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e RDF is the underlying query language of the Semantic Web.
e Datais represented as the set of triple (subject, predicate, object).
e Single table (3 columns)

e Query graph is made up of sequence of query patterns.

SELECT DISTINCT ?e

WHERE { ?e <author> “Jane Austen”, ?e <title> ?b, ?e <year> ?y }

e Multiple self joins -> need for query optimizer that produces efficient
query plans that has optimal join ordering.



e Quite a common feature in queries.

e Characterized by sequence of query patterns having a common
subject.



Star queries.

Quite a common feature in queries.

Characterized by sequence of query patterns having a common
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Objectives.

e Highly accurate cardinality estimation for Star Queries.
o By using Characteristic sets.

e Extending the use of characteristic sets to calculate the cardinality of
general queries.

e Using cardinality estimator with query optimizer.



Challenges.

1. Lack of explicit schema based on the structure. Cannot partition the

data for estimation, since all data looks the same.

2. Predicates are correlated and hence, cardinality cannot be estimated

using single-bucket histograms.

sel (0 p=isCitizenOf ) 1.06 * 10~ %
sel (UO=United_States) 6.41 * 10_4
sel (0 p—isCitizenOf AO=United_States ) 4.86 % 10~
sel(0 piscitizenor) * 5€l(00=United_states) | 6.80 ¥ 107°

3. RDF predicates are usually string values -> histograms are deemed

inappropriate for estimation.
4. RDF-3X's solution.




Characteristic set

RDF data does not have a fixed schema

2. The outgoing “predicate” edges gives an idea about the “class” of the
entity.
e.g. - Artist, City, Country.

3. A “soft” schema hence occur in data, based on the predicates of a
subject.
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Characteristic set

Sc(s) == {p[3o: (s,p,0) € R}
Set of all predicates that have atleast one tuple with the subject

Mountain View, CA

Sundar Pichai ‘
Q :

s ¢
~ @OJ_ 7/
~

~ (Google »

-
X
Cy \

\ Larry Page

<d}ISgaM>
)
/

.\

N
N
N
Android \.

1998

http://google.com

S("Google”) =

“product”,
“founder”,
“founded_in”,
“CEO",
“website”
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Set of characteristic set

Sc(R) :={Sc(s)|Ip,0: (s,p,0) € R}

Set of characteristic sets of all subject s give that there exists atleast one
pair of predicate p and object o

“The girl with a dragon tattoo”

{ “Author”, “Title”, “Publisher”, “ISBN", “Year”, “Language” } “Namesake”
“Tell me your Dreams”
“Amazon”
{ “Founder”, “Founded In”, “CEQ”, “CFO", “Product”, “Revenue”, “Profit” } “Google”
“Tesla”
“New York”
{ “Country”, “Province”, “Population”, “latitude”, “longitude” } “Mumbai”

“Toronto”
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Calculating simple cardinality

e Star-shaped edge structures are also present in queries.
e Each triple describes only one characteristic of the subject.
e Hence, queries have multiple triple patterns with one subject variable.

?a
?b
SELECT DISTINCT ?e ‘ - ,'
\\\?/(.‘/ \)&o ///
WHERE { ?e <author> ?a, ?e <title>?b } oy VL7



Calculating simple cardinality

Q =
SELECT DISTINCT ?e

WHERE { ?e <author> ?a, ?e <title>?b }

S.(Q) = { “title”, “author” }

SOLUTION

ZSE{S|SESC(R)/\{author,tz’tle}QS} count(S)

Sum of cardinalities of all the supersets

of query characteristic sets in S _(R)



Limitation of previous calculations :

e Only works if there is a DISTINCT in the selection clause
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Occurrence annotations

Limitation of previous calculations :

e Only works if there is a DISTINCT in the selection clause

John Green et .
Let it Snow S (<ent 416>) = { “title”, “author” }
‘ count=1
\v;%
\\ %\
Ny SELECT BDISHNET ?e
<ent #416> <author> )
WHERE { ?e <author> ?a, ?e <title>?b }
\

3 not 1

Lauren Myracle



Predicate Annotations!

e Number of occurrences for each predicate in the in the
characteristic set is also stored

eg.S={p1,p2 p3..}

distinct {s|3p,0: (s,p,0) € RN Sc(s) =S}
count(p1) | [{(s,p1,0)|(s,p1,0) € RASc(s) = S}
count(ps) | |{(s,p2,0)|(s,p2,0) € RA Sc(s) =S}




Q =
SELECT BISTHNCT ?e

WHERE { ?e <author> ?a, ?e <title>?b }

S.(Q) = { “title”, “author” }



Q =
SELECT BISHNET ?e S = { “title”, “author”, “year” }
WHERE { ?e <author> ?a, ?e <title>?b }

distinct || author | title | year

S.(Q) ={ “title”, “author” } 1000 2300 | 1010 | 1090
avg. author
= 2300/1000 = 2.3
2323, nOt 1 000 avg. title

=1010/1000 = 1.01

e There can be a loss of precision



Queries with bounded objects

e We stored the count of predicate for each characteristic set it appeared
in -> correlation b/w subject and predicate.

e Opt the same strategy for storing the correlation b/w subject predicate
and object ? INEFFICIENT



Queries with bounded objects

e We stored the count of predicate for each characteristic set it appeared
in -> correlation b/w subject and predicate.

e Opt the same strategy for storing the correlation b/w subject predicate
and object ? INEFFICIENT

OBSERVATION

e Subjects of a characteristic set follow similar behavior.

e In each characteristic set there is one predicate that is least selective ->
key of a relational table.

e Other predicates follow the “key” predicate.



Queries with bounded objects

e Out of the multiple object bounded patterns, take the one most
selective.

e Other object-bound is assumed to have soft functional dependency.

e Overestimation.

1
sel(To=z|?p =p) € [—,1].
Da



Cardinality of Star Joins

Complete Algorithm

STARJOINCARDINALITY(Sc,Q = {(?s,p1,701), - - -,
(?8,Pn,70n) P

SQ — {pla 5% ,pn}
card =0
for each S € Sc: S C S

m:=.l

o=1

fori=1ton

if 70; 1s bound to a value o,
o = min(o, sel(?0; = 0i|?p = pi))

else
. S.count(p;)
ey = % S.distinct
card = card + S.distinct * m * o

return card
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that is the super-set of
the Query characteristic
set
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Cardinality of Star Joins

Complete Algorithm

STARJOINCARDINALITY(Sc,Q = {(?s,p1,701), - - -,

(?8,Pn,70n) P

SQ — {pla 5% 7pn}
card =0
for each S € S¢: 59 C S

M=l

o=1

fori:=1ton

if 70; 1s bound to a value o,
o = min(o, sel(?0; = 0;|7p = p;))

else
. S.count(p;)
ey = % S.distinct
card = card + S.distinct * m * o

return card

if object is bounded, take
the minimum of the
selectivity lower bound
among all object-
bounded triples in query



Cardinality of Star Joins

Complete Algorithm

STARJOINCARDINALITY(Sc,Q = {(?s,p1,701), - - -,
(?8,Pn,70n) P

SQ — {pla 5% ap’n}
card =0
for each S € Sc: S C S

M=l

o=1

fori=1ton

if 70; 1s bound to a value o,
o = min(o, sel(?0; = 0i|?p = pi))

else
. S.count(p;)
1y = 1% S.distinct
card = card + S.distinct * m * o

return card

else, update the
cummulative selectivity
(m)



Cardinality of Star Joins

Complete Algorithm

STARJOINCARDINALITY(Sc,Q = {(?s,p1,701), - - -,
(?8,Pn,70n) P

SQ — {pla 5% ap’n}
card =0
for each S € S¢: 59 C S

M=l

o=1

fori=1ton

if 70; 1s bound to a value o,
o = min(o, sel(?0; = 0i|?p = pi))

else
. S.count(p;)
1y = JRE S.distinct
card = card + S.distinct * m * o

return card

Calculate the cardinality
in current characteristic
set and add to global
cardinality
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e The number of characteristic sets in a data can be very large.
e Keeps only the most frequent 10,000 characteristic sets.
e Merge the others with the most frequent ones.



Handling diverse sets

e The number of characteristic sets in a data can be very large.
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MERGING SOLUTIONS

S, ={(author, 120), 100}

S, ={(title, 230), 200}

S, ={(author, 2300), (title, 1001), (year, 1000),
1000 }

S, ={(author, 30), (title, 20), 20}



Handling diverse sets

e The number of characteristic sets in a data can be very large.
e Keeps only the most frequent 10,000 characteristic sets.
e Merge the others with the most frequent ones.

MERGING SOLUTIONS

S, ={(author, 150), 120}
__________ ' s, = {(author, 120), 100}
s, = {(title, 230), 200}

S, ={(title, 250), 140} s, = {(author, 2300), (title, 1001), (year, 1000),

“““““ " 1000 }

S, ={(author, 30), (title, 20), 20}
e UNDERESTIMATION



Handling diverse sets

e The number of characteristic sets in a data can be very large.
e Keeps only the most frequent 10,000 characteristic sets.
e Merge the others with the most frequent ones.

MERGING SOLUTIONS

S, ={(author, 120), 100}
S, = {(title, 230), 200}
. S, ={(author, 2300), (title, 1001), (year, 1000),
S, = {(author, 2330), (title, 1021), (year, 1000),
1020} 1000}
S, ={(author, 30), (title, 20), 20}

e OVERESTIMATION



Handling diverse sets

e The number of characteristic sets in a data can be very large.
e Keeps only the most frequent 10,000 characteristic sets.
e Merge the others with the most frequent ones.

MERGING SOLUTIONS

e Prefer overestimations.

e Increases only small error, but gives
correct upper bound in computation

S, = {(author, 2330), (title, 1021), (year, 1000),
1020}

e OVERESTIMATION



Merging algo

MERGECHARACTERISTICSETS(S(,5) Set of all characteristic
S={8'8"e€ScASCS} sets that are superset of
if S0 S.

S = {818 € SA|S'| = min({|S’||S’ € S})}
merge S into arg maxg, g S'.distinct
else

S = {958 S n3AS" € S+ 8 € 8"}

Sl = argmaxgs g |S'|, Sz =9 \ Sl

if S1 # 0
MERGECHARACTERISTICSETS(S¢c,S51)
MERGECHARACTERISTICSETS(S,55)



Merging algo

IYIERGECHARACTERISTICSETS(SC,S)
S={58"€ScASCS} S’ = Set of all character-

if 5‘1# 0 o , . o istic sets which have the
S ={S"[5" € SA|S| = min({|S"||S" € S})} |east elements in §

merge S into arg maxg, g S'.distinct

else merge S with the one
S={S|S8'cSAIS" €Sc:8 C85"} which has the maximum
S1 = argmaxg 5 |S'], 52 = 5\ 51 distinct
if 51 #

MERGECHARACTERISTICSETS(S,S1)
MERGECHARACTERISTICSETS(S,55)



Merging algo

MERGECHARACTERISTICSETS(S,S)
S={8Se€ScASCS}
if S #0
S = {818 € SA|S'| = min({|S’||S’ € S})}
merge S into arg maxg, g S'.distinct
else
S = {58 S 38" €S-+ 8 € 8"}
Sl = argmaxgs g |S’|, Sz =9 \ Sl
if S; # 0
MERGECHARACTERISTICSETS(S¢c,51)
MERGECHARACTERISTICSETS(S,95)

Else, break S into S, and
S,. such that S, is the
maximal subset of a
characteristic setin S_

Merge S, and S,
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maximal subset of a
characteristic setin S_

Merge S, and S,



Using characteristic sets

Principles for using characteristic set based cardinality estimator into the
plan generator:



Using characteristic sets

Principles for using characteristic set based cardinality estimator into the
plan generator:

#1

Calculate cardinality estimate once per equivalent query plans

e Cardinality is independent of the plan structure

e It should not change by changing the ordering of operators.



Using characteristic sets

Principles for using characteristic set based cardinality estimator into the
plan generator:

#2

Use maximum amount of consistent correlation information
e A typical query graph has a lot of joins, we can have consistent
information for only a few portions of the graph.

e We use characteristic sets to estimate to the maximum portion of
the graph, before starting to use join estimates.



Using characteristic sets

Principles for using characteristic set based cardinality estimator into the
plan generator:

%3

Assume independence if no correlation information is available.

e If no consistent info available, we assume independence to
calculate estimates using general join stats.
e Itintroduces error.

e Errorisrelatively low, since independence is being assumed very
“late” in cost estimation.



SELECT ?a ?t
WHERE { ?b <author> ?a, ?b <title> ?t, ?b <year> ‘2009, ?b <published_by> ?p,

?p <name>?"ACM" }



General Query

SELECT ?a ?t
WHERE { ?b <author> ?a, ?b <title> ?t, ?b <year> ‘2009, ?b <published_by> ?p,

?p <name>?"ACM" }

“2009”

70 <author 12 S b e
\\\\\\\ -
\ =<
\

|
- \
~ ~
\ T~ __ - \‘
|
|

?p <pub_by>“ACM"

QUERY GRAPH ' JOIN GRAPH




e Bottom-up Dynamic

Programming approach. At each
step, match one of the query

patterns.
?b <pub_ by> ?p
?p <pub_by>“ACM"
e Else, we calculate the cardinality

for the part of graph using the optimal join tree
ESTIMATE QUERY CARDINALITY
function

e We use the already calculated
cardinality for the query
subgraph from the DP table, if
available.




Estimation Algorithm

“2009”

ESTIMATE_QUERY_CARDINALITY

card(Q)) = H |R| H sel(p)

ReV peEE




Estimation Algorithm

ESTIMATEQUERYCARDINALITY((Q)

. .
Q" = RDF query graph derived from () Selects the largest

gard.=l

mark all nodes and edges in Q and Q¥ as uncovered subject star join (S) from

while uncovered Q% contains subject star joins the uncovered region of
S=largest subject star join in the uncovered part of Q% Q. and calculates the
mark S as covered in Q and Q cardinality of that star.
card = card«*STARJOINCARDINALITY(S~,S)

while uncovered Q% contains object star joins marks S in Q.

S=largest object star join in the uncovered part of QR

mark S as covered in Q and Q
card = card«STARJOINCARDINALITY(SY,S)

card = card * l—IREuncoveredQ IRl * HNpeuncoveredQ sel(NP)
return card



Estimation Algorithm

ESTIMATEQUERYCARDINALITY((Q)
Q = RDF query graph derived from Q
gard.=l
mark all nodes and edges in @ and QF as uncovered
while uncovered Q% contains subject star joins
S=largest subject star join in the uncovered part of Q*
mark S as covered in Qf and )

card = card+*STARJOINCARDINALITY (S, S) Selects the largest object

while uncovered Q% contains object star joins star join (S) from the
S=largest object star join in the uncovered part of QF uncovered region of QR
mark S as covered in Q% and Q and calculates the

card = card+*STARJOINCARDINALITY(SZ,S)

card = card * l—IREuncoveredQ IRl * HNpeuncoveredQ sel(NP)
return card marks Sin Q..

cardinality of that star.



Estimation Algorithm

ESTIMATEQUERYCARDINALITY((Q)
Q = RDF query graph derived from Q
card =1
mark all nodes and edges in @ and QF as uncovered
while uncovered Q% contains subject star joins
S=largest subject star join in the uncovered part of Q*
mark S as covered in Qf and )
card = card«*STARJOINCARDINALITY(S~,S5)
while uncovered Q% contains object star joins
S=largest object star join in the uncovered part of Q
mark S as covered in Q and Q )
card = card*STARJOINCARDINALITY(SS,S) assumption for all the
card = card * [ peumcovercaq |Bl * I, cuncovereaq 5€l(X,) Nodes and edges left in
return card the Q. for estimation

Uses independence



Estimation Algorithm

ESTIMATE_QUERY_CARDINALITY




Estimation Algorithm

ESTIMATE_QUERY_CARDINALITY




Estimation Algorithm

ESTIMATE_QUERY_CARDINALITY




Estimation Algorithm

ESTIMATE_QUERY_CARDINALITY

* uncovered

nodec/cedaeac



Systems : Datasets:

e RDF-3X with Characteristic sets estimator

e RDF-3X original

e Yago

e LibraryThing
e Commercial system: DB A
e Commercial system: DB B
e Commercial system: DB C
e Stocker et al. (Stocker)

e Maduko et al. (Maduko)



Single Join queries

e (-error =max(cr/c, c/cM), bucketed

e queries of the form: {(?s p17a).(?s p2?b)}
e YAGO : 1751 queries, LibraryThing : 19,062,990



Single Join queries

g-error = max( cA/c, c/cM), bucketed

queries of the form : {(?s p1?a).(?s p2?b)}

YAGO : 1751 queries, LibraryThing : 19,062,990

Yago
g-error DB A DB B DB C Stocker | Madoku | RDF-3X CS
<2 16.6 234 25.6 0 100* 149 | 999
<5 12.2 16.0 16.4 0 0 20.7 0.1
<10 7.6 10.2 10.0 2.2 0 16.0 0
< 100 40.6 214 21.7 1.1 0 38.5 0
< 1000 19.7 14.4 14.0 &2 0 8.9 0
> 1000 33 14.6 122 93.5 0 0.9 0
max 314275 | 1731400 | 783276 | 3.8 10™* 1* | 7779527 | 297




Single Join queries

g-error = max( cA/c, c/cM), bucketed

queries of the form : {(?s p1?a).(?s p2?b)}
YAGO : 1751 queries, LibraryThing : 19,062,990

LibraryThing
q-error DB A DB B DB C Stocker | Maduko | RDF-3X CS
<2 15.0 23.2 229 0 26.7 30.2 | 100
<5 10.5 27.3 27.8 0 40.6 30.9 0
< 10 10.3 17.2 17.7 0 197 16.6 0
< 100 353 28.8 27.8 0.1 12.0 19.9 0
< 1000 20.7 3.1 33 0 0.8 2.2 0
> 1000 8.1 0.4 0.6 99.9 0.1 0.2 0
max 28367552 | 1416363 | 7140611 | 1.3 % 10'° 17471 | 2909310 | 1.0l




Complex Join queries

Q
~‘_ 0O e Upto 6 joins, with object constraints.



Complex Join queries

e Upto 6 joins, with object constraints.
card error

(g.mean) median max avg
exact 26347
our 13730 0.77 11.34 1.86
RDF-3X 83 180.56 | 395397.00 46506.80
Stocker 1 || 15863.00 | 6.45*%10° | 994426.00
Maduko 3 20591.00 6.50%¥10° | 953590.00
DB A | 15863.00 6.45%10°% | 994426.00
DB B 71 1464.81 | 2.37¥10° | 1.29*10°
DB C 2 7826.75 | 2.37*10° 1.61¥10°

card error

(g.mean) median max avg
exact 1741
our 1244 0.17 12.60 1.83
RDF-3X 20 64.72 768.86 235.01
Stocker 1 1333.00 | 520293.00 | 83145.00
Maduko 75 29.00 3491.55 451.25
DB A 3 336.00 | 278266.00 | 31548.10
DB B 722 469.80 70539.20 | 40098.80
DB C 35 29.85 11547.00 | 41453.70

LibraryThing

Yago



Other datasets

e UniProt data:: >800M triples, <1000 characteristic sets
o strong schema
o Very good cardinality estimates
e Billion Triples data :: >1B triples, ~500K characteristic sets

o Merging

<2 | <5 | <10]| <100 | <1000 | > 1000
full CS 99.2 | 04 0.1 0.3 0.0 0.0
merged CS | 91.7 | 1.7 0.9 1.3 0.2 4.1




end.



