
a high throughput messaging system for log
processing

Presenter: Hao Tan
h26tan@uwaterloo.ca

What is log data
• Tech companies nowadays are dealing

with various types of log data

• user activities: likes, login records,
comments, queries

• operational metrics: CPU, memory, disk
utilisation

Log data is valuable
• Companies need those data to improve user experience of their services:

• recommendation system

• news feed aggregation

• search relevance

• ad targeting

• spam detection

Problem
• large data volume: TB level

• Build a specialised pipeline between data
producer and data consumer is not
scalable

At the beginning:

Source

Then, we have more data
sources to process..

Source

Source

Source

More consumer come…

Source

Source

Source

Previous Systems
Enterprise messaging systems:

• Overkill features: IBM WebSphere MQ provide API to insert message to multiples
queues atomically

• Throughput is not the top concern: JMS has no batch delivery, one message per
network round trip

• Not distributed

• Assume immediate consumption of the message

Log aggregator:

• Mostly designed for offline data consumption

• use a push model

Kafka introduction
• Initially developed in LinkedIn, now become part of

Apache

• Decouples data pipelines from producers and
consumers

• Pull model instead of push model

• Support both online and offline data consumption

• Scalable, fault-tolerant and focuses on throughput

Key terminology
• Topic: a stream of messages of a particular type

• Producer: a process that publishes messages to a
Kafka topic

• Broker: a server that stores message data, Kafka runs
on a cluster of brokers

• Consumer: process that subscribes one or more
topics and pulls messages from brokers

Kafka Architecture

reference: http://bigdata-blog.com/real-time-data-
processing-with-apache-kafka

http://bigdata-blog.com/real-time-data-processing-with-apache-kafka

Sample Producer Code

reference: https://cwiki.apache.org/confluence/display/
KAFKA/0.8.0+Producer+Example

https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example

Sample Consumer Code

reference: https://cwiki.apache.org/confluence/display/
KAFKA/0.8.0+SimpleConsumer+Example

What’s under the hood
• A partition consists of a set of segment files

• roughly 1GB per segment file

• When producer publish a message to a partition, broker
appends it to the end of the last segment file

• Segment files are flushed to disk after accumulating certain
number of messages.

• Message id is its offset in each segment file.

• An in-memory index to support fast lookups

Storage Layout

consumer 1

consumer 2

consumer 3

producer

Efficiency
• Relies on OS page cache

• achieves great performance due to
sequential access to segment files and
lagging between broker and consumer

• Leverage linux sendfile system call for faster
data transfer

Stateless Brokers
• Consumer maintains the offset for consumed messages

(in ZooKeeper)

• Messages will be automatically deleted

• Consumer has a chance to rewind back:

• make consumers more resilient to errors

Coordination
• Consumer group

• No coordination between consumer groups

• Partition is the smallest unit for parallelism

• Coordination is only needed for load balancing when a
broker or consumer is removed/added

• Decentralised coordination via ZooKeeper

Rebalancing workload

Delivery Guarantee
• Kafka guarantee at least once delivery

• Message from a single partition will be delivered to
consumer in order

• No order guarantee on messages from different partitions

• When broker is down, all not yet consumed messages
are lost

• Later version of Kafka supports replication of partition
across brokers

Experiment and Performance

Discussion
• Any weak point of Kafka?

• No exact-once guarantee

• No order guarantee for messages from
multiple partitions

• Pull model vs push model

Thank you very much

