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A. Hierarchical Routing in ICN

DONA [21] provides a hierarchical name resolution infra-
structure including new network entities named Resolution
Handlers (RH). Each logical domain (e.g., Autonomous system)
in the network has its own RH, which stores name based routing
information of that domain. The parent child relationship
among the domains results in a logical tree between the RHs.
The root RH of this tree needs to maintain routing information
for all content in the network, which severely confines the
scalability of this mechanism. NetInf [28] adopts a hierarchical
DHT [29] based approach for name based routing. It proposes
to have DHTs for name resolution in the network's Points of
Presences (PoPs). The PoP level DHTs are further aggregated
into higher level DHT to provide name resolution service in
a larger domain. The topmost level in the DHT hierarchy in
Netlnf, called REX, needs to store index for all the content
in the network, which results in performance bottleneck and
scalability issues. LANES [30] also proposes a multi-layered
routing architecture for ICN. The topmost layer, named the
rendezvous layer is responsible for inter-domain routing. This
layer is maintained by a hierarchical DHT. In general, the
hierarchical routing techniques suffer from scalability issue,
because the upper layer nodes in the hierarchy need to store
routing information for all the content in their children's sub-
trees. On the other hand, aRoute does not create any routing hot
spot and thus can scale better than the hierarchical approaches.

B. Gossip Based Routing in ICN

CCN [5], CURLING [31] and TRIAD [32] use gossip based
routing protocols, which incur significant management and
control overhead. CCN proposes to replace IP address prefixes
in BGP routing table with content name prefixes and route con-
tent requests by performing longest prefix matching in routing
table. The routing table size in CCN grows almost linearly with
the number of content. This growth rate is much higher than
that of BGP routing table since the number of content is several
order of magnitude higher than the IP prefixes. Hence, CCN
struggles to scale with an increase in the number of content.
The popular OSPF protocol used in intra-domain routing has
been extended to work on top of CCN [33] to route content
requests based on content names. However, the extended pro-
tocol, OSPFN has some limitations. First, the routers and the
links are still identified by IP addresses instead of CCN like
hierarchical names. Second, OSPFN does not have multi-path
routing support and it relies on GRE tunnels to traverse legacy
networks. Motivated by these limitations the authors later pro-
posed NLSR [34], a more improved link state routing protocol
for name based routing. To overcome OSPFN's limitations,
NLSR proposes a naming scheme for the routers and the links
in the network, multi-path routing support and propagation of
routing updates via Interest and Data packets (defined by CCN)
only. However, these two routing protocols still suffer from
the scalability issues inherited from CCN. CURLING [31]
proposes to remove the DNS and assigns a new entity, “Con-
tent Resolution Server (CRS)”, within each ISP to maintain
routing information. Content publish and request resolutions
are performed using a gossip based hop by hop protocol. This
protocol also maintains the business relationships between the
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ISPs. CURLING also provides a mechanism for publishing and
routing content requests in a non-global scope. CONET [35]
attempts to solve the routing table scalability issue with CCN
by proposing to have a fixed number of rows in the name based
routing table. When a router misses routing information for a
name based routing request, it resolves the request using a DNS
like name-system and updates its name based routing table
using some cache replacement policy. Routing in CBCB [36]
is based on controlled flooding of attribute-value pairs. Interest
for a particular content is issued by creating logical disjunctions
of conjunctions of elementary constraints over the values of
possible attributes. CBCB includes a broadcast protocol that
ensures loop-free paths, and a content based routing protocol
that avoids sending content to uninterested receivers by pruning
branches of the broadcast tree. The routing table size ina CBCB
router is expected to be exponential in the number of attributes.
CBCB requires network wide flooding to forward a request
with any unknown attributes, which incurs significant network
overhead. Distance-based Content Routing (DCR) [37] is a
name based routing technique that builds a multi-instantiated
destination spanning tree to compute the distance to multiple
copies of a content and routes traffic depending only on dis-
tance information. DCR improves over the other broadcast
based routing techniques by reducing the number of network
messages, but has the same data plane scalability issue in
terms of routing table size similar to CCN. In contrast to the
gossip-based routing approaches, a:Route does not flood the
network for content lookup, while requiring smaller routing
tables proportional to the logarithm of network size. Thus
avoiding the scalability issue as arising in gossip based routing
protocols.

C. Hash Based Routing in ICN

A number of other works in the literature propose to hash
content names to map to location identifiers and route based on
the hashed values. Internet Indirection Infrastructure (i3) [38],
LISP-DHT [39] and ROFL [40] are among the early DHT based
proposals in this area. i3 [38] was one of the first architectures
for routing on non-IP based labels. i3 uses a DHT and routes
the labels using an overlay network. i3 provides a more abstract
way to express packet delivery operations in applications and
does not focus on mapping the overlay DHT to the underlying
physical network. LISP-DHT [39], on the other hand, is not a
routing protocol, rather it provides a scalable mechanism for
locating content location from content names using DHT. The
content location is then used by the routing layer for the ac-
tual routing. ROFL [40] provides network routing with the help
of an inter-domain DHT. However, ROFL makes the assump-
tion that content names are flat and do not carry any semantics.
More recently, DMap [6] has proposed a global name resolu-
tion service for mobility and efficient content delivery in the
Internet. In this architecture, each content is assigned a glob-
ally unique identifier (GUID). A content's GUID is hashed to
obtain a list of IP addresses. The content's original location is
indexed at these IP addresses. These indices are updated when
that content is moved to a different location. Every network
entity in DMap needs to have a global knowledge of the IP
prefix advertisements from all the ASs to successfully locate
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the index location of a content. Moreover, the routers in the
Internet have to store extra index along with the BGP routing
table that they are already maintaining, which imposes a sig-
nificant storage overhead. Saino et al. explores the possibility
of using hash-routing schemes to place and locate content in
caches within an ISP's network, while optimizing the utiliza-
tion of the in-network caching space [41]. The authors exper-
imentally evaluate different hash-routing and cache placement
strategies and show that some hash-routing technique's perfor-
mance depend on the underlying network topology, while most
of these techniques can achieve a high cache hit rate when used
within an ISP's network. aRoute also works by hashing con-
tent names. Unlike the above mentioned approaches, a.Route is
not an overlay based routing technique where the routing nodes
need to store multiple tables for overlay and underlay routing.
«Route maps the hash based overlay network on top of a phys-
ical underlay and can be used to locate both the original con-
tent as well as a cached copy. Moreover, we do not make any
assumption about content name in «Route unlike some of the
previous works such as [40].

IX. CONCLUSION AND FUTURE WORK

In this paper we proposed oRoute, a name based routing
scheme for ICN. aRoute guarantees content lookup while en-
suring efficient bandwidth usage and small routing table size.
Routing in aRoute relies on a flexible overlay network topology
that can be efficiently mapped to the Internet AS-topology. We
also presented mathematical bounds on the routing scalability
of aRoute and the operating range of our mapping scheme.
Simulation results show that the routing efficiency of a«Route
is very close to the lower bound and much better than random
mapping. Compared to the existing routing techniques, our ap-
proach has a number of advantages. First, routing can be done on
names without sacrificing efficiency or completeness. Second,
after finding the node responsible for a query name, it is easy
to find other names within 1 or 2 edit distance; since the nodes
responsible for storing those names will be 1 or 2 overlay hops
away from the query target. Third, in contrast to hierarchical
routing mechanisms, there is no bottleneck node in the pro-
posed system. We achieve a capacity proportional load distri-
bution by placing the ASs at different levels in the partitioning
tree based on capacity. Fourth, compared to other tree-based
routing approaches, we conveniently select the size of the par-
titioning sets (|9;|), to tune the depth of the tree. This allows
us to easily decrease routing hops by increasing the number of
routing-links, and vice versa. The performance of aeRoute can
be greatly improved by adopting the caching strategies proposed
in Section IV-D. We intend to investigate aRoute's performance
in presence of indexing and content caching and experiment in
a large scale testbed.
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