Graph Analytics using Vertica Relational Database

— Alekh Jindal - Samuel Madden, — Malú Castellanos - Meichun Hsu

Introduction

- High demand for graph analytics
- Popularity of distributed graph computing systems
 - o Vertex-centric systems: Pregel, Giraph, GraphLab
- Question:

Are traditional relational database systems not good enough for graph analytics?

Introduction

Limitations of distributed graph computing systems:

- Data is initially collected and stored in a relational database
- Graph processing is slow for very large graphs
 - Users have to choose a subgraph to run the algorithm
- Preparation might include operations that relational databases are optimized for.
 - Pre-processing or post-processing
- Some graph algorithms compute aggregates over a large neighbourhood
 - Hard to express in vertex-centric systems

Goal

- Show how vertex-centric graph processing can be translated, optimized and run on Vertica
 - SSSP, PageRank, Connected Components
- Compare Performance with two vertex-centric distributed systems for graph analysis (**Giraph** and **GraphLab**)
- Vertica → Enterprise column-store database management system
 - Supports parallel processing

Vertex-Centric Model

- The user provides a vertex.compute function (UDF):
 - The UDF will be executed at each node.
 - Will update the node's state.
 - And communicate the changes to the neighbours.

Giraph Physical Plan

- Input Superstep: Workers reading the data, building "Server Data stores"
- Intermediate step: Run UDF, shuffle messages, wait for everyone, synchronize.
- Output Superstep: Produce the output.

Giraph Logical Plan

Same query plan but in relational logic:

- 1. V join E
- 2. (V join E) join M: messages from previous superstep
- Run UDF
- 4. Produce new state for vertex (V') and messages for the next superstep (M').

Overview

Translation to SQL queries

Query Optimization

Query Execution

Extending Vertica

Translation to SQL

1) Eliminate the message table

Translation to SQL

2) Translate vertex compute function

```
SSSP: vertexCompute \longmapsto \sigma_{d' < V_1.d}(\Gamma_{d'=\min(V_2.d+1)})
UPDATE vertex AS v SET v.d=v'.d
  FROM (
    SELECT v1.id, MIN(v2.d+1) AS d
      FROM vertex AS v1, edge AS e, vertex AS v2
      WHERE v2.id = e.from_node AND v1.id = e.to_node
      GROUP BY e.to node, v1.d
      HAVING MIN(v2.d+1) < v1.d
                                                                         Logical plan
    ) AS v'
    WHERE v.id=v'.id;
```

Query Optimizations

1) Update Vs. Replace

```
CREATE TABLE vertex_prime AS

SELECT v.id, ISNULL(v'.d, v.d) AS d

FROM vertex AS v LEFT JOIN (

SELECT v1.id AS id, MIN(v2.d+1) AS d

FROM vertex AS v1, edge AS e, vertex AS v2

WHERE v2.id=e.from_node AND v1.id=e.to_node

GROUP BY e.to_node, v1.d

HAVING MIN(v2.d+1) < v1.d

) AS v'

ON v.id = v'.Id;
```

Query Optimizations

2) Incremental Evaluation

```
CREATE TABLE v_update_prime AS
 SELECT v1.id, MIN(v2.d+1) AS d
   FROM v_update AS v2, edge AS e, vertex AS v1
   WHERE v2.id=e.from node AND v1.id=e.to node
   GROUP BY e.to node, v1.d
   HAVING MIN(v2.d+1) < v1.d;
DROP TABLE v update;
ALTER TABLE v update prime RENAME TO v update;
CREATE TABLE vertex_prime AS
 SELECT v.id, ISNULL(v_update.d, v.d) AS value
   FROM vertex AS v LEFT JOIN v_update
   ON \text{ v.id} = v \text{ update.id};
```

DROP TABLE vertex; **ALTER TABLE** vertex_prime RENAME TO vertex;

Query Optimizations

2) Join Elimination

Join Elimination in PageRank

Query Execution

- Physical Design
 - Encoding and compression, sort orders, multiple table projections
- Join Optimization
 - Join directly over compressed data, choose from hash join and merge join
- Query Pipelining
 - Avoids materializing intermediate output and repeated access to disk
- Intra-query Parallelism
 - Process subgraphs in parallel across cpu cores using GroupBy

Query Execution Plan of SSSP

Different from Giraph execution pipeline:

- Filter unnecessary tuples as early as possible.
- Fully pipelines the execution flow.
- 3. Picks the best join execution strategy.

Extending Vertica

- Running unmodified vertex programs
 - As table UDFs without translating to relational operators

Extending Vertica

- Avoiding Intermediate Disk I/O
 - Load and store graph in shared memory, higher memory footprint

Setup:

- Cluster of 4 machines
- 48 GB memory
- 1.4 TB Disk

Dataset:

Type	Name	Nodes	Edges
	Twitter-small	81,306	1,768,149
Directed	LiveJournal	4,847,571	68,993,773
	Twitter	41,652,230	1,468,365,182
Undirected	YouTube	1,134,890	2,987,624
	LiveJournal-undir	3,997,962	34,681,189

Data Preparation:

Metric	Dataset	Vertica	GraphLab	Giraph
Upload Time (sec)	LiveJournal	45.927	15.621	12.049
	Twitter	916.421	472.358	267.799
Disk Usage (GB)	LiveJournal	0.423	3.030	3.030
	Twitter	9.964	73.140	73.140

Runtime:

Memory Usage (PageRank):

In memory Graph Analysis:

GraphLab

Algorithm Time

70

(c) Scaling and comparing Vertica inmemory on Twitter graph (SSSP)

Mixed Graph and Relational Analysis:

Query	Dataset	Vertica	Giraph	SpeedUp
S. I	PR	55.6	954.6	17.2
Sub-graph Projection & Selection	SSSP	101.3	405.5	4.0
Cook Analosis Anasostics	PR	643.9	1089.7	1.7
Graph Analysis Aggregation	SSSP	279.8	349.9	1.3
Graph Joins	PR+SSSP	927.0	1435.9	1.5

More Complicated Graph Processing:

Query	Dataset	Vertica	Giraph
Strong Overlap	Youtube	259.56	230.01
	LiveJournal-undir	381.05	out of memory
Weak Ties	Youtube	746.14	out of memory
	LiveJournal-undir	1,475.99	out of memory

Conclusion

- Vertica can be tuned to offer good end-to-end performance on graph queries (because it is optimized for scans, joins and aggregates).
- Users can trade memory with reduced I/O cost in iterative graph analysis.
- Relational databases can combine graph processing with relational analysis as pre-processing or post-processing steps.
- Features of relational databases can be combined with graph processing systems and it might be a good idea to stitch these systems together.

Thank you for your attention.