kafkao

a high throughput messaging system for log
processing

Presenter: Hao Tan
h26tan@uwaterloo.ca

What Is log data

* [ech companies nowadays are dealing
with various types of log data

* user activities: likes, login records,
comments, queries

e operational metrics: CPU, memory, disk
utilisation

| 0g data Is valuable

 Companies need those data to improve user experience of their services:
* recommendation system
* Nnews feed aggregation
e search relevance
* ad targeting

e spam detection

Proplem

e large data volume: 1B level

e Bulld a specialised pipeline between data
poroducer and data consumer Is not
scalable

At the beginning:

Source = @ =[a[a]a]5)

Then, we have more data
sources to process..

source /
Source

Viore consumer come...

Source

Source

Source

Previous Systems

Enterprise messaging systems:

* Qverkill features: IBM WebSphere MQ provide API to insert message to multiples
queues atomically

* Throughput is not the top concern: JMS has no batch delivery, one message per
network round trip

« Not distributed

 Assume immediate consumption of the message
Log aggregator:

« Mostly designed for offline data consumption

e use a push model

Katka introduction

Initially developed in LinkedIn, now become part of
Apache

Decouples data pipelines from producers and
consumers

Pull model instead of push model
Support both online and oftline data consumption

Scalable, fault-tolerant and focuses on throughput

Key terminology

* Topic: a stream of messages of a particular type

* Producer: a process that publishes messages to a
Kafka topic

 Broker: a server that stores message data, Katka runs
on a cluster of brokers

 Consumer: process that subscribes one or more
topics and pulls messages from brokers

Katka Architecture

§8 kafka Broker
P et
r./ \
i Topic A !
. |
! i
: Particloni 1 > Consumer 1
, 8
| /
! !
Particion2 i_ + | Consumer 2
I I =& 7
l ! [y
\ l ﬁ ! "" "‘.
\ ! | k o
\‘. l i I ! :‘
\ | Topic B I
\ I | £ 3
v > 717> | Consumer3
\ \ ol /
\ \\ | 1 o: ; /
\ ‘l\ ! I l'
v\ / ; X
\ L)
ks "N /s /

»
L Zookeeper (R J

reference: http://bigdata-blog.com/real-time-data-
processing-with-apache-katka

http://bigdata-blog.com/real-time-data-processing-with-apache-kafka

Sample Producer Code

import java.util.*;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

public class TestProducer {
public static void main(String[] args) {
long events = Long.parseLong(args[@]);
Random rnd = new Random();

Properties props = new Properties();
props.put(“"metadata.broker.list", "brokerl:9092,broker2:9692 ");
props.put(“serializer.class", "kafka.serializer.StringEncoder");
props.put(“partitioner.class", "example.producer.SimplePartitioner");
props.put("request.required.acks", "1");

ProducerConfig config = new ProducerConfig(props);
Producer<String, String> producer = new Producer<String, String>(config);

for (long nEvents = @; nEvents < events; nEvents++) {
long runtime = new Date().getTime();
String ip = “192.168.2.” + rnd.nextInt(255);
String msg = runtime + “,www.example.com,” + ip;
KeyedMessage<String, String> data = new KeyedMessage<String, String>("page_visits", ip, msg);
producer.send(data);

}

producer.close();

reference: https://cwiki.apache.org/confluence/display/
KAFKA/0.8.0+Producer+Example

https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example

Sample Consumer Code

FetchRequest req = new FetchRequestBuilder()
.clientId(clientName)
.addFetch(a_topic, a partition, readOffset, 100000)
Lbuild();

FetchResponse fetchResponse = consumer.fetch(req);

long numRead = 0;
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
long currentOffset = messageAndOffset.offset();
if (currentOffset < readOffset) {
System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
continue;

}
readOffset = messageAndOffset.nextOffset();

ByteBuffer payload = messageAndOffset.message().payload();

byte[] bytes = new byte[payload.limit()];

payload.get(bytes);

System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
numRead++;

a_maxReads--;

if (numRead == @) {

try {
Thread.sleep(1000);

} catch (InterruptedException ie) {
}

reference: https://cwiki.apache.org/confluence/display/
KAFKA/0.8.0+SimpleConsumer+Example

What's under the hood

e A partition consists of a set of segment files
o roughly 1GB per segment file

 \When producer publish a message to a partition, broker
appends it to the end of the last segment file

e Segment files are flushed to disk after accumulating certain
number of messages.

 Message id is its offset in each segment file.

 An in-memory index to support fast lookups

Storage Layout

segment file 1
msg-00000000000
in-memory index // msg-00000000215 |, — consumer 1
delete » msg-00000000000 .

A mse-00014517018

/" ['msg-00030706778 .
/ . . consumer 2
reads , msg-00014516809

append- msg-02050706778

~_, segment file N consumer 3
msg-02050706778
msg-02050706945

/ msg-02614516809
producer

Efficiency

* Relies on OS page cache

* achieves great performance due to
sequential access to segment files and
lagging between broker and consumer

* |everage linux sendfile system call for faster
data transfer

Stateless Brokers

 Consumer maintains the offset for consumed messages
(in ZooKeeper)

 Messages will be automatically deletead
e Consumer has a chance to rewind back:

e make consumers more resilient to errors

Coordination

Consumer group
No coordination between consumer groups
Partition is the smallest unit for parallelism

Coordination is only needed for load balancing when a
broker or consumer is removed/added

Decentralised coordination via ZooKeeper

Rebalancing workloao

Algorithm 1: rebalance process for consumer C; in group G

For each topic T that C; subscribes to {
remove partitions owned by C; from the ownership registry Kafka Cluster
read the broker and the consumer registries from Zookeeper —Server 1— Server 2—
compute Py = partitions available in all brokers under topic T P2
compute C; = all consumers in G that subscribe to topic T Zah
sort P+ and C;
let j be the index position of C; in C; and let N = |P|[/|Cq|

assign partitions from j*N to (j+1)*N - 1 in Py to consumer C; 3 ‘

for each assigned partition p { C1 C4 C5 Cé
set the owner of p to C,; in the ownership registry SN\
let O, = the offset of partition p stored in the offset registry -Consumer Group A- Consumer Group B———
invoke a thread to pull data in partition p from offset O,

)

J

Delivery Guarantee

 Kafka guarantee at least once delivery

 Message from a single partition will be delivered to
consumer in order

* No order guarantee on messages from different partitions

* When broker is down, all not yet consumed messages
are lost

» [ater version of Kafka supports replication of partition
across brokers

Experiment and Performance

—==activemq —Kafka (batch 50) Kafka (batch 1) =rabbitmq —==activemq ——=Kafka ===rabbitmq
500000 25000
400000 - V 20000 -
g g
E 300000 - % 15000 -
S &
3 S
2 200000 - @ 10000 -
=]
100000 5000 -
————— —_——
0 0 -
10 500 990 1480 1970 10 500 990 1480 1970
accumulated produced messages in MB accumulated consumed messages in MB

Figure 4. Producer Performance Figure 5. Consumer Performance

)ISCUSSION

 Any weak point of Kaftka®?
 NO exact-once guarantee

 No order guarantee for messages from
multiple partitions

* Pull model vs push model

Ihank you very much

