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Introduction

e Traditional DBMS are relational
e Force data to adhere to rigid
schema

e Data can beirregular (null
values?)

e Difficult to decide in advance of
single correct schema

e Where should we store
unstructured data?!

Attribute

Relation

Rigid schema - RDBMS



In Comes Lore

e Takes advantage of structure

where it exists
e Handleirregular/unstructured \ - 3

data gracefully
e Uses the OEM (Object Exchange
Model) as the data model

e Uses the Lorel query language StanfOl'd

e Uses DataGuides in place of a University
standard schema
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The Object Exchange Mode|

e Labeled directed graph

e Atomic objects- leaf/edge
vertices

e Complex objects - vertices T | . e
with outgoing edges

e Names serve as entry
points

Figure 1: An OEM database

Member




The Lorel Query Language

: : QUERY
e Simple Path Expresspns select DBGroup.Member.0ffice
o DBGroup.Member.Office where DBGroup.Member.Age > 30
select O
e Rewritten into OQL style from DBGroup.Member M, M.0ffice O

wvhere exists A in M.Age : A > 30



The Lorel Query Language

QUERY

select DBGroup.Member.0ffice
where DBGroup.Member.Age > 30

RESULT
Office "Gates 252"
Office
Building "CIS"
Room "411"

DBGroup

Member Project
Member
Member
Member
Name Office Name ‘ Project
Titl
Name Office Age Office Title L
"Clark" "Smith" "Gates 252" "Jones" "Lore" "Tsimmis"
Building Room Building Room
"CIS” 411" "Gates" 252

Figure 1: An OEM database



The Lorel Query Language

e Complex Path Expressions

QUERY

select DBGroup.Member.Name

where DBGroup.Member.0ffice(.Room%|.Cubicle)?
like "%252"

RESULT
Name "Jones"
Name '"Smith"



The Lorel Query Language

e Subqueries

QUERY
select M.Name,

( select M.Project.Title

where M.Project.Title !'= "Lore" )
from DBGroup.Member M
where M.Project.Title = "Lore"
RESULT
Member

Name '"Jones"
Title "Tsimmis"



The Lorel Query Language

e Updates
o insertion/removal of edges update P.Member +=
o creation of vertices ( select DBGroup.Member
o modifications of atomic values where DBGroup.Member.Name = "Clark" )
o modifications of name assignments from DBGroup.Project P
where P.Title = "Lore" or
o no object deletion (handled by P.Title = "Tsimmis"

garbage collector)



High Level System Architecture
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Figure 2: Lore architecture
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Query Plans and Data Flow

QUERY ,
. Project
select DBGroup.Member.0ffice (0A2)
where DBGroup.Member.Age > 30 2
omn
T )
Join (OA4sel€Fth(UE)
e [Execution ins at = .
ecution begins a N\ —
the tOp Toi Scan Aggr
@ o j\ (OA1,"Office”,0A2) (Exists, OA3, OA4)
e lterator approach avoid P Scan Sﬁi
creation of temporary (Root,"DBGroup",0A0) (OA0,"Member",0A1) (0OA3>30)
relations =~
Scan
(OA1,"Age",0A3)

e Each OA slot holds the
oid of a vertex

Figure 3: Example Lore query plan

OAO OAl OA2 0OA3 OA4
(DBGroup) | (OA0.Member) | (OA1.Office) | (OAl. Age) | (true/false)

Figure 4: Example object assignment



Query Operators

QUERY ——
. rojec
select DBGroup.Member.0ffice (0A2)
where DBGroup.Member.Age > 30 2
omn
fr— 2)
o Select
L Scan f MR N\ (OA4 = TRUE)
. ) J L
¢ Join Joi Scan Aggr
e Select o j\ (OA1,"Office",0A2) (Exists, OA3, OA4)
41
° Agg regate Scan Scan Select
Py Project (Root,"DBGroup",0A0) (OA0,"Member",0A1) (0OA3>30)
J L
Scan
o SetOp (OA1,"Age",0A3)
e ArithOp
° CreateSet Figure 3: Example Lore query plan
OAD OAT OAZ OA3 OAX7T
d GrOUpBy (DBGroup) | (OA0.Member) | (OA1.Office) | (OAl. Age) | (true/false)

Figure 4: Example object assignment



Query Plan Construction

=N

Scan
(Root,"DBGroup",0A0)

Scan
(OAO0,"Member",0A1)

From clause

select M.Name, count(M.Publication)

from DBGroup.Member M

where M.Dept

IICSH

Scan

Scan

Select
(OA3 =TRUE)

S L

Aggr
(Exists, OA2, OA3)

(Root,"DBGroup”,0A0) (OAO,"Member",0A1) :
| Select
From and Where clauses (OA2 ="CS")
4 L
Scan

(OA1,"Dept",0A2)

Final Query Plan

(OA3 = TRUE)
-LJ-

Scan
(Root,"DBGroup”,0A0)

Scan
(OA0,"Member",0A1)

| | (Exists, OA2 0A3)

Figure

Selec[
(OA2 =" CS'

Scan
(OA1,"Dept",0A2)

I

)

=)

SetOp
(Union,0AS5,
OA6, OA7)
CreateSet
(OA4, OA5)
J L
Scan

(OA1,"Name",0A4)

5: Steps in constructing a query plan

Aggr
(Count, OA6, OA7)

4L

Scan
(OA1,"Publications",

A6)
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Query Optimization and Indexing

Lacks sophisticated query
planning
Selections are pushed down

Two types of indexes:
o Lindex (Parent Link Index)
o Vindex (Value Index)

Lindexes implemented using
linear hashing

Vindexes implemented using B+-
Trees

arg2 : , :
X 5 string real int
argl >
string — string — real | both — real
real string — real | — int — real
int both — real int — real —

Table 1: Coercion for basic comparison operators
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Index Query Plans

QUERY

select DBGroup.Member.0ffice
where DBGroup.Member.Age > 30

F

Vindex
("Age", >, 30, 0A2)

Project
(OA3)
J L
Join i
Join i Scan
: % (OA1,"Office",0A3)
Q JOin ﬂ
Once Named_Obj
(OA1) ("DBGroup", OA0)
4.1 4k
Lindex Lindex
(OA2,"Age",0A1) (OA1,"Member",0A0)

Figure 6: A query plan using indexes




Update Query Plans

update P.Member +=

( select DBGroup.Member
wvhere DBGroup.Member.lName = "Clark" )

from DBGroup.Project P
where P.Title = "Lore" or

Query plan to find all projects with
the title "Lore" or "Tsimmis",
results placed in OA1

P.Title = "Tsimmis"

Update
(Create_Edge, OA1,
OAS5, "Member")

Query plan to find all members
with name "Clark”, results
placed in OAS

Figure 7. Example update query plan
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Physical Storage

Each page on disk has slots

One object in each slot

Member :

el

Member :

Name Publications

First-fit algorithm used é/
Object forwarding mechanism ™
Large objects span many pages
Object clustering is depth first

Subgraph
containing
all of Jim's
Publications

/ "Jim" etche
ul
Value /4 Wrapper \x -
"Pub_Fetch.o" 120

Query Label

Or—

Garbage collector for orphans
External data also supported

Logical View

"Data "Query "Keyword"
Defined" Defined"

Physical View

Figure 8: The logical and physical views of the data
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Data Guides

DBGroup

Figure 9: A DataGuide for Figure 1
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Thank You! Questions?



