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MOTIVATION

Representational learning on graphs -> applications in Machine Learning
Increase in predictive power!

Reduction in Engineering effort

An approach which preserves neighbourhood of nodes?
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RELATED WORK
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S
RELATED WORK: A SURVEY

Conventional paradigm in feature extraction (for
networks): involve hand-engineered features Unsupervised feature learning approaches:-

Linear & Non-Linear dimensionality reduction techniques
are computationally expensive, hard to scale & not effective
in generalizing across diverse networks

LINE: Focus is on the vertices of neighbor nodes
or Breadth-First-Search to capture local
communities in 15 phase.

In 274 phase, nodes are sampled at a 2-hop : : :
distance from source node. Deepwalk: Feature representations using uniform random

walks. Special case of node2vec where parameters p & q
both equal 1.
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S
RELATED WORK: A SURVEY

SKIP-GRAM MODEL

Hypothesis: Similar words tend to appear in similar word neighbourhood

“It scans over the words of a document, and for every word it aims to embed it such that the
word’s features can predict nearby words

The node2vec algorithm is inspired by the Skip-Gram Model & essentially extends it..

Multiple sampling strategies for nodes : There is no clear winning sampling strategy! Solution?

A flexible objective!
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PROPOSED SOLUTION
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R
-hut wait, what are homophily & structural equivalence?

The homophily hypothesis- The structural equivalence hypothesis-
Highly interconnected nodes that belong to Nodes with similar structural roles in the
the same communities or network clusters network

Embedded closely together
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Figure 1: BFS & DFS strategies from node u for k=3 (Grover et al.)
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S
FEATURE LEARNING FRAMEWORK

It is based on the Skip-Gram Model and applies to: any (un)directed, (un)weighted network

Let G = (V,E) be a given network and f: V -> R4 a mapping function from nodes to feature representations.

d= number of dimensions of feature representations, f is a matrix of size |V| X d parameters

For every source node ueVv, Ng(u) C Vis a network neighborhood of node u generated through a
neighborhood sampling strategy S.

Objective function to be optimized:

nm ZIDJP? Ns(u)|f(u)). (1)

uelV
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S
FEATURE LEARNING FRAMEWORK

Assumptions for optimization:

A. Conditional Independence: “Likelihood of observing a B. Symmetry in feature space: Between source node &
neighborhood node is independent of observing any other neighbourhood node.

neighborhood node given the feature representation of the

source.” Hence, Conditional likelihood of every source-

neighborhood node pair modelled as a softmax unit
parametrized by a dot product of their features:

Pr(Ng(u)| H Pr(ni[f(u)) p exp(f(ni) - f(u))
el ) = S el (o) - )
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S
FEATURE LEARNING FRAMEWORK

Using the assumptions, the objective function in (1) reduces to:

max Z{—logzu—k Z f(ﬂi)'f(“)]- (2)

ucV ni€ENg(u)
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SAMPLING STRATEGIES

How does the skip-gram model extend to
node2vec?

Sampling strategies
Networks aren’t linear like text...so how can
neighbourhood be sampled?

a. Breadth-first Sampling (BFS): For structural

Randomized procedures: The neighborhoods

N(u) are not restricted to just immediate Ul
neighbors -> can have different structures b. Depth-first Sampling (DFS): Obtains macro
depending on the sampling strategy S view of neighbourhood -> homophily
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What is node2vec?

“node2vec is an algorithmic framework for learning continuous feature representations for nodes in

networks”

O semi-supervised learning algorithm
QA learns low-dimensional representations for o dloss i presae

nodes by optimizing neighbour preservin :

objectiv}ef p 5 Ie1s P 5 neighborhood of nodes?
A graph-based objective function customized

using stochastic gradient descent (SGD)
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B
RANDOM WALKS TO CAPTURE DIVERSE NEIGHBOURHOODS

For a source node u such that ¢_,=u, c¢; denotes the it" node in the walk for a random walk of length 1.

m,, 1s the unnormalized transition probability between nodes v and x, and Z is the normalizing
constant.

MTux f w E
P(Ciifﬂi1y){f I(E.T)E

0 otherwise
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BIAS IN RANDOM WALKS

To enable flexibility, the random walks are biased using Search Bias parameter «.

Suppose a random walk that just traversed edge (t, v) and is currently at node v. To decide on the next step, the
walk evaluates transition probability r,, on edges (v,x) where v is the starting point.

Let 7w, = ap, (L, X) . W,

where

% if dpe = 0
apg(t,z) =<1 ifdix =1
% ifd,, =2

And d,, Is the shortest path between nodes t and Xx.
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ILLUSTRATION OF BIAS IN RANDOM WALKS

Figure 2: The walk just transitioned from t to v and is
now evaluating its next step out of node v. Edge labels
indicate search biases a (Grover et al.)

node2vec: Scalable Feature Learning for Networks

Significance of parameters p & q

Return parameter p: Controls the likelihood of
immediately revisiting a node in the walk.

High value of p -> less likely to sample an already
visited node, low value of p encourages a local walk

In-out parameter g: Allows the search to distinguish
between inward & outward nodes.

For g>1, search is reflective of BFS (local view),
for g <1, DFS-like behaviour due to outward
exploration
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S
The node2vec algorithm

Algorithm 1 The nodeZvec algorithm.

LearnFeatures (Graph G = (V, E, W), Dimensions d. Walks per
node r, Walk length I, Context size k, Return p, In-out g)
m = PreprocessModifiedWeights(G, p, q)
2= (V,E,m)
Initialize walks to Empty
for iter = 1 to r do
fm_j{ﬂ ;,:' i]ﬁ;ﬁ;x}e c{\f‘zuk( Gl Figure 3: The node2vec algorithm (Grover et al)
Append walk to walks
f = StochasticGradientDescent( k., d. walks)
return f

node2vecWalk (Graph G’ = (V, E, 7). Start node w., Length 1)
Inititalize walk to [u]
for walk_iter = 1 tol do
curr = walk[—1]
Vewrr = GetNeighbors(curr., G")
s = AliasSample(Viayyqr, )
Append s to walk
return walk
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EXPERIMENTS
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e
1. Case Study: Les Misérahles network

Description of the study: a network where o oo
nodes correspond to characters in the novel g Q¥

., . ® @
Les Misérables, edges connect coappearing e 0’ % ® o
characters. Number of nodes= 77, number o Df@ QOOOC) .0‘0
of edges=254, d = 16. node2vec is N e oo. .‘: :
Implemented to learn feature representation %O i ¢
for every node in the network. _adld
For p=1; g=0.5->relates to homophily, [ > .' :"
for p=1, g=2, colours correspond to o= 5[0 . 0 o0

- @ 0 o~ *Q -

structural equivalence. l. .‘U O ..0,

Figure 4: Complementary visualizations of Les Misérables coappearance 00 o
network generated by node2vec with label colors reflecting homophily (top) and
structural equivalence (bottom) (Grover et al).
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2. Multi-label Glassification

The node feature representations are input to a one-vs-rest logistic regression classifier with L2 regularization.
The train and test data is split equally over 10 random instances.

Algorithm Dataset
BlogCatalog PPI Wikipedia _

Spectral Clustering 0.0405 | 0.0681 | 0.0395 Table 1. Macro-F1 scores for multilabel
DeepWalk 0.2110 0.1768 0.1274 clas_S|f|cat|on on I_3Iog_Cat—ang, PPI (Homo
LINE 00784 | 0.1447 | 0.1164 SaFt"e”SIZ a”thvéggﬁ’edﬁr‘]’vord Sooceurrence
node2vec 0.2581 0.1791 | 0.1552 [‘rzi‘;]"i?]rgsw' 0 OT Ihe nodes fabelea Tor
node2vec settings (p.q) 0.25, 0.25 4,1 4, 0.5 '
Gain of node2vec [ % | 22.3 1.3 21.8

Note: The F1 score is the harmonic average of the precision and recall, where an F1 score reaches its best value
at 1 (perfect precision and recall) and worst at 0.
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2. Multi-label Glassification
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4. Perturbation Analysis
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= 05 ) Figure 7: Perturbation analysis for multilabel
00 - ) classification on the BlogCatalog network.
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9. Scalahility

e—e sampling + optimization time

~—=a sampling time A i
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Figure 8: Scalability of £ 2- b ;"/ - -
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6. Link Prediction

Observation: The learned

feature representations for node
pairs significantly outperform
the heuristic benchmark scores

with node2vec achieving the
best AUC improvement.

Amongst the feature learning
algorithms, node2vec >>

DeepWalk and LINE in all
networks

node2vec: Scalable Feature Learning for Networks

Op Algorithm Dataset
Facebook | PPI arXiv
Common Neighbors | 0.8100 0.7142 | 0.8153
Jaccard’s Coefficient | 0.8880 0.7018 | 0.8067
Adamic-Adar 0.8289 0.7126 | 0.8315
Pref. Attachment 0.7137 0.6670 | 0.6996
Spectral Clustering 0.5960 0.6588 | 0.5812
(a) | DeepWalk 0.7238 0.6923 | 0.7066
LINE 0.7029 0.6330 | 0.6516
node2vec 0.7266 0.7543 | 0.7221
Spectral Clustering 0.6192 0.4920 | 0.5740
(b) | DeepWalk 0.9680 0.7441 | 0.9340
LINE 0.9490 0.7249 | 0.8902
node2vec 0.9680 0.7719 | 0.9366
Spectral Clustering 0.7200 0.6356 | 0.7099
(c) | DeepWalk 0.9574 0.6026 | 0.8282
LINE 0.9483 0.7024 | 0.8809
node2vec 0.9602 0.6292 | 0.8468
Spectral Clustering 0.7107 0.6026 | 0.6765
(d) | DeepWalk 0.9584 0.6118 | 0.8305
LINE 0.9460 0.7106 | 0.8862
node2vec 0.9606 0.6236 | 0.8477
PAGE 26

Figure 9: Area Under Curve
(AUC) scores for link
prediction. Comparison
with popular baselines and
embedding based methods
bootstapped using binary
operators: (a) Average, (b)
Hadamard, (c)
Weighted-L1, and (d)
Weighted-L2 (Grover et al.)
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