
Graph Analytics using
Vertica Relational Database

Alekh Jindal - Samuel Madden,
Malú Castellanos - Meichun Hsu

1

Introduction
● High demand for graph analytics

● Popularity of distributed graph computing systems
○ Vertex-centric systems: Pregel, Giraph, GraphLab

● Question:

Are traditional relational database systems not good enough for
graph analytics?

2

Introduction
Limitations of distributed graph computing systems:

● Data is initially collected and stored in a relational database
● Graph processing is slow for very large graphs

○ Users have to choose a subgraph to run the algorithm
● Preparation might include operations that relational databases are

optimized for.
○ Pre-processing or post-processing

● Some graph algorithms compute aggregates over a large
neighbourhood
○ Hard to express in vertex-centric systems

3

Goal
● Show how vertex-centric graph processing can be translated,

optimized and run on Vertica
○ SSSP, PageRank, Connected Components

● Compare Performance with two vertex-centric distributed systems
for graph analysis (Giraph and GraphLab)

● Vertica → Enterprise column-store database management system
○ Supports parallel processing

4

Vertex-Centric Model
● The user provides a vertex.compute function (UDF):

○ The UDF will be executed at each node.

○ Will update the node’s state.

○ And communicate the changes to the neighbours.

5

Giraph Physical Plan
1. Input Superstep: Workers reading

the data, building “Server Data
stores”

2. Intermediate step: Run UDF, shuffle
messages, wait for everyone,
synchronize.

3. Output Superstep: Produce the
output.

6

Giraph Logical Plan
Same query plan but in relational logic:

1. V join E
2. (V join E) join M: messages from

previous superstep
3. Run UDF
4. Produce new state for vertex (V’)

and messages for the next
superstep (M’).

7

Overview
● Translation to SQL queries

● Query Optimization

● Query Execution

● Extending Vertica

8

Translation to SQL
1) Eliminate the message table

9

Translation to SQL
2) Translate vertex compute function

 Logical plan

10

Query Optimizations
1) Update Vs. Replace

11

Query Optimizations
2) Incremental Evaluation

12

Query Optimizations
2) Join Elimination

Join Elimination in PageRank

13

Query Execution
● Physical Design

○ Encoding and compression, sort orders, multiple table projections

● Join Optimization
○ Join directly over compressed data, choose from hash join and merge join

● Query Pipelining
○ Avoids materializing intermediate output and repeated access to disk

● Intra-query Parallelism
○ Process subgraphs in parallel across cpu cores using GroupBy

14

Query Execution Plan of SSSP
Different from Giraph execution pipeline:

1. Filter unnecessary tuples as early as possible.

2. Fully pipelines the execution flow.

3. Picks the best join execution strategy.

15

Extending Vertica
● Running unmodified vertex programs

○ As table UDFs without translating to relational operators

16

Extending Vertica
● Avoiding Intermediate Disk I/O

○ Load and store graph in shared memory, higher memory footprint

17

Experiments
Setup:

● Cluster of 4 machines
● 48 GB memory
● 1.4 TB Disk

Dataset:

18

Experiments
Data Preparation:

Runtime:

19

Experiments
Memory Usage (PageRank):

20

Experiments
In memory Graph Analysis:

21

Experiments
Mixed Graph and Relational Analysis :

More Complicated Graph Processing:

22

Conclusion
● Vertica can be tuned to offer good end-to-end performance on graph

queries (because it is optimized for scans, joins and aggregates).

● Users can trade memory with reduced I/O cost in iterative graph analysis.

● Relational databases can combine graph processing with relational
analysis as pre-processing or post-processing steps.

● Features of relational databases can be combined with graph processing
systems and it might be a good idea to stitch these systems together.

23

 Thank you for your attention.

24

