Lore: A Database
Management System for
Semistructured Data

Authors from Stanford University

Introduction

e Traditional DBMS are relational
e Force data to adhere to rigid
schema

e Data can beirregular (null
values?)

e Difficult to decide in advance of
single correct schema

e Where should we store
unstructured data?!

Attribute

Relation

Rigid schema - RDBMS

In Comes Lore

e Takes advantage of structure

where it exists
e Handleirregular/unstructured \ - 3

data gracefully
e Uses the OEM (Object Exchange
Model) as the data model

e Uses the Lorel query language StanfOl'd

e Uses DataGuides in place of a University
standard schema

This Presentation

OEM (Object Exchange Model)

The Lorel Query Language (and OQL)
High Level System Architecture
Query Plans and Data Flow

Query Operators

Query Plan Construction

Query Optimization and Indexing
Index and Update Query Plans
Physical Storage

Data Guides

The Object Exchange Mode|

e Labeled directed graph

e Atomic objects- leaf/edge
vertices

e Complex objects - vertices T | . e
with outgoing edges

e Names serve as entry
points

Figure 1: An OEM database

Member

The Lorel Query Language

: : QUERY
e Simple Path Expresspns select DBGroup.Member.0ffice
o DBGroup.Member.Office where DBGroup.Member.Age > 30
select O
e Rewritten into OQL style from DBGroup.Member M, M.0ffice O

wvhere exists A in M.Age : A > 30

The Lorel Query Language

QUERY

select DBGroup.Member.0ffice
where DBGroup.Member.Age > 30

RESULT
Office "Gates 252"
Office
Building "CIS"
Room "411"

DBGroup

Member Project
Member
Member
Member
Name Office Name ‘ Project
Titl
Name Office Age Office Title L
"Clark" "Smith" "Gates 252" "Jones" "Lore" "Tsimmis"
Building Room Building Room
"CIS” 411" "Gates" 252

Figure 1: An OEM database

The Lorel Query Language

e Complex Path Expressions

QUERY

select DBGroup.Member.Name

where DBGroup.Member.0ffice(.Room%|.Cubicle)?
like "%252"

RESULT
Name "Jones"
Name '"Smith"

The Lorel Query Language

e Subqueries

QUERY
select M.Name,

(select M.Project.Title

where M.Project.Title !'= "Lore")
from DBGroup.Member M
where M.Project.Title = "Lore"
RESULT
Member

Name '"Jones"
Title "Tsimmis"

The Lorel Query Language

e Updates
o insertion/removal of edges update P.Member +=
o creation of vertices (select DBGroup.Member
o modifications of atomic values where DBGroup.Member.Name = "Clark")
o modifications of name assignments from DBGroup.Project P
where P.Title = "Lore" or
o no object deletion (handled by P.Title = "Tsimmis"

garbage collector)

High Level System Architecture

Textual
Interface

API
Results
Queries Query Compilation

Preprocessing
(Lorel to OQL)

Query Plan
Generator

Query
Optimizer

Non-Query v Data Engine
Requests /

oA

Utilities
-DataGuide Mgr
-Loader

-Index Mar

Object
Manager

Query
Operators

External Data
Manager
Physical

Figure 2: Lore architecture

%‘_’ ‘k\
Storage

Lore
System

External,
Read-only
Data
Sources

11

Query Plans and Data Flow

QUERY ,
. Project
select DBGroup.Member.0ffice (0A2)
where DBGroup.Member.Age > 30 2
omn
T)
Join (OA4sel€Fth(UE)
e [Execution ins at = .
ecution begins a N\ —
the tOp Toi Scan Aggr
@ o j\ (OA1,"Office”,0A2) (Exists, OA3, OA4)
e lterator approach avoid P Scan Sﬁi
creation of temporary (Root,"DBGroup",0A0) (OA0,"Member",0A1) (0OA3>30)
relations =~
Scan
(OA1,"Age",0A3)

e Each OA slot holds the
oid of a vertex

Figure 3: Example Lore query plan

OAO OAl OA2 0OA3 OA4
(DBGroup) | (OA0.Member) | (OA1.Office) | (OAl. Age) | (true/false)

Figure 4: Example object assignment

Query Operators

QUERY ——
. rojec
select DBGroup.Member.0ffice (0A2)
where DBGroup.Member.Age > 30 2
omn
fr— 2)
o Select
L Scan f MR N\ (OA4 = TRUE)
.) J L
¢ Join Joi Scan Aggr
e Select o j\ (OA1,"Office",0A2) (Exists, OA3, OA4)
41
° Agg regate Scan Scan Select
Py Project (Root,"DBGroup",0A0) (OA0,"Member",0A1) (0OA3>30)
J L
Scan
o SetOp (OA1,"Age",0A3)
e ArithOp
° CreateSet Figure 3: Example Lore query plan
OAD OAT OAZ OA3 OAX7T
d GrOUpBy (DBGroup) | (OA0.Member) | (OA1.Office) | (OAl. Age) | (true/false)

Figure 4: Example object assignment

Query Plan Construction

=N

Scan
(Root,"DBGroup",0A0)

Scan
(OAO0,"Member",0A1)

From clause

select M.Name, count(M.Publication)

from DBGroup.Member M

where M.Dept

IICSH

Scan

Scan

Select
(OA3 =TRUE)

S L

Aggr
(Exists, OA2, OA3)

(Root,"DBGroup”,0A0) (OAO,"Member",0A1) :
| Select
From and Where clauses (OA2 ="CS")
4 L
Scan

(OA1,"Dept",0A2)

Final Query Plan

(OA3 = TRUE)
-LJ-

Scan
(Root,"DBGroup”,0A0)

Scan
(OA0,"Member",0A1)

| | (Exists, OA2 0A3)

Figure

Selec[
(OA2 =" CS'

Scan
(OA1,"Dept",0A2)

I

)

=)

SetOp
(Union,0AS5,
OA6, OA7)
CreateSet
(OA4, OA5)
J L
Scan

(OA1,"Name",0A4)

5: Steps in constructing a query plan

Aggr
(Count, OA6, OA7)

4L

Scan
(OA1,"Publications",

A6)

14

Query Optimization and Indexing

Lacks sophisticated query
planning
Selections are pushed down

Two types of indexes:
o Lindex (Parent Link Index)
o Vindex (Value Index)

Lindexes implemented using
linear hashing

Vindexes implemented using B+-
Trees

arg2 : , :
X 5 string real int
argl >
string — string — real | both — real
real string — real | — int — real
int both — real int — real —

Table 1: Coercion for basic comparison operators

15

Index Query Plans

QUERY

select DBGroup.Member.0ffice
where DBGroup.Member.Age > 30

F

Vindex
("Age", >, 30, 0A2)

Project
(OA3)
J L
Join i
Join i Scan
: % (OA1,"Office",0A3)
Q JOin ﬂ
Once Named_Obj
(OA1) ("DBGroup", OA0)
4.1 4k
Lindex Lindex
(OA2,"Age",0A1) (OA1,"Member",0A0)

Figure 6: A query plan using indexes

Update Query Plans

update P.Member +=

(select DBGroup.Member
wvhere DBGroup.Member.lName = "Clark")

from DBGroup.Project P
where P.Title = "Lore" or

Query plan to find all projects with
the title "Lore" or "Tsimmis",
results placed in OA1

P.Title = "Tsimmis"

Update
(Create_Edge, OA1,
OAS5, "Member")

Query plan to find all members
with name "Clark”, results
placed in OAS

Figure 7. Example update query plan

17

Physical Storage

Each page on disk has slots

One object in each slot

Member :

el

Member :

Name Publications

First-fit algorithm used é/
Object forwarding mechanism ™
Large objects span many pages
Object clustering is depth first

Subgraph
containing
all of Jim's
Publications

/ "Jim" etche
ul
Value /4 Wrapper \x -
"Pub_Fetch.o" 120

Query Label

Or—

Garbage collector for orphans
External data also supported

Logical View

"Data "Query "Keyword"
Defined" Defined"

Physical View

Figure 8: The logical and physical views of the data

18

Data Guides

DBGroup

Figure 9: A DataGuide for Figure 1

19

Thank You! Questions?

