Tools for Online Technical Collaboration

Stephen M. Watt
University of Western Ontario

TRICS, University of Western Ontario, 10 September 2014
Preliminary version of a talk to be given at West University of Timisoara, Romania, 22 September 2014
Previous TRICS!

1. Computer Algebra's Dirty Little Secret
 - Stephen M. Watt
 - University of Western Ontario

2. The Mathematics of Mathematical Handwriting Recognition
 - Stephen M. Watt
 - University of Western Ontario

3. Dependent Types and Categorical Programming
 - or What can we learn from Aldor?
 - Stephen M. Watt
 - University of Western Ontario
And now for something completely different...
Menu

Appetizers
Collaboration
Technical Content vs Pictures

Mains
Digital Ink
Mathematical Handwriting

Deserts
Previous Software
Present Generation
Collaboration
Collaborative Software

- MS SharePoint
- Yahoo Messenger
- CmapTools knowledge modeling kit
- Slideshare
- Skype
- Campfire
- Dabbleboard
- Google Docs
- CollabNet
- Dropbox

Dabbleboard
The whiteboard reinvented
Visualize, explore, collaborate
Lots of Collaborative Software
Common Features

• Slide shows
• Whiteboarding
• Voice chat
• Video chat
• Image capture
Expected Enterprise Collaboration Features
Circa 2013

Content
- Text / Rich Media

Document & Files
- MS Office / PDF / XML / etc.

Conversation
- Social Depth / News Feeds / IM / UC

Apps
- Integrated Business Apps / App Stores

From http://zdnet.com/blog/hinchcliffe
Technical Collaboration

“I think you should be more explicit here in step two.”

from *What’s So Funny about Science?* by Sidney Harris (1977)
Technical Collaboration

Missing:
• Mathematics
• Diagrams, graphs
• Geometric figures
• Technical knowledge base
• Document markup

• Scientific software connections
 (Maple, Mathematica, GeoGebra, R,...)
Isn’t a shared whiteboard, with the ability to save images enough??
The Treachery of Images

(La trahison des images)
\[
D = \frac{1}{c^2} \frac{d}{dt} \frac{dl}{d\theta} = \frac{1}{c^2} \frac{dP}{d\theta}
\]

\[
D^2 = \frac{1}{P^2} \frac{P_0 - P}{P} \sim \frac{1}{P^2}
\]

(1a)

\[
D^2 = \frac{K}{3} \frac{P_0}{P_0} \sim \frac{1}{P^2}
\]

(2a)

\[
D^2 \sim 10^{-53}
\]

\[
\rho \sim 10^{-26}
\]

\[
\rho \sim 10^8 \text{ L} \cdot \text{J}
\]

\[
\alpha \sim 10^{10} (10^{11}) \text{ J}
\]
Einstein’s Blackboard

• Einstein to receive honorary doctorate at Oxford, May 1931.

• Lecture at Rhodes House.

• Board retrieved and preserved by Edmund ("Ted") Bowen.

• Nice to look at, but content is trapped.
Digital Ink

• Location, time information, sometimes also pressure and angles.
• Capture online pen strokes, *not* images.

• Suitable for
 • **Recognition** algorithms
 • **Semantic** grouping
 • **Annotation**
 • **Manipulation**: search, transformation, archival.

• Problem: Multiple vendor-specific formats.
Ink Markup Language (InkML)

W3C Recommendation 20 September 2011

This version:
http://www.w3.org/TR/2011/REC-InkML-20110920/

Latest version:
http://www.w3.org/TR/InkML

Previous version:
http://www.w3.org/TR/2011/PR-InkML-20110510/

Editors:
Stephen M. Watt, University of Western Ontario and Maplesoft
Tom Underhill, Microsoft

Authors:
Yi-Min Chee (until 2006 while at IBM)
Katrin Franke (until 2004 while at Fraunhofer Gesellschaft)
Max Froumentin (until 2006 while at W3C)
Sriganesh Madhvanath (until 2009 while at HP)
Jose-Antonio Magaña (until 2006 while at HP)
Grégory Pakosz (until 2007 while at Vision Objects)
Gregory Russell (until 2005 while at IBM)
Muthuselvam Selvaraj (until 2009 while at HP)
Giovanni Seni (until 2003 while at Motorola)
Christopher Tremblay (until 2003 while at Corel)
Larry Yaeger (until 2004 while at Apple)
Pen-Based Math

- Input for CAS and document processing.
- 2D editing.
- Computer-assisted collaboration.
Pen-Based Math

• Different than natural language recognition:
 • 2-D layout is a combination of writing and drawing.
 • Many similar few-stroke characters.
 • Many alphabets, used idiosyncratically.
 • Many symbols, each person uses a subset.
 • No fixed dictionary for disambiguation.
Character Recognition

• A story about a UI proposal
• A story about three statisticians
• Concentrate on character recognition
• Several projects ignore this problem
Usual Character Reco. Methods

• Smooth and re-sample data \textit{THEN}

• Match against \textit{N} models by sequence alignment \textit{OR}

• Identify “features”, such as
 • coordinate values of sample points, number of loops, cusps, writing direction at selected points, \textit{etc}

Use a classification method, such as
 • Nearest neighbour, Subspace projection, Cluster analysis, Support Vector Machine

\textit{THEN}

• Rank choices by consulting dictionary
Difficulties

- Having many similar characters (e.g. for math) means comparison against all possible symbol models is slow.

- Determining features from points
 - Requires many \textit{ad hoc} parameters.
 - Replaces measured points with interpolations
 - It is not clear how many points to keep, and most methods depend on number of points
 - Device dependent

- What to do since there is no dictionary?

- New ideas are needed!
What the Computer Sees
What the Computer Sees
Orthogonal Series Representation

• **Main idea:**
 Represent traces as curves, not discrete points and coordinate curves as truncated orthogonal series.
Orthogonal Series

• Start with inner product on a space of functions, e.g.

\[\langle f, g \rangle = \int_{a}^{b} f(t)g(t)w(t)dt \]

• Functions \(\phi_i(t) \) give an orthogonal basis if we can write

\[f(t) = \sum_{i=0}^{\infty} f_i \phi_i(t) \quad \text{and} \quad \langle \phi_i, \phi_j \rangle = 0 \text{ if } i \neq j \]

Then \(f_i = \langle f, \phi_i \rangle / \langle \phi_i, \phi_i \rangle \).

• If sum is truncated, \(f \) is approximated.

• Obtain orthogonal basis from any basis set, e.g. \(\{1, t, t^2, \ldots \} \), by Gram-Schmidt process.
Orthogonal Series Representation

• **Main idea:**
 Represent traces as curves, not discrete points and coordinate curves as truncated orthogonal series.

• **Advantages:**
 - *Compact* – few coefficients needed
 - *Geometric*
 – the truncation order is a property of the character set
 – gives a natural metric on the space of characters
 - *Algebraic*
 – properties of curves can be computed algebraically
 (instead of numerically using heuristic parameters)
 - *Device independent*
 – resolution of the device is not important
Distance Between Curves

• Elastic matching:
 • Approximate the variation between curves by some fn of distances between sample points.
 • May be coordinate curves or curves in a jet space.

• Sequence alignment
• Interpolation (“resampling”)

• Why not just calculate the area?
• This is very fast in ortho. series representation.
Distance Between Curves

\[\bar{x}(t) = x(t) + \xi(t) \quad \xi(t) = \sum_{i=0}^{\infty} \xi_i \phi_i(t), \quad \phi_i \text{ ortho on } [a, b] \text{ with } w(t) = 1. \]

\[\bar{y}(t) = y(t) + \eta(t) \quad \eta(t) = \sum_{i=0}^{\infty} \eta_i \phi_i(t) \]

\[\rho^2(C, \tilde{C}) = \int_{a}^{b} \left[(x(t) - \bar{x}(t))^2 + (y(t) - \bar{y}(t))^2 \right] dt = \int_{a}^{b} [\xi(t)^2 + \eta(t)^2] dt \]

\[\approx \int_{a}^{b} \left[\sum_{i=0}^{d} \xi_i^2 \phi_i^2(t) + \text{cross terms} + \sum_{i=0}^{d} \eta_i^2 \phi_i^2(t) + \text{cross terms} \right] dt \]

\[= \sum_{i=0}^{d} \xi_i^2 + \sum_{i=0}^{d} \eta_i^2 \]

• Just as accurate as elastic matching. Much less expensive.

• Linear in \(d\), the degree of the approximation. < 3 \(d\) machine instructions (30ns) vs several thousand!
Problems

• Want fast response – how to work while trace is being captured.

• Low RMS does not mean similar shape.
Problem 1. On-Line Coefficients

• The main problem:
 In handwriting recognition, the human and the computer take turns thinking and sitting idle.

• We ask:
 Can we do useful work while the user is writing and thereby get the answer faster after the user stops writing?

• The answer is “Yes”!
Problem 1. On-Line Coefficients

• Use modified Legendre polynomials P_i as basis on the interval $[0, 1]$, with weight function 1.

• Collect numerical values for $f(\lambda)$ on $[0, L]$.
$\lambda = \text{arc length.}$
L is not known until the pen is lifted.

• As the sample points are collected, numerically integrate the moments $\int \lambda^i f(\lambda) d\lambda$.

• After last point, compute series coefficients for f with domain and range scaled to $[0, 1]$.
This uses a single linear transformation of the moments.
Problem 1. On-Line Coefficients

• Approach works for any inner product with linear weighting.

• This is the Hausdorff moment problem (1921), shown to be unstable by Talenti (1987).

• It is just fine, however, for the dimensions we need.
Problem 2. Shape vs Variation

• The corners are not in the right places.

• Work in jet space to force coords & derivs to be close.

• Legendre-Sobolev inner product.

\[\langle f, g \rangle_{LS} = \int_{a}^{b} f(t)g(t)dt + \mu_1 \int_{a}^{b} f'(t)g'(t)dt + \mu_2 \int_{a}^{b} f''(t)g''(t)dt + \cdots \]

• 1st jet space sufficient.
 • Choose μ_1 experimentally to maximize reco rate.
 • Can be also done on-line. [Golubitsky + SMW 2008, 2009]
Legendre-Sobolev Basis
Life in an Inner Product Space

• With the Legendre-Sobolev inner product we have
 • Low dimensional rep for curves (10 + 10 + 1)
 • Compact rep of samples ~ 160 bits [G+W 2009]
 • >99% linear separability => convexity of classes
 • A useful notion of distance between curves
 that is very fast to compute
Linear Separability
Linear Separability
Comparison of Sample to Models

• Use Euclidean distance in the coefficient space.

• Can trace through SVM-induced cells incrementally.

• Normed space for characters gives other advantages.
The Joy of Convexity

• Convexity ⇒ Linear homotopies stay within a class

\[C = (1 - t) A + t B \]

• Can compute distance of a sample to this line

• Distance to convex hull of nearest neighbors in class gives best recognition [Golubitsky+SMW 2009,2010]
Choosing between Alternatives

Red class or blue class?
Choosing between Alternatives

The nearest k samples are blue.
Choosing between Alternatives

The nearest convex hull of neighbors is red.
Training

• Using CHKNN allows training with relatively few samples. (Dozens vs Thousands per class)
Error Rates as Fn of Distance

- Error rate as fn of distance gives confidence measure for classifiers [MKM – Golubitsky + SMW 2009]
Combining with Statistical Info

• Empirical confidence on classifiers allows geometric recognition of isolated symbols to be combined with statistical methods.

• Domain-specific n-gram information:
 • Research mathematics – 20,000 articles from arXiv [MKM -- So+SMW 2005]
 • 2nd year engineering math – most popular textbooks [DAS -- SMW 2008]
 • Inverse problem – identifying area via n-gram freq! [DML -- SMW 2008]
Baseline Estimation

• Figure out baseline from the characters, rather than the other way around, which is more usual.

• We can locate some important features by identifying special points.

We refer to a point such as this, that determines the height of a metric line, as a determining point.
Baseline Estimation

• Juxtaposition ambiguity

\[\overline{Pq} \quad \overline{Pq} \quad \overline{Pq} \quad \overline{Pq} \]

\[p9 \quad Pq \quad pq \quad p9 \]

• Handwriting neatening

\[a_1 x^2 + a_2 \rightarrow a_1 x^2 + a_2 \]
The average symbol of a set of known samples for a class can be computed as the average point in the functional space,

\[\bar{C} = \frac{1}{n} \sum_{i=1}^{n} C_i \]
Deriving from a Reference Symbol

Average Symbol

Sample-1-Initial

Sample-1-Derived

Sample-2-Initial

Sample-2-Derived

Optimization

Arc-length guess

Arc-length guess
Using Homotopy

• Some samples are far away from the reference symbol.

• We use a homotopy between the reference symbol and the target sample in a multi-step method.
Prior Generations of Software

• 2000 Cross Pad:
Prior Generations of Software

• 2002 Pocket PC:
Prior Generations of Software

• 2002-2008 Tablet PC:
Prior Generations of Software

• 2008-2013 Java Application:
InkChat (Java Version)

• Skype and GTalk add-on to the Java application.
Problems

• Requires installation:
 • Big hassle for someone to use only once in a while or on all their machines.

• Limited portability:
 • Users expect versions on Android, iOS, Windows, Mac OS X, Linux, etc...
 • Incompatible software bases
 • Flakey, moving APIs

• Need to support multiple devices.
 • Nowadays a single user will want to work across many devices.
Solution

• Use browser infrastructure.
Solution

• Use browser infrastructure.

• JavaScript is not a great language for large projects, but.....
 • It is ubiquitous: Telephones, tablets, laptops, ...
 • Libraries for many UI elements
 • Our new recognition algorithms are fast enough 😊

• Rapid development:
 • Prototype developed in 3 months by 3 students.
Current Generation

Desktop

\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi = -\frac{\partial^2}{\partial z^2} \psi
\]

\[a^2 + b^2 = c^2 \]

\[(a+b)^2 = 4 \left(\frac{1}{2} ab \right) + c^2 \]
\[a^2 + 2ab + b^2 = 2ab + c^2 \]

Telephone

iPhone 5

\[a^2 + b^2 = c^2 \]
Current Generation

Tablet

Nexus 10

\[a^2 + b^2 = c^2 \]

InkML
Simple Interface with device-adapted menus

\[\sqrt{a^2 + b^2} \]
Ink Controls
Collaboration:
Multiple Users Connected to Same URI

\[a^2 + b^2 = c^2 \]
Collaboration:
Different Viewports from Different Devices
Collaboration:
Pointers for Discussions
Collaboration:
Document Annotation
Collaboration: Google Hangout Embedding
Cloud Integration

• Save or load files to cloud storage
 • DropBox
 • Google Keep
 • Others possible

• Previous work to store user profiles
 • Save cloud of ground-truth labelled symbols (corrected/accepted)

• Future work to store user-defined brushes
Architectural Direction

A

Control Bar

Popup Control

B

Control Layer

Presentation Layer

Background Layer
Architectural Direction
Architectural Direction

E

Touch/Trace Event

Platform-Specific Frame

Touch/Trace Event

Portable Application

F

1 - Request to create a control
2 - Callback to create control with local look and feel
3 - Touch/Trace Event
4 - Forward Touch/Trace event
5 - Forward Control Action
6 - Control Close Request

Read Events
1 - Notification of Participant event (object creation / deletion / movement
history navigation / page change / etc)

2 - Notification of Server Event (Passed on from another client or result of
server configuration)
1 - New stroke / event
2 - Distribute to recognizers for screen area
3 - Connect object space
4 - Return ranked results
5 - a Update presentation
 b Update server
Application Web Site
Conclusions

• Technical collaboration requires tools not found in the business setting.
• Drawing, mathematics and scientific documents are in the work flow.
• The treachery of images.
• Needed:
 • Math handwriting recognition.
 • Easy geometry and diagrams.
 • Document mark up.
 • APIs to scientific software.
• Even a little goes a long way....
• ... there is a lot of opportunity for future development.
Thanks

Bruce Char
Joseph Choi
Michael Friesen
Oleg Golubitsky
Rui Hu
Vadim Mazalov
Shirley Miao

Jeliasko Polihronov
Maya Ramamurthy
Elena Smirnova
Clare So
Stephen Solis
Coby Viner
James Wake

Maplesoft
Microsoft
MITACS
NSERC