Computer Algebra’s Dirty Little Secret

Stephen M. Watt
University of Western Ontario

TRICS Seminar, UWO CSD, 5 November 2008
What This Talk Is About

- Computers and mathematics
- Computer algebra and symbolic computation
- What computer algebra systems *can* do
- What computer algebra systems *cannot* do
- How to get them to do it
Warning!

This talk is X-rated.

It is intended for a mathematically mature audience.

X, other variables and graphical content may appear.

Viewer discretion is advised.
Computers doing mathematics

- Numerical computing: $\sin(1.02)^2$
- Symbolic computing: $\text{diff}(\sin(x^n)^m, x)$
- Math communication: $\frac{\partial}{\partial x} \sin^m(x^n)$
- Automated theorem proving, conjecture generation, ...
Mathematics extending computing

- Algebraic notation: $a*d - b*c$
- Arrays
- Garbage collection
- Operator overloading
- Templates and generic programming
- Functional programming, ...
Some of the things I do

- Develop **algorithms**
 - Algebraic algorithms
 - Symbolic-numeric algorithms
 \[\text{gcd}(x + 1, \ x^2 + 2.01*x + .99) \]

- Study how to build computer algebra **systems**
 - Memory management
 - Higher-order type systems
 - Optimizing compilers

- Mathematical **knowledge** management
 - Representation of mathematical objects
 - Mathematical handwriting recognition
What do computer algebra systems do?

Choose the best answer:
(a) Manipulate expressions and equations.
(b) Do calculus homework.
(c) Give general formulas as answers.
(d) Model industrial mathematical problems.
(e) All of the above.
A Maple session

> limit((2*sin(x)-sin(2*x))/(x - sin(x)), x = 0);

> int(sin(x)^5 + exp(-x^2/b), x = 0..Pi);

> factor(x^15+1);

> plot(sin(tanh(x)) - tanh(sin(x)), x = -1..1);

> taylor(sin(tanh(x)) - tanh(sin(x)), x = 0, 10);

\[
\frac{1}{90} x^7 - \frac{13}{756} x^9 + O(x^{10})
\]
Another session (Be careful what you ask!)
Computer Algebra vs Symbolic Computation

- **Computer Algebra**
 - **Arithmetic** on defined algebraic structures
 - Polynomials, matrices, algebraic functions,...
 - May involve symbols parameters, indeterminates

- **Symbolic computation**
 - **Transformation** of expression trees
 - Symbols for opns ("+", "sin"), variables, consts
 - Simplification, expression equivalence
Computer Algebra vs Symbolic Computation

- **Computer Algebra**
 - Well-defined semantics
 - Compose constructions
 - Algebraic algorithms

- **Symbolic computation**
 - Alternative forms (factored, expanded, Horner...)
 - Working in partially-specified domains
 - Working symbolically
Computer Algebra

\(\mathbb{Q}[\alpha]/\langle \alpha^2 + 3\alpha + 7 \rangle : \)

\[
\frac{1}{5\alpha^2 + 2\alpha - 7} \rightarrow \alpha^2 + \frac{3940}{1309} \alpha + \frac{9160}{1309}
\]
Symbolic Computation

\[ax^2 + bx + c = a \left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2} \right) - a \left(\frac{b^2}{4a^2} - \frac{c}{a} \right) \]

\[= a \left(x + \frac{b}{2a} \right)^2 - a \left(\frac{\sqrt{b^2 - 4ac}}{2a} \right)^2 \]

\[= a \left(x - \frac{-b + \sqrt{b^2 - 4ac}}{2a} \right) \cdot \left(x - \frac{-b - \sqrt{b^2 - 4ac}}{2a} \right) \]
Dirty Little Secret 1

- Symbolic mathematics systems have become increasingly “algebratized” over the past 20 years.

- **This is good:**
 Spectacular algorithmic advances allow us to solve problems not even dreamed of in the 80s.

- **This is bad:**
 We are no closer to handling simple problems that are outside the classical algebraic domains.
Algebraic Algorithms

- Problems are solved using methods vastly different than the ones you learned in school or university.

- Examples:
 - Polynomial multiplication: DFT
 - Integration: Risch algorithm
 - Factorization: Cantor-Zassenhaus
Polynomial Multiplication

- Two polynomials

\[P = 3x^3 + 4x^2 - x + 3 \quad \text{and} \quad Q = x^3 - 2x^2 + x + 7 \]

- School method

\[
\begin{array}{cccccc}
3x^3 & + & 4x^2 & - & x & + 3 \\
\times & x^3 & - & 2x^2 & + & x & + 7 \\
\hline
21x^3 & + & 28x^2 & - & 7x & + 21 \\
3x^4 & + & 4x^3 & - & x^2 & + 3x \\
-6x^5 & - & 8x^4 & + & 2x^3 & - 6x^2 \\
3x^6 & + & 4x^5 & - & x^4 & + 3x^3 \\
\hline
3x^6 & - & 2x^5 & - & 6x^4 & + 30x^3 & + 21x^2 & - 4x & + 21
\end{array}
\]

- Multiplication costs \(O(d^2) \)
Polynomial Multiplication

- **Point-wise Value Method**

Evaluate

\[P = \{(-3, -39), (-2, -3), (-1, 5), (0, 3), (1, 9), (2, 41), (3, 117)\} \]
\[Q = \{(-3, -41), (-2, -11), (-1, 3), (0, 7), (1, 7), (2, 9), (3, 19)\} \]

\[PQ = \{(-3, 1599), (-2, 33), (-1, 15), (0, 21), (1, 63), (2, 369), (3, 2223)\} \]

Interpolate

- **DFT trick:** evaluate at “roots of unity”

\[\omega^0, \omega^1, \omega^2, \ldots \]
\[\omega = \sqrt[n]{1} \quad \text{like } \exp(2\pi i/n) \text{ over } \mathbb{C}, \text{ but over } \mathbb{F}_p \]

- Multiplication now \(O(d \log d) \)
Dirty Little Secret 2

- Computer math systems are presently very bad at computing with *symbolic* values.

- Polynomial of degree d.
- Field of characteristic p.
- Space of dimension n.

- Computer algebra has a hard time representing.
- Symbolic computation has few algorithms.
What we have

\[
\frac{k - k^n}{k}
\]

\[
\text{simplify(\%);} \\
1 - \frac{k^n}{k}
\]

\[
\text{collect(\%, k);} \\
1 - \frac{k^n}{k}
\]

\[
\text{expand(\%);} \\
1 - k^{(n-1)}
\]

\[
\text{simplify(\%);} \\
1 - k^{(n-1)}
\]
What we want

\[x^{2n} - y^{2m} = (x^n + y^m)(x^n - y^m) \]

\[x^{n^2+3n} - y^{2m} = (x^{n(n+3)/2} + y^m)(x^{n(n+3)/2} - y^m) \]

\[16^n - 81^m = (2^n - 3^m)(2^n + 3^m)(2^{2n} + 3^{2m}) \]
Bringing Approaches Together

- Can *algebratize* symbolic computation (initial algebras, free algebras, adjoint functors)
- Can *symbolicize* algebraic computation (more varied algebraic structures)

- Amount to the same thing
- Need *algorithms* for these formal structures.
Two Steps

- Symbolic polynomials:
 “polynomials” in which the exponents are integer-valued functions.

- Symbolic matrices:
 “matrices” in which the internal structure are of symbolic size.

- We work with these easily by hand but CAS fail.
Symbolic Polynomials

- Arise frequently in practice.

- Wish to perform as many of the usual polynomial operations as possible.

- Model as
 - monomials with integer-valued polynomials as exponents, and
 - finite combinations of “+” and “×”.

Symbolic Polynomials

These are OK

\[x^n - y^m \]

\[(nx^{n^2-2m+2} - x^2y^k) \times (x^n + 1) \]

These are not OK

\[x^{\binom{n}{m}} - x^{\text{lcm}(n,m)} + 1 \]

\[(x - 1) \times \sum_{i=0}^{n} x^i \]
For an integral domain D with quotient field K, univariate integer-valued polynomials may be defined as

$$\text{Int}_{[X]}(D) = \{ f(X) \mid f(X) \in K[X] \text{ and } f(a) \in D, \text{ for all } a \in D \}$$

(Note: In standard notation, the $[X]$ is not written.)

- Example: $\frac{1}{2}n^2 - \frac{1}{2}n \in \text{Int}_{[n]}(\mathbb{Z})$.
- We make use of the obvious multivariate generalization, which we denote $\text{Int}_{[n_1,\ldots,n_p]}(D)$.
Symbolic Polynomials

(also ok to ignore if you don’t like math – you’ve got the idea already)

Definition: The ring of symbolic polynomials in $x_1, ..., x_v$ with exponents in $n_1, ..., n_p$ over the coefficient ring R is the ring consisting of finite sums of the form

$$
\sum_i k_i x_1^{e_{i1}} x_2^{e_{i2}} \cdots x_v^{e_{iv}}
$$

where $k_i \in R$ and $e_{ij} \in \text{Int}_{[n_1, ..., n_p]}(\mathbb{Z})$. Multiplication is defined by

$$
k_1 x_1^{e_{11}} \cdots x_v^{e_{1v}} \times k_2 x_1^{e_{21}} \cdots x_v^{e_{2v}} = k_1 k_2 x_1^{e_{11}+e_{21}} \cdots x_v^{e_{1v}+e_{2v}}
$$

- Write $R[n_1, ..., n_p; x_1, ..., x_v]$.
- $R[; x_1, ..., x_v] \cong R[x_1, ..., x_v, x_1^{-1}, ..., x_v^{-1}]$.
- $R[n_1, ..., n_p; x_1, ..., x_v]$ is the group ring $R[\text{Int}_{[n_1, ..., n_p]}(\mathbb{Z})^v]$, identifying $x_1^{e_1} x_2^{e_2} \cdots x_v^{e_v} \cong (e_1, \ldots, e_v) \in \text{Int}_{[n_1, ..., n_p]}(\mathbb{Z})^v.$
Why Insist on Integer-Valued Exponents?

- Otherwise they are not really a symbolic model of polynomials,
- they do not behave like polynomials when exponent vars are evaluated,
- factorizations would never happen
 \[x^{n^2+n} - 1, \]
- or they would not have a well-defined end
 \[(x^{\frac{n^2+n}{2}} + 1)(x^{\frac{n^2+n}{4}} + 1)(x^{\frac{n^2+n}{8}} + 1) \cdots (x^{\frac{n^2+n}{2^k}} + 1)(x^{\frac{n^2+n}{2^k}} - 1).\]
- So integer valued polnomial exponents are more useful in practice and for the theory.
Symbolic Polynomials

- Algorithms for arithmetic (+, ×) straightforward.

- Q: Can we do more interesting things like factorize or take GCDs of symbolic polynomials?

- A: Yes!
Theorem: \(\mathbb{Z}[n_1, ..., n_p; x_1, ..., x_v] \) is a UFD.

- First consider the case when exponents are in \(\mathbb{Z}[n_1, ..., n_p] \).

We remove the exponent variables inductively.

\(x, x^n, x^{n^2}, ... \) are algebraically independent so we introduce the new variables \(x_{k,j} \)

\[
x_k^{e_{ik}} = x_k^{\sum_j h_{ij}n_j^1} = \prod_j \left(x_k^{n_j} \right)^{h_{ij}} = \prod_j x_{k,j}^{h_{ij}}, \quad h_{ij} \in \mathbb{Z}[n_2, ..., n_p].
\]
Multiplicative Structure

Theorem: \(\mathbb{Z}[n_1, \ldots, n_p; x_1, \ldots, x_v] \) is a UFD.

- With exponents in \(\text{Int}_{[n_1, \ldots, n_p]}(\mathbb{Z}) \), care must be taken to find the "fixed divisors" of the exponent polynomials.

For example, \(n(n - 1) \) is always even.

This implies the factorization

\[
x^2 - y^{n^2-n} = (x - y^{n(n-1)/2})(x + y^{n(n-1)/2})
\]
Integer-valued Polynomials and Fixed Divisors

Property: If f is a polynomial in $\text{Int}_{[n_1, \ldots, n_p]}(\mathbb{Z}) \subset \mathbb{Q}[n_1, \ldots, n_p]$, then when f is written in the basis $\binom{n_1}{i_1} \cdots \binom{n_p}{i_p}$, its coefficients are integers.

Note $\binom{n}{j} = n(n-1) \cdots (n-j+1)/j!$.

Property: If f is a polynomial in $\mathbb{Z}[n_1, \ldots, n_p]$, then the largest fixed divisor of f is the gcd of the coefficients of f written in the binomial basis.
Algorithm Family 1: The Extension Method

- Put exponents in basis $\binom{n_i}{j}$.
- Map to new variables using $\gamma : x_{\binom{n_1}{i_1}}^{(1)} \cdots \binom{n_p}{i_p}^{(p)} \mapsto X_{k_{i_1} \cdots i_p}$.
- Solve problem over $\mathbb{Z}[X_{10\ldots0}, \ldots X_{vp\ldots p}]$.
- Map back.

“Solve problem” might be “compute GCD”, “factorize”, etc.
Example

\[p = 8x^{n^2+6n+4+m^2} - m - 2x^{2n^2+7n+2mn}y^{n^2+3n} \\
- 3x^{n^2+3n+2mn}y^{n^2+3n} + 12x^4+m^2 - m+2n \]

\[q = 4x^{n^2+4n+m^2+6m} - 28x^{n^2+8n+m^2+6m+2}y^{4n^2-4n} \\
+ 2x^{n^2+4n} - 14x^{n^2+8n+2}y^{4n^2-4n} + 6x^{m^2+6m} \\
- 42x^{m^2+6m+4n+2}y^{4n^2-4n} - 21y^{4n^2-4n}x^{4n+2} + 3 \]

GCD will have exponents of \(x \) as polynomials in \(m \) and \(n \) of maximum degree 2.

\[\left\{ \binom{n}{i} \binom{m}{j} \mid 0 \leq i + j \leq 2 \right\} = \left\{ 1, n, m, \frac{n(n-1)}{2}, nm, \frac{m(m-1)}{2} \right\} \]

GCD will have exponents of \(y \) as polynomials in \(n \) of maximum degree 2.

\[\left\{ \binom{n}{i} \mid 0 \leq i \leq 2 \right\} = \left\{ 1, n, \frac{n(n-1)}{2} \right\} \]
Example (continued)

Make the change of variables:

\[\gamma = \{ x \mapsto A, \ x^n \mapsto B, \ x^{(n)} \mapsto C, \ x^m \mapsto D, \ x^{mn} \mapsto E, \ x^{(m)} \mapsto F, \]
\[y \mapsto G, \ y^n \mapsto H, \ y^{(n)} \mapsto I \} \]

\[q = 4B^5C^2D^7F^2 - 28A^2B^9C^2D^7F^2I^8 + 2B^5C^2 - 14A^2B^9C^2I^8 \]
\[+ 6D^7F^2 - 42A^2B^4D^7F^2I^8 - 21A^2B^4I^8 + 3. \]

\[\text{GCD}(p, q) \] and factorization of \(p \) are:

\[g = 2B^5C^2 + 3 \]

\[p = B^2 \times (2B^5C^2 + 3) \times (2A^2F - BCEIH^2) \times (2A^2F + BCEIH^2) \]
Example (continued)

Apply the inverse substitution:

\[g = 2x^{n^2+4n} + 3 \]
\[p = x^{2n} \times \left(2x^{n^2+4n} + 3 \right) \times \left(2x^{1/2 m^2 - 1/2 m+2} - x^{1/2 n^2 + mn+1/2 n} y^{1/2 n^2 + 3/2 n} \right) \times \left(2x^{1/2 m^2 - 1/2 m+2} + x^{1/2 n^2 + mn+1/2 n} y^{1/2 n^2 + 3/2 n} \right). \]
A Problem:

How to Factor $x^{1000}n^{1000}+mn - 1$

- To handle fixed divisors, extension method converts to binomial basis.
- Gives a polynomial in a million variables.

- Instead, compute the maximum possible fixed divisor C_k over the primitive parts of all exponent polynomials of x_k.
- Change of variables $x_k \rightarrow X_k^{C_k}$.

- Exponent polynomials retain their sparsity.
- Number of new variables is at most linear in the size of the input.
Other Symbolic Polynomial Algorithms

- Algorithm Family 2: Evaluation/interpolation of exponents. (Interpolate symmetric polynomials.)
- Sparse evaluation/interpolation of exponents.
- Exponents on coefficients.
- Exponent variables as base variables.
- Functional decomposition of symbolic polynomials. If $f = g \circ h$, find g and h.
Symbolic Matrix Arithmetic

- Earlier work by Alan Sexton and Volker Sorge on determining expressions for regions in matrices, e.g.

\[
A = \begin{bmatrix}
 a_{11} & \cdots & a_{1n} & 0 \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n1} & \cdots & a_{nn} & 0 \\
 0 & \cdots & b_{11} & \cdots & b_{1m} \\
 \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & \cdots & b_{m1} & \cdots & b_{mm}
\end{bmatrix}
\]

where \(a_{ij} \) is one function of \(i \) and \(j \) and \(b_{ij} \) is another, and \(n \) and \(m \) are unknowns.

- For them a general matrix entry is a set of expression/condition pairs.

\[
A_{ij} = \begin{cases}
 0 & i > j \\
 a_{ij} & i \leq j \land j \leq n \\
 0 & i \leq n \land j > n \\
 b_{i-n, j-n} & i > n \land i \leq j
\end{cases}
\]

- Collaboration: Do arithmetic on these objects
The usual problem with piecewise fns

- The usual problem is that the number of conditions multiply on each arithmetic operation. q conditions on each of n operands gives q^n cases.

- Example:

 $U = [u_1, u_2, ..., u_h, u'_1, u'_2, ..., u'_{n-h}]$

 $V = [v_1, v_2, ..., v_k, v'_1, v'_2, ..., v'_{n-k}]$

 The general entry for $U + V$ is

 $u_i + v_i$ $i \leq \min(h, k)$

 $u_i + v'_i$ $k < i \leq h$

 $u'_i + v_i$ $h < i \leq k$

 $u'_i + v'_i$ $\max(h, k) < i$

- At least one of the two middle cases will be empty, but we can’t tell which because h and k are unknown.

- For a sum of n such vectors, we have 2^n cases. Intractable.
Use Basis Functions

- **Definition**

\[\xi(i, y, z) = \begin{cases}
1 & \text{if } y \leq i < z \\
-1 & \text{if } z \leq i < y \\
0 & \text{otherwise}
\end{cases} \]

- **Properties**

\[\xi(i, y, y) = 0 \]
\[\xi(i, y, z) = -\xi(i, z, y) \]
\[\xi(i, y, x) + \xi(i, x, z) = \xi(i, y, z) \]
Then Add General Terms

- Addition, based on general terms:

 \[U_i + V_i = \xi(i, 1, h) \times u_i + \xi(i, h, n) \times u'_{i-h+1} + \xi(i, 1, k) \times v_i + \xi(i, k, n) \times v'_{i-k+1} \]

- Suppose \(h < k \), then the above yields a sum of three terms:

 \[U_i + V_i = \xi(i, 1, h) \times (u_i + v_i) + \xi(i, h, k) \times (u'_{i} + v'_{i}) + \xi(i, k, n) \times (u'_{i} + v'_{i}) \]

- But due to the properties of \(\xi(i, j, k) \), this is exactly the same as the expression for \(k < h \).

- So adding \(n \) vectors requires \(n + 1 \) terms with \(n \) terms each instead of \(2^n \) cases with \(n \) terms each.

- Same works for matrices and with more complex internal structure.
Conclusions

- Computer algebra researchers should realize that their spectacular success hides an equally spectacular failure.

- There is a practically important, and theoretically rich middle ground between “computer algebra” and “symbolic computation.”

- We can and should explore this by
 - 1. Creating new useful well-defined structures.
 - 2. Inventing algorithms for these structures.
 - 3. Getting our math software to handle them.