhood to maximize parallelism and
effective partitioning to minimize communication



Natural Graphs

e Commonly found in the real-world

e Highly skewed power-law degree distributions

e Poor performance on existing distributed graph computation systems
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Skewed Power-Law Degree Distribution

Most vertices have relatively few neighbors while a few have many neighbors
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Challenges of Natural Graphs

e Partitioning
o GraphLab and Pregel depend on graph partitioning to minimize
communication and ensure work balance.
o Performs poorly on power-law graphs
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Challenges of Natural Graphs

e Work imbalance
e Communication
o Communication asymmetry
o Generate and send many identical messages
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Challenges of Natural Graphs

e Storage
o Locally store the adjacency information for each vertex
o Storage linear in degree of vertex

e Computation
o No parallelism within individual vertex-programs
o limiting scalability on high-degree vertices



PowerGraph

e GAS decomposition to distribute a single vertex-program over multiple
machines

e Vertex partitioning: effectively distribute large power-law graphs

e Eliminates the degree dependence of the vertex-program



GAS Decomposition

Gather (Reduce)

Accumulate information
about neighborhood
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Apply
Apply the accumulated
value to center vertex

User Defined:
> Apply(@.2) > D

Scatter

Update adjacent edges
and vertices.
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PageRank

gather (D,, D), D)) :
return Dy.rank / #outNbrs (v)

sum(a, b): return a + b
apply (D,, acc):
rnew = 0.15 + 0,85 % ace
D,.delta = (rnew - D,.rank)/
toutNbrs (1)
D, .rank = rnew

// 8scatter_nbrs: OUT_NBRS

scatter (D, D), Dy) :
if(|D,.delta|>€) Activate (v)
return delta



Distribution of A PowerGraph Vertex-Program
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Distribution of A PowerGraph Vertex-Program
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Distribution of A PowerGraph Vertex-Program
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Distribution of A PowerGraph Vertex-Program
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Distribution of A PowerGraph Vertex-Program
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Balanced Vertex-Cut

e Evenly assign edges to machines
e Store edge only once
e Edge data do not need to be communicated

e Allow vertices to span multiple machines

e Changes to a vertex must be copied to all the machines it spans

e Storage and network overhead depend on the number of machines spanned
by each vertex.

e Theorem: For any edge-cut, we can establish a vertex cut that requires strictly
less communication and storage



Balanced Vertex-Cut

e Random
e Greedy

o Assign edge (u, v) to the machine that already contains vertex u or v
o Assign to least loaded machine if there are multiple choices to ensure work balance
o Two implementations:
m Coordinated:
e Coordination between machines
e higher quality cuts
e Slower
m  Oblivious
e No coordination
e Low quality cuts
e Faster



Balanced Vertex-Cut
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Abstraction Comparison: Work Imbalance
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Abstraction Comparison: Communication Volume
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Abstraction Comparison: Runtime
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Summary

e Problem: Computation on large-scale Nature Graphs is challenging
o High-degree vertices
o Low quality edge-cut partition

e Solution: PowerGraph
o  GAS Decomposition: distribute vertex programs
o Balanced Vertex-Cut: partition natural graphs
o Outperforms existing Graph-Parallel systems



Other Contributions

e A delta caching procedure which allows computation state to be dynamically
maintained

e A theoretical characterization of network and storage

e A high-performance open-source implementation of the PowerGraph
abstraction

e A comprehensive evaluation of three implementations of PowerGraph on a
large EC2 deployment using real-world MLDM applications
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