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Introduction
● Traditional DBMS are relational
● Force data to adhere to rigid 

schema

Rigid schema - RDBMS

● Data can be irregular (null 
values?)

● Difficult to decide in advance of 
single correct schema

● Where should we store 
unstructured data?!
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In Comes Lore
● Takes advantage of structure 

where it exists
● Handle irregular/unstructured 

data gracefully
● Uses the OEM (Object Exchange 

Model) as the data model
● Uses the Lorel query language
● Uses DataGuides in place of a 

standard schema
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This Presentation
● OEM (Object Exchange Model)
● The Lorel Query Language (and OQL)
● High Level System Architecture
● Query Plans and Data Flow
● Query Operators
● Query Plan Construction
● Query Optimization and Indexing
● Index and Update Query Plans
● Physical Storage
● Data Guides
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The Object Exchange Model
● Labeled directed graph
● Atomic objects- leaf/edge 

vertices
● Complex objects - vertices 

with outgoing edges
● Names serve as entry 

points
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The Lorel Query Language

● Simple Path Expressions
○ DBGroup.Member.Office

● Rewritten into OQL style
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The Lorel Query Language
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The Lorel Query Language

● Complex Path Expressions
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The Lorel Query Language

● Subqueries 
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The Lorel Query Language

● Updates
○ insertion/removal of edges
○ creation of vertices
○ modifications of atomic values
○ modifications of name assignments
○ no object deletion (handled by 

garbage collector)
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High Level System Architecture
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Query Plans and Data Flow

● Execution begins at 
the top

● Iterator approach avoid 
creation of temporary 
relations

● Each OA slot holds the 
oid of a vertex
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Query Operators

● Scan
● Join
● Select
● Aggregate
● Project

● SetOp
● ArithOp
● CreateSet
● GroupBy
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Query Plan Construction
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Query Optimization and Indexing
● Lacks sophisticated query 

planning
● Selections are pushed down
● Two types of indexes:

○ Lindex (Parent Link Index)
○ Vindex (Value Index)

● Lindexes implemented using 
linear hashing

● Vindexes implemented using B+- 
Trees
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Index Query Plans
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Update Query Plans
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Physical Storage
● Each page on disk has slots
● One object in each slot
● First-fit algorithm used
● Object forwarding mechanism
● Large objects span many pages
● Object clustering is depth first 
● Garbage collector for orphans
● External data also supported

18



Data Guides
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Thank You! Questions?
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