
Characteristic Sets:
Accurate Cardinality Estimation for RDF Queries with Multiple Joins

Thomas Neumann
Guido Moerkotte

Presented By :

Pranjal Gupta

Recap.

● RDF is the underlying query language of the Semantic Web.

● Data is represented as the set of triple (subject, predicate, object).

● Single table (3 columns)

Recap.

● RDF is the underlying query language of the Semantic Web.

● Data is represented as the set of triple (subject, predicate, object).

● Single table (3 columns)

● Query graph is made up of sequence of query patterns.

SELECT DISTINCT ?e

WHERE { ?e <author> “Jane Austen” , ?e <title> ?b, ?e <year> ?y }

Recap.

● RDF is the underlying query language of the Semantic Web.

● Data is represented as the set of triple (subject, predicate, object).

● Single table (3 columns)

● Query graph is made up of sequence of query patterns.

● Multiple self joins -> need for query optimizer that produces efficient
query plans that has optimal join ordering.

SELECT DISTINCT ?e

WHERE { ?e <author> “Jane Austen” , ?e <title> ?b, ?e <year> ?y }

Star queries.

● Quite a common feature in queries.

● Characterized by sequence of query patterns having a common
subject.

Star queries.

● Quite a common feature in queries.

● Characterized by sequence of query patterns having a common
subject.

SELECT DISTINCT ?e

WHERE {

?e <author> “Jane Austen” ,

?e <title> ?b, ?e <year> ?y

}

<title> <author>

?e

Jane Austen
?b

<year>

?y

Objectives.

● Highly accurate cardinality estimation for Star Queries.

○ By using Characteristic sets.

● Extending the use of characteristic sets to calculate the cardinality of
general queries.

● Using cardinality estimator with query optimizer.

Challenges.

1. Lack of explicit schema based on the structure. Cannot partition the
data for estimation, since all data looks the same.

2. Predicates are correlated and hence, cardinality cannot be estimated
using single-bucket histograms.

3. RDF predicates are usually string values -> histograms are deemed
inappropriate for estimation.

4. RDF-3X’s solution.

Characteristic set

IDEA

1. RDF data does not have a fixed schema

2. The outgoing “predicate” edges gives an idea about the “class” of the
entity.

e.g. - Artist, City, Country.

3. A “soft” schema hence occur in data, based on the predicates of a
subject.

Set of all predicates that have atleast one tuple with the subject

Characteristic set

Set of all predicates that have atleast one tuple with the subject

Characteristic set

{
 “product”,
 “founder”,
 “founded_in”,
 “CEO”,
 “website”
}

SC(“Google”) =

Set of characteristic set

Set of characteristic sets of all subject s give that there exists atleast one
pair of predicate p and object o

Set of characteristic set

{ “Founder”, “Founded In”, “CEO”, “CFO”, “Product”, “Revenue”, “Profit” }

{ “Country”, “Province”, “Population”, “latitude”, “longitude” }

{ “Author”, “Title”, “Publisher”, “ISBN”, “Year”, “Language” } “Namesake”
“The girl with a dragon tattoo”

“Tell me your Dreams”

“Google”
“Amazon”

“Tesla”

“Mumbai”
“New York”

“Toronto”

Set of characteristic sets of all subject s give that there exists atleast one
pair of predicate p and object o

Calculating simple cardinality
● Star-shaped edge structures are also present in queries.

● Each triple describes only one characteristic of the subject.

● Hence, queries have multiple triple patterns with one subject variable.

Calculating simple cardinality
● Star-shaped edge structures are also present in queries.

● Each triple describes only one characteristic of the subject.

● Hence, queries have multiple triple patterns with one subject variable.

SELECT DISTINCT ?e

WHERE { ?e <author> ?a , ?e <title> ?b }
<title> <author>

?e

?a
?b

Calculating simple cardinality

SELECT DISTINCT ?e

WHERE { ?e <author> ?a , ?e <title> ?b }
<title> <author>

?e

?a
?b

SOLUTION

Sum of cardinalities of all the supersets

of query characteristic sets in Sc(R)

Q =

SC(Q) = { “title”, “author” }

Occurrence annotations
Limitation of previous calculations :

● Only works if there is a DISTINCT in the selection clause

Occurrence annotations
Limitation of previous calculations :

● Only works if there is a DISTINCT in the selection clause

<title>

<a
ut

ho
r>

Let it Snow

<ent #416>

John Green

<author>

Lauren Myracle

Ralph

<author>

SC(<ent 416>) = { “title”, “author” }

count = 1

Occurrence annotations
Limitation of previous calculations :

● Only works if there is a DISTINCT in the selection clause

<title>

<a
ut

ho
r>

Let it Snow

<ent #416>

John Green

<author>

Lauren Myracle

Lauren Myracle

<author>

SC(<ent 416>) = { “title”, “author” }

count = 1

SELECT DISTINCT ?e

WHERE { ?e <author> ?a , ?e <title> ?b }

3, not 1

Occurrence annotations
Predicate Annotations !

● Number of occurrences for each predicate in the in the
characteristic set is also stored

 eg. S = { p1, p2, p3 … }

Occurrence annotations

SELECT DISTINCT ?e

WHERE { ?e <author> ?a , ?e <title> ?b }

Q =

SC(Q) = { “title”, “author” }

Occurrence annotations

SELECT DISTINCT ?e

WHERE { ?e <author> ?a , ?e <title> ?b }

Q =

SC(Q) = { “title”, “author” }

S = { “title”, “author”, “year” }

avg. author

= 2300/1000 = 2.3

avg. title

= 1010/1000 = 1.01

2323, not 1000

● There can be a loss of precision

Queries with bounded objects
● We stored the count of predicate for each characteristic set it appeared

in -> correlation b/w subject and predicate.

● Opt the same strategy for storing the correlation b/w subject predicate
and object ? INEFFICIENT

Queries with bounded objects
● We stored the count of predicate for each characteristic set it appeared

in -> correlation b/w subject and predicate.

● Opt the same strategy for storing the correlation b/w subject predicate
and object ? INEFFICIENT

OBSERVATION

● Subjects of a characteristic set follow similar behavior.

● In each characteristic set there is one predicate that is least selective ->
key of a relational table.

● Other predicates follow the “key” predicate.

Queries with bounded objects

● Out of the multiple object bounded patterns, take the one most
selective.

● Other object-bound is assumed to have soft functional dependency.

● Overestimation.

Cardinality of Star Joins
Complete Algorithm

Cardinality of Star Joins
Complete Algorithm

Loops over all the
characteristic sets in SC
that is the super-set of
the Query characteristic
set

Cardinality of Star Joins
Complete Algorithm

Loops over all the triples
that appear in the query

Cardinality of Star Joins
Complete Algorithm

if object is bounded, take
the minimum of the
selectivity lower bound
among all object-
bounded triples in query

Cardinality of Star Joins
Complete Algorithm

else, update the
cummulative selectivity
(m)

Cardinality of Star Joins
Complete Algorithm

Calculate the cardinality
in current characteristic
set and add to global
cardinality

Handling diverse sets
● The number of characteristic sets in a data can be very large.

● Keeps only the most frequent 10,000 characteristic sets.

● Merge the others with the most frequent ones.

Handling diverse sets
● The number of characteristic sets in a data can be very large.

● Keeps only the most frequent 10,000 characteristic sets.

● Merge the others with the most frequent ones.

MERGING SOLUTIONS

S1 = {(author, 120), 100}

S2 = {(title, 230), 200}

S3 = {(author, 2300), (title, 1001), (year, 1000),

 1000 }

S4 = {(author, 30), (title, 20), 20}

Handling diverse sets
● The number of characteristic sets in a data can be very large.

● Keeps only the most frequent 10,000 characteristic sets.

● Merge the others with the most frequent ones.

MERGING SOLUTIONS

S1 = {(author, 120), 100}

S2 = {(title, 230), 200}

S3 = {(author, 2300), (title, 1001), (year, 1000),

 1000 }

S4 = {(author, 30), (title, 20), 20}

S4

S1

S2

S1 = {(author, 150), 120}

S2 = {(title, 250), 140}

● UNDERESTIMATION

MERGING SOLUTIONS

Handling diverse sets
● The number of characteristic sets in a data can be very large.

● Keeps only the most frequent 10,000 characteristic sets.

● Merge the others with the most frequent ones.

MERGING SOLUTIONS

S1 = {(author, 120), 100}

S2 = {(title, 230), 200}

S3 = {(author, 2300), (title, 1001), (year, 1000),

 1000 }

S4 = {(author, 30), (title, 20), 20}

S3S4

S3 = {(author, 2330), (title, 1021), (year, 1000),
1020 }

● OVERESTIMATION

MERGING SOLUTIONS

Handling diverse sets
● The number of characteristic sets in a data can be very large.

● Keeps only the most frequent 10,000 characteristic sets.

● Merge the others with the most frequent ones.

MERGING SOLUTIONS

● Prefer overestimations.

● Increases only small error, but gives
correct upper bound in computation

S3S4

S3 = {(author, 2330), (title, 1021), (year, 1000),
1020 }

● OVERESTIMATION

MERGING SOLUTIONS

Merging algo

Set of all characteristic
sets that are superset of
S.

Merging algo

S’ = Set of all character-
istic sets which have the
least elements in S

merge S with the one
which has the maximum
distinct

Merging algo

Else, break S into S1 and
S2, such that S1 is the
maximal subset of a
characteristic set in SC

Merge S1 and S2

Merging algo

Else, break S into S1 and
S2, such that S1 is the
maximal subset of a
characteristic set in SC

Merge S1 and S2

Using characteristic sets
Principles for using characteristic set based cardinality estimator into the
plan generator:

Using characteristic sets
Principles for using characteristic set based cardinality estimator into the
plan generator:

#1
Calculate cardinality estimate once per equivalent query plans

● Cardinality is independent of the plan structure

● It should not change by changing the ordering of operators.

Using characteristic sets
Principles for using characteristic set based cardinality estimator into the
plan generator:

#2
Use maximum amount of consistent correlation information

● A typical query graph has a lot of joins, we can have consistent
information for only a few portions of the graph.

● We use characteristic sets to estimate to the maximum portion of
the graph, before starting to use join estimates.

Using characteristic sets
Principles for using characteristic set based cardinality estimator into the
plan generator:

#3
Assume independence if no correlation information is available.

● If no consistent info available, we assume independence to
calculate estimates using general join stats.

● It introduces error.

● Error is relatively low, since independence is being assumed very
“late” in cost estimation.

General Query
SELECT ?a ?t

WHERE { ?b <author> ?a , ?b <title> ?t, ?b <year> ‘2009’, ?b <published_by> ?p,

 ?p <name> ? ”ACM” }

General Query
SELECT ?a ?t

WHERE { ?b <author> ?a , ?b <title> ?t, ?b <year> ‘2009’, ?b <published_by> ?p,

 ?p <name> ? ”ACM” }

?b

?a

?t

?p

“2009”

<name>

<year>

<author>

<t
itl

e>

<pub_by>

?b <title> ?t?b <author> ?a

?b <pub_by> ?p ?b <year> ?t

?p <pub_by> “ACM”

QUERY GRAPH JOIN GRAPH

Join Tree

?b <title> ?t?b <author> ?a

?b <pub_by> ?p ?b <year> ?t

?p <pub_by> “ACM”

● Bottom-up Dynamic
Programming approach. At each
step, match one of the query
patterns.

● We use the already calculated
cardinality for the query
subgraph from the DP table, if
available.

● Else, we calculate the cardinality
for the part of graph using the
ESTIMATE QUERY CARDINALITY
function

optimal join tree

Estimation Algorithm

WORST CASE

?b

?a

?t

?p

“2009”

<name>

<year>

<author>

<t
itl

e>

<pub_by>

ESTIMATE_QUERY_CARDINALITY

Estimation Algorithm

Selects the largest
subject star join (S) from
the uncovered region of
QR and calculates the
cardinality of that star.

marks S in QR.

Estimation Algorithm

Selects the largest object
star join (S) from the
uncovered region of QR
and calculates the
cardinality of that star.

marks S in QR.

Estimation Algorithm

Uses independence
assumption for all the
nodes and edges left in
the QR for estimation

Estimation Algorithm
ESTIMATE_QUERY_CARDINALITY

Estimation Algorithm
ESTIMATE_QUERY_CARDINALITY

Estimation Algorithm
ESTIMATE_QUERY_CARDINALITY

Estimation Algorithm

* *

*

*

*

* uncovered

nodes/edges

ESTIMATE_QUERY_CARDINALITY

Evaluations

Systems :
● RDF-3X with Characteristic sets estimator

● RDF-3X original

● Commercial system: DB A

● Commercial system: DB B

● Commercial system: DB C

● Stocker et al. (Stocker)

● Maduko et al. (Maduko)

Datasets :
● Yago

● LibraryThing

Single Join queries
● q-error = max(c^/c , c/c^), bucketed

● queries of the form : { (?s p1 ?a) . (?s p2 ?b) }

● YAGO : 1751 queries, LibraryThing : 19,062,990

Single Join queries
● q-error = max(c^/c , c/c^), bucketed

● queries of the form : { (?s p1 ?a) . (?s p2 ?b) }

● YAGO : 1751 queries, LibraryThing : 19,062,990

Single Join queries
● q-error = max(c^/c , c/c^), bucketed

● queries of the form : { (?s p1 ?a) . (?s p2 ?b) }

● YAGO : 1751 queries, LibraryThing : 19,062,990

Complex Join queries
● Upto 6 joins, with object constraints.

Complex Join queries
● Upto 6 joins, with object constraints.

Yago

LibraryThing

Other datasets

● UniProt data :: >800M triples, <1000 characteristic sets

○ strong schema

○ Very good cardinality estimates

● Billion Triples data :: >1B triples, ~500K characteristic sets

○ Merging

end.

