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 What is ‘Timely’ Dataflow ?!
What is its significance?
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Dataflow
● Batch Processing e.g. MapReduce, Spark
● Asynchronous Processing e.g. Storm, MillWheel
● Variations for Graph Processing e.g. Pregel, GraphLab
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Dataflow: Batch Processing



Dataflow: Batch Processing
● Iterations make use of synchronization.
● The cost is latency.



Dataflow: Asynchronous Processing



Dataflow: Asynchronous Processing
● Compared with batch:

○ latency is lower.

○ Aggregations are incremental and data changes over time.

● More efficient for distributed systems.
○ Stages do not need coordination.

● Correspondence between input & output is lost.



So, what is (Naiad)
Timely dataflow ?!



Timely Dataflow?!



Timely Dataflow
● Reconcile both models batch and async.
● Low-latency and high-throughput.



Where does Naiad fit?!



Naiad?!
● It is the prototype built by Microsoft Research 

underlying Timely dataflow Computational model.

● Iterative and incremental computations.

● The logical timestamps allow coordination.

● Provides efficiency, maintainability and simplicity.



Let’s look at a computational 
example





Naiad?!
● It is the prototype built by Microsoft Research 

underlying Timely dataflow Computational model.



The Timely Dataflow 
Graph Structure
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Graph Structure

● input comes in as (data, 0), (data, 1), (data, 2)
○ Within a loop, I adds a loop counter so it is (data, epoch, 0)

F in each iteration increments the loop counter (data, epoch, 1) etc.
E removes the loop counter and it is back to (data, epoch)



Programming Model 
Using the timestamps
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Programming Model Summary
● SendBy(edge, message, timestamp)
● OnRecv(edge, message, timestamp)
● NotifyAt(timestamp)
● OnNotify(timestamp)



Programming Model 
In Practice



Notice
● Project was discontinued in 2014.

Silicon Valley lab closed.

● The paper uses C#.
The latest one is open sourced and is in Rust.



Word Count Example
Class V<Msg, Time>: Vertex<Time> { ... }



Word Count Example
{ Dict<Time, Dict<Msg, int> > counts; ... }



Word Count Example (2 Different Implementations)
{ void OnRecv (Edge e, Msg m, Time t) { ... }
  void OnNotify (Time t) { ... }  }



Writing Programs in General
● It is possible to write programs against the Timely 

Dataflow abstraction.

● It is possible to use libraries (MapReduce, Pregel, 
PowerGraph, LINQ etc.)

● In General:
○ Define Input, computational & Output vertices.
○ Create a timely dataflow graph using the appropriate interface.
○ Supply labeled data to input stages.
○ Stages follow a push-based model.



Timely Guarantees



How is timely dataflow achieved 



How is timely dataflow achieved 
● Key point: timestamps at which future message can occur 

depends on: 1. Unprocessed events & 2. Graph Structure.



How is timely dataflow achieved
● Pointstamp of an event (timestamp, location: E or V)

○ SendBy -> Msg event of pointstamp (t, e)
○ NotifyAt -> Notif event of pointstamp (t, v)



How is timely dataflow achieved 
● Pointstamp(t1, l1) could-result-in Pointstamp(t2, l2)

If there is a path between l1 and l2 presented by f() 
i.e. f(t1) <= t2



How is timely dataflow achieved (Correctness Guarantees)
● Path Summary between A and C: “”



How is timely dataflow achieved (Correctness Guarantees)
● Path Summary between A and C: “add” or “add-increment(n)”



Single-Threaded Implementation
● Scheduler that needs to deliver events.



Single-Threaded Implementation
● Scheduler has active pointstamps <-> unprocessed events.



Single-Threaded Implementation
● Scheduler has active pointstamps <-> unprocessed events.
● Scheduler has two counts:

○ Occurrence count of not resolved event.

○ Precursor count of how many active pointstamps precede it in the 
could-result-in order.



Single-Threaded Implementation
● Pointstamp(t, l) becomes active.

Precursor count to number of existing active pointstamps 
that could result in it.
Increment precursor count of any pointstamp it 
could-result-in.
Becomes not active when occurrence is zero.
When not active, decrement the precursor count for any 
pointstamp that it could-result-in.



The Distributed 
Environment



Distributed Implementation



Distributed Progress Tracking
● Initial protocol: same as single multi-threaded.

○ Broadcast occurrence count updates.

● Do not immediately update local occurrence count.
○ Broadcast progress updates to all workers including myself.
○ Broadcast from a worker to another delivered in a FIFO manner.

● Use of a projected timestamp.
● A technique to buffer and accumulate updates.



Micro-Stragglers
● Have a big effect on overall performance.

○ Packet Loss (Networking)
○ Contention on concurrent data
○ Garbage collection



Performance Evaluation



Performance Evaluation
● I invite you to read: “Scalability! BUT at what Cost”

http://www.frankmcsherry.org/assets/COST.pdf


Performance Evaluation
● Comparison with:

○ SQL Server Parallel Data Warehouse (RDBMS)

○ Scalable HyperLink Store ( distributed in-memory DB for storing large 
portions of the web graph)

○ DryadLINQ (data parallel computing using a declarative / high level 

programming language)

● Algos i.e. PageRank, SCC etc.



Conclusion: “Our prototype outperforms general-purpose 
batch processors and often outperforms state-of-the-art 
async systems which provide few semantic guarantees.”



Conclusion: “Our prototype outperforms general-purpose 
batch processors and often outperforms state-of-the-art 
async systems which provide few semantic guarantees.”



Streaming Systems
as of today



Streaming Systems
● Systems that have unbounded data in mind.
● They are a superset of batch processing systems.



Streaming Systems

Reference: Fig-1: Example of time domain mapping. Streaming 101

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101


Streaming Systems
Design Questions:

● What results are calculated?
The types of transformations within the pipeline.

● Where in event time are results calculated?
The use of event-time windowing within the pipeline.

● When in processing time are results materialized? The 
use of watermarks and triggers.

● How do refinements of results relate?
Discard or accumulate or accumulate and retract.



Fin.

Thank you!



Resources
● Link to transcribed talk in pdf format.

● Timely Dataflow (Rust Implementation)

● Frank blog posts:
○ Timely dataflow

○ Differential dataflow

● The world beyond batch: Streaming 101

● The world beyond batch: Streaming 102

https://drive.google.com/file/d/0B2DA-FLyHV9eRkpJbWlDVS0xSkU/view?usp=sharing
https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/blog/tree/master/posts
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

