Characteristic Sets:

Accurate Cardinality Estimation for RDF Queries with Multiple Joins

Thomas Neumann

Guido Moerkotte

Presented By:

Pranjal Gupta

Recap.

- RDF is the underlying query language of the Semantic Web.
- Data is represented as the set of triple (subject, predicate, object).
- Single table (3 columns)

Recap.

- RDF is the underlying query language of the Semantic Web.
- Data is represented as the set of triple (subject, predicate, object).
- Single table (3 columns)
- Query graph is made up of sequence of query patterns.

SELECT DISTINCT?e

WHERE { ?e <author> "Jane Austen" , ?e <title> ?b, ?e <year> ?y }

Recap.

- RDF is the underlying query language of the Semantic Web.
- Data is represented as the set of triple (subject, predicate, object).
- Single table (3 columns)
- Query graph is made up of sequence of query patterns.

```
SELECT DISTINCT ?e
WHERE { ?e <author> "Jane Austen" , ?e <title> ?b, ?e <year> ?y }
```

 Multiple self joins -> need for query optimizer that produces efficient query plans that has optimal join ordering.

Star queries.

- Quite a common feature in queries.
- Characterized by sequence of query patterns having a common subject.

Star queries.

- Quite a common feature in queries.
- Characterized by sequence of query patterns having a common subject.

```
SELECT DISTINCT ?e
WHERE {
    ?e <author> "Jane Austen" ,
    ?e <title> ?b, ?e <year> ?y
}
```


Objectives.

- Highly accurate cardinality estimation for Star Queries.
 - By using Characteristic sets.
- Extending the use of characteristic sets to calculate the cardinality of general queries.
- Using cardinality estimator with query optimizer.

Challenges.

- 1. Lack of explicit schema based on the structure. Cannot partition the data for estimation, since all data looks the same.
- 2. Predicates are correlated and hence, cardinality cannot be estimated using single-bucket histograms.

$sel(\sigma_{P=isCitizenOf})$	$1.06 * 10^{-4}$
$sel(\sigma_{O={ m United_States}})$	$6.41 * 10^{-4}$
$sel(\sigma_{P=\text{isCitizenOf} \land O=\text{United_States}})$	$4.86 * 10^{-5}$
$sel(\sigma_{P=isCitizenOf}) * sel(\sigma_{O=United_States})$	$6.80*10^{-8}$

- 3. RDF predicates are usually string values -> histograms are deemed inappropriate for estimation.
- 4. RDF-3X's solution.

Characteristic set

IDEA

- RDF data does not have a fixed schema
- 2. The outgoing "predicate" edges gives an idea about the "class" of the entity.
 - e.g. Artist, City, Country.
- A "soft" schema hence occur in data, based on the predicates of a subject.

Characteristic set

$$S_C(s) := \{ p | \exists o : (s, p, o) \in R \}$$

Set of all predicates that have atleast one tuple with the subject

Characteristic set

$$S_C(s) := \{ p | \exists o : (s, p, o) \in R \}$$

Set of all predicates that have atleast one tuple with the subject

Set of characteristic set

$$\mathcal{S}_C(R) := \{ S_C(s) | \exists p, o : (s, p, o) \in R \}$$

Set of characteristic sets of all subject s give that there exists atleast one pair of predicate p and object o

Set of characteristic set

$$\mathcal{S}_C(R) := \{ S_C(s) | \exists p, o : (s, p, o) \in R \}$$

Set of characteristic sets of all subject s give that there exists atleast one pair of predicate p and object o

```
{"Author", "Title", "Publisher", "ISBN", "Year", "Language"}

"Namesake"

"Tell me your Dreams"

{"Founder", "Founded In", "CEO", "CFO", "Product", "Revenue", "Profit"}

"Google"

"Tesla"

{"Country", "Province", "Population", "latitude", "longitude"}

"New York"

"Mumbai"

"Toronto"
```

Calculating simple cardinality

- Star-shaped edge structures are also present in queries.
- Each triple describes only one characteristic of the subject.
- Hence, queries have multiple triple patterns with one subject variable.

Calculating simple cardinality

- Star-shaped edge structures are also present in queries.
- Each triple describes only one characteristic of the subject.
- Hence, queries have multiple triple patterns with one subject variable.

SELECT DISTINCT ?e
WHERE { ?e <author> ?a , ?e <title> ?b }

Calculating simple cardinality

SOLUTION

$$\sum_{S \in \{S \mid S \in \mathcal{S}_C(R) \land \{author, title\} \subseteq S\}} count(S)$$

Sum of cardinalities of all the supersets of query characteristic sets in S_c(R)

Limitation of previous calculations:

Only works if there is a DISTINCT in the selection clause

Limitation of previous calculations:

Only works if there is a DISTINCT in the selection clause


```
S<sub>c</sub>(<ent 416>) = { "title", "author" }
count = 1
```

Limitation of previous calculations:

Only works if there is a DISTINCT in the selection clause


```
S<sub>c</sub>(<ent 416>) = { "title", "author" }
count = 1
```

```
SELECT <del>DISTINCT</del> ?e
WHERE { ?e <author> ?a , ?e <title> ?b }
```

3, not 1

Predicate Annotations!

 Number of occurrences for each predicate in the in the characteristic set is also stored

distinct	$ \{s \exists p, o: (s, p, o) \in R \land S_C(s) = S\} $
$count(p_1)$	$ \{(s, p_1, o) (s, p_1, o) \in R \land S_C(s) = S\} $
$count(p_2)$	$ \{(s, p_2, o) (s, p_2, o) \in R \land S_C(s) = S\} $
	• • •

```
Q =
SELECT <del>DISTINCT</del> ?e
WHERE { ?e <author> ?a , ?e <title> ?b }
S_{c}(Q) = \{ \text{"title", "author" } \}
```

```
Q =
SELECT <del>DISTINCT</del> ?e
WHERE { ?e <author> ?a , ?e <title> ?b }
S_{c}(Q) = \{ \text{"title", "author" } \}
```

2323, not 1000

distinct	author	title	year
1000	2300	1010	1090

avg. author

= 2300/1000 = 2.3

avg. title

= 1010/1000 = 1.01

There can be a loss of precision

Queries with bounded objects

- We stored the count of predicate for each characteristic set it appeared in -> correlation b/w subject and predicate.
- Opt the same strategy for storing the correlation b/w subject predicate and object? INEFFICIENT

Queries with bounded objects

- We stored the count of predicate for each characteristic set it appeared in -> correlation b/w subject and predicate.
- Opt the same strategy for storing the correlation b/w subject predicate and object? INEFFICIENT

OBSERVATION

- Subjects of a characteristic set follow similar behavior.
- In each characteristic set there is one predicate that is least selective -> key of a relational table.
- Other predicates follow the "key" predicate.

Queries with bounded objects

- Out of the multiple object bounded patterns, take the one most selective.
- Other object-bound is assumed to have soft functional dependency.
- Overestimation.

$$sel(?o = x | ?p = p) \in [\frac{1}{p_d}, 1].$$

Complete Algorithm

```
STARJOINCARDINALITY(\mathcal{S}_C, Q = \{(?s, p_1, ?o_1), \ldots, \}
                                          (?s, p_n, ?o_n))
S_Q = \{p_1, \dots, p_n\}
card = 0
for each S \in \mathcal{S}_C : S_O \subseteq S
   m=1
   o = 1
   for i = 1 to n
     if ?o_i is bound to a value o_i
        o = \min(o, sel(?o_i = o_i | ?p = p_i))
      else
        m = m * \frac{S.count(p_i)}{S.dietingt}
   card = card + S.distinct * m * o
return card
```

Complete Algorithm

```
STARJOINCARDINALITY(\mathcal{S}_C, Q = \{(?s, p_1, ?o_1), \ldots, \}
                                          (?s, p_n, ?o_n)
S_Q = \{p_1, \dots, p_n\}
card = 0
for each S \in \mathcal{S}_C : S_Q \subseteq S
   m=1
   o=1
   for i=1 to n
     if ?o_i is bound to a value o_i
         o = \min(o, sel(?o_i = o_i | ?p = p_i))
      else
        m = m * \frac{S.count(p_i)}{S.distinct}
   card = card + S.distinct * m * o
```

Loops over all the characteristic sets in S_c that is the super-set of the Query characteristic set

return card

Complete Algorithm

```
STARJOINCARDINALITY(\mathcal{S}_C, Q = \{(?s, p_1, ?o_1), \ldots, \}
                                          (?s, p_n, ?o_n))
S_Q = \{p_1, \dots, p_n\}
card = 0
for each S \in \mathcal{S}_C : S_Q \subseteq S
   m=1
   o = 1
  for i = 1 to n
     if ?o_i is bound to a value o_i
         o = \min(o, sel(?o_i = o_i | ?p = p_i))
      else
        m = m * \frac{S.count(p_i)}{S.distinct}
   card = card + S.distinct * m * o
```

Loops over all the triples that appear in the query

return card

Complete Algorithm

```
STARJOINCARDINALITY(\mathcal{S}_C, Q = \{(?s, p_1, ?o_1), \ldots, \}
                                          (?s, p_n, ?o_n))
S_Q = \{p_1, \dots, p_n\}
card = 0
for each S \in \mathcal{S}_C : S_Q \subseteq S
   m=1
   o = 1
   for i = 1 to n
     if ?o_i is bound to a value o_i
        o = \min(o, sel(?o_i = o_i | ?p = p_i))
      else
        m = m * \frac{S.count(p_i)}{S.distinct}
   card = card + S.distinct * m * o
return card
```

if object is bounded, take the minimum of the selectivity lower bound among all objectbounded triples in query

Complete Algorithm

```
STARJOINCARDINALITY(\mathcal{S}_C, Q = \{(?s, p_1, ?o_1), \ldots, \}
                                          (?s, p_n, ?o_n))
S_Q = \{p_1, \dots, p_n\}
card = 0
for each S \in \mathcal{S}_C : S_Q \subseteq S
   m=1
   o = 1
   for i = 1 to n
     if ?o_i is bound to a value o_i
        o = \min(o, sel(?o_i = o_i | ?p = p_i))
      else
        m = m * \frac{S.count(p_i)}{S.distinct}
   card = card + S.distinct * m * o
return card
```

else, update the cummulative selectivity (m)

Complete Algorithm

```
STARJOINCARDINALITY(\mathcal{S}_C, Q = \{(?s, p_1, ?o_1), \ldots, \}
                                          (?s, p_n, ?o_n)
S_Q = \{p_1, \dots, p_n\}
card = 0
for each S \in \mathcal{S}_C : S_Q \subseteq S
   m=1
   o = 1
   for i = 1 to n
     if ?o_i is bound to a value o_i
        o = \min(o, sel(?o_i = o_i | ?p = p_i))
      else
        m = m * \frac{S.count(p_i)}{S.distinct}
   card = card + S.distinct * m * o
return card
```

Calculate the cardinality in current characteristic set and add to global cardinality

- The number of characteristic sets in a data can be very large.
- Keeps only the most frequent 10,000 characteristic sets.
- Merge the others with the most frequent ones.

- The number of characteristic sets in a data can be very large.
- Keeps only the most frequent 10,000 characteristic sets.
- Merge the others with the most frequent ones.

MERGING SOLUTIONS

- The number of characteristic sets in a data can be very large.
- Keeps only the most frequent 10,000 characteristic sets.
- Merge the others with the most frequent ones.

MERGING SOLUTIONS

UNDERESTIMATION

- The number of characteristic sets in a data can be very large.
- Keeps only the most frequent 10,000 characteristic sets.
- Merge the others with the most frequent ones.

MERGING SOLUTIONS

```
S<sub>3</sub> = {(author, 2330), (title, 1021), (year, 1000), 1020 }
```

OVERESTIMATION

- The number of characteristic sets in a data can be very large.
- Keeps only the most frequent 10,000 characteristic sets.
- Merge the others with the most frequent ones.

MERGING SOLUTIONS

- S₃ = {(author, 2330), (title, 1021), (year, 1000), 1020 }
 - OVERESTIMATION

- Prefer overestimations.
- Increases only small error, but gives correct upper bound in computation

MERGECHARACTERISTICSETS(\mathcal{S}_C, S)

$$\bar{S} = \{S'|S' \in \mathcal{S}_C \land S \subseteq S'\}$$
if $\bar{S} \neq \emptyset$

$$\bar{S}' = \{S'|S' \in \bar{S} \land |S'| = min(\{|S'||S' \in \bar{S}\})\}$$
merge S into $\arg\max_{S' \in \bar{S}'} S'.distinct$
else
$$\bar{S} = \{S'|S' \subset S \land \exists S'' \in \mathcal{S}_C : S' \subseteq S''\}$$

$$S_1 = \arg\max_{S' \in \bar{S}} |S'|, S_2 = S \setminus S_1$$
if $S_1 \neq \emptyset$

$$\text{MERGECHARACTERISTICSETS}(\mathcal{S}_C, S_1)$$

$$\text{MERGECHARACTERISTICSETS}(\mathcal{S}_C, S_2)$$

Set of all characteristic sets that are superset of S.

MERGECHARACTERISTICSETS(\mathcal{S}_C, S)

$$ar{S} = \{S' | S' \in \mathcal{S}_C \land S \subseteq S'\}$$

if $ar{S} \neq \emptyset$
 $ar{S}' = \{S' | S' \in ar{S} \land |S'| = min(\{|S'||S' \in ar{S}\})\}$
merge S into $\arg\max_{S' \in ar{S}'} S'.distinct$

else

$$\bar{S} = \{S'|S' \subset S \land \exists S'' \in \mathcal{S}_C : S' \subseteq S''\}$$

$$S_1 = \arg\max_{S' \in \bar{S}} |S'|, S_2 = S \setminus S_1$$
if $S_1 \neq \emptyset$

MERGECHARACTERISTICSETS($\mathcal{S}_C, \mathcal{S}_1$)

MergeCharacteristicSets(S_C , S_2)

 \overline{S} ' = Set of all characteristic sets which have the least elements in \overline{S}

merge S with the one which has the maximum distinct

```
MERGECHARACTERISTICSETS(\mathcal{S}_C, S)
S = \{S' | S' \in \mathcal{S}_C \land S \subseteq S'\}
if S \neq \emptyset
    \bar{S}' = \{ S' | S' \in \bar{S} \land |S'| = min(\{|S'| | S' \in \bar{S}\}) \}
    merge S into \arg\max_{S'\in\bar{S'}} S'.distinct
else
    \bar{S} = \{ S' | S' \subset S \land \exists S'' \in \mathcal{S}_C : S' \subseteq S'' \}
    S_1 = \operatorname{arg\,max}_{S' \in \bar{S}} |S'|, S_2 = S \setminus S_1
    if S_1 \neq \emptyset
        MERGECHARACTERISTICSETS(\mathcal{S}_C, \mathcal{S}_1)
```

MERGECHARACTERISTICSETS(S_C, S_2)

Else, break S into S_1 and S_2 , such that S_1 is the maximal subset of a characteristic set in S_c

Merge S₁ and S₂

```
MERGECHARACTERISTICSETS(\mathcal{S}_C, S)
S = \{S' | S' \in \mathcal{S}_C \land S \subseteq S'\}
if S \neq \emptyset
    \bar{S}' = \{ S' | S' \in \bar{S} \land |S'| = min(\{|S'| | S' \in \bar{S}\}) \}
    merge S into \arg\max_{S'\in\bar{S'}} S'.distinct
else
    \bar{S} = \{ S' | S' \subset S \land \exists S'' \in \mathcal{S}_C : S' \subseteq S'' \}
    S_1 = \operatorname{arg\,max}_{S' \in \bar{S}} |S'|, S_2 = S \setminus S_1
    if S_1 \neq \emptyset
        MERGECHARACTERISTICSETS(\mathcal{S}_C, \mathcal{S}_1)
```

MERGECHARACTERISTICSETS(S_C, S_2)

Else, break S into S_1 and S_2 , such that S_1 is the maximal subset of a characteristic set in S_c

Merge S₁ and S₂

Principles for using characteristic set based cardinality estimator into the plan generator:

Principles for using characteristic set based cardinality estimator into the plan generator:

#1

Calculate cardinality estimate once per equivalent query plans

- Cardinality is independent of the plan structure
- It should not change by changing the ordering of operators.

Principles for using characteristic set based cardinality estimator into the plan generator:

#2

Use maximum amount of consistent correlation information

- A typical query graph has a lot of joins, we can have consistent information for only a few portions of the graph.
- We use characteristic sets to estimate to the maximum portion of the graph, before starting to use join estimates.

Principles for using characteristic set based cardinality estimator into the plan generator:

#3

Assume independence if no correlation information is available.

- If no consistent info available, we assume independence to calculate estimates using general join stats.
- It introduces error.
- Error is relatively low, since independence is being assumed very "late" in cost estimation.

General Query

General Query

SELECT ?a ?t

WHERE { ?b <author> ?a , ?b <title> ?t, ?b <year> '2009', ?b <published_by> ?p, ?p <name> ? "ACM" }

Join Tree

- Bottom-up Dynamic
 Programming approach. At each step, match one of the query patterns.
- We use the already calculated cardinality for the query subgraph from the DP table, if available.
- Else, we calculate the cardinality for the part of graph using the ESTIMATE QUERY CARDINALITY function

optimal join tree

ESTIMATE_QUERY_CARDINALITY

WORST CASE

$$card(Q) = \prod_{R \in V} |R| \prod_{p \in E} sel(p)$$


```
ESTIMATEQUERYCARDINALITY(Q)
Q^R = RDF query graph derived from Q
card = 1
mark all nodes and edges in Q and Q^R as uncovered
while uncovered Q^R contains subject star joins
  S=largest subject star join in the uncovered part of Q^R
  mark S as covered in Q^R and Q
  card = card*StarJoinCardinality(S_C,S)
while uncovered Q^R contains object star joins
  S=largest object star join in the uncovered part of Q^R
  mark S as covered in Q^R and Q
  card = card*StarJoinCardinality(\mathcal{S}_C^O, S)
card = card * \prod_{R \in uncoveredQ} |R| * \prod_{\bowtie_p \in uncoveredQ} sel(\bowtie_p)
return card
```

Selects the largest subject star join (S) from the uncovered region of Q_R and calculates the cardinality of that star.

marks S in Q_R.

```
ESTIMATEQUERYCARDINALITY(Q)
Q^R = RDF query graph derived from Q
card = 1
mark all nodes and edges in Q and Q^R as uncovered
while uncovered Q^R contains subject star joins
  S=largest subject star join in the uncovered part of Q^R
  mark S as covered in Q^R and Q
  card = card * STARJOINCARDINALITY(S_C, S)
while uncovered Q^R contains object star joins
  S=largest object star join in the uncovered part of Q^R
  mark S as covered in Q^R and Q
  card = card*StarJoinCardinality(\mathcal{S}_C^O, S)
card = card * \prod_{R \in uncoveredQ} |R| * \prod_{\bowtie_p \in uncoveredQ} sel(\bowtie_p)
return card
```

Selects the largest object star join (S) from the uncovered region of Q_R and calculates the cardinality of that star.

marks S in Q_R.

```
ESTIMATEQUERYCARDINALITY(Q)
Q^R = RDF query graph derived from Q
card = 1
mark all nodes and edges in Q and Q^R as uncovered
while uncovered Q^R contains subject star joins
  S=largest subject star join in the uncovered part of Q^R
  mark S as covered in Q^R and Q
  card = card * STARJOINCARDINALITY(S_C, S)
while uncovered Q^R contains object star joins
  S=largest object star join in the uncovered part of Q^R
  mark S as covered in Q^R and Q
  card = card*StarJoinCardinality(\mathcal{S}_C^O, S)
card = card * \prod_{R \in uncoveredQ} |R| * \prod_{\bowtie_p \in uncoveredQ} sel(\bowtie_p)
return card
```

Uses independence assumption for all the nodes and edges left in the Q_R for estimation

Evaluations

Systems:

- RDF-3X with Characteristic sets estimator
- RDF-3X original
- Commercial system: DB A
- Commercial system: DB B
- Commercial system: DB C
- Stocker et al. (Stocker)
- Maduko et al. (Maduko)

Datasets:

- Yago
- LibraryThing

Single Join queries

- q-error = max(c^/c , c/c^), bucketed
- queries of the form : { (?s p1 ?a) . (?s p2 ?b) }
- YAGO: 1751 queries, LibraryThing: 19,062,990

Single Join queries

- q-error = max(c^/c , c/c^), bucketed
- queries of the form : { (?s p1 ?a) . (?s p2 ?b) }

q-error	Yago							
	DB A	DB B	DB C	Stocker	Madoku	RDF-3X	CS	
≤ 2	16.6	23.4	25.6	0	100 ¹	14.9	99.9	
≤ 5	12.2	16.0	16.4	0	0	20.7	0.1	
≤ 10	7.6	10.2	10.0	2.2	0	16.0	0	
≤ 100	40.6	21.4	21.7	1.1	0	38.5	0	
< 1000	19.7	14.4	14.0	3.2	0	8.9	0	
> 1000	3.3	14.6	12.2	93.5	0	0.9	0	
max	314275	1731400	783276	$3.8 * 10^{14}$	11	7779527	2.97	

Single Join queries

q-error = max(c^/c , c/c^), bucketed

queries of the form : { (?s p1 ?a) . (?s p2 ?b) }

• YAGO: 1751 queries, LibraryThing: 19,062,990

Complex Join queries

• Upto 6 joins, with object constraints.

Complex Join queries

Upto 6 joins, with object constraints.

	card	error			
	(g.mean)	median	max	avg	
exact	26347				
our	13730	0.77	11.34	1.86	
RDF-3X	83	180.56	395397.00	46506.80	
Stocker	1	15863.00	$6.45*10^{6}$	994426.00	
Maduko	3	20591.00	$6.50*10^{6}$	953590.00	
DB A	1	15863.00	$6.45*10^{6}$	994426.00	
DB B	71	1464.81	$2.37*10^{6}$	1.29*10 ⁶	
DB C	2	7826.75	$2.37*10^{6}$	1.61*10 ⁶	

	card	error				
	(g.mean)	median	max	avg		
exact	1741					
our	1244	0.17	12.60	1.83		
RDF-3X	20	64.72	768.86	235.01		
Stocker	1	1333.00	520293.00	83145.00		
Maduko	75	29.00	3491.55	451.25		
DB A	3	336.00	278266.00	31548.10		
DB B	722	469.80	70539.20	40098.80		
DB C	35	29.85	11547.00	41453.70		

LibraryThing

Yago

Other datasets

- UniProt data:: >800M triples, <1000 characteristic sets
 - strong schema
 - Very good cardinality estimates
- Billion Triples data :: >1B triples, ~500K characteristic sets
 - Merging

	≤ 2	≤ 5	≤ 10	≤ 100	≤ 1000	> 1000
full CS	99.2	0.4	0.1	0.3	0.0	0.0
merged CS	91.7	1.7	0.9	1.3	0.2	4.1

end.