PowerGraph

Distributed Graph-Parallel Computation on Natural Graphs

Lingyun (Luke) Li

Large-scale graph-structured computation

- Central to tasks ranging from targeted advertising to natural language processing
- Billions of vertices, edges and extremely rich data

Social Media Science Advertising Web Advertising Science Advertising Web Advertising Science Advertising Science Advertising Science Science Advertising Science Advertising Science Advertising Science Advertising Science Advertising Science Advertising Science Science Advertising Science Advertising Science Science Advertising Science Science Advertising Science Science Science Advertising Science Sci

Existing Graph-Parallel Abstractions

- A sparse graph G = {V,E}
- A vertex-program Q which is executed in parallel on each vertex v ∈ V
- Q(v) interact with neighboring instances Q(u) where $(u, v) \in E$
- Communication through shared-state in GraphLab, or messages in Pregel

Existing Graph-Parallel Abstractions

- GAS: three conceptual phases of a vertex-program: Gather, Apply, and Scatter
- Constrain the interaction of vertex program to a graph structure to enable the optimization of data-layout and communication
- Rely on each vertex having a small neighborhood to maximize parallelism and effective partitioning to minimize communication

Natural Graphs

- Commonly found in the real-world
- Highly skewed power-law degree distributions
- Poor performance on existing distributed graph computation systems

Skewed Power-Law Degree Distribution

- Most vertices have relatively few neighbors while a few have many neighbors
- Star like graph

Challenges of Natural Graphs

- Partitioning
 - GraphLab and Pregel depend on graph partitioning to minimize communication and ensure work balance.
 - Performs poorly on power-law graphs

Challenges of Natural Graphs

- Work imbalance
- Communication
 - Communication asymmetry
 - Generate and send many identical messages

Challenges of Natural Graphs

- Storage
 - Locally store the adjacency information for each vertex
 - Storage linear in degree of vertex
- Computation
 - No parallelism within individual vertex-programs
 - limiting scalability on high-degree vertices

PowerGraph

- GAS decomposition to distribute a single vertex-program over multiple machines
- Vertex partitioning: effectively distribute large power--law graphs
- Eliminates the degree dependence of the vertex-program

GAS Decomposition

Gather (Reduce)

Accumulate information about neighborhood

User Defined:

- ▶ Gather(\bigcirc → \bigcirc \bigcirc
- $\Sigma_1 \oplus \Sigma_2 \to \Sigma_3$

Apply

Apply the accumulated value to center vertex

User Defined:

 $ightharpoonup Apply(\mathbf{N}, \Sigma) \rightarrow \mathbf{N}$

Scatter

Update adjacent edges and vertices.

User Defined:

▶ Scatter() → -

Update Edge Data & Activate Neighbors

PageRank

```
gather (D_u, D_{(u,v)}, D_v):
   return D_v.rank / #outNbrs(v)
sum(a, b): return a + b
apply (D_u, \text{acc}):
   rnew = 0.15 + 0.85 * acc
  D_{\mu}.delta = (rnew - D_{\mu}.rank)/
             #outNbrs(u)
   D_{\mu}.rank = rnew
// scatter nbrs: OUT NBRS
scatter (D_u, D_{(u,v)}, D_v):
   if (|D_u.delta| > \varepsilon) Activate (v)
   return delta
```


Balanced Vertex-Cut

- Evenly assign edges to machines
- Store edge only once
- Edge data do not need to be communicated
- Allow vertices to span multiple machines
- Changes to a vertex must be copied to all the machines it spans
- Storage and network overhead depend on the number of machines spanned by each vertex.
- Theorem: For any edge-cut, we can establish a vertex cut that requires strictly less communication and storage

Balanced Vertex-Cut

- Random
- Greedy
 - Assign edge (u, v) to the machine that already contains vertex u or v
 - Assign to least loaded machine if there are multiple choices to ensure work balance
 - Two implementations:
 - Coordinated:
 - Coordination between machines
 - higher quality cuts
 - Slower
 - Oblivious
 - No coordination
 - Low quality cuts
 - Faster

Balanced Vertex-Cut

Abstraction Comparison: Work Imbalance

(a) Power-law Fan-In Balance

(b) Power-law Fan-Out Balance

Abstraction Comparison: Communication Volume

(c) Power-law Fan-In Comm.

(d) Power-law Fan-Out Comm.

Abstraction Comparison: Runtime

(a) Power-law Fan-In Runtime

(b) Power-law Fan-Out Runtime

Summary

- Problem: Computation on large-scale Nature Graphs is challenging
 - High-degree vertices
 - Low quality edge-cut partition

- Solution: PowerGraph
 - GAS Decomposition: distribute vertex programs
 - Balanced Vertex-Cut: partition natural graphs
 - Outperforms existing Graph-Parallel systems

Other Contributions

- A delta caching procedure which allows computation state to be dynamically maintained
- A theoretical characterization of network and storage
- A high-performance open-source implementation of the PowerGraph abstraction
- A comprehensive evaluation of three implementations of PowerGraph on a large EC2 deployment using real-world MLDM applications

Thank you!