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Introduction
● High demand for graph analytics

● Popularity of distributed graph computing systems
○ Vertex-centric systems: Pregel, Giraph, GraphLab

● Question: 

Are traditional relational database systems not good enough for         
graph analytics?
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Introduction
Limitations of distributed graph computing systems:

● Data is initially collected and stored in a relational database
● Graph processing is slow for very large graphs    

○ Users have to choose a subgraph to run the algorithm  
● Preparation might include operations that relational databases are 

optimized for.
○ Pre-processing or post-processing 

● Some graph algorithms compute aggregates over a large 
neighbourhood 
○ Hard to express in vertex-centric systems
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Goal
● Show how vertex-centric graph processing can be translated, 

optimized and run on Vertica 
○ SSSP, PageRank, Connected Components 

● Compare Performance with two vertex-centric distributed systems 
for graph analysis (Giraph and GraphLab) 

● Vertica → Enterprise column-store database management system
○ Supports parallel processing
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Vertex-Centric Model
● The user provides a vertex.compute function (UDF):

○ The UDF will be executed at each node. 

○ Will update the node’s state.

○ And communicate the changes to the neighbours. 
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Giraph Physical Plan
1. Input Superstep: Workers reading 

the data, building “Server Data 
stores”

2. Intermediate step: Run UDF, shuffle 
messages, wait for everyone, 
synchronize.

3. Output Superstep: Produce the 
output.
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Giraph Logical Plan
Same query plan but in relational logic:

1. V join E
2. (V join E) join M: messages from 

previous superstep
3. Run UDF
4. Produce new state for vertex (V’) 

and messages for the next 
superstep (M’).
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Overview
● Translation to SQL queries

● Query Optimization

● Query Execution

● Extending Vertica
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Translation to SQL
1) Eliminate the message table
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Translation to SQL
2)    Translate vertex compute function

                                                                                                          

                                                                                                                 Logical plan
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Query Optimizations
1) Update Vs. Replace
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Query Optimizations
2)    Incremental Evaluation
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Query Optimizations
2)    Join Elimination

Join Elimination in PageRank
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Query Execution
● Physical Design

○ Encoding and compression, sort orders, multiple table projections

● Join Optimization
○ Join directly over compressed data, choose from hash join and merge join

●  Query Pipelining
○ Avoids materializing intermediate output and repeated access to disk

● Intra-query Parallelism
○ Process subgraphs in parallel across cpu cores using GroupBy
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Query Execution Plan of SSSP
Different from Giraph execution pipeline:

1. Filter unnecessary tuples as early as possible.

2. Fully pipelines the execution flow. 

3. Picks the best join execution strategy.
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Extending Vertica
● Running unmodified vertex programs

○ As table UDFs without translating to relational operators
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Extending Vertica
● Avoiding Intermediate Disk I/O

○ Load and store graph in shared memory, higher memory footprint
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Experiments
Setup:

● Cluster of 4 machines
● 48 GB memory
● 1.4 TB Disk

Dataset:
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Experiments
Data Preparation:

Runtime:
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Experiments
Memory Usage (PageRank):
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Experiments
In memory Graph Analysis:
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Experiments
Mixed Graph and Relational Analysis :

More Complicated Graph Processing:
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Conclusion
● Vertica can be tuned to offer good end-to-end performance on graph 

queries (because it is optimized for scans, joins and aggregates).

● Users can trade memory with reduced I/O cost in iterative graph analysis.

● Relational databases can combine graph processing with relational 
analysis as pre-processing or post-processing steps.

● Features of relational databases can be combined with graph processing 
systems and it might be a good idea to stitch these systems together.
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       Thank you for your attention.
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