
Lore: A Database 
Management System for 

Semistructured Data

Authors from Stanford University



Introduction
● Traditional DBMS are relational
● Force data to adhere to rigid 

schema

Rigid schema - RDBMS

● Data can be irregular (null 
values?)

● Difficult to decide in advance of 
single correct schema

● Where should we store 
unstructured data?!

2



In Comes Lore
● Takes advantage of structure 

where it exists
● Handle irregular/unstructured 

data gracefully
● Uses the OEM (Object Exchange 

Model) as the data model
● Uses the Lorel query language
● Uses DataGuides in place of a 

standard schema

3



This Presentation
● OEM (Object Exchange Model)
● The Lorel Query Language (and OQL)
● High Level System Architecture
● Query Plans and Data Flow
● Query Operators
● Query Plan Construction
● Query Optimization and Indexing
● Index and Update Query Plans
● Physical Storage
● Data Guides

4



The Object Exchange Model
● Labeled directed graph
● Atomic objects- leaf/edge 

vertices
● Complex objects - vertices 

with outgoing edges
● Names serve as entry 

points

5



The Lorel Query Language

● Simple Path Expressions
○ DBGroup.Member.Office

● Rewritten into OQL style

6



The Lorel Query Language

7



The Lorel Query Language

● Complex Path Expressions

8



The Lorel Query Language

● Subqueries 

9



The Lorel Query Language

● Updates
○ insertion/removal of edges
○ creation of vertices
○ modifications of atomic values
○ modifications of name assignments
○ no object deletion (handled by 

garbage collector)

10



High Level System Architecture

11



Query Plans and Data Flow

● Execution begins at 
the top

● Iterator approach avoid 
creation of temporary 
relations

● Each OA slot holds the 
oid of a vertex

12



Query Operators

● Scan
● Join
● Select
● Aggregate
● Project

● SetOp
● ArithOp
● CreateSet
● GroupBy

13



Query Plan Construction

14



Query Optimization and Indexing
● Lacks sophisticated query 

planning
● Selections are pushed down
● Two types of indexes:

○ Lindex (Parent Link Index)
○ Vindex (Value Index)

● Lindexes implemented using 
linear hashing

● Vindexes implemented using B+- 
Trees

15



Index Query Plans

16



Update Query Plans

17



Physical Storage
● Each page on disk has slots
● One object in each slot
● First-fit algorithm used
● Object forwarding mechanism
● Large objects span many pages
● Object clustering is depth first 
● Garbage collector for orphans
● External data also supported

18



Data Guides

19



Thank You! Questions?

20


