
Jena: Implementing the Semantic 
Web Recommendations

Jeremy J. Carroll, Ian Dickinson, Chris Dollin



Introduction



● RDF = Resource Description Framework
● OWL = Web Ontology Language
● Both together form a standardization for a simple triple-based representation of 

knowledge.
● RDF triple is <s, p, o>
● Jena is a Semantic Web Toolkit.

○ It has a graph as its core interface.
○ It provides rich API for dealing with RDF.
○ It supports RDQL (RDF Data Query Language).

● RDFS and OWL provide the vocabulary, schema and ontology.



Architecture Overview



● Jena architecture is mainly composed of 
three layers

● The Graph Layer:
○ It is based on RDF (set of triples of nodes).
○ It has a triple store (in-memory, persistent).
○ It has virtual triples resulting from inference on 

other triples.
● The Model Layer:

○ It is the abstraction of the RDF graph that is used 
by application programmers.

● The EnhGraph Layer:
○ It is the intermediate layer between Graph and 

Model layers.
○ It provides views for the graph and nodes.



Graph Layer



The Graph Layer
● Graph is composed of triples <Subject, Predicate, Object>.
● A triple’s node represents RDF URI label, a blank node (bNode which is an 

anonymous resource), or a literal.
○ <Michael, studiesAt, UW>

● The restriction that a literal can only appear as an object and a property must 
be URI are forced by Model Layer not Graph Layer.

● Graph interface supports modifications (add, delete) and access (list all triples).
● find(Node s, Node P, Node O) returns an iterator on all triples matching 

<s,p,o>.



Fast Path Query
● Each graph has a query handler that manages complex queries.
● It implements complex query in terms of “find” primitive.
● Query consists of triples patterns to be matched against graphs.
● Ex: (?x P ?y) (?y Q ?z)

○ All possible bindings of the variables are returned.
● Jena’s memory-based Graph model implements this query by simply iterating 

over the graph using “find”.
● RDB-based graphs can alternatively compile queries into SQL to get the results 

from DB-engine.



Model Layer



APIs
● Graph layer only provides triples.
● This is not easy to work with within the application level.
● The Model layer has an API that acts as the presentation layer over graph.
● Resource is an abstraction corresponding to rdfs:resource.

○ It is represented as a URIref or bNode
○ It provides a view to a collection of facts about the node

● Ex: a URIref having a type rdf:Bag provides a view on the node that allows 
access to specific triples related to it.



Enhanced Graph Layer



Presentation Layers and Personalities

● Each presentation layer has:
○ Interfaces
○ Implementation classes
○ Mapping from interfaces to 

methods invoking the classes 
(Personality)

● Implementation classes extends 
EnhGraph or EnhNode
○ EnhGraph is a wrapper around 

Graph with a pointer to 
personality

○ EnhNode is a wrapper around 
Node with a pointer to EnhGraph

Polymorphism

● RDFS permits resources to have 
multiple types (rdfs:SubClassOf) 
which acts as multiple-inheritance.

● Java objects can only have one class.
● Given a Node (EnhNode) and 

personality it is possible to create a 
view.



Inference Support



● Inference engines consist of reasoners (Graph combinators):
○ Combine RDF Graphs (ontology - instances)
○ Expose entailments as another RDF Graph
○ Virtual entailments rather than materialized data

● It enables stacking reasoners after each others (flexibility).
● RDQL queries can be applied to inferred graphs.
● External reasoners are easily registered into the system.



RDQl-RDF Query



● RDQL = RDF Data Query Language
● RDQL query consists of a graph pattern (list of triple patterns)

○ pattern : URIs and named variables (?x)
○ constraints on values of variables

● RDQL can include virtual triples
● No distinction between:

○ Ground triples
○ Virtual triples



Persistent Storage



● Persistency is supported by using a conventional database.
● Each triple is stored in a general-purpose triple table or property table.
● Jena uses a denormalized schema:

○ URIs, literals are stored directly in the triple table.
○ Separate literals table is used for storing large literals.
○ This enables the processing of many queries without using join.
○ It trades off time with space (more space for denormalization).

● Common namespaces prefix in URIs are stored in a separate table.
● Property tables:

○ They hold statements for a specific property.
○ They are stored as subject-value pairs.
○ Property table and triple table are disjoint (triple is stored once).
○ Property class table stores properties associated with a particular class with all of its instances.



● Queries are executed on graphs that can span multiple statement tables.
● Each statement table has a handler to convert between Jena graph view and the 

SQL tuple view.
● The query processor passes the triple pattern to each table handler for 

evaluation.
● Jena supports fast path query with a goal to use the database engine to process 

the entire query instead of single patterns.
○ Case one: all triple patterns access only triple table.
○ Case two: all triple patterns can be evaluated on a single property table.



Joseki



● Joseki is a webAPI for Jena.
● It provides a remote API that is simple to use.
● Access mechanism is graph-based query where the target is a remote 

knowledge base and the result is a graph.
● Client does not know what happens on the server. They just communicates 

through queries and expect results.
● A host repository can have different graphs.
● The webAPI requires each graph to have a different URL.
● HTTP is used as the protocol for querying the RDF.



Thanks


