
FAST ALGORITHMS, MODULAR METHODS, PARALLEL APPROACHES

AND SOFTWARE ENGINEERING FOR SOLVING POLYNOMIAL SYSTEMS

SYMBOLICALLY

(Spine title: Contributions to Polynomial System Solvers)

(Thesis format: Monograph)

by

Yuzhen Xie

Graduate Program

in

Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies

The University of Western Ontario

London, Ontario, Canada

September 4, 2007

c© Yuzhen Xie 2007

THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Joint-Supervisor: Examination committee:

Dr. Marc Moreno Maza Dr. Rob Corless

Joint-Supervisor:
Dr. Erich Kaltofen

Dr. Stephen M. Watt Dr. Hanan Lutfiyya

Dr. Sheng Yu

The thesis by

Yuzhen Xie

entitled:

Fast Algorithms, Modular Methods, Parallel Approaches and Software

Engineering for Solving Polynomial Systems Symbolically

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Date Chair of the Thesis Examination Board

ii

Abstract

Symbolic methods are powerful tools in scientific computing. The implementation of

symbolic solvers is, however, a highly difficult task due to the extremely high time and

space complexity of the problem. In this thesis, we study and apply fast algorithms,

modular methods, parallel approaches and software engineering techniques to improve

the efficiency of symbolic solvers for computing triangular decomposition, one of the

most promising methods for solving non-linear systems of equations symbolically.

We first adapt nearly optimal algorithms for polynomial arithmetic over fields to

direct products of fields for polynomial multiplication, inversion and GCD compu-

tations. Then, by introducing the notion of equiprojectable decomposition, a sharp

modular method for triangular decompositions based on Hensel lifting techniques is

obtained. Its implementation also brings to the Maple computer algebra system a

unique capacity for automatic case discussion and recombination.

A high-level categorical parallel framework is developed, written in the Al-

dor language, to support high-performance computer algebra on symmetric multi-

processors and multicore processors. A component-level parallelization of triangular

decompositions by the Triade algorithm is realized using this framework. Parallelism

is created by applying modular methods, and task scheduling is guided by the geo-

metric information discovered during the solving process.

By reviewing the RegularChains library in Maple, the challenges for the con-

ception and implementation of triangular decompositions are analyzed. The software

engineering techniques for developing a solver in three computer algebra systems

targeting different communities of users are compared. We also prove and add two

methods for efficiently computing irredundant triangular decompositions and for ver-

ifying symbolic solvers.

Our experimentation shows that the software developed, based on our approaches,

helps solving application problems that are out of the scope of other comparable

solvers. We believe that the algorithms and methods and the framework and our

implementation techniques could benefit other areas of scientific computing.

iii

Keywords: polynomial system solving, non-linear equations, triangular decom-

position, equiprojectable decomposition, fast algorithm, modular method, multi-

processed parallelism, component-level parallelization, categorical parallel framework,

irredundant triangular decomposition, verification of solvers

iv

Acknowledgments

While my name is the only one that appears on the author list of this thesis, there are

several other people deserving recognition. My supervisors, Dr. Marc Moreno Maza

and Dr. Stephen M. Watt, provided excellent research environment and support

through my entire PhD study. I wish to extend my appreciation and gratitude to

Dr. Marc Moreno Maza for introducing me to these interesting and challenging

projects. I feel lucky to participate to these scientific adventures. I feel also honored

to collaborate with my co-authors: Changbo Chen, Dr. Xavier Dahan, Dr. Franccois

Lemaire, Wei Pan, Dr. Éric Schost, Dr. Ben Stephenson and Dr. Wenyuan Wu.

Sincere thanks and appreciation are extended to all the Professors and Staff

members from ORCCA lab and the Computer Science Department for their invalu-

able teaching and assistance. I also wish to thank fellow graduates and friends for

their help and wonderful friendship.

My sincere appreciation also goes to my family for their love and support

throughout my life and especially the past few years.

Thank God for everything!

v

Contents

Certificate of Examination ii

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Briefing of Polynomial System Solving 1

1.2 Contributions of this Thesis . 4

2 Background 11

2.1 Triangular decomposition: An introduction 11

2.2 Regular Chains: An introduction . 17

2.3 Algebraic Varieties . 19

2.4 Gröbner Bases . 23

2.5 Triangular Sets . 27

2.6 Regular Chains . 34

2.7 The Triade Algorithm . 38

3 Fast Polynomial Arithmetic over Direct Products of Fields 45

3.1 Introduction . 45

3.2 Complexity Notions . 51

3.3 Basic Complexity Results: Multiplication and Projection 54

3.4 Fast GCD Computations Modulo Triangular Sets 55

3.5 Fast Computation of Quasi-inverses 60

3.6 Coprime Factorization . 62

3.6.1 GCD-Free Basis . 63

3.6.2 Subproduct Tree Techniques 65

3.6.3 Multiple GCD’s . 67

vi

3.6.4 All Pairs of GCD’s . 68

3.6.5 Merging GCD-Free Bases . 69

3.6.6 Computing GCD-Free Bases 70

3.7 Removing Critical Pairs . 75

3.8 Concluding the Proof . 76

4 A Modular Method for Triangular Decomposition 79

4.1 Introduction . 79

4.2 Equiprojectable Decomposition of Zero-dimensional Varieties 84

4.2.1 Notion of Equiprojectable Decomposition 84

4.2.2 Split-and-Merge Algorithm . 86

4.3 A Modular Algorithm for Triangular Decompositions 95

4.4 Experimental Results . 97

4.5 An Application of Equiprojectable Decomposition: Automatic Case

Distinction and Case Recombination 101

4.6 Summary . 111

5 Component-level Parallelization of Triangular Decompositions 112

5.1 Introduction . 113

5.2 Parallelization . 115

5.3 Preliminary Implementation and Experimentation 119

5.3.1 Implementation Scheme . 119

5.3.2 Experimentation . 121

5.4 Summary . 123

6 Multiprocessed Parallelism Support in Aldor on SMPs and Multi-

cores 125

6.1 Introduction . 125

6.2 Overview of the Parallel Framework 126

6.3 Data Communication and Synchronization 129

6.4 Serialization of High-Level Objects 133

6.5 Dynamic Process Management . 135

6.6 Experimentation . 138

6.7 Summary . 143

7 Overview of the RegularChains Library in Maple 145

7.1 Organization of the RegularChains Library in Maple 145

vii

7.1.1 The Top Level Module . 146

7.1.2 The ChainTools Submodule 146

7.1.3 The MatrixTools Submodule 147

7.2 The RegularChains Keynote Features 147

7.2.1 Solving Polynomial Systems Symbolically 148

7.2.2 Solving Polynomial Systems with Parameters 150

7.2.3 Computation over Non-integral Domains 152

7.2.4 Controlling the Properties and the Size of the Output 153

7.3 Challenges in Implementing Triangular Decompositions 154

7.4 Comparison between Three Implementations 158

7.4.1 The AXIOM Implementation 158

7.4.2 The Aldor Implementation 160

7.4.3 The RegularChains Library in Maple 161

7.5 Summary . 163

8 Efficient Computation of Irredundant Triangular Decompositions 165

8.1 Introduction . 165

8.2 Inclusion Test of Quasi-components 166

8.3 Removing Redundant Components in Triangular Decompositions . . 168

8.4 Experimental Results . 171

8.5 Summary . 174

9 Verification of Polynomial System Solvers 175

9.1 Introduction . 175

9.2 Methodology . 179

9.3 Preliminaries . 181

9.3.1 Basic Notations and Definitions 181

9.3.2 Regular Chain and Regular System 183

9.3.3 Triangular Decompositions . 185

9.4 Representations of Constructible Sets 186

9.5 Difference Algorithms . 188

9.6 Verification of Triangular Decompositions 201

9.6.1 Verification with Gröbner bases 201

9.6.2 Verification with Triangular Decompositions 202

9.7 Experimentation . 202

viii

10 Conclusions and Future Work 207

10.1 Conclusions . 207

10.2 Towards Efficient Multi-level Parallelization of Triangular Decomposi-

tions . 208

Bibliography 210

Curriculum Vitae 223

ix

List of Algorithms

1 Multivariate Polynomial Division . 25

2 Buchberger Algorithm . 27

3 Pseudo-division . 28

4 Computing a Wu Characteristic Set 33

5 Triangularize . 41

6 Algebraic Decompose . 43

7 Decompose . 43

8 Monic Form . 57

9 Division with Monic Remainder . 57

10 Half-GCD Modulo a Triangular Set 59

11 Quasi-inverse . 61

12 Refining Quasi-inverse . 63

13 Refining Project . 65

14 Fast Simultaneous Remainder Modulo a Triangular Set 66

15 Multiple GCDs over a Field . 67

16 List of GCDs Modulo a Triangular Set 68

17 Multiple GCDs Modulo a Triangular Set 69

18 All Pairs of GCDs over a Field . 70

19 All Pairs GCDs Modulo a Triangular Set 71

20 Merge GCD-Free Bases over a Field 72

21 Coprime Factors Modulo a Triangular Set 72

22 Merge Two GCD-Free Bases Modulo a Triangular Set 73

23 Merge GCD-Free Bases Modulo a Triangular Set 73

24 GCD-Free Bases over a Field . 74

25 GCD-Free Basis Modulo a Triangular Set 74

26 Remove Critical Pair . 77

27 Merge . 91

28 Get Solvable Equivalence Classes . 92

x

29 Merge Solvable Pair . 93

30 Merge Polynomial Pair . 93

31 Merge Matrix Pair . 94

32 Lifting a Triangular Decomposition 96

33 Matrix Combine . 104

34 Lower Echelon Form Modulo a Regular Chain 105

35 Normal Form of a Matrix . 105

36 Matrix Inverse Modulo a Regular Chain 106

37 Inner Lower Echelon Form Modulo a Regular Chain 107

38 Lower Echelon Form for Inverse Modulo a Regular Chain 108

39 Inverse Lower Echelon Form Modulo a Regular Chain 109

40 Matrix Matrix Multiply Modulo a Regular Chain 110

41 Get Non-Zero Pivot . 110

42 Split by Height . 118

43 Parallel Triangularize . 118

44 Remove Redundant Quasi-components 171

45 Merge Quasi-components . 171

46 Compare Quasi-components . 172

47 Difference of Two Regular Systems 190

48 Difference of a List of Regular Systems 191

xi

List of Figures

2.1 A Geometric View of the Triangular Decomposition of F1 13

3.1 A View of the Inductive Process . 51

4.1 Description of both Z(sys) and Z(sys mod 7) 81

4.2 The Equiprojectable Decomposition: Representing Z(sys) by T 1 and

T 2, and Representing Z(sys mod 7) by t′1 and t′2 81

4.3 Description of Z(sys mod 7) by t1 and t2 for sys 81

4.4 Definition of an Equiprojectable Variety 85

4.5 Definition of an Equiprojectable Decomposition 86

4.6 An Example for the Split-and-Merge Algorithm 94

5.1 Task Pool with Dimension and Rank Guided Dynamic Scheduling . . 120

6.1 Process i Sending Data to Process j 130

6.2 Sparse Multivariate Polynomial (SMPOLY) Representation of g . . . 134

6.3 Distributed Multivariate Polynomial (DMPOLY) Representation of g 134

6.4 Dynamic Fully-Strict Task Processing 137

8.1 Divide and Conquer Approach for Removing Redundant Components

in a Triangular Decomposition . 169

8.2 Base Case: Removing Redundant Components in Two Triangular Sets 170

xii

List of Tables

4.1 Features of the Polynomial Systems for Modular Method 99

4.2 Data for the Modular Algorithm . 99

4.3 Results from our Modular Algorithm 100

4.4 Results from Triangularize and gsolve 100

5.1 Polynomial Examples and Effect of Modular Computation 116

5.2 Wall Time (s) for Sequential (with vs without Regularized Initial) and

Parallel Solving . 124

5.3 Parallel Timing (s) vs #Processor . 124

5.4 Speedup vs #Processor . 124

5.5 Best TPDRG Timing vs Greedy Scheduling (s) 124

6.1 Polynomial Examples and Sequential Timing 140

6.2 Parallel Timing on two Serializing Methods 140

6.3 Dissection of Workers’ Overhead for Kronecker (* One int has 8 bytes) 140

6.4 Dissection of Workers’ Overhead for DMPOLY 140

6.5 Dissection of Workers’ Time for Kronecker (Wall Time) 141

6.6 Dissection of Workers’ Time for DMPOLY (Wall Time) 141

6.7 Analysis of Workers’ Overhead for Kronecker 142

6.8 Analysis of Workers’ Overhead for DMPOLY 142

8.1 Triangularize without Removal and with Certified Removal 173

8.2 Heuristic Removal, without and with Split, followed by Certification . 174

9.1 Features of the Polynomial Systems for Verification 204

9.2 Solving Timings in Seconds of the Four Methods 205

9.3 Timings of GB-verifier and Diff-verifier 206

xiii

1

Chapter 1

Introduction

1.1 Briefing of Polynomial System Solving

Solving systems of equations is a fundamental problem in mathematics, and is needed

clearly for numerous applications in the sciences. Theoretical results and algorithms

for this purpose have been accumulating since the ancient times. However, the space

and time complexity of these algorithms, such as the exponential time algorithm for

factoring univariate polynomials by Kronecker [83, 82], have limited their use until re-

cent years. The development of computer systems has permitted the implementation

of these algorithms. It has also stimulated the discovery of faster algorithms for solv-

ing systems of equations, such as the work of Berlekamp [14, 15], Zassenhaus [152],

Lenstra et al. [93] and Kaltofen et al. [79] for factoring univariate polynomials, leading

to polynomial time algorithms.

Algorithmic solutions for solving systems of equations can be classified into three

categories: numeric, symbolic and hybrid numeric-symbolic. The decision about

which technique should be used is based on the characteristics of the system of equa-

tions being solved. For instance, the decision depends on whether the coefficients

are known exactly or are approximations obtained from experimental measurements.

The choice also depends on the expected answers, which could be a complete descrip-

tion of all of the solutions, only the real solutions, or just one sample solution among

many.

Symbolic solvers are powerful tools in scientific computing: they are well suited for

problems where the desired output must be exact. They have been applied success-

fully in areas like digital signal processing, robotics, theoretical physics, cryptology,

dynamical systems, with many important outcomes. An overview of these applica-

tions is presented in [67].

2

The implementation of symbolic solvers is, however, a highly difficult task. First,

they implement sophisticated algorithms, which are generally at the level of on-going

research. Moreover, in most computer algebra systems, the solve command involves

nearly the entire set of libraries in the system, challenging the most advanced opera-

tions on matrices, polynomials, algebraic and modular numbers, etc.

Secondly, algorithms for solving systems of polynomial equations are, by nature,

of exponential-time complexity. Consequently, symbolic solvers are extremely time-

consuming when applied to large problems. Worse yet, intermediate expressions can

grow to enormous size, which may halt the computation, even if the result is of moder-

ate size. As such, the implementation of symbolic solvers requires techniques that go

far beyond the manipulation of algebraic or differential equations including efficient

memory management, data compression, and parallel and distributed computing,

among others.

Last, but not least, the precise output specifications of a symbolic solver can be

quite involved. Indeed, given an input polynomial system F , defining what a symbolic

solver should return implies describing what the geometry of the solution set V (F)

of F can be. For an arbitrary F , the set V (F) may consist of components of different

natures and sizes: points, lines, curves, surfaces, etc. This leads to the great challenge

of validating symbolic solvers.

Symbolic methods for systems of linear equations and systems of univariate or

bivariate equations have received the attention of many researchers. They have ob-

tained nearly optimal algorithms (see chapters 12, 14 and 15 in [57]) and highly

efficient implementations [124, 114, 46]. The main reasons for this success are modu-

lar methods [61], the use of fast algorithms for polynomial arithmetic [57] and highly

optimized code that makes efficient use of computer processor and memory resources

[123, 73, 95].

Symbolic methods for non-linear systems of equations have also been investigated

by many researchers who have proposed several approaches: Gröbner bases [1, 13, 26,

35], primitive element representations [63, 64, 88], and triangular decompositions [76,

87, 108, 138, 146]. Consider the following polynomial system F over the field Q of

rational numbers:





−z5 − z4 − 2z3 − z2 + 3z + y + x + 3 = 0

−2z5 − 4z3 − z2 + 6z + y2 + 2y = 0

z3 + yz2 − z − y = 0

z6 + z4 − 4z2 + 2 = 0.

3

It has lexicographical (x > y > z) Gröbner basis G given by:





x3 + 2x2 − 2x + z2 − 5

−3x3 − 4x2 + yx + zx + 8x + zy + y + z + 11

−x3 + zx2 − x2 + 3x + y − 2z + 3

3x3 + 4x2 − 8x + y2 − 11

x3 + yx2 + x2 − 3x− 3y − 3

x4 − 5x2 + 6 ,

which is a system of polynomials generating the same ideal as F and with algorithmic

properties. For instance, given a polynomial equation p(x, y, z) = 0, one can decide

from G whether this equation is a consequence of those of F , or not. (This is the

ideal membership problem.)

A primitive element representation provides a parametric representation of the

zero set of F :





x = −t2 − 1

y = −t

z = t

where t4 + 2t2 − 2 = 0 or,





x = t

y = −t− 1

z = −1

where t2 − 2 = 0 or,





x = t− 2

y = −t + 1

z = 1

where t2 − 4t + 2 = 0.

The triangular decomposition with the variable order of (x > y > z) provides another

representation of the zero set of F (non-parametric):





z4 + 2z2 − 2 = 0

y + z = 0

x + z2 + 1 = 0

and





z2 − 1 = 0

y2 + 2y − 1 = 0

x + y + 1 = 0.

Primitive element representation and triangular decompositions are good at separat-

ing the different components of the set of solutions, and deciding if a component has

real solutions (since these symbolic methods give all of the complex solutions). In ad-

dition, triangular decompositions are commonly used in differential algebra [20, 71].

As a matter of fact, triangular decomposition is a step toward obtaining irreducible

components.

Moreover, sharp estimates [42] are known for the size of the triangular decomposi-

4

tion of a polynomial system. In addition, multivariate polynomial arithmetic during

a triangular decomposition can be reduced to univariate operations that can be per-

formed using asymptotically fast algorithms and efficient implementation techniques

[54, 96, 97, 98, 99].

After an informal introduction to polynomial system solving and triangular

decompositions, Chapter 2 recalls the fundamental notions used in these areas,

namely Gröbner bases, algebraic varieties, triangular sets and regular chains. Chap-

ter 2 outlines also an algorithm called Triade [108], for computing TRIAngular

DEcompositions. The Triade algorithm has several important features for the topics

discussed in this thesis. In particular, it manages the solving process as a tree of tasks,

providing an initial framework toward a parallel algorithm. It also generates the (in-

termediate or output) components in decreasing order of dimension. The intermediate

objects, regular chains and hypersurfaces, are structured and possess rich properties.

Therefore, one can exploit geometrical information during the solving process, which

provides good control over the intermediate computations. This mechanism allows

the Triade algorithm to detect and cut redundant computing branches at an early

stage, which is important because removing superfluous components is a major issue

with all decomposition methods [86, 88, 126, 146]. In addition, the Triade algorithm

has been implemented in the Aldor language [3], in the computer algebra systems

AXIOM [72] and Maple [105] as the RegularChains library [90]. This provides us

with effective tools for conducting experiments.

1.2 Contributions of this Thesis

This thesis focuses on the challenges associated with developing efficient symbolic

solvers. We address our research endeavor on four important, strongly-related tech-

niques: fast algorithms, modular methods, parallel approaches and software engineer-

ing for solving polynomial systems symbolically by way of triangular decompositions.

Fast algorithms. The standard approach for computing with an algebraic number

is through the data of its irreducible minimal polynomial over some base field k.

However, in typical tasks such as polynomial system solving, which involve many

algebraic numbers of high degree, following this approach will require using probably

costly factorization algorithms. Jean Della Dora, Claire Dicrescenzo and Dominique

Duval introduced “Dynamic Evaluation” (also termed “D5 Principle”) [43] techniques

as a means to compute with algebraic numbers while avoiding factorization. Roughly

5

speaking, this approach leads one to compute over direct products of field extensions

of k, instead of only field extensions.

Many algorithms for solving polynomial systems symbolically need to perform

standard operations, such as GCD computations, over coefficient rings that are direct

products of fields rather than fields. In Chapter 3, we show how asymptotically fast

algorithms for polynomials over fields can be adapted to this more general context. In

particular, we show that they can be adapted to direct products of fields presented by

triangular sets. In this context, we obtain nearly optimal (i.e. quasi-linear) algorithms

for polynomial quasi-inverse and GCD computations. This joint work with Marc

Moreno Maza, Xavier Dahan and Éric Schost is reported in [41].

Modular methods. Modular methods are extremely efficient tools for controlling

the size of intermediate expressions, and hence, for reducing the space complexity

of many algorithms for symbolic computation. Modular methods also provide op-

portunities to use fast polynomial arithmetic. This is a well developed approach for

systems of linear equations. Standard applications are the resolution of systems over

Q after specialization at a prime, and over the rational function field k(Y1, . . . , Ym)

after specialization at a point (y1, . . . , ym). Applying modular methods to systems of

non-linear equations remains an active research area.

Modular algorithms for Gröbner bases [5, 113, 134] and primitive element represen-

tations [64] have been developed by several researchers. Some software for computing

Gröbner bases relies not only on efficient algorithms, but also on sophisticated im-

plementation techniques [53]. However, classical algorithms for Gröbner bases do not

make use of geometrical information. Instead they mainly rely on combinatorial ar-

guments, such as Dixon’s Lemma [36]. This makes a sharp modular method difficult

to design.

Primitive element representation methods make use of geometric information but

lack canonicity. (Indeed, a geometrical object may admit infinitely many parameter-

izations.) In some cases, two different primitive element representations may encode

the same solution set and none of the algorithms are guaranteed to detect this situa-

tion.

Triangular decompositions do not have these drawbacks. However, when we

started our research in this area, none of the many methods for computing triangular

decompositions was making use of modular computations, restricting their practi-

cal efficiency. Moreover, all implementations of triangular decompositions available

6

were putting their main emphasis on the algorithms while failing to give efficient

implementation techniques the attention they deserve.

In Chapter 4 we introduce the equiprojectable decomposition of a zero-dimensional

algebraic variety. We show that the equiprojectable decomposition is canonical among

all possible triangular decompositions of such variety, and that it has good computa-

tional properties. An efficient algorithm called Split-and-Merge is designed for com-

puting the equiprojectable decomposition from any triangular decomposition. With

height bound estimates and Hensel lifting techniques, this allows us to deduce an

efficient probabilistic modular algorithm for solving non-linear systems with a finite

number of complex solutions. This joint work with Xavier Dahan, Marc Moreno

Maza, Éric Schost and Wenyuan Wu is published in [39].

We created a Maple implementation of this modular algorithm on top of the

RegularChains library. Our implementation was released with Maple 11. Tests on

benchmark systems from the Symbolic Data Project [128] reveal its strong features

compared with two other Maple solvers (in version 10): Triangularize, from the

RegularChains library, and gsolve, from the Groebner package. Our experimentation

demonstrates the efficiency of this modular algorithm in reducing the size of the

intermediate computations, and hence, its ability to solve difficult problems.

The deployment of these techniques based on the equiprojectable decomposition

brings an extra flavor into Maple: the MatrixTools submodule. This module is

designed for linear algebra over non-integral domains, allowing automatic case dis-

cussion and recombination.

Parallel approaches. Computer algebra involves complex algorithms, data struc-

tures and intensive computations. Parallelism is an important research topic in com-

puter algebra as it was used to achieve efficient executions throughout the 1980s

and 1990s. An overview of these developments is presented in the Computer Algebra

Handbook [67]. The increasing availability of parallel computer architectures, from

SMPs to multi-core laptops, has revitalized the need to develop parallel mathematical

algorithms and software capable of exploiting these new computing resources. This

need is even more dramatic in the case of symbolic computations which offer exciting,

but highly complex challenges to computer scientists.

The parallelization of two other algorithms for solving polynomial systems sym-

bolically have already been actively studied. The first one is Buchberger’s algorithm

for computing Gröbner bases for which parallel implementations are described in

[7, 23, 27, 29, 52, 94]. The second one is the Characteristic Set method developed

7

by Wu [146] which is discussed in [2, 147, 148]. In all these works, the parallelized

operation is polynomial reduction (or simplification). More precisely, given two poly-

nomial sets A and B (with some conditions on A and B, depending on the algorithm)

the reductions of the elements of A by those of B are executed in parallel.

In Chapter 5, we describe our component-level parallelization of triangular decom-

positions based on the Triade algorithm. Our long term goal is to achieve an efficient

multi-level parallelism: coarse grained (component) for tasks computing geometric

objects in the solution sets, and medium/fine grained for polynomial arithmetic such

as GCD/resultant computation and polynomial reduction within each task.

Algorithms for triangular decompositions tend to split the input system into sub-

systems, and seem to be natural for component-level parallelization. However, a naive

parallelization provides little benefit due to the following facts. Most polynomial sys-

tems F ∈ Q[X] with finitely many solutions are equiprojectable, that is, they can

be represented by a single triangular set. This is verified both in theory (the Shape

Lemma [12]) and in practice [128]. Therefore, there are very few opportunities for

splitting the work with such polynomial systems at a coarse-grained level. Moreover,

the tasks that appear when solving these systems are highly irregular in terms of both

time and memory needs.

We create parallel opportunities by modular computations. Triangular decompo-

sition methods are much more likely to split the computations evenly for polynomial

systems over a prime field Z/pZ than over Q. To take advantage of this, we use

the modular algorithm described in Chapter 4. Moreover, the features of the Tri-

ade algorithm (in particular the fact that it generates the intermediate and output

components by decreasing order of dimension) allow us to exploit the geometrical

information and achieve load balancing. We have also strengthened the task model of

Triade in order to estimate the costs of intermediate computations and thus to guide

the parallel scheduling. This joint work with M. Moreno Maza is published in [111].

The implementation of this component-level parallel solver is yet another chal-

lenge. To serve this main purpose, we develop a high-level categorical parallel frame-

work, written in the Aldor language, to support high-performance computer algebra

on symmetric multi-processors and multicore processors. We describe this work in

detail in Chapter 6. This framework provides functions for dynamic process manage-

ment and data communication and synchronization via shared memory segments. A

simple interface for user-level scheduling is also provided. Packages are developed for

serializing and de-serializing high-level Aldor objects, such as sparse multivariate

polynomials, into arrays of machine integers for data transfer. Our benchmark perfor-

8

mance results show this framework is efficient in practice for coarse-grained parallel

symbolic computations. This joint work with M. Moreno Maza, B. Stephenson and

S.M. Watt is reported in [110].

A component-level parallel solver for triangular decompositions has been realized

by using the above framework in conjunction with the BasicMath library and the

Triade sequential solver in Aldor. Our experimentation shows promising speedups

for some well-known problems. Indeed, for most systems this speedup is equal to

the number of components with maximum degree, in the modular triangular decom-

position. We expect that the speedup obtained at this component-level will add a

multiplicative factor to the speedup of medium/fine grained level parallelization as

parallel GCD and resultant computations.

Software engineering. There are special difficulties in the conception and im-

plementation of polynomial solvers based on triangular decompositions. As such,

software engineering plays an important role in the development of such solvers.

First of all, code validation and data structure design are extremely hard due to the

sophisticated specifications and algorithms for computing triangular decompositions.

For instance, the representation of a triangular decomposition is a list of lists of

polynomials with special properties. The data structures and the techniques used

to decide what information to cache can greatly affect the computation speed. It is

also hard to specify the results since the same polynomial input has different possible

outputs with varied benefits. Even worse, in the case of an infinite number of solutions

there is no canonical form of the output. As mentioned earlier, in a computer algebra

system, the solve command usually invokes almost all of the functions operating

on matrices and polynomials in this software. Therefore, the prototyping and code

validation of polynomial system solvers is a significant challenge.

On the other hand, different user communities use computer algebra systems

for different purposes. Common uses include teaching, advanced research and high

performance computing. The prototyping of algorithms and sub-routines, and their

accessibility and ease of use for non-expert users are true challenges. These must

consider the characteristics of the implementation environment, the level of expertise

of the users, and the expectations of its user community.

In Chapter 7, we discuss our solutions and illustrate them with the implementa-

tion of the Triade algorithm in three computer algebra systems: AXIOM, Aldor,

and Maple. This joint work with F. Lemaire and M. Moreno Maza is published

in [91] and [92]. In each case a different community of users was targeted. The

9

RegularChains library in Maple provides quite a large set of functions targeting

a diverse group of users. It provides the ability to both solve and manipulate poly-

nomials and regular chains, and the ability to perform computations modulo a set

of algebraic equations. The functions with optional arguments are organized into

two-level three modules, each providing user-friendly interfaces for both expert and

non-expert users. The AXIOM implementation is general and very close to the math-

ematical theory, which is powerful and flexible, but more for experts. The Aldor

implementation focuses on high-performance with ease of interfacing with machine

resources. All the implementations are equipped with large test suites and exam-

ples. We believe that these implementations of the same sophisticated mathematical

algorithms for different communities of experts, advanced users, and non-experts is

a unique experience in the area of symbolic computations which could benefit other

algorithms in this field.

Triangular decompositions also have to face the problem of removing redun-

dant components. As mentioned earlier, this is a common issue with all the sym-

bolic decomposition algorithms such as those of [86, 88, 146] and in numerical ap-

proaches [126]. If the redundant computations can be detected efficiently and cut

at an early stage of the solving process, performance will be improved. Removing

redundant components is also a demand in the stability analysis of dynamical sys-

tems [137].

In Chapter 8, we present new functionality that we have added to the

RegularChains library in Maple to efficiently compute irredundant triangular de-

compositions, and reports on the implementation of our different strategies. These

strategies use inclusion tests of quasi-components, which rely on the RegularChains

library, without computation of Gröbner basis. Unproved algorithms for this inclusion

test are stated in [86] and [107]. They appear to be unsatisfactory in practice, since

they rely on normalized regular chains, which tend to have much larger coefficients

than non-normalized regular chains as verified experimentally in [9] and formally

proved in [42]. We use a divide and conquer approach to efficiently remove the re-

dundant components in a triangular decomposition. Our experiments show that, for

difficult input systems, the computing time for removing redundant components can

be reduced to a small portion of the total time needed for solving these systems.

This joint work with M. Moreno Maza, Changbo Chen, F. Lemaire and Wei Pan is

published in [31].

Another difficulty is the verification of the output of triangular decompositions.

Given a polynomial system F and a set of components C1, . . . , Ce, it is hard, in

10

general, to tell whether the union of C1, . . . , Ce corresponds exactly to the solution

set V (F) or not. Actually, solving this verification problem is generally (at least) as

hard as solving the system F itself.

Because of the high complexity of symbolic solvers, developing verification al-

gorithms and reliable verification software tools is clearly needed. However, this

verification problem has received little attention in the literature. In Chapter 9 we

present a new approach to the problem which computes the set theoretical differences

between two constructable sets. The key idea is to verify the output of a solver by

comparing it with the output of a known reliable solver.

Our method is implemented on top of the RegularChains library in Maple.

We also realized a standard verification tool based on Gröbner basis computations.

We provide comparative benchmarks of different verification procedures applied to

four solvers on a large set of well-known polynomial systems. Standard verification

techniques are highly resource consuming and apply only to polynomial systems which

are easy to solve. The experimental results illustrate the high efficiency of our new

approach. In particular, we are able to verify triangular decompositions of polynomial

systems which are not easy to solve. This joint work with M. Moreno Maza, Changbo

Chen and Wei Pan is published in [31].

In summary, this thesis contributes to polynomial system solving in four related

fields of study: fast algorithms, modular methods, parallel approaches and software

engineering. We have adapted fast algorithms for polynomial arithmetic over fields

to direct products of fields represented by triangular sets and obtained a complexity

study. These algorithms provide efficient low-level routines for computing triangu-

lar decompositions. The equiprojectable decomposition introduced here is canonical

and has good computational properties. This makes it possible to design sharp mod-

ular methods for triangular decompositions, and it is the only such algorithm at

the present time. A byproduct of this work is a series of functions implemented in

Maple for linear algebra over non-integral domains with automatic case discussion

and case recombination. This is a unique feature in the Maple computer algebra

system. The component-level parallelization and the parallel framework developed in

Aldor take the first step toward efficient multi-level parallel computation for trian-

gular decompositions on emerging architectures. The tools for efficient computation

of irredundant components and verifying the output of solvers are useful for both de-

velopers and users. The techniques used to implement the Triade algorithm in three

computer algebra systems for different user groups (i.e. general, advanced research

and high-performance) could benefit other areas of scientific computing.

11

Chapter 2

Background

This chapter has two objectives. First, to introduce to the reader the notions of a

triangular decomposition and of a regular chain. These are the fundamental concepts

used through this thesis. Sections 2.1 and Section 2.2 introduce them in an informal

manner and highlight their main properties in non-technical language.

The second objective is to define formally these two concepts and state their main

properties. We also present important auxiliary notions such as algebraic variety

(Section 2.3), Gröbner basis (Section 2.4), and triangular set (Section 2.5). Moreover,

we review two fundamental algorithms for solving systems of polynomial equations:

Buchberger’s Algorithm and Wu’s Algorithm. They are at the foundation of many of

the other methods for this purpose. We will also refer to them later in this thesis

when we discuss the parallelization of polynomial system solvers.

Regular Chains (Section 2.6) are triangular sets with additional properties. Sec-

tion 2.7 presents an algorithm called Triade for computing triangular decomposition

by means of regular chains. This algorithm is involved in almost all chapters of this

thesis, which explains why we discuss its specifications, its main features and some

of its sub-procedures. However, we refer to [108] for a complete exposition together

with proofs.

2.1 Triangular decomposition: An introduction

For a given input system of equations, say from some high-school problem, it is

desirable to write down explicit formulas for each of the solutions of this system.

This objective has to be moderated by a variety of considerations. Let us give two

fundamental ones. First, for univariate polynomial equations with degree higher than

12

4, solutions may not be always expressed by “explicit formulas” based on radicals.

Second, a system of equations may have infinitely many solutions.

Symbolic computations offer different solutions to overcome these difficulties. One

can replace the input system of equations F by another system of equations G such

that both systems have the same set of solutions V and such that G reveals important

information about V , such as its cardinality. This point of view is developed in

the theory of Gröbner bases. One can also wish to group solutions into meaningful

“components” described by “implicit formulas”. This is the motivation in the theory

of triangular decompositions.

Let us illustrate these two approaches from an example. Consider the polynomial

system F1 with ordered variable x > y > z. This ordering indicates the fact that we

aim at expressing y as a function of z, and x as a function of y and z.





x3 − 3x2 + 2x = 0

2yx2 − x2 − 3yx + x = 0

zx2 − zx = 0

A Gröbner basis of F1 is: 




x2 − xy − x

−xy + xy2

zxy

and triangular decomposition:

{
x = 0

⋃
{

x = 1

y = 0

⋃





x = 2

y = 1

z = 0

The geometric view of the triangular decomposition of the above polynomial system

F1 is illustrated by Figure 2.1. It is clearly shown that V (F1) consists of one point

(x = 2, y = 1, z = 0), one line (x = 1, y = 0), and one plane (x = 0). This example

illustrates the fact that triangular decompositions can reveal geometric information

about the solution set of a polynomial system. This is achieved by “grouping” solution

points into meaningful components, such as points, curves and surfaces.

A given input polynomial system may admit different triangular decompositions.

This leads to implementation challenges, in particular for systems with infinitely many

solutions, as we shall discuss in Chapters 7, 8 and 9. However, for a system F with

finitely many solutions, for a fixed variable ordering, there is a canonical triangular

13

z

y

x

{x=2, y=1, z=0}

{x=0}{x=1, y=0}

Figure 2.1: A Geometric View of the Triangular Decomposition of F1

decomposition, called the Equiprojectable Decomposition. This will be discussed in

Chapter 4.

Let us illustrate this remark with the following input polynomial system F2,

F2 :





x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

One possible triangular decomposition of the solution set of F2 is:





z = 0

y = 1

x = 0

⋃




z = 0

y = 0

x = 1

⋃




z = 1

y = 0

x = 0

⋃




z2 + 2z − 1 = 0

y = z

x = z

Another one is:




z = 0

y2 − y = 0

x + y = 1

⋃




z3 + z2 − 3z = −1

2y + z2 = 1

2x + z2 = 1

Both results are valid. The second one is the equiprojectable decomposition. As

a matter of fact, the second one can be computed from the first one by techniques

explained in Chapter 4.

Although triangular decompositions display rich geometrical information, reading

them requires some familiarity, especially when there is an infinite number of solu-

tions. Let us consider the following polynomial system F3 where the ordered variables

are s1 > c1 > s2 > c2 > b > a:

14

F3 :






c1 c2 − s1 s2 + c1 − a = 0

s1 c2 + c1 s2 + s1 − b = 0

c2
1 + s2

1 − 1 = 0

c2
2 + s2

2 − 1 = 0

This system is a particular case of the inverse kinematics problem in robotics [66].

The quantities a and b are positive real numbers whereas c1, s1, c2, s2 are unknown

sines and cosines. A triangular decomposition of F3 is given by the following two

triangular systems T1 and T2:

T1 :





(a2 + b2) s1 + 2s2c1 − 2b = 0

(2a2 + 2b2) c1 − 2bs2 − a3 − b2a = 0

4s2
2 + a4 + (2b2 − 4) a2 + b4 − 4b2 = 0

2c2 − a2 − b2 + 2 = 0

,

T2 :





s1
2 + c1

2 − 1 = 0

s2 = 0

c2 + 1 = 0

a = 0

b = 0

Note that at this point we have not given yet a formal definition of a triangular

decomposition or a triangular system. For the reader to be familiar with these objects,

by triangular system, we mean quasi-component of a triangular set and by triangular

decomposition we mean a finite set of triangular systems.

Let us return to our example and have a closer look at T1. We see that we can

determine from it the unknowns c1, s1, c2, s2 as functions of the parameters a and b.

We define

C(a, b) = a4 +
(
2b2 − 4

)
a2 + b4 − 4b2.

Since 4s2
2 + C(a, b) = 0 holds we must have C(a, b) ≤ 0. Observe that C(a, b)

factorizes as follows:

C(a, b) =
(
a2 + b2 − 4

) (
a2 + b2

)
.

Thus we get the inequality constraint: a2 + b2 ≤ 4. Since each of the other three

equations is linear w.r.t. the unknown it defines, we have proved that the triangular

system T1 has solutions with real coordinates if and only if a2 + b2 ≤ 4 holds. It is

natural to check the extreme cases where a2 + b2 = 4 and a2 + b2 = 0.

Let us start with a2 + b2 = 4. This particular case is actually covered by our

15

triangular system T1. That is, adding this constraint to the input system F3 or

adding it to T1 leads to the same triangular system, namely:





a2 + b2 − 4 = 0

s2 = 0

c2 + 1 = 0

2c1 − a = 0

2s1 − b = 0

Let us continue with a2 + b2 = 0. Adding this constraints to T1 and performing

elementary transformations, we obtain:





a = 0

b = 0

s2 = 0

c2 + 1 = 0

This cannot be correct since the constraints on c1 and s1 have disappeared! On the

contrary, if we add a2 + b2 = 0 to the input system, we obtain actually the triangular

system T2 of our initial triangular decomposition, that is:

T2 :





s1
2 + c1

2 − 1 = 0

s2 = 0

c2 + 1 = 0

a = 0

b = 0

We are ready now to explain how to read our triangular decomposition {T1, T2}.
For the imposed variable ordering s1 > c1 > s2 > c2 > b > a, each polynomial

equation should be regarded as a univariate one w.r.t. its largest variable. Hence,

the first polynomial equation

(
a2 + b2

)
s1 + 2s2c1 − 2b = 0.

from T1 defines s1 as

s1 =
−2s2c1 + 2b

a2 + b2

which requires, of course, the condition a2 + b2 6= 0. Similarly, the second polynomial

16

equation (
2a2 + 2b2

)
c1 − 2bs2 − a3 − b2a

from T1 defines s1 as

c1 =
2bs2 + a3 + b2a

2a2 + 2b2

under the same constraints. The last two equations from T1 define s2 and c2 respec-

tively, without any additional constraints. Therefore, we can conclude that

• for all values of the parameters a, b, satisfying a2 + b2 6= 0 the unknowns

c2, s2, c1, s1 are given by the 4th, the 3rd, the 2nd and the 1st equations from

the triangular system:

T1 :






(a2 + b2) s1 + 2s2c1 − 2b = 0

(2a2 + 2b2) c1 − 2bs2 − a3 − b2a = 0

4s2
2 + a4 + (2b2 − 4) a2 + b4 − 4b2 = 0

2c2 − a2 − b2 + 2 = 0

,

• under the constraints a2 + b2 = 0, the values of c2, s2, c1, s1 are given by the

triangular system:

T2 :





s1
2 + c1

2 − 1 = 0

s2 = 0

c2 + 1 = 0

a = 0

b = 0

.

We make some additional remarks.

• In the first triangular system, the unknown s2 is defined “implicitly” as one of

the roots of a degree 2 polynomial.

• even if either a2+b2 < 0 or a2+b2 > 4 holds, the first triangular system provides

values for c2, s2, c1, s1; however, some of these values are not real.

Before moving to more formal definitions, we would like to address informally the

following question. Let T be a triangular system. Is it possible that T defines no

values at all for the unknowns, for instance, because the inequality constraints are

too restrict. As shown in the example below, this can happen. This means that not

all triangular systems are good and that it is necessary to strengthen the notion of

a triangular system in order to avoid such troubles. This leads to the notion of a

regular chain.

17

Consider the following triangular systems for the ordering x1 < x2 < x3 < x4:

T :






x2
2 − x1 = 0

x2
3 − 2x2x3 + x1 = 0

(x3 − x2)x4 = 0

,

T1 :

{
x2

2 − x1 = 0

x3 − x2 = 0
.

Let us focus on T . The equation x2
2 − x1 = 0 defines x2 as a square root (potentially

complex or real) of x1. Thus, this does not impose any constraints on x1. Under the

condition x2
2 = x1, the equation x2

3 − 2x2x3 + x1 = 0 becomes x2
3 − 2x2x3 + x2

2 = 0,

that is, (x3 − x2)
2 = 0, which implies x3 − x2 = 0. The third equation, namely

(x3− x2)x4 = 0, defines x4 provided that x3− x2 6= 0 holds. Thus, the equations and

inequalities of T are contradictory! Such a triangular system is called inconsistent.

Now, assume that T is not regarded as a triangular system but just as a system

of equations. In this case x3 − x2 6= 0 does not need to hold. What should be then a

triangular decomposition of the solution set of T ? Since x3 − x2 = 0 holds anyway,

one can simply discard the third equation of T and obtain T1. Clearly, this latter

triangular system is not inconsistent and {T1} is a triangular decomposition of the

solution set of T .

2.2 Regular Chains: An introduction

Performing calculations modulo a set of relations is a basic technique in algebra. For

instance, computing the inverse of an integer modulo a prime integer or computing

the inverse of the complex number 3 + 2ı modulo the relation ı2 + 1 = 0 defining ı.

Computing modulo a set F containing more than one relation can be much less

simple. For instance, how to compute the inverse of p = x + y modulo the following

set F4?

F4 :

{
x2 + y + 1 = 0

y2 + x + 1 = 0

Things become much simpler when one realizes that this question is equivalent to

computing the inverse of p modulo

C0 :

{
x4 + 2x2 + x + 2 = 0

y + x2 + 1 = 0

18

Indeed, we can transform F4 into C0, replacing y by −x2 − 1 into y2 + x + 1 = 0.

Conversely, we can transform C0 into F4, replacing x2 by −y−1 into x4+2x2+x+2 =

0. With the system C0, inverting p becomes easier. Indeed, one can simplify p into

q := −x2 +x−1 using the relation y = −x2−1. Now p, or rather its simplified version

q, is a univariate polynomial in x, which can be easily inverted modulo the relation

x4 + 2x2 + x + 2 = 0. It suffices to use the extended Euclidean algorithm [57] and

one can verify that p−1 := −1
2
x3− 1

2
x is the inverse of q modulo x4 + 2x2 + x +2 = 0.

The moral of this example is that the “triangular shape” of C0 has made easier the

inversion of p modulo F4.

One commonly used mathematical structure for a set of algebraic relations is that

of a Gröbner basis [13]. It is particularly well suited for deciding whether a quantity

is null or not modulo a set of relations. For inverse computations, the notion of a

regular chain is more adequate. To illustrate this remark, let us compute the inverse

of p = y + x modulo the set

C :

{
x2 − 3x + 2 = 0

y2 − 2x + 1 = 0

which is both a Gröbner basis and a regular chain for the variable order of y > x.

Here, we cannot simplify p into a univariate polynomial as we did before. However,

the theory of regular chains provides us with a general notion of GCD which can be

used to solve our problem. Actually, one can compute a GCD of p and Cy = y2−2x+1

modulo the relation Cx = 0, with Cx = x2−3x+2. As we shall see in Chapter 3, such

GCD modulo a regular chain is a piecewise function. In our example, it distinguishes

the cases x = 1 and x = 2 since the result has a different shape in each case.

• For x = 1, the polynomials p and Cy simplify to y + 1 and y2 − 1 respectively,

leading to y + 1 = p as GCD.

• For x = 2, the polynomials p and Cy simplify to y + 2 and y2 − 3, respectively

leading to 1 as a GCD, since y + 2 and y2 − 3 have no common factors.

To summarize, we have:

GCD(p, Cy, {Cx}) =

{
p if x = 1

1 if x = 2

This shows that p has no inverse if x = 1 and has an inverse (which can be computed

and which is −y + 2) if x = 2.

19

The notion of a regular chain was introduced by Kalkbrener in [76] and extended

that of a triangular set (as defined in [87]). It will be defined formally later in

this chapter. Kalkbrener pointed out, ”since every irreducible variety is uniquely

determined by one of its generic points, we represent varieties by representing the

generic points of their irreducible components. These generic points are given by

certain polynomial subsets, so-called regular chains”. The common roots of any set

of multivariate polynomials F (with coefficients in a field K) can be decomposed into

a finite union of regular chains. Because of the triangular shape of a regular chain,

such decomposition is called a triangular decomposition.

In 1987, Wen Tsun Wu [146] introduced the first method for solving systems

of algebraic equations by means of triangular decompositions. The decompositions

computed by Wu’s method may contain inconsistent or redundant characteristic sets.

That is, a triangular decomposition T of an input system F , produced by Wu’s

method, may contain a triangular system C which does not contribute anything (in-

consistency) or which contribution is entirely contained in that of another triangular

system C ′ of T (redundancy).

The inconsistency problem was solved by Kalkbrener [76] who proposed an al-

gorithm for computing triangular decompositions by means of regular chains. The

redundancy problem has been considered by Wang [138] and Lazard [86]. However,

comparative experiments implemented in AXIOM [72] and reported in [9] show bet-

ter performance for Kalkbrener’s algorithm.

In [108], Moreno Maza proposed a new algorithm, called Triade, for computing

triangular decompositions with an emphasis on the management of the intermediate

computations. One strength of this approach is that redundant branches are easy to

cut and can be cut at an early stage of the computations. In addition, this algorithm

shows better performance than the other algorithms with similar specifications, as

reported in [9, 32, 30].

2.3 Algebraic Varieties

Throughout this thesis, we consider a field K and an ordered set X = x1 < · · · < xn of

n variables. We denote by K[x1, . . . , xn] the ring of the polynomials with coefficients

in K and variables in X. Let K be an algebraic closure of K. The reader may think

of K and K as R and C, that is, the fields of real and complex numbers respectively.

In practice, our polynomials will have coefficients in the field Q of rational numbers.

20

Sometimes, given a prime integer p, the coefficient field K will be the field Z/pZ of

integers modulo p.

Let F ⊂ K[x1, . . . , xn] be a set of polynomials. A point (ζ1, . . . , ζn) in K
n

is

called a common zero, or zero, or solution, or common root, or root of F if every

f ∈ F evaluates to zero at (ζ1, . . . , ζn). The set of all common roots of F is denoted

by V (F) and called the zero set of F , or solution set of F , or the algebraic variety

defined by F .

It is well known [36], and not difficult to check, that the set of all algebraic varieties

defined by polynomial sets of F ⊂ K[x1, . . . , xn] are the closed sets of a topology called

the Zariski topology of K
n

w.r.t. K. Given a subset W ⊂ K
n

we denote by W the

Zariski closure of W w.r.t. K, that is, the closure of W for Zariski topology w.r.t. K,

that is, the intersection of all the V (F) (for all F ⊂ K[x1, . . . , xn]) containing W .

Zariski topology plays an essential role in solving systems of polynomial equa-

tions, in particular when triangular decompositions are involved. Remember that the

solution set W (T) associated with a triangular system T is given by equations and

inequalities. Thus W (T) is not necessarily an algebraic variety and it is natural to

manipulate its closure W (T). We discuss two examples below.

For n = 3 and x1 < x2 < x3, consider the polynomial system F consisting of

the single equation x1x3 + x2 = 0, with real coefficients. Let V (F) be its algebraic

variety in C3. As we shall see later, this set F is also a regular chain C. Because of

the variable ordering, the zero set W (C) consists of the points (x1, x2, x3) for which

x1x3 + x2 = 0 and x1 6= 0 hold.

We formally prove below that W (C) cannot be an algebraic variety. The reader

may rely on his or her geometrical intuition. The set V (F) is an irreducible algebraic

variety of dimension 2. (Indeed, the polynomial x1x3 + x2 is irreducible.) Hence any

algebraic variety contained in V (F) must have a smaller dimension, that is, 1 or 0.

Therefore, if W (C) is an algebraic variety, it must have dimension 1 or 0.

Observe that for each nonzero value ζ1 of x1 the set W (C) contains the line defined

by ζ1x3 + x2 = 0. All these lines are irreducible algebraic varieties of dimension 1;

none of them is contained in the union of the others; moreover they are all contained

in W (C). Since every algebraic variety can be decomposed into finitely many irre-

ducible components, the set W (C) cannot be an algebraic variety of dimension 1 or

0. Therefore, the set W (C) is not an algebraic variety.

In fact, the algebraic variety V (F) is the union of W (C) and the line given by

x1 = x2 = 0. In other words W (C) is V (F) minus that line. What is W (C) then?

21

By definition of the Zariski closure, we have

W (C) ⊆ W (C) ⊆ V (C).

Since W (C) is a variety, it follows from our previous reasoning that it cannot have

dimension 1 or 0. Since V (F) is an irreducible variety of dimension 2 we must have

W (C) = V (F).

More generally, if V (F) is an irreducible variety of arbitrary dimension and F is

a regular chain then we have W (F) = V (F). This would not hold if V (F) were not

irreducible. Consider now n = 4, x1 < x2 < x3 < x4 and

F = {x1x4 − x2, x2x3 − x1, x
3
2 − x2

1}.

One can check that F is a regular chain C1. However, the variety V (F) is not

irreducible. To understand this, let us consider first the points (x1, x2, x3, x4) of

V (F) for which x1 6= 0 holds. Then these points have the following form

(x1, x
2/3
1 , x1/x2, x2/x1) = (x1, x

2/3
1 , x

1/3
1 , x

−1/3
1).

Hence, these points are contained in an algebraic curve V1 parametrized by x1. These

points form W (C1) and thus we have W (C1) ⊆ V1. (In fact, equality holds.) Now

consider the points (x1, x2, x3, x4) of V (F) for which x1 = 0 holds. Observe that

x1 = 0 implies x2 = 0 and that all polynomials in F vanish when (x1, x2) = (0, 0)

holds. Therefore, we have proved that V (F) decomposes into two algebraic varieties

V (F) = V1 ∪ V2

where V2 is the linear variety of dimension 2 given by x1 = x2 = 0. Hence, the closure

of W (C1) cannot equal V (F) in this case. Indeed, we have observed that W (C1) was

contained in an algebraic variety of dimension 1 (a curve) whereas V (F) contains a

variety of dimension 2.

These examples illustrate the importance of the concept of dimension. We shall

not review here this algebraic notion and the reader should rely on her(his) intuition

when this concept comes into play. However, we shall review in the next sections the

notions of a Gröbner basis, a characteristic set and a regular chain. We refer to [36]

for the former notion and to [8, 22] for the latter ones. These are the key objects

22

computed by the algorithms discussed in this thesis. We conclude this section by

reviewing a fundamental result: Hilbert’s Theorem of Zeros.

Let again F = {f1, . . . , fm} be an arbitrary finite set of polynomials in

K[x1, . . . , xn]. The ideal generated by F in K[x1, . . . , xn], denoted by 〈F 〉 or

〈f1, . . . , fm〉, is the set of all polynomials of the form

h1f1 + · · ·+ hmfm

where h1, . . . , hm are in K[x1, . . . , xn]. If the 〈F 〉 is not equal to the entire polynomial

ring K[x1, . . . , xn], then it is said to be a proper ideal.

Let G = {g1, . . . , gs} be another finite subset of K[x1, . . . , xn]. The following

implication is easy to check:

〈F 〉 = 〈G〉 ⇒ V (F) = V (G). (2.1)

What can we say about 〈F 〉 and 〈G〉 when V (F) = V (G) holds? One should expect

that 〈F 〉 = 〈G〉 would not hold necessarily. Consider the following trivial example

with n = 1, F = {x1} and G = {x2
1}. Clearly every multiple of x2

1 is a multiple of x1

and we have 〈G〉 ⊆ 〈F 〉; but, clearly again, x1 is not a multiple of x2
1 and 〈F 〉 ⊆ 〈G〉

does not hold. Therefore, we need a notion that would be like the “square root” of

an ideal.

The radical of the ideal generated by F , denoted by
√
〈F 〉, is the set of the

polynomials p ∈ K[x1, . . . , xn] such that there exists a positive integer e satisfying

pe ∈ 〈F 〉. The set
√
〈F 〉 is not obtained from 〈F 〉 by simply removing repeated

factors in the polynomials of F . These “multiplicities” can be hidden as shown

below. Consider (again) for n = 4 the polynomial set F = {f1, f2} with f1 = x2
2−x1,

f2 = x2
3 − 2x2x3 + x1. It is not difficult to show (by means of degree considerations)

that the polynomial f3 = x3 − x2 cannot be expressed as a combination of the form

h1f1 + h2f2 and thus f3 6∈ 〈f1, f2〉. However we have

f 2
3 = (x3 − x2)

2 = x2
3 − 2x2x3 + x2

2 = f2 − f1.

Hence, we have f3 ∈
√
〈f1, f2〉. Finally, one can check that we have

√
〈f1, f2〉 = 〈−x2

3 + x1, x2 − x3〉.

This example suggests that computing
√
〈F 〉 can be far from trivial in general. In

23

fact, triangular decompositions can be used to perform such computations, thanks to

Hilbert’s Strong Theorem of Zeros that we can state now.

Theorem 2.3.1. For all subsets F, G ⊆ K[x1, . . . , xn] we have:

√
〈F 〉 =

√
〈G〉 ⇐⇒ V (F) = V (G).

This theorem establishes a one-to-one correspondence between radical ideals of

K[x1, . . . , xn] and algebraic varieties of K[x1, . . . , xn]. In abstract algebra text-

books [34], it is usually proved after establishing the results below, the first one being

known as the Hilbert’s Strong Theorem of Zeros. These statements are interesting

for themselves and they are the basis of several algorithms. The first one says that

the algebraic variety V (F) is empty if and only 1 belongs to 〈F 〉, the ideal generated

by F . The second one implies that testing the membership of a polynomial h to
√

F

reduces to testing the membership of 1 to the ideal generated by F and 1− yh where

y is a new variable.

Theorem 2.3.2. For all subset F ⊆ K[x1, . . . , xn] we have:

1 ∈ 〈F 〉 ⇐⇒ V (F) = ∅.

Theorem 2.3.3. Let y a new variable. For all h, f1, . . . , fn ∈ K[x1, . . . , xn] we have:

h ∈
√
〈f1, . . . , fn〉 ⇐⇒ 〈f1, . . . , fn, 1− yh〉 = K[x1, . . . , xn, y].

2.4 Gröbner Bases

Recall that the variables are ordered: x1 < · · · < xn. Let M = {xi1
1 . . . xin

n | ij ≥ 0} be

the abelian monoid consisting of the monomials generated by X, that is, all possible

products of the variables. We denote by 1 the neutral element of M .

A total order relation ≤ on M is an admissible monomial order on M , if it satisfies:

1 ≤ u and u ≤ v ⇒ uw ≤ vw

for all u, v, w ∈ M . A fundamental example is the lexicographical order ≤lex defined

as follows: we have

xi1
1 . . . xin

n ≤lex xj1
1 . . . xjn

n

24

if and only if there exists an integer e in the range 1..n such that we have ie < je and

ik = jk for all k in (e+1)..n. For n = 2, let us order a few monomials lexicographically:

x1≤lex x2
1≤lex · · · ≤lex x2≤lex x1x2≤lex x2

1x2≤lex · · · ≤lex x2
2≤lex x1x

2
2≤lex x2

1x
2
2≤lex · · ·

Let f ∈ K[x1, . . . , xn] be a non-zero polynomial. We denote by lm(f) the leading

monomial of f , that is, the monomial of f with the highest order w.r.t. ≤. We

denote by lc(f) the leading coefficients of f , that is, the coefficient of lm(f) in f . We

define lt(f) = lc(f)lm(f), called the leading term of F . For all F ⊂ K[X], we write

lm(F) = {lm(f) | f ∈ F}.
We say that a polynomial f ∈ K[X] is reduced w.r.t. g ∈ K[X], with g 6= 0, if

lm(g) does not divide any monomial in f . Let b1, . . . , bk ∈ K[X] be non-constant

polynomials. If f is not reduced w.r.t. one polynomial among b1, . . . , bk ∈ K[X], then

one can “replace” f by a reduced polynomial r equal to f modulo the ideal generated

by b1, . . . , bk ∈ K[X]. The following proposition states this fact more formally.

Proposition 2.4.1. There exists an operation Divide such that Divide(f, {b1, . . . , bk})
returns polynomials r, q1, . . . , qk ∈ K[X] with the following properties:

(i) f = q1b1 + · · ·+ qkbk + r,

(ii) r is reduced w.r.t. all b1, . . . , bk ∈ K[X],

(ii) max(lm(q1)lm(b1), . . . , lm(qk)lm(bk), lm(r)) = lm(f).

The polynomial r is called a remainder of f w.r.t. {b1, . . . , bk} and q1, . . . , qs are the

corresponding quotients; moreover we write:
f b1 · · · bk

r q1 · · · qk

.

Algorithm 1 implements an operation Divide as specified by Proposition 2.4.1.

When n = 1, that is, when there is only one variable, this operation is simply the

usual polynomial division. In this case, this operation is uniquely defined. For n > 1,

depending on the order of the polynomials b1, . . . , bk, one can get different output,

as shown by the following example, with n = 2, and the lexicographical order. With

f = y2x− x, g1 = yx− y and g2 = y2 − x one can check that we have

f g1 g2

0 y 1
and

f g2 g1

x2 − x x 0
,

This difficulty disappears when the set {b1, . . . , bk} is a Gröbner basis, which we

shall define after a few more notions. First, we generalize the operation Divide: for

25

Algorithm 1 Multivariate Polynomial Division

Input f, b1, . . . , bk ∈ K[X] such that bi 6= 0 for all i = 1, . . . , k.

Output q1, . . . , qk, r ∈ K[X] such that
f b1 · · · bk

r q1 · · · bk
.

Divide(f, {b1, . . . , bk}) ==

1: for i in 1, . . . , s do qi ← 0
2: h← f ; r ← 0
3: while h 6= 0 do
4: i← 1
5: while i ≤ s do
6: if lm(bi) | lm(h) then

7: t← lt(h)
lt(bi)

8: qi ← qi + t; h← h− tbi; i← 1
9: else

10: i← i + 1
11: end if
12: end while
13: end while
14: r ← r + lm(h)
15: h← h− lm(h)
16: return (q1, . . . , qs, r)

a1, . . . , at, b1, . . . , bk ∈ K[X], the operation Reduce({a1, . . . , at}, {b1, . . . , bk}) returns

the set of remainders of all the Divide(ai, {b1, . . . , bs}) for all 1 ≤ i ≤ t.

A subset B ⊂ K[X] is said to be autoreduced, if for all f ∈ B the polynomial

f is reduced w.r.t. B \ {f}. Dickson’s Lemma [35] states that every autoreduced

set is finite. From now on, we assume that the elements of every autoreduced set

B = {b1, . . . , bk} are sorted w.r.t. ≤, that is, lm(b1) < . . . < lm(bk). Let B =

b1, . . . , bk, B′ = b′1, . . . , b
′
l be two sorted autoreduced sets. Then, we write B ≤ B ′, if

• either ∃ j ≤ min(k, l) s.t. lm(bi) = lm(b′i) (1 ≤ i < j) and lm(bj) < lm(bj)
′,

• or k ≥ l and lm(bi) = lm(b′i) (1 ≤ i ≤ l) holds.

The following holds, see [36]: Every family of autoreduced sets has a minimal el-

ement. When this family is finite, it is not difficult to design an algorithm com-

puting such a minimal element. Hence, in Algorithm 2, we refer to an operation

MinimalAutoreducedSubset(F, ≤) returning a subset of F , which is minimal among

all autoreduced subsets of F for the order ≤.

26

Definition 2.4.2. For all F ⊂ K[X], we call a Gröbner basis of F for the (admis-

sible monomial) order ≤, any minimal autoreduced subset G contained in the ideal

generated by F . In addition, a Gröbner basis G of F is said reduced if all leading

coefficients in G are equal to 1.

Gröbner bases have numerous important properties, again established in [36].

• Any F ⊂ K[X] admits a Gröbner basis G for ≤; moreover we have 〈F 〉 = 〈G〉.

• Any F ⊂ K[X] admits a unique reduced Gröbner basis for ≤.

• For all F ⊂ K[X], for all polynomial f ∈ K[X], there exists r ∈ K[X] such that

for all reduced Gröbner basis G of F w.r.t. ≤, we have Reduce(f, G) = r.

• For all F ⊂ K[X], the ideal generated by F is the whole ring K[X] if and only

1 belongs to a Gröbner basis of F .

• For all F ⊂ K[X], for all reduced Gröbner basis G of F , for all p ∈ K[X], the

polynomial p belongs to the ideal generated by F if and only if Reduce(p, G) = 0.

In broad terms, the last point states that the “reduction” w.r.t. to a Gröbner basis

is uniquely defined. We conclude this quick review of Gröbner bases with the fun-

damental algorithm for computing them: the Buchberger Algorithm [26], shown as

Algorithm 2. This requires the concept of S-polynomial. For non-zero polynomials

f, g ∈ K[X], let L be the least common multiple of lm(f) and lm(g). The polynomial

S(f, g) =
L

lm(f)
f − L

lm(g)
g

is called the S-polynomial of f and g. By definition, the operation S Polynomials(F) in

Algorithm 2 returns all the S(f, g) of all pairs {f, g} of elements of F . The following

theorem justifies the correctness of Algorithm 2; its termination follows from the

properties of autoreduced sets.

Theorem 2.4.3. For all F ⊂ K[X] a subset G of 〈F 〉 is a Gröbner basis of F if and

only if for all f, g ∈ G we have Reduce(S(f, g), G) = 0.

Each iteration of this algorithm consists of three steps:

(S)elect a candidate Gröbner basis B,

(R)educe the elements A w.r.t. B in order to check whether B is a Gröbner basis

of F or not,

27

Algorithm 2 Buchberger Algorithm

Input F ⊂ K[X] finite and an admissible monomial ordering ≤.

Output G a reduced Gröbner basis w.r.t. ≤ of the ideal 〈F 〉 generated by F .

BuchbergerAlgorithm(F) ==

1: B ← F ; R← F
2: while R 6= ∅ do
3: (S) B ← MinimalAutoreducedSubset(F, ≤)
4: (R) A← S Polynomials(F)∪F R← Reduce(A, B, ≤)
5: (U) R← R \ {0}; F ← F ∪R
6: end while
7: return B

(U)pdate R and F for the possible next iteration.

When R = ∅ holds it follows from Theorem 2.4.3 that B is a Gröbner basis of F .

Buchberger’s Algorithm is a “completion algorithm” similar to many algorithms in

the theory of formal languages, like the Knuth-Bendix Algorithm for word problems.

2.5 Triangular Sets

Gröbner bases provide a way to study systems of polynomial equations. In this theory,

multivariate polynomials are regarded as combinations of monomials and polynomial

sets are regarded as systems of generators of ideals.

Another point of view is that of characteristic sets where multivariate polynomials

are regarded as univariate polynomials with polynomial coefficients and where poly-

nomial sets are regarded as descriptions of algebraic varieties. In this point of view,

the notion of “reduction” is different from that in the case of Gröbner bases; it relies

on the concept of pseudo-division that we review with the next result [?, Yap1993]

Proposition 2.5.1. Let A be any commutative ring. Let a, b ∈ A[x] be univariate

polynomials such that b has a positive degree w.r.t. x and the leading coefficient of b

is not a zero-divisor. We define e = min(0, deg(a)− deg(b) + 1). Then there exists a

unique couple (q, r) of polynomials in A[x] such that we have:

lc(b)ea = qb + r and (r = 0 or deg(r) < deg(b)). (2.2)

The polynomial q (resp. r) is called the the pseudo-quotient (the pseudo-remainder)

of a by b and denoted by pquo(a, b) (prem(a, b)). The map (a, b) 7−→ (q, r) is called

the pseudo-division of a by b. In addition, Algorithm 3 computes this couple.

28

Algorithm 3 Pseudo-division

Input a, b ∈ A[x] with b 6∈ A.

Output q, r ∈ A[x] satisfying Relation (2.2) with e = min(0, deg(a)− deg(b) + 1).

pseudo-division(a, b) ==

1: r ← a; q ← 0
2: e← max(0, deg(a)− deg(b) + 1)
3: while r 6= 0 or deg(r) ≥ deg(b) do
4: d← deg(r)− deg(b)
5: t← lc(r)yd

6: q ← lc(b)q + t
7: r ← lc(b)r − tb
8: e← e− 1
9: end while

10: r ← lc(b)er
11: q ← lc(b)eq
12: return (q, r)

In the above algorithm, for a non-zero polynomial a ∈ A[x] we denote by deg(a)

and lc(a) the degree and the leading coefficient of a.

We return now to the case of multivariate polynomials in K[X]. Let p, q ∈ K[X]

with q non-constant. The greatest variable of q is denoted by mvar(q) and is called

the main variable of q. Regarding q as a univariate polynomial w.r.t. mvar(q):

• the leading coefficient of q is called the initial of q,

• the degree of q (w.r.t. mvar(q)) is denoted by mdeg(q),

• the monomial mvar(q)mdeg(q) is called the rank of q and is denoted by rank(q).

Assume that q is not constant, either. Then, we write rank(p) < rank(q) and we say

that p has a smaller rank than q if

• either mvar(p) < mvar(q) holds or,

• mvar(p) = mvar(q) and mdeg(p) < mdeg(q) hold.

We denote by prem(p, q) the pseudo-remainder of p by q w.r.t. mvar(q), that is, if

mvar(p) = x`, for some 1 ≤ ` ≤ n, the pseudo-remainder of p by q regarded in A[x`]

for A = K[x1, . . . , x`−1, x`+1, . . . , xn]. We say that p is reduced w.r.t q if its degree

w.r.t. mvar(q) is less than mdeg(q), that is, if prem(p, q) = p. Here’s now a central

definition in this thesis.

29

Definition 2.5.2. A subset B = {b1, . . . , bk} of non-constant polynomials of K[X] is

a triangular set if the main variables of b1, . . . , bk are pairwise different. The triangular

set B = {b1, . . . , bk} is autoreduced if for all 1 ≤ i ≤ s the polynomial bi is reduced

w.r.t. B \ {bi}.
We denote by mvar(B) the set of the mvar(t) and by rank(B) the set of the

rank(t), for all t in B. A variable from X is said algebraic w.r.t. B if it belongs to

mvar(B).

From now on, we assume that the elements of every autoreduced triangular set

B = {b1, . . . , bk} are sorted by increasing rank and we simply write B = b1, . . . , bk.

For a polynomial p ∈ K[X] and an autoreduced triangular set B = b1, . . . , bk we

define the pseudo-remainder of p w.r.t. B, denoted by prem(p, B), as follows:

prem(p, B) =

{
prem(p, b1) if k = 1

prem(prem(p, b2, . . . , bk), b1) otherwise

In Algorithm 4, the operation PseudoReduce({a1, . . . , at}, {b1, . . . , bk},≤) returns all

the prem(ai, {b1, . . . , bk}) for all 1 ≤ i ≤ t, where ≤ records the variable ordering.

The following proposition, sometimes called the Remainder Formula [8], plays for

characteristic sets a role similar to Proposition 2.4.1 in the context of Gröbner bases.

Proposition 2.5.3. Let p ∈ K[X] be a polynomial and B = b1, . . . , bk be an autore-

duced triangular set. Denote by h the product init(b1) · · · init(bk) of the initials of B.

Then, there exist polynomials q1, . . . , qk, r ∈ K[X] and a non-negative integer e such

that

(i) hep = q1b1 + · · ·+ qkbk + r,

(ii) r is reduced w.r.t. B.

Recall that if G ⊆ K[X] is a Gröbner basis of G for some admissible monomial

order, then for all p ∈ K[X] we have:

Reduce(p, G) = 0 ⇐⇒ p ∈ 〈G〉.

If B = b1, . . . , bk is an autoreduced triangular set such that prem(p, B) = 0 holds,

what can we say about p and B? A first step to the answer goes through the following.

Definition 2.5.4. Let B = {b1, . . . , bk} be a (not necessarily autoreduced) triangular

set and let h the product init(b1) · · · init(bk) of the initials of B. The saturated ideal

30

of B, denoted by Sat(B) is the set of all polynomials p ∈ K[X] such that there exist

polynomial q1, . . . , qk, r ∈ K[X] and a non-negative integer e satisfying

hep = q1b1 + · · ·+ qkbk.

Clearly prem(p, B) = 0 implies p ∈ Sat(B). However, the converse implication

holds if and only if B is a regular chain, as shown in [8]. Before discussing this latter

notion in the next section, it is important to describe other properties of triangular

sets. First, we give a “geometrical interpretation” of the saturated ideal of a triangular

set, after the following definition.

Definition 2.5.5. Let B ⊂ K[X] be a triangular set and let h be the product of the

initials of B. We call the quasi-component of T , denoted by W (T), the subset of the

zero-set V (T) consisting of all the points which do not cancel h, that is,

W (T) = V (T) \ V ({h}).

Definition 2.5.5 formalizes the way we were reading the solutions of a triangular

system in Sections 2.1, 2.2 and 2.3. The following theorem [8] states that the quasi-

component of T is almost the zero-set of the saturated ideal of T .

Theorem 2.5.6. For all triangular sets B ⊂ K[X] we have:

W (B) = V (Sat(B)).

Remember that W (B) denotes the Zariski closure of W (B), that is, the inter-

section of all algebraic varieties containing W (B). Thus, V (Sat(B)) is the small-

est algebraic variety containing W (B). Remember that V (B) can contain compo-

nents which are removed in W (B). For instance, in Section 2.3 we saw that for

C1 = x1x4 − x2, x2x3 − x1, x
3
2 − x2

1 we had V (C1) = W (C1) ∪ V (x1, x2).

We now define a partial order on autoreduced triangular sets. This construction is

similar to that of Section 2.4 which leads to the definition of a Gröbner basis. However

the notions of rank and reduction are different. Let B = b1, . . . , bk, B′ = b′1, . . . , b
′
l

be sorted autoreduced sets. By definition, we write B ≤ B ′ and we say that B has a

lower rank than B ′ if

• either there exists j ≤ min(k, l) s.t. rank(bi) = rank(b′i) (for all 1 ≤ i < j) and

rank(bj) < rank(b′j) hold,

• or k ≥ l and rank(bi) = rank(b′i) (for all 1 ≤ i ≤ l) hold.

31

If neither B ≤ B′ nor B′ ≤ B hold, we say that B and B ′ have the same rank.

The following holds [8]: Every family of autoreduced triangular sets has a minimal

element. This leads to the following definition.

Definition 2.5.7. Let F ⊂ K[X]. A Ritt characteristic set of F is a subset C of F

such that either C = {a} holds for some non-zero a ∈ K or C is minimal among all

autoreduced triangular sets contained in F .

When F is finite, it is not difficult to design an algorithm computing such

a minimal element. Hence, in Algorithm 4, for a finite set F , the operation

MinimalAutoreducedSubset(F, ≤) returns a Ritt Characteristic Set of F for the vari-

able ordering ≤. When F is not finite, other assumptions on F (such as the ideal

generated by F is prime) are needed in order to design a simple procedure. In fact, it

is the purpose of triangular decompositions to reduce to cases where computing a Ritt

characteristic set can be made “simple”. The following theorem gives a first funda-

mental property of Ritt characteristic sets, see [8] for a proof. Please for polynomial

ideals, refer to [34].

Theorem 2.5.8. Let F ⊂ K[X], let I be the ideal generated by F and let C be

an autoreduced triangular set contained in I. Then, the following conditions are

equivalent:

(i) C is a Ritt characteristic set of I.

(ii) For all f ∈ I, we have prem(f, C) = 0.

This theorem has two important corollaries that we prove for the reader to become

more familiar with the notions in this chapter.

Corollary 2.5.9. Let F ⊂ K[X] and let C be a Ritt characteristic set of 〈F 〉. Then

V (F) = ∅ if and only if C contains a non-zero constant.

Let us prove this first corollary. Assume that C contains a non-zero constant,

hence C is of the form {a} for some non-zero a ∈ K. Thus we have V (C) = ∅. Since

C ⊂ 〈F 〉, we deduce V (F) ⊆ V (C) = ∅. Assume now that C is an autoreduced

triangular set. Assume by contradiction that V (F) = ∅ holds. Applying the Weak

Theorem of Zeros (Theorem 2.3.2) we deduce that 1 ∈ 〈F 〉. Clearly prem(1, C) = 1.

If follows with Theorem 2.5.8 that C cannot be a Ritt characteristic set of 〈F 〉, which

is a contradiction. This concludes the proof of Corollary 2.5.9.

32

Corollary 2.5.10. Let F ⊂ K[X], let I be the ideal generated by F and let C be a

Ritt characteristic set of I. Then, we have

W (C) ⊆ V (F) ⊆ V (C).

Let us prove this second corollary. We assume that C is a Ritt characteristic set of

I = 〈F 〉. First, we observe that C ⊂ F implies V (F) ⊆ V (C). Next, Theorem 2.5.8

implies that for all f ∈ I, we have prem(f, C) = 0. It follows that 〈F 〉 in contained in

Sat(C). Thus the zero-set of Sat(C) is contained in that of 〈F 〉. Since Theorem 2.5.6

implies W (C) = V (Sat(C)) we deduce W (C) ⊆ V (F). This concludes the proof.

This latter result implies that a Ritt characteristic set C of 〈F 〉 provides an

“approximation” of the zero-set of F . In fact, when 〈F 〉 is prime the equality

W (C) = V (F) holds, see [8]. Characteristic sets were introduced by J. F. Ritt [117]

for “representing” prime ideals in the sense of the previous equality. For a non-prime

ideal input ideal 〈F 〉, the algorithm proposed by Ritt involves multivariate polyno-

mial factorization over algebraic extensions of function fields. These computations

are generally regarded as expensive. In [145, 146] W.T. Wu proposed an algorithm

for “decomposing” the algebraic variety by means of quasi-components of triangular

sets. His method does not require polynomial factorization and, essentially, relies

only on pseudo-division. In order to achieve this, Wu’s method does not compute

Ritt characteristic sets of ideals and relies on the following weaker notion.

Definition 2.5.11. Let F ⊂ K[X]. A Wu characteristic set of the ideal 〈F 〉 is a

non-empty subset C of F such that

• either C = {a} for some non-zero constant a ∈ K,

• or C is a Ritt characteristic set of a subset G of 〈F 〉 such that 〈G〉 = 〈F 〉 holds.

It is easy to check that Corollary 2.5.10 holds also for Wu’s characteristic sets.

Unfortunately, we shall see that Corollary 2.5.9 does not generalize to Wu’s charac-

teristic sets. Let F ⊂ K[X]. A Ritt characteristic set C of 〈F 〉 is necessarily a Wu

characteristic set of 〈F 〉. Indeed, it suffices to choose G = 〈F 〉 in Definition 2.5.11.

The converse is false. Consider the autoreduced triangular set T = f1, f2, f3 with

f1 = x2
2 − x1, f2 = x1x

2
3 − 2x2x3 + 1 and f3 = (x3x2 − 1)x4 + x2

2.

Clearly, from Definition 2.5.11, choosing G = T , the set T is a Wu characteristic set

of 〈T 〉. Assume that T is also a Ritt characteristic set of 〈T 〉. Observe that from

33

f1 = 0 and f2 = 0 we deduce (x3x2 − 1)2 = 0 and thus x3x2 − 1 = 0. Hence, with

f3 = 0, we obtain x2 = 0. With f1 = 0, this brings x1 = 0. Finally, with f2 = 0,

we have 1 = 0. Therefore V (T) = ∅. Applying Corollary 2.5.10 we deduce that T

contains a non-zero constant, which is a contradiction. Therefore, T cannot be a Ritt

characteristic set of 〈T 〉. This example shows an important drawback of the notion

of a Wu characteristic set: A triangular set C can be a Wu characteristic set even

when V (C) = ∅ holds. In other words, Corollary 2.5.9 does not generalize to Wu’s

characteristic sets.

We conclude this section by presenting a procedure for computing a Wu charac-

teristic set of the ideal generated by some F ⊂ K[X]. This algorithm was given by

W. T. Wu in his paper [146]. Its structure is very similar to that of Algorithm 2:

each loop iteration has three steps: select, reduce and update.

Algorithm 4 Computing a Wu Characteristic Set

Input F ⊂ K[X] with a variable ordering ≤.

Output C a Wu characteristic set of F .

WuCharSet(F) ==

1: B ← F ; R← F
2: while R 6= ∅ do
3: (S) B ← MinimalAutoreducedSubset(F, ≤)
4: (R) A← F \ B; R← PseudoReduce(A, B, ≤)
5: (U) R← R \ {0}; F ← F ∪R
6: end while
7: return B

From this procedure, W. T. Wu has derived in [146] an algorithm for decomposing

any algebraic variety into quasi-components of triangular sets, leading to the following

theorem and definition.

Theorem 2.5.12 (Wu, 1987). For all F ⊂ K[X], there exist finitely many autore-

duced triangular sets T1, . . . , Te ⊂ K[X] such that we have

V (F) = W (T1) ∪ · · · ∪ W (Te).

Definition 2.5.13. Let F ⊂ K[X]. A finite family T1, . . . , Te ⊂ K[X] of triangular

sets is a triangular decomposition of F (or a triangular decomposition of V (F)) in the

sense of Lazard if we have

V (F) = W (T1) ∪ · · · ∪ W (Te).

34

A finite family T1, . . . , Te ⊂ K[X] of triangular sets is a triangular decomposition of

V (F) in the sense of Kalkbrener if we have

V (F) = W (T1) ∪ · · · ∪ W (Te).

In this thesis, when the sense is not specified, the one of Lazard is assumed. Note

that it is stronger than that of Kalkbrener.

2.6 Regular Chains

The notion of a regular chain was introduced independently by Kalkbrener in [75, 76]

and by Yang and Zhang in [149]. Moreover, Kalkbrener proposed an algorithm to

represent algebraic varieties by means of regular chains.

Regular chains are triangular sets with additional properties. In particular, they

do not have the drawback of Wu’s characteristic sets described in the previous section.

More precisely, if T ⊂ K[X] is a regular chain then its quasi-component W (T) is not

empty.

The theory of regular chains makes an intensive use of the notion of a zero-divisor

modulo an ideal. Hence, we review this notion in the following.

Definition 2.6.1. Let F ⊂ K[X] and let I be the ideal generated by F . We say

that a polynomial p ∈ K[X] is regular modulo I if p is neither null modulo I, nor a

zero-divisor modulo I.

We can give now one of the central definitions for the topics discussed in this

thesis.

Definition 2.6.2. Let T = t1, . . . , ts be a triangular set in K[X] where polynomials

are sorted by increasing main variables. The triangular set T is a regular chain if for

all i = 2 · · · s the initial of ti is regular modulo the saturated ideal of t1, . . . ti−1.

One can easily prove the following proposition which gives two simple criteria for

a triangular set to be a regular chain.

Theorem 2.6.3. Let T = t1, . . . , ts be a triangular set in K[X]. Then we have:

• If s = 1 then T is a regular chain,

• If the initials of t1, . . . , ts are all constant, then T is a regular chain.

35

Example 2.6.4. Consider n = 2 and the triangular set T = {f1, f2} where

f1 = x2
1 − x1 and f2 = x1x

2
2 + 2x2 + 1.

The triangular set T1 = {f1} is a regular chain by virtues of Proposition 2.6.3. More-

over Sat(T1) is simply the ideal generated by f1. This fact can be easily proved from

the definition of a saturated ideal. However, the triangular set T = {f1, f2} is not a

regular chain: the initial of f2, namely x1, is a zero-divisor modulo Sat(T1). Indeed,

we clearly have x1(x1− 1) ≡ 0 mod x2
1 − x1. Observe that this “irregularity” can be

fixed by splitting V (T):

V (T) = W (T) ∪ W (x1, 2x2 + 1) and W (T) = V ({x1 − 1, x2 + 1}).

In other words, one zero of T is in W (T) (the one which does not cancel the initial

of f2) and the other is not (since it cancels the initial of f2).

Proposition 2.6.3 implies that {x1, 2x2 + 1} is also a regular chain. (Indeed, the

initial of 2x2 + 1 is just a number, namely 2.) Therefore, we have “replaced” the

triangular set T , which is not a regular chain, by two regular chains. More generally,

any triangular set can be “replaced” by a family of regular chains in a sense that we

shall specify later.

Example 2.6.5. Consider n = 2 and the triangular set T = {f1, f2, f3} where

f1 = x2
2 − x1, f2 = x1x

2
3 − 2x2x3 + 1 and f3 = (x3x2 − 1)x4 + x2

2.

The set T1 = {f1} is a regular chain as is any polynomial set consisting of a single

element. Moreover Sat(T1) is simply the ideal generated by f1. This fact can be

verified by means of Gröbner bases computations, see [9] for details.

The set T2 = {f1, f2} is a regular chain since the initial of f2, namely x1, is regular

modulo Sat(T1). This fact is quite easy to understand: if x1 were a zero-divisor modulo

Sat(T1) there would exist a polynomial p such that

px1 ≡ 0 mod x2
2 − x1 and p 6≡ 0 mod x2

2 − x1.

Degree considerations show that these conditions are contradictory. Therefore, x1 is

regular modulo Sat(T1) and T2 is a regular chain. In addition, one can verify, with

Gröbner bases computations, that Sat(T2) is simply the ideal generated by T2.

The set T3 = {f1, f2, f3} is not a regular chain since the initial of f3, namely

36

x3x2 − 1, is not regular modulo Sat(T2). Indeed, the polynomial (x3x2 − 1)2 belongs

to Sat(T2), i.e. it can be obtained by “combining” f1 and f2. Hence, the square of

the initial of f3 is null modulo Sat(T2) and T3 is not a regular chain.

Can we replace T by regular chains, as we did in the previous example? Yes,

we can, just with the empty list of regular chains! Indeed, if a point (x1, x2, x3, x4)

belongs to V (T) it must satisfy (x3x2 − 1)2 = 0, and thus x3x2 − 1 = 0. Together

with f3 = 0 this brings x2 = 0, contradicting x3x2 − 1 = 0. Therefore V (T) is just

empty! Remember that we saw that the same T was a Wu characteristic set, but not

a Ritt characteristic set.

From Definition 2.6.3, it seems that checking whether a given triangular set is

a regular chain requires the computation of saturated ideals. As mentioned earlier,

systems of generators of saturated ideals can be computed by means of Gröbner bases.

However, these computations can be fairly expensive.

In fact, it turns out that these computations can be completely avoided. In broad

terms, the trick relies on two observations that we shall state more formally later:

• For a regular chain T with as many variables as equations, testing whether

a polynomial p is regular w.r.t. T reduces to polynomial GCD computations

(Proposition 2.6.6).

• The case of regular chain with less equations than variables reduces to the

previous one. (Theorem 2.6.7).

First, consider the case of two variables x1 and x2. Let T = {f1, f2} be a triangular

set in K[x1, x2]. Let h be the initial of f2. We assume that h is not constant, otherwise

we can conclude with Proposition 2.6.3. For simplicity, we assume also that T is

autoreduced, which implies that the degree of h is less than that of f1. To decide

whether T is a regular chain it suffices to check whether the initial h of f2 is regular

modulo Sat(T1) = 〈f1〉. Let g be the GCD of h and f1 and let u, v be their Bézout

coefficients. Hence we have

uh + vf1 = g.

If g is a constant, we assume that g = 1. In this case we have uh ≡ 1 mod f1. This

shows that u is the inverse of h modulo 〈f1〉 and thus h is not a zero-divisor in this

case. Assume now that g has positive degree. Since g divides both f1 and h we have:

h
f1

g
=

h

g
f1 ≡ 0 mod f1.

37

Since deg(g) ≤ deg(h) and deg(h) < deg(f1) it follows that

f1

g
6≡ 0 mod f1.

Therefore, in this case, the polynomial h is a zero-divisor modulo f1. Observe that

in this case, we can factor f1 into

f1 = g
f1

g

To summarize, on this particular situation, we have observed that one can decide

whether T is a regular chain simply by means of polynomial GCD computations.

More generally, we have the following statement.

Theorem 2.6.6. Let T ⊂ K[x1, . . . , xn] be a regular chain with n elements

T1(x1), T2(x1, x2), . . . , Tn(x1, . . . , xn). Let p ∈ K[x1, . . . , xn]. Then, we have:

(i) The saturated ideal of T is equal to the ideal generated by T .

(ii) The polynomial p is regular w.r.t. 〈T 〉 if and only if there exists p ∈ K[x1, . . . , xn]

such that pp ≡ 1 mod 〈T 〉

The second point states that p is regular modulo 〈T 〉 if and only if p is invertible

modulo 〈T 〉. Checking invertibility modulo 〈T 〉 can be achieved via polynomial GCD

computations, as shown above in the case n = 2. Chapter 3 will cover the general

case, using fast polynomial arithmetic.

For the question of testing regularity of an element w.r.t. to the saturated ideal of

a regular chain, the following result [22] reduces the case of regular chains with less

equations than variables to the case of as many equations as variables.

Theorem 2.6.7. Let d be an integer such that 1 ≤ d < n. Recall that K(x1, . . . , xd)

denotes the field of rational functions with coefficients in K and variables in x1, . . . , xd.

Let T = {Td+1, . . . , Tn} be a triangular set of K[X]. Assume that mvar(Ti) = xi for

all d + 1 ≤ i ≤ n and assume Sat(T) is a proper ideal of K[X].

Let T0 be the image of T regarded as a triangular set in K(x1, . . . , xd)[xd+1, . . . , xn],

that is, as a set of polynomials with variables in xd+1, . . . , xn and with coefficients in

K(x1, . . . , xd). (Formally speaking consider the localization by K[x1, . . . , xd] \ {0}.)
Let p ∈ K[x1, . . . , xn] and p0 its image in K(x1, . . . , xd)[xd+1, . . . , xn]. Assume p

non-zero modulo Sat(T). Then, the following conditions are equivalent:

(1) p is regular w.r.t. Sat(T),

38

(2) p0 is invertible w.r.t. Sat(T0).

In particular T is a regular chain iff T0 is a regular chain.

We conclude this section by a series of Theorems that play a central role in the

algorithms for solving polynomial systems by means of regular chains.

Theorem 2.6.8 (Aubry, Lazard & Moreno Maza, 1997). Let T be an autoreduced

triangular set in K[X]. The following properties are equivalent.

(i) Sat(T) is exactly the set of the polynomials p that reduces to 0 by pseudo-division

w.r.t. T ,

(ii) T is a regular chain,

(iii) T is a Ritt characteristic set of Sat(T).

This fundamental theorem provides an ideal membership test for saturated ideals

of regular chains: if T is a regular chain and p ∈ K[X] we have

p ∈ Sat(T) ⇐⇒ prem(p, T) = 0.

Theorem 2.6.9. If T is a regular chain, then every prime ideal associated with Sat(T)

has dimension n− | T | where | T | denotes the number of elements in T . Hence, the

ideal Sat(T) and the variety W (T) have dimension n− | T |. In particular Sat(T) is

a proper ideal of K[X] and W (T) 6= ∅.

Let T be a regular chain and p be a polynomial. We denote by Z(p, T) the

intersection V (p)∩W (T), that is the set of the zeros of p that are contained in the

quasi-component W (T).

Theorem 2.6.10. If p is regular modulo the saturated ideal of T , then Z(p, T) is ei-

ther empty or it is contained in a variety of dimension strictly less than the dimension

of W (T).

2.7 The Triade Algorithm

We discuss in this section the main features of the Triade algorithm [108] with an

emphasis on those that are relevant to parallel execution. The notions of a Task,

Definition 2.7.1 and that of a delayed split, Definition 2.7.3 play a central role. They

are well-adapted to describe the relations between the intermediate computations

39

during the solving of a polynomial system. Algorithm 5 is the top-level procedure of

the Triade algorithm: it manages a task pool. The tasks are transformed by means of

a sub-procedure (Algorithms 6 and 7) which is dedicated to “simple tasks”.

Definition 2.7.1. We call a task any couple [F, T] where F is a finite subset of K[X]

and T ⊂ K[X] is a regular chain. The task [F, T] is solved if F is empty, otherwise

it is unsolved. By solving a task, we mean computing regular chains T1, . . . , Te such

that we have:

V (F) ∩ W (T) ⊆ ∪e
i=1W (Ti) ⊆ V (F) ∩ W (T). (2.3)

Most algorithms computing triangular decompositions consist of procedures that

take a task [F0, T0] as input and returns zero, or more tasks [F1, T1], . . . , [Fe, Te]. Then,

solving an input polynomial system F0 is achieved by calling one of these procedures

with [F0, ∅] as input and obtaining “solved tasks” [∅, T1], . . . , [∅, Te] as output, such

that T1, . . . , Te solves [F0, ∅] in the sense of Definition 2.7.1.

Therefore, given an algorithm A for computing triangular decompositions, it is

natural to associate with each input polynomial system F0 a task tree GA(F0) whose

vertices are tasks such that there is an arrow from any task [Fi, Ti] to any task [Fj, Tj]

if task [Fj, Tj] is among the output tasks of a procedure called on [Fi, Ti]; moreover,

each internal node [Fi, Ti] has a weight equal to the (estimated) running time for

computing the children of [Fi, Ti]. The longest path (summing the weights along the

path) from the root to a leaf, what is called a critical path of GA(F0) and often

denoted by T∞, represents the minimum running time for a parallel execution of

A(F0) on infinitely many processors. (Here we do not consider communication costs

and scheduling overheads, for simplicity.) The sum of all the weights in GA(F0),

called the work of GA(F0) and often denoted by T1, represents the minimum running

time for a sequential execution of A(F0).

It is well known that most algorithms decomposing polynomial systems into com-

ponents (irreducible, equidimensional, . . .) have to face the problem of redundant

components, which may occur in the output or at intermediate stages of the solving

process. This is a central question when computing triangular decompositions, see [9]

for a discussion of this topic. Removing redundant components is also an important

issue in other symbolic decomposition algorithms such as the one of [88] and also

for numerical ones [126]. Being able to remove redundant components at an early

stage of the computations helps reducing the work of GA(F0) and, possibly its critical

40

path. One of the motivations in the design of the Triade algorithm [108] is to handle

redundant components efficiently.

For any input task [F, T] the main procedure of the Triade algorithm, called

Triangularize(F, T), solves [F, T] in the sense of Definition 2.7.1. This procedure re-

duces to the situation where F consists of a single polynomial p. One could expect

that such an operation, say Decompose(p, T), should return regular chains T1, . . . , T`

solving the task [{p}, T]. In fact, we shall explain now why this would not meet our

requirement of handling redundant components efficiently.

Observe that W (T1) ⊆ W (T2) implies |T2| ≤ |T1|. It follows that, during the

solving process, all the (final or intermediate) regular chains should be generated

by increasing order of their cardinality, that is, by decreasing order of the dimen-

sion of their saturated ideals, in order to remove the redundant ones as soon as

possible. Returning to the specifications of the operation Decompose(p, T), observe

that V (p)∩W (T) could contain components of different dimension. (This will hap-

pen when V (p) contains some of the irreducible components of W (T), but not all

of them.) Therefore, it is not desirable for the operation Decompose(p, T) to solve

the task [{p}, T] in one step. Instead, Decompose(p, T) should compute the quasi-

components of V (p)∩W (T) of maximum dimension and postpone the computation

of the other quasi-components. This is made possible by a form of lazy evaluation,

formalized by Definition 2.7.3, after Notation 2.7.2. Lazy evaluation is a common

technique in functional programming language such as Lisp [151].

Notation 2.7.2. Let T1, T2 be two regular chains. We write rank(T1) ≺ rank(T2)

whenever rank(T2) is a proper subset of rank(T1), or when vd1
1 ≺ vd2

2 , where vd1
1

(resp. vd2
2) is the smallest element of rank(T1) \ rank(T2) (resp. rank(T2) \

rank(T2)). When neither rank(T1) ≺ rank(T2) nor rank(T2) ≺ rank(T1) hold, we write

rank(T1)' rank(T2). Let F1, F2 be finite subsets of K[X]. We write [F1, T1]≺ [F2, T2]

either if rank(T1) ≺ rank(T2) holds, or if rank(T1) ' rank(T2) holds and there exists

f1 ∈ F1 such that rank(f1)≺ rank(f2) for all f2 ∈ F2. Clearly, any sequence of tasks

[F0, T0], . . ., such that [Fi, Ti] ≺ [Fi+1, Ti+1] holds for all i, is finite.

Definition 2.7.3. The tasks [F1, T1], . . . , [Fe, Te] form a delayed split of the task [F, T]

and we write

[F, T] 7−→D [F1, T1], . . . , [Fe, Te]

if for all 1 ≤ i ≤ e we have [Fi, Ti]≺ [F, T] and the following holds

V (F) ∩ W (T) ⊆ ∪e
i=1Z(Fi, Ti) ⊆ V (F) ∩ W (T).

41

Below, we highlight the main features of the procedure Decompose(p, T) that are

relevant to the rest of the work. First, for a polynomial p and a regular chain T , such

that p is not zero modulo Sat(T), the procedure Decompose(p, T) returns a delayed

split of the task [{p}, T]. Algorithm 5 implements the procedure Triangularize by

means of the procedure Decompose. Based on the specifications of Decompose, the

validity of this algorithm is easy to check and is established in [108]. Note that in our

pseudo-code, we use indentation to denote blocks. Moreover, each of the Algorithms 5,

6 and 7. generates a sequence of items which are returned one by one in the output

flow by means of yield statements.

Algorithm 5 Triangularize

Input a task [F, T].

Output regular chains T1, . . . , Te solving [F, T] in the sense of Definition 2.7.1

Triangularize(F, T) == generate

1: task list← [[F, T]]
2: while task list 6= [] do
3: Choose and remove a task [F1, U1] from task list
4: F1 = ∅ =⇒ yield U1

5: Choose a polynomial p ∈ F1

6: G1 ← F1 \ {p}
7: if p ≡ 0 mod Sat(U1) then
8: R← cons ([G1, U1], task list)
9: end if

10: for [H, T] ∈ Decompose(p, U1) do
11: task list← cons ([G1 ∪ H, T], task list)
12: end for
13: end while

The key notion used by the procedure Decompose is that of a polynomial GCD

modulo a regular chain, see Definition 2.7.4. This notion strengthens that introduced

by Kalkbrener in [76] and extends that of a polynomial GCD modulo a triangular set

introduced in [109].

Definition 2.7.4. Let p, t, g be non-zero polynomials and T be a regular chain.

Assume that p and t are non-constant and have the same main variable v. Assume

that v 6∈ mvar(T), that init(p) is regular w.r.t. Sat(T) and that T ∪ {t} is a regular

chain. Then, the polynomial g is a GCD of p and t w.r.t. T if the following hold:

(G1) g belongs to the ideal generated by p, t and Sat(T),

(G2) the leading coefficient hg of g w.r.t. v is regular modulo Sat(T),

42

(G3) if mvar(g) = v then p and t belong to Sat(T ∪{g}).

More generally, a sequence of pairs G = (g1, T1), . . . , (ge, Te), where g1, . . . , ge are

polynomials and T1, . . . , Te are regular chains, is a GCD sequence of p and t w.r.t. T

if the following properties hold:

(G4) for all 1 ≤ i ≤ e, if |Ti| = |T | then gi is a GCD of p and t modulo Ti,

(G5) we have W (T) ⊆ ∪e
i=1W (Ti) ⊆ W (T).

in Notation 2.7.5.

Notation 2.7.5. Four procedures of Triade are essential in Chapter 5.

• Let p, t, T be as in Definition 2.7.4. The procedure GCD(p, t, T) computes a

GCD sequence of p and t w.r.t. T . These GCD computations allow testing

whether a polynomial f is regular modular Sat(T).

• Given a polynomial f , the procedure Regularize(f, T) returns regular chains

T1, . . . , Te such that for all 1 ≤ i ≤ e, the polynomial f is either null or regular

modulo Sat(Ti) and Relation (G5) holds.

• Given a polynomial f , the procedure RegularizeInitial(f, T) returns regular

chains T1, . . . , Te such that for all 1 ≤ i ≤ e, the polynomial f is congruent

to constant modulo Sat(Ti), or congruent to a non-constant polynomial fi mod-

ulo Sat(Ti), whose initial init(fi) is regular modulo Sat(Ti); moreover, Relation

(G5) holds.

• Given a triangular set S ⊂ K[X] the procedure Extend(S) returns regular chains

T1, . . . , Te satisfying W (S) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ W (S).

• Finally, we denote by Reduce(f, T) the polynomial defined as follows: if f ∈ K,

then Reduce(f, T) is f ; if f ∈ Sat(T), then Reduce(f, T) is 0 otherwise it is

Reduce(h, T) mvar(f)+Reduce(g), where h = init(f) and g = f−init(f)rank(f).

Algorithm 7 states the algorithm for Decompose(p, T). It relies on a sub-procedure

given by Algorithm 6. The proof of Algorithms 6 and 7 relies fundamentally on

Proposition 2.7.6. In broad words, this result states that the common zeros of p and

t contained in W (T) are “essentially” given by W (T ∪{g}), where g is a GCD of p

and t w.r.t. T in the sense of Definition 2.7.4. See [108] for detail.

43

Algorithm 6 Algebraic Decompose

Input p, T, t as in Definition 2.7.4.

Output a delayed split of [{p}, T ∪{t}].

AlgebraicDecompose(p, T, t) == generate

1: hT ← product of the initials in T
2: for [gi, Ti] ∈ GCD(t, p, T) do
3: if |Ti| > |T | then
4: for Ti,j ∈ Extend(Ti ∪{hT t}) do
5: yield [p, Ti,j]
6: end for
7: end if
8: if gi ∈ K then iterate
9: if mvar(gi) < v then yield [{gi, p}, Ti ∪ {t}]

10: if deg(gi, v) = deg(t, v) then yield [∅, Ti ∪ {t}]
11: yield [∅, Ti ∪ {gi}]
12: yield [{init(gi), p}, Ti ∪ {t}]
13: end for

Algorithm 7 Decompose

Input a polynomial p and a regular chain T such that p 6∈ Sat(T).

Output a delayed split of [{p}, T].

Decompose(p, T) == generate

1: for C ∈ RegularizeInitial(p, T) do
2: f := Reduce(p, C)
3: if f = 0 then yield [∅, C]
4: if f ∈ K then iterate
5: v := mvar(f)
6: if v 6∈ mvar(C) then
7: yield [{init(f), p}, C]
8: for D ∈ Extend(C ∪ {f}) do
9: yield [∅, D]

10: end for
11: end if
12: for [F, E] ∈ AlgebraicDecompose(f, C<v ∪ C>v, Cv) do
13: yield [F, E]
14: end for
15: end for

44

Proposition 2.7.6. Let p, t, g, T be as in Definition 2.7.4. If g is a GCD of p and t

w.r.t. T and mvar(g) = v holds, then we have

[[{p}, T ∪{t}] 7−→D [∅, T ∪{g}], [{hg, p}, T ∪{t}].

The following fundamental proposition is easily checked from the pseudo-code of

Algorithm 6 and Algorithm 7.

Proposition 2.7.7. Let [F, E] be any task returned by Algorithm 7. Then we have:

(H1) either |E| = |T | and F = ∅,

(H2) or |E| = |T | and F contains a polynomial which is regular w.r.t. Sat(T),

(H3) or |E| > |T |.

Corollary 2.7.8. Let [F, E] be a task returned by Algorithm 7. If W (E) is a com-

ponent of V (p)∩W (T) with maximum dimension, then the task [F, E] is solved, that

is, F = ∅.

Solving by decreasing order of dimension. It follows from Corollary 2.7.8 that

the tasks in Algorithm 5 can be chosen such that the regular chains output by this

algorithm are generated by increasing size. To do so, we assign to each task [F, T] ∈ R

in Algorithm 5 an upper bound m([F, T]) for the height of the regular chains solving

[F, T] in the sense of Definition 2.7.1. This upper bound is simply computed as follows.

If a polynomial f ∈ F has been shown to be regular w.r.t. T (See Proposition 2.7.7)

then m([F, T]) := |T |+1 otherwise m([F, T]) := |T |. Then, we say that a task [F1, T1]

has a higher priority than a task [F2, T2] if either m([F1, T1]) ≤ m([F2, T2]) holds, or

m([F1, T1]) = m([F2, T2]) and [F1, T1]≺ [F2, T2] hold. Sorting the tasks in the list R

w.r.t. this ordering allows us to solve by decreasing order of dimension and therefore

to handle redundant components efficiently. The performances of our inclusion test

are reported in [31].

45

Chapter 3

Fast Polynomial Arithmetic over

Direct Products of Fields

3.1 Introduction

The D5 Principle was introduced in 1985 by Jean Della Dora, Claire Dicrescenzo

and Dominique Duval in their celebrated note “About a new method for computing

in algebraic number fields”. This innovative approach automatizes reasoning based

on case discussion and is also known as “Dynamic Evaluation”. Let us review this

principle.

Let K be a field and let L = K[X]/〈p〉 be an extension of K, where p is a non-

constant, univariate square-free, but not necessarily irreducible polynomial. Thus L

is a direct product of fields. We want to decide whether some polynomial q ∈ K[X]

is invertible in L. Let g be the GCD of p and q. Then, we have:

• q is zero modulo g

• q is invertible modulo p/g.

Indeed, since p is square-free, the polynomials q and p/g are relatively prime. This

is called a quasi-inverse computation. Up to splitting, it allows one to compute in L

as if it were a field. Applications of Dynamic Evaluation have been made by many

authors: [66], [65], [49], [100] and others. Many algorithms for polynomial system

solving rely on the D5 principle; see, for instance, the work of [87], [76], [44], [108],

[106], and [22].

When computing with polynomials over a direct product of fields L, one may

encounter a zero-divisor z. It is then natural to decompose L into two or more

46

components such that over each of these components z becomes zero or a unit. Then,

depending on the context, one may wish to continue the computations over some or

all components. In the works [21, 116, 77] computations continue only in one branch

because the other branches are not interesting for the problem under study. In these

other works [76, 86, 87, 48, 49, 65, 108] computations continue in all branches since

one is interested in obtaining a result over L.

The results reported in this chapter aims at filling the lack of complexity results

for this approach. The addition and multiplication over a direct product of fields

are easily proved to be quasi-linear (in a natural complexity measure). As for the

inversion, it has to be replaced by quasi-inversion as in the above example: following

the D5 philosophy, meeting zero-divisors in the computation will lead to splitting the

direct product of fields into a family thereof. It is much more tricky to prove quasi-

linear complexity estimate for quasi-inversion, because the algorithm relies on other

algorithms, for which such an estimate has to be proved: the GCD and the splitting

algorithms. In fact, this can be achieved by an inductive process that we will sketch

at the end of this section. But, before that some setting is needed.

In this work, direct product of fields will be described using triangular sets. Those

triangular sets will have additional properties in Definition 3.1.1 w.r.t. the general ones

of Definition 2.5.2. In fact, the term Lazard triangular set should be used here, after

the work of Lazard [87]. However, in this Chapter and in the next one, we will just

say triangular set for short.

In what follows, we assume that the base field k is perfect. In practice k is either

the field Q of rational numbers or a prime field Z/pZ, for a prime integer p. We

reserve the notation K for extensions of the base field k.

Definition 3.1.1. A triangular set T is a family of n-variate polynomials over k:

T = (T1(X1) , T2(X1, X2) , . . . , Tn(X1, . . . , Xn)) ,

which forms a reduced Gröbner basis for the lexicographic order induced by Xn >

· · · > X1, and such that the ideal 〈T 〉 generated by T in k[X1, . . . , Xn] is radical.

If T is a triangular set, the residue class ring K(T) := k[X1, . . . , Xn]/〈T 〉 is a direct

product of fields. Hence, our questions can be basically rephrased as studying the

complexity of operations (addition, multiplication, quasi-inversion) modulo triangular

sets. The following notation helps us quantify the complexity of these algorithms.

Definition 3.1.2. We denote by degi(T) the degree of Ti in Xi, for all 1 ≤ i ≤ n,

and by deg(T) the product deg1(T) · · ·degn(T). We call it the degree of T .

47

Observe that 〈T 〉 is zero-dimensional and that for all 1 ≤ i ≤ n, the set (T1 . . . , Ti)

is a triangular set of k[X1, . . . , Xi]. The zero-set of T in the affine space An(k̄) has a

particular feature: it is equiprojectable [10, 42]; besides, its cardinality equals deg(T).

The notion of equiprojectability is discussed in Section 4.2.

Definition 3.1.3. A triangular decomposition of a zero-dimensional radical ideal

I ⊂ k[X1, . . . , Xn] is a family T = T 1, . . . , T e of triangular sets, such that I =

〈T 1〉 ∩ · · · ∩ 〈T e〉 and 〈T i〉 + 〈T j〉 = 〈1〉 for all i 6= j. A triangular decomposition

T′ of I refines another decomposition T if for every T ∈ T there exists a (necessarily

unique) subset decomp(T,T′) ⊆ T′ which is a triangular decomposition of 〈T 〉.

Let T be a triangular set, let T = T 1, . . . , T e be a triangular decomposition of 〈T 〉,
and define K(T) := K(T 1)× · · · ×K(T e). Then by the Chinese remainder theorem:

K(T) ' K(T). (3.1)

Now let T′ be a refinement of T. For each triangular set T i in T, denote by

U i,1, . . . , U i,ei the triangular sets in decomp(T i,T′). We have the following e isomor-

phism:

φi : K(T i) ' K(U i,1)× · · · ×K(U i,ei), (3.2)

which extend to the following e isomorphisms, where y is a new variable.

Φi : K(T i)[y] ' K(U i,1)[y]× · · · ×K(U i,ei)[y]. (3.3)

Definition 3.1.4. For h = (h1, . . . , he) ∈ K(T 1)[y]×· · ·×K(T e)[y], we call projection

of h w.r.t. T and T′, and write project(h,T,T′) the vector (Φ1(h1), . . . , Φe(he)).

Note that if g ∈ K(T)[y], then we have

project(g, {T},T′) = project(project(g, {T},T),T′). (3.4)

For simplicity, we define:

project(g,T) = project(g, {T},T). (3.5)

We now introduce a fundamental notion, that of a non-critical decompositions. It

is motivated by the following remark. Let T = T 1, . . . , T e be a family of triangular

sets, with T j = (T j
1 , T j

2 , . . . , T j
n). For 1 ≤ i ≤ n, we write T j

≤i = T j
1 , T j

2 , . . . , T j
i and

48

define the family T≤i by:

T≤i = {T j
≤i | j ≤ e } (with no repetition allowed).

Even if T is a triangular decomposition of a 0-dimensional radical ideal I ⊂
k[X1, . . . , Xn], the family T≤i is not necessarily a triangular decomposition of

I∩k[X1, . . . , Xi]. Indeed, with n = 2 and e = 2, consider T 1 = ((X1−1)(X1−2), X2)

and T 2 = ((X1 − 1)(X1 − 3), X2 − 1). The family T = T 1, T 2 is a triangular decom-

position of the ideal I = 〈T 1〉 ∩ 〈T 2〉. However, the family of triangular sets

T≤1 = {T 1
1 = (X1 − 1)(X1 − 2), T 1

2 = (X1 − 1)(X1 − 3)}

is not a triangular decomposition of I ∩ k[X1] since 〈T 1
1 〉+ 〈T 2

1 〉 = 〈X1 − 1〉.

Definition 3.1.5. Let T be a triangular set in k[X1, . . . , Xn]. Two polynomials

a, b ∈ K(T)[y] are coprime if the ideal 〈a, b〉 ⊂ K(T)[y] equals 〈1〉.

Definition 3.1.6. Let T 6= T ′ be two triangular sets, with T = (T1, . . . , Tn) and

T ′ = (T ′
1, . . . , T

′
n). The least integer ` such that T` 6= T ′

` is called the level of

the pair {T, T ′}. The pair {T, T ′} is critical if T` and T ′
` are not coprime in

k[X1, . . . , X`−1]/〈T1, . . . , T`−1〉[X`]. A family of triangular sets T is non-critical if

it has no critical pairs, otherwise it is said to be critical.

The pair {T 1, T 2} in the above example has level 1 and is critical. Consider U 1,1 =

(X1−1, X2), U1,2 = (X1−2, X2), U2,1 = (X1−1, X2−1) and U2,2 = (X1−3, X2−1).

Observe that U = {U 1,1, U1,2, U2,1, U2,2} is a non-critical triangular decomposition of

I refining {T 1, T 2} and that U≤1 is a triangular decomposition I ∩ k[X1].

This notion of critical pair is fundamental. In fact, fast algorithms for the innocu-

ous projection operations Φi of Equation (3.3) are not guaranteed for critical decompo-

sitions, as shown in the following extension of the previous example. Consider a third

triangular set T 3 = ((X1−2)(X1−3), X2+X1−3). One checks that V = {T 1, T 2, T 3}
is a triangular decomposition of T = ((X1−1)(X1−2)(X1−3), X2(X2−1)). However,

projecting an element p from {T} to V requires to compute

p mod (X1 − 1)(X1 − 2), p mod (X1 − 1)(X1 − 3), p mod (X1 − 2)(X1 − 3),

whence some redundancies. In general, these redundancies prevent the projecting

computation from being quasi-linear w.r.t. deg(T). But if the triangular decom-

49

position is non-critical, then there is no more redundancy, and the complexity of

projecting p can be hoped to be quasi-linear.

Removing critical pairs of a critical triangular decomposition in order to be able to

project fast requires to delete the common factors between the polynomials involved

in the decomposition. To do it fast, that is, in quasi-linear time, we use the coprime

factorization or GCD-free basis computation algorithm. Of course to implement this

algorithm over a direct product of fields, one first need to be able to compute GCD’s

over such a product in quasi-linear time.

Since K(T) is a direct product of fields, any pair of univariate polynomials f, g ∈
K(T)[y] admits a GCD h in K(T)[y], in the sense that the ideals 〈f, g〉 and 〈h〉
coincide, see [109]. However, even if f, g are both monic, there may not exist a

monic polynomial h in K(T)[y] such that 〈f, g〉 = 〈h〉 holds: consider for instance

f = y + a+1
2

(assuming that 2 is invertible in k) and g = y + 1 where a ∈ K(T)

satisfies a2 = a, a 6= 0 and a 6= 1. GCD’s with non-invertible leading coefficients are

of limited practical interest here; this leads us to the following definition.

Definition 3.1.7. Let f, g be in K(T)[y]. An extended greatest common divisor

(XGCD) of f and g is a sequence ((hi, ui, vi, T
i), 1 ≤ i ≤ e), where T = T 1, . . . , T e is

a non-critical decomposition of T and for all 1 ≤ i ≤ e, the elements hi, ui, vi are poly-

nomials in K(T i)[y], such that the following holds. Let f1, . . . , fe = project(f, {T},T)

and g1, . . . , ge = project(g, {T},T); then for 1 ≤ i ≤ e, we have:

• hi is monic or null,

• the inequalities deg ui < deg gi and deg vi < deg fi hold,

• hi divides fi and gi in K(T i)[y] and

• hi = uifi + vigi holds.

One easily checks that such XGCD’s exists, and can be computed, for instance

by applying the D5 Principle to the Euclidean algorithm. To compute GCD’s in

quasi-linear time over a direct product of fields, we will actually adapt the Half-GCD

techniques [150] in Section 3.4.

Our last basic ingredient is the suitable generalization of the notion of inverse to

direct products of fields.

Definition 3.1.8. A quasi-inverse of an element f ∈ K(T) is a sequence of couples

((ui, T
i), 1 ≤ i ≤ e) where T = T 1, . . . , T e is a non-critical decomposition of T and

50

ui is an element of K(T i) for all 1 ≤ i ≤ e, such that the following holds. Let

f1, . . . , fe = project(f, {T},T); then for 1 ≤ i ≤ e we have either fi = ui = 0, or

fiui = 1.

Obtaining fast algorithms for GCD’s, quasi-inverses and removal of critical pairs

requires a careful inductive process that we summarize below, before a more detailed

discussion.

• We first need complexity estimates for multiplication modulo a triangular set

and projecting w.r.t. triangular decompositions. This is done in Section 3.3.

• Assuming that multiplications and quasi-inverse computations can be computed

fast in K(T), and assuming that we can remove critical pairs from critical tri-

angular decompositions of 〈T 〉, we obtain in Section 3.4 a fast algorithm for

computing GCD’s in K(T)[y]. Note that [85] states that GCD’s over products

of fields can be computed in quasi-linear time, but with no proof.

• Assuming that GCD’s can be computed fast in K(T1, . . . , Tn−1)[Xn], we present

fast algorithms for quasi-inverses in K(T) (Section 3.5), coprime factorization

for polynomials in K(T1, . . . , Tn−1)[Xn] (Section 3.6) and refining a triangular

decomposition T of T into a non-critical one (Section 3.7).

Figure 3.1 illustrates the inductive process. We comment this picture hereafter.

We denote by Li the residue class ring K[X1, . . . , Xi]/〈T1, . . . , Ti〉 and by δi the degree

of the extension from K to Li, that is, the dimension of Li as a vector space over K.

Here are the steps of this inductive process depicted above.

1. Assuming that GCDs can be computed fast in Ln−1[Xn], we obtain

(a) fast coprime factorization in Ln−1[Xn],

(b) fast computations of quasi-inverses in Ln.

2. Based on fast coprime factorization in Ln−1[Xn], we obtain fast removal of

critical pairs in Ln, and, then, fast evaluation of the projection map.

3. Based on all the previous fast operations in Ln, we adapt the Half-GCD algo-

rithms in Ln[Xn+1] and preserve its complexity class as if Ln were a field.

The theorems below are the basic blocks for our inductive process, which yields

our main results:

51

gcd in Ln[Xn+1]
in degree d

Kn
2 δ1+ε

n d1+ε

coprime factorization

in Ln[Xn+1] in degree d

Kn
3 δ1+ε

n d1+ε

quasi-inverse

in Ln

Kn
1 δ1+ε

n

project in Ln

Kn
4 δ1+ε

n

remove crititical

pairs in Ln

Kn
5 δ1+ε

n

gcd in Ln−1[Xn]
in degree d

Kn−1
2 δ1+ε

n−1 d1+ε

coprime factorization

in Ln−1[Xn] in degree d

Kn−1
3 δ1+ε

n−1 d1+ε

Figure 3.1: A View of the Inductive Process

Theorem 3.1.9. For any ε > 0, we have Aε > 0 such that addition, multiplication

and quasi-inversion in K(T) can be computed in An
ε deg(T)1+ε operations in k.

Theorem 3.1.10. There exists G > 0, and for any ε > 0, there exists Aε > 0, such

that one can compute an extended greatest common divisor of polynomials in K(T)[y],

with degree at most d, using at most G An
ε d1+ε deg(T)1+ε operations in k.

This is a joint work with Xavier Dahan, Marc Moreno Maza and Éric Schost.

This chapter is an extended version of our prepublication [41]: it appears in the

proceedings of Transgressive Computing 2006, a conference in honor of Jean Della

Dora, one of the three inventors of the D5 Principle.

3.2 Complexity Notions

We start by recalling basic results for operations on univariate polynomials.

Definition 3.2.1. A multiplication time is a map M : N→ R such that:

• For any ring R, polynomials of degree less than d in R[X] can be multiplied in

at most M(d) operations (+,−,×) in R.

• For any d ≤ d′, the inequalities M(d)
d
≤ M(d′)

d′
and M(dd′) ≤ M(d)M(d′) hold.

Note that in particular that the inequalities M(d) ≥ d and M(d) + M(d′) ≤
M(d + d′) hold for all d, d′. Using the result of [28], that follows the work of

Schönhage and Strassen, we know that there exists c ∈ R such that the function

52

d 7→ c d logp(d) logp logp(d) is a multiplication time. In what follows, the function

logp is defined by logp(x) = 2 log2(max{2, x}): this function turns out to be more

convenient than the classical logarithm for handling inequalities.

Fast polynomial multiplication is the basis of many other fast algorithms: Eu-

clidean division, computation of the subproduct tree (see Chapter 10 in [57] and

Section 3.6 of this article), and multiple remaindering.

Proposition 3.2.2. There exists a constant C ≥ 1 such that the following holds over

any ring R. Let M be a multiplication time. Then:

1. Dividing in R[X] a polynomial of degree less than 2d by a monic polynomial of

degree at most d requires at most 5M(d) + O(d) ≤ C M(d) operations (+,×) in

R.

2. Let F be a monic polynomial of degree d in R[X]. Then additions and multipli-

cations in R[X]/F requires at most 6 M(d) + O(d) ≤ C M(d) operations (+,×)

in R.

3. Let F1, . . . , Fs be non-constant monic polynomials in R[X], with sum of degrees

d. Then one can compute the subproduct tree associated to F1, . . . , Fs using at

most M(d) logp(d) operations (+,×) in R.

4. Let F1, . . . , Fs be non-constant monic polynomials in R[X], with sum of de-

grees d. Then given A in R[X] of degree less than d, one can compute A mod

F1, . . . , A mod Fs within 11 M(d) logp(d) + O(d logp(d)) ≤ C M(d) logp(d) oper-

ations (+,×) in R.

5. Assume that R is a field. Then, given two polynomials in R[X] of degree at most

d, computing their monic GCD and their Bézout coefficients can be done in no

more than 33 M(d) logp(d)+O(d logp(d)) ≤ C M(d) logp(d) operations (+,×, /)

in R.

6. Assume that R is a field and that F is a monic squarefree polynomial in R[X]

of degree d. Then, computing a quasi-inverse modulo F of a polynomial G ∈
R[X] of degree less than d can be done in no more than 71 M(d) logp(d) +

O(d logp(d)) ≤ C M(d) logp(d) operations (+,×, /) in R.

Proof. The first point is proved in Theorem 9.6 of [57] and implies the second

one. The third and fourth points are proved in Lemma 10.4 and Theorem 10.15 of

the same book. The fifth point is reported in Theorem 11.5 of that book (with a

53

better constant), and is a particular case of Section 3.4 of this article. If F has no

multiple factors in R[X], a quasi-inverse of G modulo F can be obtained by at most

two extended GCD computations and one division with entries of degree at most d.

Using estimates for the GCD leads to the result claimed in point 6.

We now define our key complexity notion, arithmetic time for triangular sets.

Definition 3.2.3. An arithmetic time is a function T 7→ An(T) with real positive

values and defined over all triangular sets in k[X1, . . . , Xn] such that the following

conditions hold.

(E0) For every triangular decomposition T = T 1, . . . , T e of T , we have An(T 1)+ · · ·+
An(T e) ≤ An(T).

(E1) Every addition or multiplication in K(T) can be done in at most An(T) opera-

tions in k.

(E2) Every quasi-inverse in K(T) can be computed in at most An(T) operations in

k.

(E3) Given a triangular decomposition T of T , one can compute a non-critical tri-

angular decomposition T′ which refines T, in at most An(T) operations in k.

(E4) For every α ∈ K(T) and every non-critical triangular decomposition T of T ,

one can compute project(α, {T},T) in at most An(T) operations in k.

Our main goal in this work is then to give estimates for arithmetic times. This is

done through an inductive proof; the following proposition gives such a result for the

base case, triangular sets in one variable.

Proposition 3.2.4. If n = 1, then T ∈ k[X1] 7→ C M(deg T) logp(deg T) is an

arithmetic time.

Proof. A triangular set in one variable is simply a squarefree monic polynomial

in k[X1]. Hence, (E1), (E2) and (E4) respectively follow from points 2, 6 and 4 in

Proposition 3.2.2. Property (E0) is clear. Since n = 1, all triangular decompositions

are non-critical, and (E3) follows.

54

3.3 Basic Complexity Results: Multiplication and

Projection

This section is devoted to give first complexity results for triangular sets: we give

upper bounds on the cost of multiplication, and projection. In general, we do not

know how to perform this last operation in quasi-linear time; however, when the

decomposition is non-critical, quasi-linearity can be reached.

Proposition 3.3.1. Let M be a multiplication function, and let C be the constant

from Proposition 3.2.2. Let T be a triangular set in k[X1, . . . , Xn]. Then:

• Additions and multiplications modulo T can be done in at most

Cn
∏

i≤n M(degi T) operations in k.

• If T is a non-critical decomposition of T , then for any h in K(T), one can com-

pute project(h, {T},T) in at most n Cn
∏

i≤n M(degi T) logp(degi T) operations

in k.

Proof. The first part of the proposition is easy to deal with: the case of

additions is obvious, using the inequality M(d) ≥ d; as to multiplication, an easy

induction using point (1) in Proposition 3.2.2 gives the result. The end of the proof

uses point (4) in Proposition 3.2.2; the non-critical assumption is then used through

the following lemma.

Lemma 3.3.2. Consider a non-critical decomposition T of the triangular set T =

(T1, . . . , Tn). Write T≤n−1 = {U1, . . . , U s}, and, for all i ≤ s, denote by T i,1, . . . , T i,ei

the triangular sets in T such that T i,j ∩ k[X1, . . . , Xn−1] = U i (thus T is the set of

all T i,j, with i ≤ s and j ≤ ei). Then T≤n−1 is a non-critical decomposition of the

triangular set (T1, . . . , Tn−1). Moreover, for all i ≤ s, we have:

∑

j≤ei

degn T i,j = degn T.

Proof. Let U i and U j be in T≤n−1, and T i and T j be in T such that U i =

T i ∩ k[X1, . . . , Xn−1] and U j = T j ∩ k[X1, . . . , Xn−1]. Since U i and U j differ, the

level ` of T i and T j is at most n−1. Then, coprimality at level ` for T i and T j implies

coprimality at level ` for U i and U j. Therefore, T≤n−1 is a non-critical decomposition

of the triangular set (T1, . . . , Tn−1).

55

We prove the second claim. Let i ≤ s. The pairwise coprimality of T (i,1), . . . , T (i,ei)

modulo 〈U (i)〉 implies that

⋂

j≤ei

〈T (i,j)〉 = 〈U i〉+ 〈T (i,1) · · ·T (i,ei)〉.

We write Ai = 〈U i〉+ 〈T (i,1) · · ·T (i,ei)〉. From the definition of a triangular decom-

position, we have the equality between ideals in k[X1, . . . , Xn]:

〈T 〉 =
⋂

i≤s

⋂

j≤ei

〈T (i,j)〉 =
⋂

i≤s

Ai. (3.6)

On the other hand, by definition of T≤n−1 we have:

〈T 〉 =
⋂

i≤s

〈U i〉+ 〈Tn〉. (3.7)

Since T≤n−1 is a triangular decomposition of the triangular set (T1, . . . , Tn−1),

the ideals 〈U i〉 are pairwise coprime. We deduce that Ai = 〈U i〉 + 〈Tn〉 holds. The

conclusion follows.

As an illustration, consider again, for n = 2, the triangular sets

T 1 = ((X1 − 1)(X1 − 2), X2)

T 2 = ((X1 − 1)(X1 − 3), X2 − 1)

and T 3 = ((X1 − 2)(X1 − 3), X2 + X1 − 3).

These triangular sets form a critical decomposition T of the ideal 〈T 1〉 ∩ 〈T 2〉 ∩ 〈T 3〉,
which is also generated by T = ((X1 − 1)(X1 − 2)(X1 − 3), X2(X2 − 1)).

Here, T≤1 is given by {U 1, U2, U3} = {(X1 − 1)(X1 − 2), (X1− 1)(X1 − 3), (X1 −
1)(X1 − 3)}, so that s = 3. Take for instance U 1 = (X1 − 1)(X1 − 2); then we have

e1 = 1 and T 1,e1 = T 1. Note then that deg2 T 1,e1 = 1 differs from deg2 T = 2, so the

conclusion of the previous lemma is indeed violated.

3.4 Fast GCD Computations Modulo Triangular

Sets

GCD’s of univariate polynomials over a field can be computed in quasi-linear time

by means of the Half-GCD algorithm [24, 150]. We show how to adapt this tech-

56

nique over the direct product of fields K(T) and how to preserve its complexity class.

Throughout this section, we consider an arithmetic time T 7→ An(T) for triangular

sets in k[X1, . . . , Xn].

Proposition 3.4.1. For all a, b ∈ K(T)[y] with deg a, deg b ≤ d, one can compute an

extended greatest common divisor of a and b in O(M(d)log(d))An(T) operations in k.

We prove this result by describing our GCD algorithm over the direct product of

fields K(T) and its complexity estimate. We start with two auxiliary algorithms.

Monic forms. Any polynomial over a field can be made monic by division through

its leading coefficient. Over a product of fields, this division may induce splittings.

We now study this issue.

Definition 3.4.2. A monic form of f ∈ K(T)[y] with degree d is a sequence of

quadruples ((ui, vi, mi, Ti), 1 ≤ i ≤ e), where T = T 1, . . . , T e is a non-critical decom-

position of T , ui, vi are in K(T i) and mi is in K(T i)[y] for all 1 ≤ i ≤ e, and such

that the following holds.

Let f1, . . . , fe = project(f, {T},T). Denote by lc(fi) the leading coefficient of fi.

Then, for all 1 ≤ i ≤ e we have ui = lc(fi), and mi = vifi, and either ui = vi = 0 or

uivi = 1.

Observe that for all 1 ≤ i ≤ e, the polynomial mi is monic or null.

The following algorithm shows how to compute a monic form. This function uses

a procedure quasiInverse(f ,T). This procedure takes as input a triangular decomposi-

tion T = T 1, . . . , T e of T and a sequence f = f1, . . . , fe in K(T 1)[y]×· · ·×K(T e)[y] and

returns a sequence (((fij, T
ij), 1 ≤ j ≤ ei), 1 ≤ i ≤ e) where ((fij, T

ij), 1 ≤ j ≤ ei)

is a quasi-inverse of fi modulo T i and such that (T ij, 1 ≤ j ≤ ei, 1 ≤ i ≤ e) is a

non-critical refinement of T. Its complexity is studied in Section 3.5.

The number at the end of a line, multiplied by An(T), gives an upper bound for

the total time spent at this line. Therefore, the following algorithm computes a monic

form of f in at most (6d + 4)An(T) operations in k.

Division with monic remainder. The previous notion can then be used to com-

pute Euclidean divisions, producing monic remainders: they will be required in our

fast Euclidean algorithm for XGCD’s.

Definition 3.4.3. Let f, g ∈ K(T)[y] with g monic. A division with monic remainder

of f by g is a sequence of tuples ((gi, qi, vi, ui, ri, T
i), 1 ≤ i ≤ e) such that T =

57

Algorithm 8 Monic Form

monic(f, T) ==

1: T← {T}; v← (0); g ← f
2: while g 6= 0 do
3: u← project(lc(g), {T},T) [d + 1]
4: (w,T′)← quasiInverse(u,T) [d + 1]
5: v ← project(v,T,T′) [d + 1]
6: for 1 ≤ i ≤ #v do
7: if vi = 0 then vi ← wi [d + 1]
8: end for
9: T← T′

10: g ← g − leadingTerm(g)
11: end while
12: f ← project(f, {T},T) [d]
13: u← lc(f)
14: m← v · f [d]
15: return ((ui, vi, mi, T

i), 1 ≤ i ≤ #T)

T 1, . . . , T e is a non-critical decomposition of T , and, for all 1 ≤ i ≤ e, we have

ui, vi ∈ K(T i) and gi, qi, ri,∈ K(T i)[y], and such that the following holds.

Let f1, . . . , fe = project(f, {T},T) and g1, . . . , ge = project(g, {T},T). Then, for

all 1 ≤ i ≤ e, the polynomial ri is null or monic, we have either ui = vi = 0 or

uivi = 1, and the polynomials qi and uiri are the quotient and remainder of fi by gi

in K(T i)[y].

The following algorithm computes a division with monic remainder of f by g and

requires at most (5M(d)+O(d))An(T) operations in k. We write (q, r) = div(f, g) for

the quotient and the remainder in the (standard) division with remainder in K(T)[y].

Algorithm 9 Division with Monic Remainder

mdiv(f, g, T) ==

1: (q, r)← div(f, g) [5M(d) + O(d)]
2: ((ui, vi, ri, T

i), 1 ≤ i ≤ #T)← monic(r, T) [O(d)]
3: (qi, 1 ≤ i ≤ #T)← project(q, {T},T) [d + 1]
4: (gi, 1 ≤ i ≤ #T) := project(g, {T},T) [d]
5: return ((gi, qi, ri, ui, vi, T

i), 1 ≤ i ≤ #T)

Most of our operations comes in two flavors: one takes input polynomials f, g, . . .

in a ring K(T)[y] for a given triangular set T , the other one takes projections f =

f1, . . . , fe and g = g1, . . . , ge of these polynomials on a triangular decomposition T of

T . In Section 3.5 we detail the case of quasi-inversions with Algorithms 11 and 12.

58

In the second algorithm, the dominant cost is the the call to the first one. Hence, the

two algorithms have essentially the same running time.

For monic remainder computations, the two flavors are also needed. Algorithm 9

takes as input a triangular set T and polynomials f, g ∈ K(T)[y]. The “projection

flavor” is built on top of Algorithm 9:

• it takes as input a triangular decomposition T = T 1, . . . , T e of T , together

with f = f1, . . . , fe and g = g1, . . . , ge, which are sequences of polynomials in

K(T 1)[y], . . . , K(T e)[y];

• it proceeds with e calls to mdiv of Algorithm 9, namely mdiv(f1, g1, T
1), . . . ,

mdiv(fe, ge, T
e).

• this leads to additional splits, which requires removal of critical pairs.

The dominant cost is the e calls to mdiv. Therefore, in each situation, the total cost

is still bounded by O
(
M(d) + d

)
An(T).

XGCD’s. We are now ready to generalize the Half-GCD method as exposed in [150].

We introduce the following operations. For a, b ∈ K(T)[y] with 0 < deg b < deg a = d,

each of the following algorithms Mgcd(a, b, T) and Mhgcd(a, b, T) returns a sequence

((M1, T
1), . . . , (Me, T

e)) where

(s1) T = T 1, . . . , T e is a non-critical triangular decomposition of T ,

(s2) Mi is a square matrix of order 2 with coefficients in K(T i)[y],

such that, if we define (a1, . . . , ae) = project(a, {T},T) and (b1, . . . , be) =

project(b, {T},T), then, for all 1 ≤ i ≤ e, defining (ti, si) = (ai, bi)
tMi, we have

(s3) in the case of Mgcd, the polynomial ti is a GCD of ai, bi and si = 0 holds,

(s′3) in the case of Mhgcd, the ideals 〈ti, si〉 and 〈ai, bi〉 of K(T i)[y] are identical, and

deg si < dd/2e ≤ deg ti holds.

The algorithm below implements Mgcd(a, b, T), and is an extension of the ana-

logue algorithm known over fields. Observe that if the input triangular set T is not

decomposed during the algorithm, in particular if K(T) is a field, then the algorithm

yields generators of the ideal 〈a, b〉. If T is decomposed, then the lines from 23 to 31

guarantee that Mgcd(a, b, T) generates a non-critical triangular decomposition of T .

59

Algorithm 10 Half-GCD Modulo a Triangular Set

Mgcd(a,b,T) ==

1: G← []; T← []
2: ((Mi, T

i), 1 ≤ i ≤ e)← Mhgcd(a, b, T) [H(d)]
3: (a1, . . . , ae)← project(a, (T i, 1 ≤ i ≤ e)) [O(d)]
4: (b1, . . . , be)← project(b, (T i, 1 ≤ i ≤ e)) [O(d)]
5: for i in 1 · · · e do
6: (ti, si)← (ai, bi)

tMi [4 M(d) + O(d)]
7: if si = 0 then
8: G← G, (Mi, T

i); T← T, T i

9: end if
10: ((sij, qij, rij, uij, vij, T

ij), 1 ≤ j ≤ ei)← mdiv(ti, si, T
i) [5

2
M(d) + O(d)]

11: (Mij, 1 ≤ j ≤ ei)← project(Mi, (T
ij, 1 ≤ j ≤ ei)) [O(d)]

12: for j in 1 · · · ei do

13: Mij ←
(

0 1
vij −qijvij

)
Mij [2 M(d) + O(d)]

14: if rij = 0 then G← G, (Mij, T
i); T← T, T ij

15: ((Nijk, T
ijk), 1 ≤ k ≤ eij)← Mgcd(sij, rij, T

ij) [G(d/2)]
16: (Mijk, 1 ≤ k ≤ eij)← project(Mij, (T

ijk, 1 ≤ k ≤ eij)) [O(d)]
17: for k in 1 · · · eij do
18: Mijk ← NijkMijk [8 M(d) + O(d)]
19: G← G, (Mijk, T

ijk); T← T, T ijk

20: end for
21: end for
22: end for
23: T′ ← RemoveCriticalPairs(T) [1]
24: Res← []
25: for (M, T) ∈ G do
26: U← decomp(T,T′)
27: (M`, 1 ≤ ` ≤ #U)← project(()M, {T}, U) [O(d)]
28: for 1 ≤ ` ≤ #U do
29: Res← Res, (Mi, U

i)
30: end for
31: end for
32: return Res

60

Similarly, the Half-GCD algorithm can be adapted to K(T)[y], leading to an im-

plementation of Mhgcd(a, b, T). It has a structure very similar to Mgcd(a, b, T), see

[150] for details in the case when the coefficients lie in a field.

Now, we give running time estimates for Mhgcd(a, b, T) and Mgcd(a, b, T). For

0 < deg b < deg a = d, we denote by G(d) and H(d) respective upper bounds for the

running time of Mgcd(a, b) and Mhgcd(a, b), in the sense that both operations can be

done in respective times G(d)An(T) and H(d)An(T).

The number at the end of a line, multiplied by An(T), gives an upper bound

of the running time of this line. These estimates follow from the super-linearity of

the arithmetic time for triangular sets, the running time estimates of the operation

mdiv(f, g, T) and classical degree bounds for the intermediate polynomials in the Ex-

tended Euclidean Algorithms; see for instance Chapter 3 in [57]. Therefore, counting

precisely the degrees appearing, we have: G(d) ≤ G(d/2)+H(d)+(33/2)M(d)+O(d).

The operation Mhgcd(a, b, T) makes two recursive calls with input polynomials of de-

gree at most d/2, leading to H(d) ≤ 2H(d/2)+(33/2)M(d)+O(d). The superlinearity

of M implies

H(d) ≤ 33

2
M(d) log d + O(d log d) and G(d) ≤ 2H(d) + 2M(d) + O(d).

This leads to the result reported in Proposition 3.4.1.

We conclude with a specification of a function used in the remaining sections. For

a triangular decomposition T = T 1, . . . , T e of T , two sequences f = f1, . . . , fe and g =

g1, . . . , ge of polynomials in K(T 1)[y], . . . , K(T e)[y], the operation xgcd(f , g,T) returns

a sequence (((gij, uij, vij, T
ij), 1 ≤ j ≤ ei), 1 ≤ i ≤ e) where ((gij, uij, vij, T

ij), 1 ≤ j ≤
ei) is an extended greatest common divisor of fi and gi and such that (T ij, 1 ≤ j ≤
ei, 1 ≤ i ≤ e) is a non-critical refinement of T.

Proposition 3.4.1 implies that if f1, . . . , fe, g1, . . . , ge have degree at most d then

xgcd(f , g,T) runs in at most O(M(d)log(d))An(T) operations in k.

3.5 Fast Computation of Quasi-inverses

Throughout this section, we consider an arithmetic time An−1 for triangular sets in

n − 1 variables. We explain how a quasi-inverse can be computed fast with the

algorithms project, xgcd, and RemoveCriticalPairs.

Proposition 3.5.1. Let T = (T1, . . . , Tn) be a triangular set with degi(T) = di for

61

all 1 ≤ i ≤ n. Let f be in K(T). Then one can compute a quasi-inverse of f modulo

T in O
(
M(dn) log(dn)

)
An−1(T<n) operations in k.

With Algorithm 11, we consider first the case where f is a non-constant polynomial

and its degree w.r.t. Xn is positive and less than dn; the algorithm is followed by

the necessary explanations. Here, the quantity at the end a line, once multiplied

by An−1(T<n), gives the total amount of time spent at this line. At the end of this

section, we briefly discuss the other cases to be considered for f .

Algorithm 11 Quasi-inverse

quasiInverse(f, T) ==

1: ((gi, ui, vi, T
i
<n), 1 ≤ i ≤ e)← xgcd(f, Tn, T<n)

[
O
(
M(dn) log(dn)

)]

2: (T i
n, . . . , T e

n)← project(Tn, {T<n}, {T 1
<n, . . . , T e

<n}) [O(dn)]
3: (fi, . . . , fe)← project(f, {T<n}, {T 1

<n, . . . , T
e
<n}) [O(dn)]

4: T← {}; C← {}; result← {}
5: for i = 1 . . . e do
6: if deg(gi) = 0 then
7: C← C, (ui, T

i
<n ∪ T i

n); T← T, T i
<n ∪ T i

n

8: else if deg(gi) > 0 then
9: C← C, (0, T i

<n ∪ gi); T← T, T i
<n ∪ gi

10: qi ← quotient(T i
n, gi) [5M(dn) + O(dn)]

11: ((gij, uij, vij, T
ij
<n), 1 ≤ j ≤ ei)← xgcd(fi, qi, T

i
<n)

[
O
(
M(dn) log(dn)

)]

12: (T i1
n , . . . , T iei

n)← project(qi, {T i
<n}, {T i1

<n, . . . , T iei
<n}) [O(dn)]

13: for j = 1 . . . ei do
14: C← C, (uij, T

ij
<n ∪ T ij

n); T← T, T ij
<n ∪ T ij

n

15: end for
16: end if
17: end for
18: T′

<n ← RemoveCriticalPairs(T<n) [O(1)]
19: for (u, S) ∈ C do
20: (R1, . . . , Rl)← decomp(S<n,T′

<n)
21: (S1

n, . . . , Sl
n)← project(Sn, {S<n}, {R1, . . . , Rl}) [O(dn)]

22: (u1, . . . , ul)← project(u, {S<n}, {R1, . . . , Rl}) [O(dn)]
23: result← result, ((uk, R

k ∪ Sk
n), 1 ≤ k ≤ l)

24: end for
25: return result

We first calculate an extended greatest common divisor of f and Tn modulo

the triangular set T<n = (T1, . . . , Tn−1). This induces a non-critical decomposition

{T 1
<n, . . . , T e

<n} of T<n. For further operations, we compute the images of Tn and f

over this decomposition.

62

Let 1 ≤ i ≤ e. If the value of gi is 1, then ui is the inverse of f modulo {T i
<n∪T i

n}.
Otherwise, deg gi > 0, and the computation needs to be split into two branches.

In one branch, at line 9, we build the triangular set {T i
<n ∪ gi}, modulo which f

reduces to zero. In the other branch, starting from line 10, we build the triangular set

as {T i
<n∪ qi}, modulo which f is invertible. Indeed since the triangular set {T i

<n∪ qi}
generates a radical ideal, T i

n is squarefree modulo {T i
<n}, and gcd(f, qi) must be 1

modulo {T i
<n ∪ qi}. Therefore we can simply use the xgcd (step 11) once to compute

the quasi-inverse of f modulo {T i
<n ∪ qi}.

After collecting all the quasi-inverses, we remove the critical pairs in the new

family of triangular sets. Since no critical pairs are created at level n in the previous

computation, the removal of critical pairs needs only to perform below level n. At

the end, we project the inverses and the top polynomials w.r.t the last non-critical

decomposition.

We also need quasi-inverse computations in two other different situations. One is

when f may not have the same main variable as the triangular set T . This case is

essentially covered by induction. We need also to compute quasi-inverses in the sense

of quasiInverse(f ,T) introduced in Section 3.4 where T = T 1, . . . , T e is a triangular

decomposition of T , and f = f1, . . . , fe is a sequence of polynomials in k[X1, . . . , Xn].

As shown by Algorithm 12, This is simply built on top Algorithm 11, with additional

splits and removal of critical pairs. The dominant cost is the two xgcd calls. Therefore,

in each situation, the total cost is bounded by O
(
M(dn) log(dn)

)
An−1(T<n).

3.6 Coprime Factorization

We present first in this section a quasi-linear time algorithm for coprime factorization

of univariate polynomials over a field. Other fast algorithms for this problem are

given by [60], with a concern for parallel efficiency, and in [17], in a wider setting, but

with a slightly worse computation time. Remark that the research announcement [16]

has a time complexity that essentially matches ours.

Following the ideas presented in Section 3.4, we then give an adaptation of this

algorithm over a direct product of fields given by a triangular set. We will use this tool

in Section 3.7 for computing non-critical refinements of a triangular decomposition

(see the example in the introduction for a motivation of this idea).

63

Algorithm 12 Refining Quasi-inverse

quasiInverse(f ,T) ==

1: T′ ← {}; C← {}; Res← {}
2: for i in 1 . . . e do
3: ((uij, T

ij), 1 ≤ j ≤ ei)← quasiInverse(fi, T
i)

[
O
(
M(dn) log(dn)

)]

4: for j in 1 . . . ei do
5: C← {C, (uij, T

ij)}
6: T′ ← {T′, T ij}
7: end for
8: end for
9: T′

<n ← RemoveCriticalPairs(T′
<n) [O(1)]

10: for (u, S) in C do
11: (Rk, 1 ≤ k ≤ l)← decomp(S<n,T

′
<n)

12: (Sk
n, 1 ≤ k ≤ l)← project(Sn, {S<n}, {R1, . . . , Rl}) [O(dn)]

13: (uk, 1 ≤ k ≤ l)← project(u, {S<n}, {R1, . . . , Rl}) [O(dn)]
14: for k in 1 . . . l do
15: Res← {Res, (uk, R

k ∪ Sk
n)}

16: end for
17: end for
18: return Res

3.6.1 GCD-Free Basis

Throughout this section, we consider an arithmetic time An for triangular sets in n

variables. Definition 3.6.1 deals with the case of univariate polynomials over the base

field k whereas Definition 3.6.3 handles the case of coefficients in a direct product of

fields.

Definition 3.6.1. Let A = a1, . . . , as be squarefree polynomials in k[x]. Some poly-

nomials b1, . . . , bt in k[x] are a GCD-free basis of the set A if gcd(bi, bj) = 1 for i 6= j,

each ai can be written (necessarily uniquely) as a product of some of the bj, and each

bj divides one of the ai. The associated coprime factorization of A consists in the

factorization of all polynomials ai in terms of the polynomials b1, . . . , bt.

We shall establish the following result.

Proposition 3.6.2. Let d be the sum of the degrees of A = a1, . . . , as. Then a

coprime factorization of A can be computed in O(M(d) logp(d)3) operations in k.

For brevity’s sake, we will only prove how to compute a GCD-free basis of A,

assuming without loss of generality that all ai have positive degree. Deducing the

coprime factorization of A involves some additional bookkeeping operations, keeping

64

track of divisibility relations; it induces no new arithmetic operations, and thus has

no consequence on complexity.

Definition 3.6.3. Let T ⊂ k[X1, . . . , Xn] be a triangular set and a = a1, . . . , as be

squarefree, monic polynomials in K(T)[y]. A GCD-free basis of a1, . . . , as over K(T)

is the datum of monic, pairwise coprime, polynomials b = b1, . . . , bt in K(T)[y] such

that:

• each of the polynomials ai can be expressed as a product of some of the poly-

nomials bj;

• each of the polynomials bj divides one of the polynomials ai.

Note in particular that the sum of the degrees of the polynomials b is less than

or equal to that of polynomials a. Moreover, Definitions 3.6.1 and 3.6.3 are very

similar. However, in the latter case, such a GCD-free basis need not exist in general,

even though it does when K(T) is a field. As for GCD’s, the workaround is to take

into account possible splittings of K(T). Let thus U = U1, . . . , Ue be a triangular

decomposition of T , for which we write (ai,1, . . . , ai,e) = project(ai,U) for all i =

1, . . . , s. Then, a GCD-free basis of a over U consists in families of pairwise coprime,

monic polynomials bj in K(Uj)[y], for j ≤ e, such that each bj forms a coprime

factorization of a1,j , . . . , as,j over K(Uj).

The goal of this section is to give complexity estimates for this task, namely

Theorem 3.6.4. To this effect, we will use the following convention concerning the

big-Oh notation: the cost of an algorithm is said to be in O(g(d)A(T)), for some

function g : N → R, if there exists a constant K independent of d and T , and such

that this cost is at most Kg(d)An(T) for any d ∈ N and any triangular set T .

Theorem 3.6.4. Let T be a triangular set, and a = a1, . . . , as be squarefree, monic

polynomials in K(T)[y]. One can compute as a GCD-free basis of a over U,

O
(
M(d) log3(d) An(T)

)

operations in k, where d =
∑

i≤s deg ai.

In Sections 3.6.2, 3.6.3, 3.6.4, 3.6.5 and 3.6.1, we define the subroutines required

for our GCD-free basis algorithm. Recall that the cost at given any line in our pseudo-

code denotes the total time spent at this line; for simplicity, in what follows, we omit

the O() in the complexity estimates attached to the pseudo-code.

65

3.6.2 Subproduct Tree Techniques

The subproduct tree is a useful construction to devise fast algorithms with univariate

polynomials, in particular GCD-free basis. We review this notion briefly and refer to

[57] for more details.

Let m1, . . . , mr be monic, non-constant polynomials in k[x]. We define a proce-

dure, subProductTree, to generate a subproduct tree Sub associated to m1, . . . , mr.

If r = 1, then Sub is a single node, labeled by the polynomial m1. Otherwise, let

r′ = dr/2e, and let Sub1 and Sub2 be the subProductTree associated to m1, . . . , mr′

and mr′+1, . . . , mr respectively. Let p1 and p2 be the polynomials at the roots of Sub1

and Sub2. Then Sub is the tree whose root is labeled by the product p1p2 and has

children Sub1 and Sub2. A row of the tree consists in all nodes lying at some given

distance from the root. The depth of the tree is the number of its non-empty rows.

Let d =
∑r

i=1 deg(mi); then the sum of the degrees of the polynomials on any row of

the tree is at most d, and its depth is at most logp(d).

Subproduct tree techniques are used in the proof of the fourth claim of Proposi-

tion 3.2.2 for the operation called fast simultaneous remainder.

This statement holds for non-constant monic polynomials over an arbitrary com-

mutative ring with units. Thus, in particular, it holds over a direct product of fields.

In the case of non-necessarily monic polynomials, with coefficients in some K(T)

for a triangular set T , one needs to split the computations. Algorithm 14 covers that

generalization. Note that in this case, the nodes of the tree have to be labeled with

projections of polynomials over a triangular decomposition of T . Algorithm 14 will

be used later only for the case of input monic polynomials whereas Algorithm 13 gives

a convenient subroutine to be reused in other algorithms.

Algorithm 13 Refining Project

Input ((F i, Ci)1≤i≤r, U) where F i is a set of polynomials ∈ K(C i)[y], T is a
triangular set, and both {C1, . . . , Cr} and U are non-critical triangular
decompositions of T , such that the latter one refines the former one.

Output all project(F i, {Ci}, decomp(C i, U)) for 1 ≤ i ≤ r.

refineProject((F i, Ci)1≤i≤r, U) ==

1: result← {}
2: for i from 1 to r do
3: result← result ∪ project(F i, {Ci}, decomp(C i, U))
4: end for
5: return result

66

Algorithm 14 Fast Simultaneous Remainder Modulo a Triangular Set

Input T is a triangular set, and p, a1, . . . , ae are polynomials in K(T)[y]. Let
d =

∑
deg(ai).

Output ((R1, W 1), . . . , (Rl, W l)) where {W 1, . . . , W l} is a non-critical triangular
decomposition of T . Ri = (ri

j) where ri
j is the remainder of p by ai in

K(W i)[y].

multiRemModT(p, (a1, . . . , ae), T) ==

1: tree← subProductTree((a1, . . . , ae), T); result← {}
2: f ← root of tree; W ← {}
3: if deg(p) ≥ deg(f) then
4: (ri, T

i)1≤i≤s ← mdiv(p, f, T)
5: Label f by (ri, T i)1≤i≤s; W ← {T 1, . . . , T s}
6: else
7: Label f by (p, T); W ← {T}
8: end if
9: for every node N in tree starting from its root top-down and left-right do

10: if N is not a leaf then
11: ((ri, U

i)1≤i≤#U)← label of N
12: f1 ← leftChild(N); f2 ← rightChild(N)
13: for f in {f1, f2} do
14: ((r′j, W

j)1≤j≤#W)← refineProject((ri, U
i)1≤i≤#U , W)

15: ((f ′
j, W

j)1≤j≤#W)← project(f, {T}, W)
16: ((remk, E

k)1≤k≤#E)← mdiv((r′j, f
′
j, W

j)1≤j≤#W)
17: Label f by (remk, E

k)1≤k≤#E

18: W ← {E1, . . . , E#E}
19: end for
20: end if
21: end for
22: W ← RemoveCriticalPair(Uf)
23: for every node N in leaves do
24: ((r′i, U

i)1≤i≤#U)← label of N
25: ((rj, W

j)1≤j≤#W)← refineProject((r′i, U
i)1≤i≤#U , W)

26: result← result ∪ (rj, W
j)1≤j≤#W

27: end for
28: result← group the result into (((ri

1, . . . , r
i
e), W

i)1≤i≤#W)
29: return result

67

3.6.3 Multiple GCD’s

In this section, we present our first sub-algorithm involved in the computations of

GCD-free bases. We start with the case of univariate polynomials over a field, leading

to Algorithm 15. It takes as input p and (a1, . . . , ae) in k[x], and outputs the sequence

of all gcd(p, ai). The idea of this algorithm is to first reduce p modulo all ai using

fast simultaneous reduction, and then take the GCD’s of all remainders with the

polynomials ai (see also Exercise 11.4 in [57]).

We make the assumption that all ai are non-constant in the pseudo-code below,

so as to apply the results of Proposition 3.2.2. To cover the general case, it suffices

to introduce a wrapper function, that strips the input sequence (a1, . . . , ae) from its

constant entries, and produces 1 as corresponding GCD’s; this function induces no

additional arithmetic cost. Finally, we write d =
∑e

i=1 deg ai.

Algorithm 15 Multiple GCDs over a Field

multiGcd(p, (a1, . . . , ae)) ==

1: tree← subProductTree((a1, . . . , ae), T); f ← root of tree
2: if deg p ≥ d then
3: p← p mod f [M(deg p) + M(d) logp(d)]
4: end if
5: p1 ← p mod leftChild(f); p2 ← p mod rightChild(f)
6: Continue the operation from top to the leaves of tree, until

(q1, . . . , qe)← (p mod a1, . . . , p mod ae) [M(d) logp(d)]
7: return (gcd(q1, a1), . . . , gcd(qe, ae))

[∑
i M(deg ai) logp(deg ai)

]

The cost of lines 3 and 6 follows from Proposition 3.2.2. The function d 7→
M(d) logp(d) is super-additive, so the complexity at line 7 fits in O(M(d) logp(d)).

Hence, the total cost of this algorithm is in O(M(deg p) + M(d) logp(d)).

Algorithm 17 is an adaptation of Algorithm 15 for the case of univariate poly-

nomials over K(T), for some triangular set T . The principle is the same. However,

each GCD computation can refine the current triangular decomposition of T . It is,

therefore, preferable to define an operation dedicated to computing GCDs of several

pairs of polynomials in K(T)[y]. This is the purpose of Algorithm 16. The dominant

cost in this latter algorithm comes from the GCD computations. Indeed projections

and removal of critical pairs have lower cost. Therefore, the complexity analysis of

Algorithm 17 is similar to that of Algorithm 15 and we have:

68

Proposition 3.6.5. Algorithm 17 runs within

O
(
(M(deg p) + M(d) log(d)) An(T)

)

operations in k where d =
∑

i≤e deg(ai).

Algorithm 16 List of GCDs Modulo a Triangular Set

Input T is a triangular set, a1, . . . , ae, b1, . . . , be are polynomials in K(T)[y].

Output ((G1, W 1), . . . , (Gm, W m)) where {W 1, . . . , W m} is a triangular decompo-
sitions of T . Gi = (gi

1, . . . , g
i
e) where gi

j is a GCD of aj and bj in K(W i)[y].

listGcdModT((ai, bi)1≤i≤e, T) ==

1: ((gj
1, U

j)1≤j≤s)← xgcd(a1, b1, T)
2: temp← ((gi

1, U
i)1 ≤ i ≤ s); W ← {U 1, . . . , U s}

3: for i in 2 . . . e do
4: ((aj

i , W
j)1≤j≤#W)← project(ai, {T}, W)

5: ((bj
i , W

j)1≤j≤#W)← project(bi, {T}, W)
6: H ← {}
7: for j in 1 . . .#W do
8: ((gk

i , E
k)1≤k≤t)← xgcd(aj

i , b
j
i , W

j)
9: temp← temp ∪ ((gk

i , E
k)1≤k≤t)

10: H ← H ∪ {E1, . . . , Et}
11: end for
12: W ← RemoveCriticalPair(H)
13: end for
14: result← {}
15: for (gl, El)1≤l≤#E in temp do
16: ((g′m, W m)1≤m≤#W)← refineProject((gl, El)1≤l≤#E, W)
17: result← result ∪ ((g′m, W m)1≤m≤#W)
18: end for
19: Group result as ((gm

1 , . . . , gm
e), W m)1≤m≤#W and return result

3.6.4 All Pairs of GCD’s

The second sub-algorithm involved in the computations of GCD-free bases per-

forms the following. On input, we take two families of polynomials (a1, . . . , ae) and

(b1, . . . , bs), where all ai (resp. all bi) are squarefree and pairwise coprime. Algo-

rithms 18 and 19 compute all gcd(ai, bj). Algorithm 18 covers the case of polynomials

over the base field k and Algorithm 19 deals with polynomials in K(T)[y].

As above, we suppose that all ais are non-constant; to handle the general case, it

suffices to introduce a wrapper function, with arithmetic cost 0, that removes each

69

Algorithm 17 Multiple GCDs Modulo a Triangular Set

Input T is a triangular set, and p, a1, . . . , ae are polynomials in K(T)[y] with
a1, . . . , ae monic.

Output ((G1, W 1), . . . , (Gs, W s)) where {W 1, . . . , W l} is a triangular decomposi-
tions of T . Gi = (gi

1, . . . , g
i
e) where gi

j is a GCD of p and aj in K(W i)[y].

multiGcdModT(p, (a1, . . . , ae), T) ==

1: (((r1, . . . , re), T))← multiRemModT(p, (a1, . . . , ae), T)
2: return listGcdModT((rj, aj)1≤j≤e, T)

constant ai from the input, and adds the appropriate sequence (1, . . . , 1) in the output.

Here, we write d = max(
∑

i deg ai,
∑

j deg bj).

Algorithm 18 computes the GCD’s of (b1, . . . , bs) with all polynomials in the sub-

product tree associated with (a1, . . . , ae); the requested output can be found at the

leaves of the tree. To give the complexity of this algorithm, one proves that the total

number of operations along each row is in O(M(d) logp(d)), whence a total cost in

O(M(d) logp(d)2).

Algorithm 19 follows the same strategy as Algorithm 18. However, each call to

listGcdModT can further split the current triangular decomposition W of T , leading

to projection and removal of critical pairs. However, their costs are dominated by the

calls to listGcdModT. Therefore, we have:

Proposition 3.6.6. Algorithm 19 runs within

O
(
M(d) logp(d)2 An(T)

)

operations in k where d = max(
∑

i deg ai,
∑

j deg bj).

3.6.5 Merging GCD-Free Bases

The input of our third subroutine are sequences of polynomials (a1, . . . , ae) and

(b1, . . . , bs), where all ai (resp. all bi) are squarefree, monic and pairwise coprime.

We compute a GCD-free basis of (a1, . . . , ae, b1, . . . , bs). Algorithm 20 deals with

the case of univariate polynomials over the base field k whereas Algorithm 23 cov-

ers the case of univariate polynomials over K(T), for some triangular set T . This is

done by computing all gcd(ai, bj), as well as the quotients δi = ai/
∏

j gcd(ai, bj) and

γj = bj/
∏

i gcd(ai, bj).

70

Algorithm 18 All Pairs of GCDs over a Field

pairsOfGcd((a1, . . . , ae), (b1, . . . , bs)) ==

1: tree← subProductTree(a1, . . . , ae); f = rootOf(tree) [M(d) logp(d)]
2: Label the root of tree by multiGcd(f, (b1, . . . , bs)) [M(d) logp(d)]
3: for every node N ∈ tree, going top-down do
4: if N is not a leaf and has label g then
5: f1 ← leftChild(N); f2 ← rightChild(N)
6: Label f1 by multiGcd(f1, g) [M(d) logp(d)2]
7: Label f2 by multiGcd(f2, g) [M(d) logp(d)2]
8: end if
9: end for

10: return labels of the leaves

The fact that the polynomials a1, . . . , ae, b1, . . . , bs and their GCD’s are monic

makes Algorithm 23 relatively simple. For clarity, it uses two sub-procedures Algo-

rithm 21 and Algorithm 22 for simplicity.

We denote by removeConstants(L) a subroutine that removes all constant poly-

nomials from a sequence L (such a function requires no arithmetic operation, so

its cost is zero in our model). In the complexity analysis, we still write d =

max(
∑

i deg ai,
∑

j deg bj).

The validity of Algorithm 20 is easily checked. The estimates for the cost of lines

4, 5, 9 and 10 come for the cost necessary to build a subproduct tree and perform

Euclidean division, together with the fact that βj (resp. αi) divides bj (resp. ai).

The total cost is thus in O(M(d) logp(d)2). Similarly, Algorithm 23 has total cost

O
(
M(d) logp(d)2 An(T)

)

3.6.6 Computing GCD-Free Bases

We finally give an algorithm for computing GCD-free bases. As input, we take square-

free, non-constant polynomials a1, . . . , ae, with d =
∑

i≤e deg ai. We need a construc-

tion close to the subproduct tree: we form a subproduct tree tree whose nodes will

be labeled by sequences of polynomials. Initially the leaves contain the sequences of

length 1, (a1), . . . , (ae), and all other nodes are empty. Then, we go up the tree; at

a node N , we use the subroutines of Section 3.6.5 in order to compute a GCD-free

basis of the sequences labeling the children of N .

Algorithm 24 deals with the case of univariate polynomials over the base field k

whereas Algorithm 25 covers the case of univariate polynomials over K(T), for some

triangular set T .

71

Algorithm 19 All Pairs GCDs Modulo a Triangular Set

Input T is a triangular set, and a1, . . . , ae, b1, . . . , bs are polynomials in K(T)[y].

Output ((Gk, W k)1≤k≤r) where {W 1, . . . , W r} is a triangular decomposition of T .
Gk = (gai,bj

k)1≤i≤e,1≤j≤s is a GCD of ai and bj over K(W k)[y].

allPairsGcdsModT((a1, . . . , ae), (b1, . . . , bs), T) ==

1: result← {}; W ← {T}
2: tree← subProductTree(a1, . . . , ae); f ←rootOf(tree)
3: (((gi

f,1, . . . , g
i
f,s), U

i)1≤i≤t)← multiGcdModT(f, (b1, . . . , bs), T)
4: Label the root of tree by (((gi

f,1, . . . , g
i
f,s), U

i)1≤i≤t)
5: for every node N in tree starting from its root top-down and left-right do
6: if N is not a leaf then
7: (((gi

N,b1
, . . . , gi

N,bs
), U i)1≤i≤t)← label of N

8: f1 ← leftChild(N); f2 ← rightChild(N)
9: for f in {f1, f2} do

10: ((f j, W j)1≤j≤#W)← project(f, T, W)
11: (((gj

N,b1
, . . . , gj

N,bs
), W j)1≤j≤#W)←

project((((gi
N,b1

, . . . , gi
N,bs

), U i)1≤i≤t), W)
12: Uf ← {}; resultf ← {}
13: for j in 1 . . .#W do
14: (((gk

N,b1
, . . . , gk

N,bs
), Ek)1≤k≤#E)←

multiGcdModT(f j, (gj
N,b1

, . . . , gj
N,bs

), W j)

15: resultf ← resultf ∪ (((gk
N,b1

, . . . , gk
N,bs

), Ek)1≤k≤#E)

16: Uf ← Uf ∪ {E1, . . . , Ek}
17: end for
18: Label f by resultf ; W ← RemoveCriticalPair(Uf)
19: end for
20: end if
21: end for
22: for every node N in leaves of tree do
23: (((gk

N,b1
, . . . , gk

N,bs
), Ek)1≤k≤#E)← label of N

24: (((gr
N,b1

, . . . , gr
N,bs

), W r)1≤r≤#W)←
refineProject(((gk

N,b1
, . . . , gk

N,bs
), Ek)1≤k≤#E, W)

25: result← result ∪ (((gr
N,b1

, . . . , gr
N,bs

), W r)1≤r≤#W)
26: end for
27: result← group the result into ((gai,bj

r
1≤i≤e,1≤j≤s

, W r)1≤r≤#W

28: return result

72

Algorithm 20 Merge GCD-Free Bases over a Field

mergeGCDFreeBases((a1, . . . , ae), (b1, . . . , bs)) ==

1: (gi,j)1≤i≤e,1≤j≤s := pairsOfGcd((a1, . . . , ae), (b1, . . . , bs)) [M(d) logp(d)2]
2: for i in 1 . . . e do
3: Li ← removeConstants(gi,1, . . . , gi,s)
4: αi ←

∏
`∈Li

` [M(d) logp(d)]
5: δi ← ai quo αi [M(d)]
6: end for
7: for j in 1 . . . s do
8: Lj ← removeConstants(g1,j, . . . , ge,j)
9: βj ←

∏
`∈Lj

` [M(d) logp(d)]

10: γj ← bj quo βj [M(d)]
11: end for
12: return removeConstants(g1,1, . . . , gi,j, . . . , ge,s, γ1, . . . , γs, δ1, . . . , δe)

Algorithm 21 Coprime Factors Modulo a Triangular Set

Input a triangular set T , two sets A = (a1, . . . , ae), B = (b1, . . . , bs) each of
which is contained in K(T)[y] and is a GCD-free basis of itself, together
with G = {gi,j|1 ≤ i ≤ e, 1 ≤ j ≤ s} where gi,j is a monic GCD of ai and
bj.

Output (C, T) where C is a GCD-free basis of A ∪ B.

coprimeFactorsModT((a1, . . . , ae), (b1, . . . , bs), (gi,j)1≤i≤e,1≤j≤s, T)

1: for i in 1 . . . e do
2: Li ← removeConstants(gi,1, . . . , gi,s)
3: αi ←

∏
`∈Li

`
4: δi ← ai quo αi

5: end for
6: for j in 1 . . . s do
7: Lj ← removeConstants(g1,j, . . . , ge,j)
8: βj ←

∏
`∈Lj

`
9: γj ← bj quo βj

10: end for
11: C ← removeConstants(g1,1, . . . , gi,j, . . . , ge,s, γ1, . . . , γs, δ1, . . . , δe)
12: return (C, T)

73

Algorithm 22 Merge Two GCD-Free Bases Modulo a Triangular Set

Input T a triangular set and two sets A = (a1, . . . , ae), B = (b1, . . . , bs) each of
which is contained in K(T)[y] and is a GCD-free basis of itself.

Output (F `, W `)1≤`≤r where W = {W 1, . . . , W r} is a non-critical triangular de-
composition of T and, for all 1 ≤ ` ≤ r, F ` is a GCD-free basis of A ∪ B
modulo W `.

mergeTwoGcdFreeBasesModT((a1, . . . , ae), (b1, . . . , bs), T) ==

1: bases ← {}
2: (((gai,bj

k)1≤i≤e,1≤j≤s, W
k)1≤k≤r)← allPairsGCDsModT((a1, . . . , ae), (b1, . . . , bs), T)

3: ((ak
1, . . . , a

k
e), W

k)1≤k≤r ← project((a1, . . . , ae), {T}, {W 1, . . . , W r})
4: ((bk

1, . . . , b
k
s), W

k)1≤k≤r ← project((b1, . . . , bs), {T}, {W 1, . . . , W r})
5: for k in 1 . . . r do
6: ((bk

u)1≤u≤#bk , W k)1≤k≤r ←
coprimeFactorsModT((a1, . . . , ae), (b1, . . . , bs), ((gai,bj

m)1≤i≤e,1≤j≤s, W
k)

7: bases← bases ∪ ((bk
u)1≤u≤#bk , W k)1≤k≤r

8: end for
9: return bases

Algorithm 23 Merge GCD-Free Bases Modulo a Triangular Set

Input T a triangular set, ((Ai, Bi, U i)1≤i≤t) a sequence where U = {U 1, . . . , U t}
is a non-critical triangular decomposition of T and where, for 1 ≤ i ≤ t
each of Ai and Bi is a finite set of non-constant, monic, squarefree and
pairwise coprime polynomials of K(U i)[y].

Output (F k, W k)1≤k≤r where W = {W 1, . . . , W r} is a non-critical triangular de-
composition of T refining U and for all 1 ≤ k ≤ r, the finite set
F k ⊂ K(W k)[y] is a GCD-free basis of Ai ∪ Bi modulo W k where
W k ∈ decomp(U i, W), which determines i uniquely.

mergeGcdFreeBasesModT((Ai, Bi, U i)1≤i≤t) ==

1: U ← {}; temp← {}; bases← {}
2: for i in 1 . . . t do
3: (((bk

u)1≤u≤#bk , Ek)1≤k≤#E, E)← mergeTwoGcdFreeBasesModT(Ai, Bi, U i)
4: temp← temp ∪ ((bk

u)1≤u≤#bk , Ek)1≤k≤#E

5: U ← U ∪ {E1, . . . , E#E}
6: end for
7: W ← RemoveCriticalPair(U)
8: for ((bk

u)1≤u≤#bk , Ek)1≤k≤#E in temp do
9: bases← bases ∪ refineProject(((bk

u)1≤u≤#bk , Ek)1≤k≤#E, W)
10: end for
11: return (bases)

74

Algorithm 24 GCD-Free Bases over a Field

gcdFreeBasis({a1, . . . , ae}) ==

1: tree← subProductTree(a1, . . . , ae)
2: for every node N ∈ tree and from bottom-up do
3: if N is not a leaf then
4: f1 ← leftChild(N); f2 ← rightChild(N)
5: Label N by mergeGcdFreeBases(f1, f2) [M(d) logp(d)3]
6: end if
7: end for
8: return label of rootOf(tree)

Consider first the case of Algorithm 24. The total number of operations at a

node N of the subset tree is O(M(dN) logp(dN)2), where dN is sum of the degrees

of the polynomials lying at the two children of N . Summing over all nodes, using

the tree structure, the total cost is seen to be in O(M(d) logp(d)3) operations, as

claimed. Algorithm 25 being essentially the same as With Algorithm 24, we deduce

Theorem 3.6.4.

Algorithm 25 GCD-Free Basis Modulo a Triangular Set

Input (a1, . . . , ae) ∈ K(T)[y] and T is a triangular set.

Output (F k, W k)1≤k≤r where {W 1, . . . , W r} is a triangular decomposition of T .
F k = (f k

j)1≤j≤#F k is a GCD-free basis of (a1, . . . , ae) modulo W k.

gcdFreeBasisModT((a1, . . . , ae), T) ==

1: tree← subProductTree((a1, . . . , ae), T); W ← {T}
2: for every node N ∈ tree at each level left-right and bottom-up do
3: if N is not a leaf then
4: ((F i, Ci)1≤i≤r)← Label of leftChild(N)
5: ((Gi, Di)1≤i≤s)← Label of rightChild(N)
6: ((Ai, W i)1≤i≤t)← refineProject((F i, Ci)1≤i≤r, W)
7: ((Bi, W i)1≤i≤t)← refineProject((Gi, Di)1≤i≤s, W)
8: ((H i, Ei)1≤i≤u)←

mergeGcdFreeBasesModT((Ai, Bi, W i)1≤i≤t)
9: Label of N ← ((H i, Ei)1≤i≤u)

10: W ← {E1, . . . , Eu}
11: end if
12: end for
13: return Label of rootOf(tree)

75

3.7 Removing Critical Pairs

We next show how to remove critical pairs. This is an inductive process, whose

complexity is estimated in the following proposition and its corollary. We need to

extend the notion of “refining” introduced previously. Extending Definition 3.1.3, we

say that a family of triangular sets T′ refines another family T if for every T ∈ T,

there exists a subset of T′ that forms a triangular decomposition of 〈T 〉. Note the

difference with the initial definition: we do not impose that the family T forms a

triangular decomposition of some ideal I. In particular, the triangular sets in T do

not have to generate coprime ideals.

Proposition 3.7.1. We have a constant K such that the following holds. Let

A1, . . . , An−1 be arithmetic times for triangular sets in 1, . . . , n− 1 variables.

Let T be a triangular set in n variables, and let U be a triangular decomposition

of 〈T 〉. Then for all j = 1, . . . , n, the following holds: given U≤j, one can compute a

non-critical triangular decomposition W of T≤j that refines U≤j using aj operations

in k, where aj satisfies the recurrence inequalities, a0 = 0 and for j = 0, . . . , n− 1,

aj+1 ≤ 2aj + KM(dj+1 · · ·dn) logp(dj+1 · · ·dn)
3Aj(T≤j),

and where dj = degj T for j = 1, . . . , n.

Before discussing the proof of this assertion, let us give an immediate corollary,

which follows by a direct induction.

Corollary 3.7.2. Given a triangular decomposition U of 〈T 〉, one can compute a

non-critical triangular decomposition W of 〈T 〉 that refines U in time

K
(
2n−1M(d1 · · ·dn) logp(d1 · · ·dn)3 + · · ·+ M(dn) logp(dn)

3An−1(T≤n−1)
)
.

Proof. We only sketch the proof of the proposition. Let thus j be in 0, . . . , n−1

and let U = U1, . . . , U e be a triangular decomposition of 〈T 〉; we aim at removing

the critical pairs in U≤j+1. Let V be obtained by removing the critical pairs in U≤j.

Thus, V consists in triangular sets in k[X1, . . . , Xj], and has no critical pair.

Let us fix i ≤ e, and write U i = (U i
1, . . . , U

i
n). By definition, there exists a subset

Vi = V i,1, . . . , V i,ei of V which forms a non-critical decomposition of (U i
1, . . . , U

i
j).

Our next step is to compute

U i,1
j+1, . . . , U

i,ei

j+1 = project(U i
j+1, (U

i
1, . . . , U

i
j),Vi).

76

Consider now a triangular set V in V. There may be several subsets Vi such that

V ∈ Vi. Let SV ⊂ {1, . . . , e} be the set of corresponding indices; thus, for any i ∈ SV ,

there exists `(i) in 1, . . . , ei such that V = V i,e`(i) . We will then compute a coprime

factorization of all polynomials U
i,e`(i)

j+1 in K(V)[Xj+1], for i ∈ SV , and for all V .

This process will refine the family V, creating possibly new critical pairs: we

get rid of these critical pairs, obtaining a decomposition W. It finally suffices to

project all polynomials in the coprime factorization obtained before from V to W to

conclude. The cost estimates then takes into account the cost for the two calls to the

same process in j variables, hence the term 2aj, and the cost for coprime factorization

and projecting. Studying the degrees of the polynomials involved, this cost can be

bounded by

KM(dj+1 · · ·dn) logp(dj+1 · · ·dn)3Aj(T≤j)

for some constant K, according to the results in the last section.

3.8 Concluding the Proof

All ingredients are now present to give the proof of the following result, which readily

implies the main theorems stated in the introduction.

Theorem 3.8.1. We have a constant L such that, writing

An(d1, . . . , dn) = Ln
∏

i≤n

M(di) logp(di)
3,

the function T 7→ An(deg1 T, . . . , degn T) is an arithmetic time for triangular sets in

n variables, for all n.

Proof. The proof requires to check that taking L big enough, all conditions

defining arithmetic times are satisfied. We do it by induction on n; the case n = 1 is

settled by Proposition 3.2.4, taking L larger than the constant C in that proposition,

and using the fact that logp(x) ≥ 1 for all x.

Let us now consider index n; we can thus assume that the function Aj is an

arithmetic time for triangular sets in j variables, for j = 1, . . . , n − 1. Then, at

index n, condition (E0) makes no difficulty, using the super-additivity of the function

M. Addition and multiplication (condition (E1)) and projecting (condition (E4))

follow from Proposition 3.3.1, again as soon as the condition L ≥ C holds. The

computation of quasi-inverses (condition (E2)) is taken care of by Proposition 3.5.1,

77

Algorithm 26 Remove Critical Pair

Input [U1, . . . , U e]: a triangular decomposition of a triangular set 〈T 〉, where
U i = {U i

1, . . . , U i
n}.

Output a non-critical decomposition of T .

RemoveCriticalPair(U 1, . . . , U e) ==

1: if n ≥ 1 then
2: ((b1

1, . . . , b1
#b1), {})← gcdFreeBasisModT({U 1

1 , . . . , U e
1}, {})

3: V 1 ← {V 1
i | V 1

i = {b1
i }, 1 ≤ i ≤ #b1}

4: if n = 1 then return V 1

5: for j from 1 to n− 1 do
6: for i from 1 to e do
7: Vi = {V i,k, 1 ≤ k ≤ #Vi} ← {V ∈ V j | V ∈ U i

<j+1}
8: {U i,1

j+1, . . . , U i,#Vi

j+1 } ← project(U i
j+1, {U i

1, . . . , U i
j}, Vi)

9: end for
10: RV j ← []; bV j ← []
11: for s from 1 to #V j do

12: pV j
s ← {U i,k

j+1 | V i,k = V j
s for V i,k ∈ Vi, 1 ≤ i ≤ e, 1 ≤ k ≤ #Vi}

13: ((fl
V j

s ,m)
1≤l≤#(fV

j
s ,m)

, RV j
s ,m)

1≤m≤#RV
j
s
← gcdFreeBasisModT(pV j

s , V j
s)

14: RV j ← RV j ∪ {RV j
s ,1, . . . , RV j

s ,#RV
j
s }

15: end for
16: {W V j

1 , . . . , W V j

#W V j } ← RemoveCriticalPair(RV j

)

17: V j+1 ← []
18: for s from 1 to #V j do

19: W V j
s ← {W V j

k | W V j

k ∈ V j
s , 1 ≤ k ≤ #W V j}

20: ((bl
V j

s ,r)
1≤l≤#(bV

j
s ,r)

, W V j
s ,r)

1≤r≤#W V
j
s
←

refineProject(((fl
V j

s ,m)
1≤l≤#(fV

j
s ,m)

, RV j
s ,m)

1≤m≤#RV
j
s
, W V j

s)

21: V j+1 ← V j+1 ∪ {W V j
s ,r, bl

V j
s ,r}

1≤l≤#(bV
j
s ,r),1≤r≤#W V

j
s

22: end for
23: end for
24: end if
25: return V n

78

using our induction assumption on A, as soon as L is large enough to compensate the

constant factor hidden in the O() estimate of that proposition.

The cost for removing critical pairs is given in the previous section. In view of

Corollary 3.7.2, and using the condition M(dd′) ≤ M(d)M(d′), after a few simplifica-

tions, to satisfy condition (E3), L must satisfy the inequality

K(2n−1 + 2n−2L + · · ·+ Ln−1) ≤ Ln,

where K is the constant introduced in Corollary 3.7.2. This is the case for L ≥
K + 2.

79

Chapter 4

A Modular Method for Triangular

Decomposition

This chapter presents a modular method for solving polynomial systems of zero-

dimensional varieties by means of triangular decompositions. Among all possible

triangular decompositions, we introduce a canonical one, and call it the equipro-

jectable decomposition. We show that it has good computational properties. This

allows us to develop a sharp modular method for triangular decomposition based on

the Hensel lifting techniques.

4.1 Introduction

Modular methods for computing polynomial GCDs and solving linear algebra prob-

lems have been well-developed for several decades, see [57] and the references therein.

Without these methods, the range of problems accessible to symbolic computations

would be dramatically limited. Such methods, in particular Hensel lifting, also

apply to solving polynomial systems. Standard applications are the resolution of

systems over Q after specialization at a prime, and over the rational function field

k(Y1, . . . , Ym) after specialization at a point (y1, . . . , ym). These methods have already

been put to use for Gröbner bases [134, 5] and primitive element representations,

starting from [63], and refined notably in [64].

Triangular decompositions are well-suited to many practical problems: see some

examples in [19, 55, 120]. In addition, these techniques are commonly used in dif-

ferential algebra [20, 71]. Triangular decompositions of polynomial systems can be

obtained by various algorithms [76, 87, 108] but none of them uses modular compu-

80

tations, restricting their practical efficiency. Our goal in this work is to discuss such

techniques, extending the preliminary results of [120].

Let us introduce the notation used below. If k is a perfect field (e.g., Q or a

finite field), a triangular set is a family T1(X1), T2(X1, X2), . . . , Tn(X1, . . . , Xn) in

k[X1, . . . , Xn] which forms a reduced Gröbner basis for the lexicographic order Xn >

· · · > X1 and generates a radical ideal (so Ti is monic in Xi). The notation T 1, . . . , T s

denotes a family of s triangular sets, with T i = T i
1, . . . , T

i
n. Then, any 0-dimensional

variety V can be represented by such a family, such that I(V) = ∩i≤s〈T i〉 holds, and

where 〈T i〉 and 〈T i′〉 are coprime ideals for i 6= i′; we call it a triangular decomposition

of V . This decomposition is not unique: the different possibilities are obtained by

suitably recombining the triangular sets describing the irreducible components of V .

In this work, we consider 0-dimensional varieties defined over Q. Let thus F =

F1, . . . , Fn be a polynomial system in Z[X1, . . . , Xn]. Since we have in mind to apply

Hensel lifting techniques, we will only consider the simple roots of F , that is, those

where the Jacobian determinant J of F does not vanish. We write Z(F) for this set of

points; by the Jacobian criterion [51, Ch. 16], Z(F) is finite, even though the whole

zero-set of F , written V (F), may have higher dimension.

Let us assume that we have at hand an oracle that, for any prime p, outputs a

triangular decomposition of Z(F mod p). Then for a prime p, a rough sketch of an

Hensel lifting algorithm could be: (1) Compute a triangular decomposition t1, . . . , ts

of Z(F mod p), and (2) Lift these triangular sets over Q. However, without more

precautions, this algorithm may fail to produce a correct answer. Indeed, extra

factorizations or recombinations can occur modulo p. Thus, we have no guarantee

that there exist triangular sets T 1, . . . , T s defined over Q, that describe Z(F), and

with t1, . . . , ts as modular images. Furthermore, if we assume no control over the

modular resolution process, there is little hope of obtaining a quantification of primes

p of “bad” reduction.

Consider for instance the variety V ⊂ C2 defined by the polynomials sys =

{326X1 − 10X6
2 + 51X5

2 + 17X4
2 + 306X2

2 + 102X2 + 34, X7
2 + 6X4

2 + 2X3
2 + 12}. For

the order X2 > X1, the only possible description of V by triangular sets with rational

coefficients corresponds to its irreducible decomposition, that is, T 1 : (X1−1, X3
2 +6)

and T 2 : (X2
1 + 2, X2

2 + X1). Now, the following triangular sets describe the zeros

of (sys mod 7), which are not the reduction modulo 7 of T 1 and T 2;

t1

∣∣∣∣∣
X2

2 + 6X2X
2
1 + 2X2 + X1

X3
1 + 6X2

1 + 5X1 + 2
and t2

∣∣∣∣∣
X2 + 6

X1 + 6
,

81

A lifting algorithm should discard t1 and t2, and replace them by the better choice

t′1 : (X1+6, X3
2 +6) and t′2 : (X2

1 +2, X2
2 +X1), which are the reduction of T 1 and

T 2 modulo 7. In [120], this difficulty was bypassed by restricting to equiprojectable

varieties, i.e. varieties defined by a single triangular set, where no such ambiguity

occurs. However, as this example shows, this assumption discards simple cases. Our

main concern is to relax this limitation, thus extending these techniques to handle

triangular decompositions.

Our answer consists in using a canonical decomposition of a 0-dimensional variety

V , its equiprojectable decomposition, described as follows. Consider the map π :

V ⊂ An(k) → An−1(k) that forgets the last coordinate. To x in V , we associate

N(x) = #π−1(π(x)), that is, the number of points lying in the same π-fiber as x.

Then, we split V into the disjoint union V1 ∪ · · · ∪ Vd, where for all i = 1, . . . , d, Vi

equals N−1(i), i.e., the set of points x ∈ V where N(x) = i. This splitting process is

applied recursively to all V1, . . . , Vd, taking into account the fibers of the successive

projections An(k) → Ai(k), for i = n − 1, . . . , 1. In the end, we obtain a family of

pairwise disjoint, equiprojectable varieties, whose reunion equals V , which form the

equiprojectable decomposition of V . As requested, each of them is representable by a

triangular set with coefficients in the definition field of V .

Looking back at the example, both Z(sys) and Z(sys mod 7) are described on the

leftmost picture below (forgetting the actual coordinates of the points). Representing

Z(sys) by T 1 and T 2, as well as Z(sys mod 7) by t′1 and t′2 amounts to grouping

the points as on the central picture; this is the equiprojectable decomposition. The

rightmost picture shows the description of Z(sys mod 7) by t1 and t2.

���
�

���
�

���
�

���
�

��	
	

�
�

��

Figure 4.1: Descrip-
tion of both Z(sys) and
Z(sys mod 7)

���
�

���
�

���
�

���
�

���
�

���
�

���
�

Figure 4.2: The Equipro-
jectable Decomposition:
Representing Z(sys) by
T 1 and T 2, and Repre-
senting Z(sys mod 7) by
t′1 and t′2

���
�

���
�

 !
!

""#
#
$%$$%$&
&

'%''%'(
(

)%))%)*
*

Figure 4.3: Description
of Z(sys mod 7) by t1

and t2 for sys

82

The above algorithm sketch is thus improved by applying lifting only after comput-

ing the equiprojectable decomposition of the modular output. Theorem 4.1.1 shows

how to control the primes of bad reductions for the equiprojectable decomposition,

thus overcoming the limitation that we pointed out previously. In Theorem 4.1.1 [39],

the height of x ∈ Z is defined as hx = log |x|; the height of f ∈ Z[X1, . . . , Xn] is the

maximum of the heights of its coefficients; that of p/q ∈ Q, with gcd(p, q) = 1, is

max(hp,hq).

Theorem 4.1.1. Let F1, . . . , Fn have degree ≤ d and height ≤ h. Let T 1, . . . , T s be

the triangular description of the equiprojectable decomposition of Z(F). There exists

A ∈ N− {0}, with hA ≤ a(n, d, h), and, for n ≥ 2,

a(n, d, h) = 2n2d2n+1(3h + 7 log(n + 1) + 5n log d + 10),

and with the following property. If a prime p does not divide A, then p cancels none

of the denominators of the coefficients of T 1, . . . , T s, and these triangular sets reduced

mod p define the equiprojectable decomposition of Z(F mod p).

Thus, the set of bad primes is finite and we have an explicit control on its size.

Since we have to avoid some “discriminant locus”, it is natural, and probably un-

avoidable, that the bound should involve the square of the Bézout number.

A second question is the coefficient size of the output. In what follows, we write

deg V and hV for the degree and height of a 0-dimensional variety V defined over

Q: the former denotes its number of points, and the later estimates its arithmetic

complexity; see [81] and references therein for its definition. Let then T 1, . . . , T s be the

triangular sets that describe the equiprojectable decomposition of Z = Z(F). In [42],

it is proved that all coefficients in T 1, . . . , T s have height in O(nO(1)(deg Z + hZ)2).

However, better estimates are available, through the introduction of an alternative

representation denoted by N 1, . . . , N s. For i ≤ s, N i = N i
1, . . . , N

i
n is obtained as

follows. Let Di
1 = 1 and N i

1 = T i
1. For 2 ≤ ` ≤ n and 1 ≤ i ≤ s, define

Di
` =

∏

1≤j≤`−1

∂T i
j

∂Xj
and N i

` = Di
`T

i
` mod (T i

1, . . . , T
i
`−1).

It is proved in [42] that all coefficients in N 1, . . . , N s have height in O(nO(1)(deg Z +

hZ)). Since T 1, . . . , T s are easily recovered from N 1, . . . , N s, our algorithm will com-

pute the latter, their height bounds being the better.

Theorem 4.1.2 below states our main result regarding lifting techniques for trian-

83

gular decompositions; in what follows, we say that an algorithm has a quasi-linear

complexity in terms of some parameters if its complexity is linear in all of these

parameters, up to polylogarithmic factors. We need the following assumptions:

• For any C ∈ N, let Γ(C) be the sets of primes in [C + 1, . . . , 2C]. We assume

the existence of an oracle O1 which, for any C ∈ N, outputs a random prime in

Γ(C), with the uniform distribution.

• We assume the existence of an oracle O2, which, given a system F and a prime p,

outputs the representation of the equiprojectable decomposition of Z(F mod p)

by means of triangular sets. We give in Section 4.2.2 an algorithm to convert

any triangular decomposition of Z(F mod p) to the equiprojectable one; its

complexity analysis is subject of current research.

• For F as in Theorem 4.1.1, we write aF = a(n, d, h), hF = ndn(h+11 log(n+3))

and bF = 5(hF + 1) log(2hF + 1). The input system is given by a straight-line

program of size L, with constants of height at most hL.

• C ∈ N is such that for any ring R, any d ≥ 1 and monic t ∈ R[X] of degree d, all

operations (+,−,×) in R[X]/t can be computed in Cd log d log log d operations

in R [57, Ch. 8,9]. Then all operations (+,−,×) modulo a triangular set T in

n variables can be done in quasi-linear complexity in Cn and deg V (T).

Theorem 4.1.2. Let ε > 0. There exists an algorithm which, given F , satisfying

4aF + 2bF

ε
+ 1 <

1

2
exp (2hF + 1),

computes N 1, . . . , N s defined above. The algorithm uses two calls to O1 with C =

4aF + 2bF /ε, two calls to O2 with p in [C +1, . . . , 2C], and its bit complexity is quasi-

linear in L, hL, d, log h, Cn, deg Z, (deg Z +hZ), | log ε|. The algorithm is probabilistic,

with success probability ≥ 1− ε.

To illustrate these estimates, suppose e.g. that we have n = 10, d = 4, h = 100, hence

potentially 1048576 solutions; to ensure a success probability of 99%, the primes

should have only about 20 decimal digits, hence can be generated without difficulty.

Thus, even for such “large” systems, our results are quite manageable. Besides,

computing the polynomials N i instead of T i enables us to benefit from their improved

height bounds.

84

In the sequel, we use the following notation. For n ∈ N, for 1 ≤ j ≤ i ≤ n and

any field k, we denote πi
j : Ai(k) → Aj(k) the map (x1, . . . , xi) 7→ (x1, . . . , xj). The

cardinality of a finite set G is written #G.

4.2 Equiprojectable Decomposition of Zero-

dimensional Varieties

We start by introducing the notion of equiprojectable decomposition of a 0-

dimensional variety V , reported in [38]. Then, in preparation for the modular al-

gorithm of Section 4.2.2, we present an algorithm for computing this decomposition,

given an arbitrary triangular decomposition of V . We call it Split-and-Merge, after

its two phases: the splitting of what we call critical pairs (which is achieved by GCD

computations) and the merging of what we call solvable families (which is performed

by Chinese remaindering). The complexity analysis of the Split-and-Merge algorithm

is work in progress [40]. From our preliminary study reported in [37], we believe that

suitable improvements of the Split-and-Merge algorithm can run in quasi-linear time

in the degree of V .

4.2.1 Notion of Equiprojectable Decomposition

Let k be a perfect field and k one of its algebraic closures. Following [10], we first

define the notion of equiprojectability.

Equiprojectable variety. Let V ⊂ An(k) be a 0-dimensional variety over k. For

1 ≤ i ≤ n, the variety V is equiprojectable on πn
i (V) if all fibers of the restriction

πn
i : V → πn

i (V) have the same cardinality. Then, for 1 ≤ i ≤ n, V is i-equiprojectable

if it is equiprojectable on all πn
j (V), i ≤ j ≤ n. Thus, any 0-dimensional variety is n-

equiprojectable. Finally, V is equiprojectable if it is 1-equiprojectable. It is the case if

and only if its defining ideal is generated by a triangular set T1, . . . , Tn with coefficients

in k. In this case, k being perfect, all fibers of the projection πn
i (V)→ πn

i−1(V) share

the same cardinality, which is the degree of Ti in Xi.

The pictures in Figure 4.4 illustrate the definition of equiprojectable variety by

an example. Given a zero-dimensional variety V in (x, y, z) consisting of 12 points,

which are described in the leftmost picture. We use projection to check. Projecting to

the (x, y) plane is shown in the middle picture. It results in 4 fibers. All of them have

the same cardinality of 3. Then we project to the (x) axis, shown in the rightmost

85

picture. This projection has 2 fibers, and both have the same cardinality of 2. For

this variety V , all the fibers in each projection have the same cardinality. Therefore,

V is an equiprojectable variety.

x

y

z

x

y

z

x

y

z

*
*

*
*

Figure 4.4: Definition of an Equiprojectable Variety

The variety V can be decomposed as the disjoint union of equiprojectable ones, in

possibly several ways. Any such decomposition amounts to represent V as the disjoint

union of the zeros of some triangular sets. The equiprojectable decomposition is a

canonical way of doing so, defined by combinatorial means.

Equiprojectable decomposition. Let first W be a 0-dimensional variety in Ai(k),

for some 1 ≤ i ≤ n. For x in Ai−1(k), we define the preimage

µ(x, W) = (πi
i−1)

−1(x) ∩W ;

for any d ≥ 1, we can then define

A(d, W) =
{
x ∈ W | #µ(πi

i−1(x), W) = d
}

.

Thus, x is in A(d, W) if W contains exactly d points x′ such that πi
i−1(x) = πi

i−1(x
′)

holds. Only finitely many of the A(d, W) are not empty and the non-empty ones form

a partition of W . Let 1 ≤ i ≤ n. Writing W = πn
i (V), we define

B(i, d, V) = {x ∈ V | πn
i (x) ∈ A(d, W)} .

Thus, B(i, d, V) is the preimage of A(d, W) in V , so these sets form a partition

of V . If V is i-equiprojectable, then all B(i, d, V) are (i − 1)-equiprojectable.

We then define inductively B(V) = V , and, for 1 < i ≤ n, B(di, . . . , dn, V) =

86

B(i, di, B(di+1, . . . , dn, V)). All B(di, . . . , dn, V) are (i − 1)-equiprojectable, only

finitely many of them are not empty, and the non-empty ones form a partition of

V .

The equiprojectable decomposition of V is its partition into the family of all non-

empty B(d2, . . . , dn, V). All these sets being equiprojectable, they are defined by

triangular sets. Let us illustrate by the example in Figure 4.5. The leftmost picture

shows a variety consisting of 12 points in (x, y, z). First, we project to the (x, y) plane,

as described in the middle picture. This projection has 5 fibers. We will put the fibers

with the same cardinality into the same set. Here, the 5 fibers are partitioned into

2 sets: round dots and square dots. The set of round dots contains 2 fibers with

cardinality of 3, and the set of square dots contains 3 fibers with cardinality of 2.

Next in the leftmost picture, we project from (x, y) to the (x) axis and we apply the

same rule. The set of square dots is further split into 2 sets: the square dots and the

triangular dots. Now the original variety is partitioned into 3 sets. Each of them is

an equiprojectable variety. We call this process the equiprojectable decomposition.

z

yx

z

yx

z

yx *
* * *

*

Figure 4.5: Definition of an Equiprojectable Decomposition

4.2.2 Split-and-Merge Algorithm

Recall that the equiprojectable decomposition of V is its partition into the family of

all non-empty B(d2, . . . , dn, V). All these sets being equiprojectable, they are defined

by triangular sets. Note that we have not proved yet that the B(d2, . . . , dn, V) are

defined over the same field as V . This will come as a by-product of the algorithms of

this section. To do so, we introduce first the notions of a critical pair and a solvable

pair.

Critical and solvable pairs. Let T 6= T ′ be two triangular sets. The least integer `

such that T` 6= T ′
` is called the level of the pair T, T ′. If ` = 1 we let K` = k, otherwise

87

we define K` = k[X1, . . . , X`−1]/〈T1, . . . , T`−1〉. Since a triangular set generates a

radical ideal, the residue class ring K` is a direct product of fields. Therefore, every

pair of univariate polynomials with coefficients in K` has a GCD in the sense of [109].

The pair T, T ′ is critical if T` and T ′
` are not relatively prime in K`[X`]. If T, T ′ is not

critical, it is certified if U, U ′ ∈ K`[X`] such that UT` +U ′T ′
` = 1 are known. The pair

T, T ′ is solvable if it is not critical and if for all ` < j ≤ n we have degXj
Tj = degXj

T ′
j.

Introducing the notion of a certified solvable pair is motivated by efficiency con-

siderations. Indeed, during the splitting step, solvable pairs are discovered. Then,

during the merging step, the Bézout coefficients U, U ′ of these solvable pairs will be

needed for Chinese Remaindering.

Solvable families. We extend the notion of solvability from a pair to a family of

triangular sets. A family T of triangular sets is solvable (resp. certified solvable) at

level ` if every pair {T, T ′} of elements of T is solvable (resp. certified solvable) of

level `.

The following proposition shows how to recombine such families. When this is the

case, we say that all T in T divide S. In what follows, we write V (T) for ∪T∈TV (T).

Proposition 4.2.1. If T is certified solvable at level `, one can compute a triangular

set S such that V (S) = V (T), using only multiplications in K`[X`].

Proof. First, we assume that T consists of the pair {T, T ′}. We construct S as

follows. We set Si = Ti for 1 ≤ i < ` and S` = T`T
′
`. Let ` < i ≤ n. For computing

Si, we see Ti and T ′
i in K`[X`][X`+1, . . . , Xi]. We apply Chinese remaindering to

the coefficients in Ti and T ′
i of each monomial in X`+1, . . . , Xi occurring in Ti or

T ′
i : since the Bézout coefficients U, U ′ for T`, T

′
` are known, this can be done using

multiplications in K`[X`] only. It follows from the Chinese Remaindering Theorem

that the ideal 〈S〉 is equal to 〈T 〉 ∩ 〈T ′〉; for i > `, the equality degXi
Ti = degXi

T ′
i

shows that S is monic in Xi, as requested.

Assume that T consists of s > 2 triangular sets T 1, . . . , T s. First, we apply the case

s = 2 to T 1, T 2, obtaining a triangular set T 1,2. Observe that every pair T 1,2, T j, for

3 ≤ j ≤ s, is solvable but not certified solvable: we obtain the requested Bézout coeffi-

cient by updating the known ones. Let us fix 3 ≤ j ≤ s. Given A1, A2, B1, Bj, C2, Cj ∈
K`[X`] such that A1T

1
` +A2T

2
` = B1T

1
` +BjT

j
` = C2T

2
` +CjT

j
` = 1 hold in K`[X`], we

let α = B1C2 mod T j
` and β = A1CjT

1
` +A2BjT

2
` mod T 1

` T 2
` . Then, αT 1,2

` +βT j
` = 1

in K`[X`], as requested. Proceeding by induction ends the proof. �

Splitting critical pairs. Let now V be a 0-dimensional variety over k. Proposi-

tion 4.2.3 below encapsulates the first part of the Split-and-Merge algorithm: given

88

any triangular decomposition T of V , it outputs another one, without critical pairs.

We first describe the basic splitting step.

Proposition 4.2.2. Let T be a triangular decomposition of V which contains critical

pairs. Then one can compute a triangular decomposition Split(T) of V which has

cardinality larger than that of T.

Proof. Let T, T ′ be a critical pair of T of level ` and let G be a GCD of T`, T
′
`

in K`[X`]. First, assume that G is monic, in the sense of [109]; let Q and Q′ be the

quotients of T` and T ′
` by G in K`[X`]. We define the sets

A = T1, . . . , T`−1, G, T`+1, . . . , Tn,

B = T1, . . . , T`−1, Q, T`+1, . . . , Tn,

A′ = T1, . . . , T`−1, G, T ′
`+1, . . . , T

′
n,

B′ = T1, . . . , T`−1, Q
′, T ′

`+1, . . . , T
′
n.

We let Split(T) = {A, B, A′, B′}, excluding the triangular sets defining the empty set.

Since the pair T, T ′ is critical, V (A) and V (B) are non-empty. Since T` and T ′
` are not

associate in K`[X`], at least Q or Q′ is not constant. Thus, Split(T) has cardinality

at least 3. Since 〈T 〉 and 〈T ′〉 are radical, if Q 6∈ K`, G and Q are coprime in K`[X`],

so V (T) is the disjoint union of V (A) and V (B). The same property holds for A′ and

B′. Thus, the proposition is proved.

Assume now that T`, T
′
` have no monic GCD in K`[X`]. Then, there exist trian-

gular sets C1, . . . , Cs, D1 . . .Ds such that V (T) is the disjoint union of V (C1), . . . ,

V (Cs), V (T ′) is the disjoint union of V (D1), . . . , V (Ds), at least one pair C i, Dj

is critical and C i
`, D

j
` admits a monic GCD in K`[X`]. These triangular sets are ob-

tained by the algorithms of [109] when computing a GCD of T`, T
′
` in K`[X`]. Then

the results of the monic case prove the existence of Split(T). �

Proposition 4.2.3. Let T be a triangular decomposition of V . One can compute

a triangular decomposition T′ of V with no critical pairs, and where each pair of

triangular sets is certified.

Proof. Write T0 = T, and define a sequence Ti by Ti+1 = Split(Ti), if Ti contains

critical pairs, and Ti+1 = Ti otherwise. Testing the presence of critical pairs is done

by GCD computations, which yields the Bézout coefficients in case of coprimality.

Let D be the number of irreducible components of V . Any family Ti has cardinality

at most D, so the sequence Ti becomes stationary after at most D steps. �

89

Thus, we can now suppose that we have a triangular decomposition T of V without

critical pairs, and where every pair is certified, such as the one computed in Propo-

sition 4.2.3. We describe the second part of the Split-and-Merge algorithm: merging

solvable families in a suitable order, to obtain the equiprojectable decomposition of

V .

For 0 ≤ κ ≤ n, we say that T satisfies property Pκ if for all T, T ′ ∈ T the pair

{T, T ′} is certified, has level ` ≤ κ and for all κ < i ≤ n satisfies degXi
Ti = degXi

T ′
i .

Observe that if P0(T) holds, then T contains only one triangular set, and that the

input family T satisfies Pn.

The basic merging algorithm. Let 1 ≤ κ ≤ n. We now define the procedure

Mergeκ, which takes as input a family Tκ of triangular sets which satisfies Pκ, and

outputs several families of triangular sets, whose reunion defines the same set of

points, and all of which satisfy Pκ−1. First, we partition Tκ using the equivalence

relation T ≡ T ′ if and only if T1, . . . , Tκ−1 = T ′
1, . . . , T

′
κ−1. Assumption Pκ shows that

each equivalence class is certified and solvable of level κ. We then let S(κ) be the

family of triangular sets obtained by applying Proposition 4.2.1 to each equivalence

class.

Lemma 4.2.4. Let S 6= S ′ in S(κ). The pair {S, S ′} is non-critical, certified, of level

` < κ.

Proof. Let T, T ′ ∈ T, which respectively divide S and S ′. Due to assumption

Pκ, there exists 0 ≤ ` ≤ κ such that T1, . . . , T`−1 = T ′
1, . . . , T

′
`−1 and (T1, . . . , T`) and

(T ′
1, . . . , T

′
`) have no common zero. Then, ` < κ, since T 6≡ T ′. Thus, T1, . . . , T` =

S1, . . . , S` and T ′
1, . . . , T

′
` = S ′

1, . . . , S
′
`. Since {T, T ′} is certified of level ` < κ, {S, S ′}

is also. �

We partition S(κ) some more, into the classes of the equivalence relation S ≡′ S ′

if and only if degXκ
Sκ = degXκ

S ′
κ. Let S

(κ)
1 , . . . , S

(κ)
δ be the equivalence classes,

indexed by the common degree in Xκ; we define Mergeκ(Tκ) as the data of all these

equivalence classes.

Lemma 4.2.5. Each family S
(κ)
d satisfies Pκ−1.

Proof. Let S 6= S ′ in S
(κ)
d , and let T, T ′ be as in the proof of Lemma 4.2.4;

we now prove the degree estimate. For κ < i ≤ n, we have degXi
Ti = degXi

Si and

degXi
T ′

i = degXi
S ′

i; assumption Pκ shows that degXi
Si = degXi

S ′
i for κ < i ≤ n.

Since degXκ
Sκ = degXκ

S ′
κ = d, the lemma is proved. �

90

Proposition 4.2.6. V (S
(κ)
d) = B(κ, d, V (Tκ)) for all d.

Proof. We know that V (Tκ) is the union of the V (S
(κ)
d). Besides, both families

{V (S
(κ)
d)} and {B(κ, d, V (T))} form a partition of V (Tκ). Thus, it suffices to prove

that for x in V (Tκ), x ∈ V (S
(κ)
d) implies that πn

κ(x) ∈ A(d, W), with W = πn
κ(V (Tκ)).

First, for S in S(κ), write WS = πn
κ(S). Then Lemma 4.2.4 shows that the WS form

a partition of W , and that their images πκ
κ−1(WS) are pairwise disjoint.

Let now x ∈ V (S
(κ)
d) and y = πn

κ(x). There exists a unique S ∈ S(κ) such that

x ∈ V (S). The definition of S
(κ)
d shows that there are exactly d points y′ in WS such

that πκ
κ−1(y) = πκ

κ−1(y
′). On the other hand, for any y ∈ WS′, with S ′ 6= S, the above

remark shows that πκ
κ−1(y) 6= πκ

κ−1(y
′). Thus, there are exactly d points y′ in W such

that πκ
κ−1(y) = πκ

κ−1(y
′); this concludes the proof. �

The main merging algorithm. We can now give the main algorithm. We start

from a triangular decomposition T of V without critical pairs, and where every pair

is certified, so it satisfies Pn. Let us initially define Tn = {T}; note that Tn is a set

of families of triangular sets. Then, for 1 ≤ κ ≤ n, assuming Tκ is defined, we write

Tκ−1 = ∪U(κ)∈Tκ
Mergeκ(U

(κ)). Lemma 4.2.5 shows that this process is well-defined;

note that each Tκ is a set of families of triangular sets as well.

Let U be a family of triangular sets in T0. Then U satisfies P0, so by the remarks

made previously, U consists of a single triangular set. Proposition 4.2.6 then shows

that the triangular sets in T0 form the equiprojectable components of V .

An example. Re-consider the example sys in Section 4.1. Z(sys) is represented

by its irreducible decomposition T 1 and T 2, shown in Figure 4.2. One possible rep-

resentation of Z(sys mod 7) is by triangular sets t1 and t2, described in Figure 4.3,

which are not the reduction modulo 7 of T 1 and T 2. We explain below how to com-

pute t′1 and t′2, the equiprojectable decomposition of Z(sys mod 7), from t1 and t2

by the Split-and-Merge algorithm.

Recall the pair of triangular sets t1 and t2, where

t1

∣∣∣∣∣
t2

1 = X2
2 + 6X2X

2
1 + 2X2 + X1

t1
1 = X3

1 + 6X2
1 + 5X1 + 2

and t2

∣∣∣∣∣
t2

2 = X2 + 6

t1
2 = X1 + 6

We re-illustrate t1 and t2 in the leftmost picture of Figure 4.6. It shows that t1

contains 6 points, and t2 has 1 point. By examining this pair of components, it is

not hard to see that t1
1 and t1

2 are not co-prime. Their GCD is X1 + 6. This finding

indicates that t1 and t2 is a critical pair. Thus, t1 is split into two triangular sets, t1,1

91

Algorithm 27 Merge

Input [T 1, . . . , T n]: a triangular decomposition in k[X1, . . . , Xn] of a 0-
dimensional variety V . No pair ((T i, T j), i 6= j) is critical.
BezoutCoeffsTable: a table with key of [T<`

i,j, Xl, T`
i, T`

j] and value of
[gi,j = 1, Ai, Aj] (normalized). T<`

i,j is the regular chain below the level of
l, and AiT

i + AjT
j = gi,j mod T<`

i,j.
lm = [M1, . . . , Mn]: (optional) a list of matrices corresponding to
[T 1, . . . , T n].

Output The equiprojectable decomposition of V .

Merge([T 1, . . . , T n], BezoutCoeffsTable, lm) ==

1: rc list← [T 1, . . . , T n]
2: if lm is not empty then m list← [M 1, . . . , Mn]
3: for X` in Xn, . . . , X1 do
4: E ←GetSolvableEquivalenceClasses(rc list, X`)
5: for Ei in E do
6: rc list← rc list \ T i for all T i in Ei

7: while cardinality of Ei > 1 do
8: T m, T k ← Pop out two regular chains from E i

9: Get gm,k, Am, Ak from BezoutCoeffsTable by key of T<`
m,k, X`, T`

m, T`
k

10: T m,k ← MergeSolvablePair(T m, T k, gm,k, Am, Ak, X`)
11: if cardinality of Ei > 0 then
12: for T i in Ei do
13: Get Ai, Bm, Bi, Ck, Ci from BezoutCoeffsTable s.t.

AmT`
m + AkT`

k = BmT`
m + BiT`

i = CkT`
k + CiT`

i = 1;
14: α← BmCk mod T`

i; β ← (AmCiT`
m + AkBiT`

k) mod T`
mT`

k;
15: Add [1, α, β] for [T<`

m,k, X`, T`
m,k, T`

i] to BezoutCoeffsTable
16: end for
17: end if
18: if lm is not empty then
19: Mm, Mk ← Pop out two matrices related to T m, T k from m list
20: Mm,k ← MergeMatrixPair(T m, T k, gm,k, Am, Ak, X`, M

m, Mk)
21: Mm,k ← NormalFormMatrix(T m,k, Mm,k)
22: m list← m list ∪Mm,k

23: end if
24: Ei ← Ei ∪ T m,k

25: end while
26: rc list← rc list ∪ Ei

27: end for
28: end for
29: if lm is not empty then return [rc list, m list]
30: return rc list

92

Algorithm 28 Get Solvable Equivalence Classes

Input [T 1, . . . , T n]: a list of regular chains in k[X1, . . . , Xn].
X`: a variable.
BezoutCoeffsTable: a table with key of [T<`

i,j, X`, T`
i, T`

j](1 ≤ ` < n) and
value of [gi,j = 1, Ai, Aj] (normalized).

Output Equivalence solvable classes at level `.

GetSolvableEquivalenceClasses([T 1, . . . , T n], X`, BezoutCoeffsTable)
==

1: rc list← [T 1, . . . , T n]; ` list← []; E ← []
2: while rc list not empty do
3: T t ← Pop out one regular chain from rc list
4: c list← []; t list← []; in class← false
5: for T i in rc list do
6: if [T t

<X`−1
, X`, T

t
X`

, T i
X`

] has value in BezoutCoeffsTable

(i.e. T i and T t are certified solvable at level `) then
7: if in class =false then
8: c list← c list ∪ T t; in class←true
9: end if

10: c list← c list ∪ T i; t list← t list ∪ T i

11: end if
12: end for
13: ` list← ` list ∪ [c list]; rc list← rc list \ t list;
14: end while
15: while ` list is not empty do
16: equi list← Pop out one list from ` list
17: while equi list is not empty do
18: rc1 ← Pop out one regular chain from equi list
19: E1 ← [rc1]
20: ds← degree sequence of Xn, . . . , X`+1 of rc1

21: for T i in equi list do
22: if degree sequence of T i is the same as ds then
23: E1 ← E1 ∪ T i

24: end if
25: end for
26: equi list← equi list \ E1

27: E ← E ∪ [E1]
28: end while
29: end while
30: return E

93

Algorithm 29 Merge Solvable Pair

Input T 1, T 2: two regular chains in k[X1, . . . , Xn].
X`: a variable.
g1,2 = 1, A1, A2: gcd and Bezóut coefficients s.t. A1T

1
X`

+A2T
2
X`

= g1,2 = 1.

Output A regular chain merged from T 1 and T 2.

MergeSolvablePair(T 1, T 2, X`, g
1,2, A1, A2) ==

1: f ← T 1 × T 2

2: new rc← Construct a regular chain from T 1,2
<X`

and f
3: if l = n then
4: return new rc
5: end if
6: A1

′ ← A1 × TX`

1; A2
′ ← A2 × TX`

2

7: for i from ` + 1 to n do
8: Ti

1,2 ←MergePolynomialPair(T 1
Xi

, T 2
Xi

, A′
1, A

′
2, {X`+1, . . . , Xi}, T 1,2

<X`
)

9: new rc←Construct a regular chain from new rc and Ti
1,2

10: end for
11: return new rc;

Algorithm 30 Merge Polynomial Pair

Input f1, f2: two polynomials with the same main variable Xi and same main
degree.
fs, gt: Bezóut relations s.t. fs + gt ≡ 1 mod rc.
{Xi, . . . , X`+1}: a variable set.
rc: a regular chain below level of l.

Output A polynomial f merged from f1 and f2 by CRT s.t. f ′ = f1 mod rc + g
and f ′ = f2 mod rc + f .

MergePolynomialPair(f1, f2, fs, gt, {Xi, . . . , X`+1}, rc) ==

1: D ← lcm(init(f1), init(f2))
2: p1 ← f1 ×D/init(f1)
3: p2 ← f2 ×D/init(f2)
4: f ′ ← 0;
5: for each monomial t = X`+1

y`+1 . . .Xi
yi (0 ≤ y`+1 ≤ d`+1, . . . , 0 ≤ yi ≤ di) do

6: Merge the corresponding coefficients by
Ct ← fs× (Coefficient(t) of p1) + gt× (Coefficient(t) of p2)

7: C ′
t ← NormalForm(Ct, rc)

8: f ′ ← f ′ + C ′
t × t

9: end for
10: return f ′

94

Algorithm 31 Merge Matrix Pair

Input T 1, T 2: two regular chains in k[X1, . . . , Xn].
X`: a variable.
g1,2 = 1, A1, A2: gcd and Bezóut coefficients s.t. A1T

1
X`

+A2T
2
X`

= g1,2 = 1.
M1, M2: two matrices with the same dimension r × c.

Output A matrix M merged from M 1 and M2 by CRT s.t. M ≡M 1 mod T 1 and
M ≡M2 mod T 2.

MergeMatrixPair(T 1, T 2, X`, g
1,2, A1, A2, M

1, M2) ==

1: M ← zero matrix of dimension r × c
2: A1

′ ← A1 × TX`

1; A2
′ ← A2 × TX`

2

3: for i from 1 to r do
4: for j from 1 to c do
5: M [i, j]←

MergePolynomialPair(M 1[i, j], M2[i, j], A′
1, A

′
2, {X`+1, . . . , Xn}, T 1,2

<X`
)

6: end for
7: end for
8: return M

and t1,2. t1,1 contains 4 points and t1,2 contains 2 points. The result is shown in the

middle picture of Figure 4.6.

After splitting, we obtain 3 triangular sets, t1,1, t1,2 and t2. They are free of critical

pairs. Next we merge all the solvable pairs based on the Chinese Remaindering

Theorem. In this example, t1,2 and t2 is a solvable pair. They are merged into

component t′2. The result is described in the rightmost picture of Figure 4.6, where t1,1

is renamed as t′1. It can be seen that t′1 has 2 fibers with the same cardinality 2, and

t′2 has 1 fiber with cardinality 3. Hence, we obtain the equiprojectable decomposition

of Z(sys mod 7) .

�������
�

�������
�

������������

������������

	�		�	
�

�

������������

�

�
������

t1

t2

Split−→

������������

������������

�������
�

�������
�

�������
�

�������
�

�������
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

t1,2

t1,1

t2

Merge−→

�������
�

 � � !
!

"�""�"#�##�#

$�$$�$%�%%�%

&�&&�&'�''�'

(�((�()�))�)

*�**�*+�++�+

t′1
t′2

Figure 4.6: An Example for the Split-and-Merge Algorithm

95

4.3 A Modular Algorithm for Triangular Decom-

positions

We now give the details of our lifting algorithm for triangular decompositions based

on the Split-and-Merge algorithm and the height bound given by Theorem 4.1.1, see

its proof in [39]. Given a polynomial system F , it outputs a triangular representation

of its set of simple solutions Z = Z(F), by means of the polynomials N 1, . . . , N s

defined in the introduction. First of all, we describe the required subroutines, freely

using the notation of Theorem 4.1.2, and that preceding it. We do not give details of

the complexity estimates; they are similar to those of [120].

• EquiprojDecomposition takes as input a polynomial system F and outputs

the equiprojectable decomposition of Z(F), encoded by triangular sets. This

routine is called here for systems defined over finite fields. For the experiments

in the next section, we applied the triangularization algorithm of [108], followed

by the Split-and-Merge algorithm of Section 4.2.2, modulo a prime. Studying

the complexity of this task is left to the forthcoming [41]; hence, we consider

this subroutine as an oracle here, which is called O2 in Theorem 4.1.2.

• Lift applies the Hensel lifting algorithm of [120], but this time to a family

of triangular sets, defined first modulo a prime p1, to triangular sets defined

modulo the successive powers p2κ

1 . From [120], one easily sees that the κth lifting

step has a bit complexity quasi-linear in (L, hL, Cn,
∑

i≤s deg V (T i), 2κ, log p1),

i.e. in (L, hL, Cn, deg Z, 2κ, log p1).

• Convert computes the polynomials N i starting from the polynomials T i. Only

multiplications modulo triangular sets are needed to perform this operation, so

its complexity is negligible before that of Lift.

• RationalReconstruction does the following. Let a = p/q ∈ Q, and m ∈ N

with gcd(q, m) = 1. If hm ≥ 2ha+1, given a mod m, this routine outputs a. If

hm < 2ha + 1, the output may be undefined, or differ from a. We extend this

notation to the reconstruction of all coefficients of a family of triangular sets.

Using the fast Euclidean algorithm [57, Ch 5,11], its complexity is negligible

before that of Lift.

• We do not consider the cost of prime number generation. We see them as input

here; formally, in Theorem 4.1.2, this is handled by calls to oracle O1.

96

Algorithm 32 Lifting a Triangular Decomposition

Input The system F , primes p1, p2.

Output The polynomials N 1, . . . , N s.

1: T 1,0, . . . , T s,0← EquiprojDecomposition(Z(F mod p1));
2: u1, . . . , us′ ← EquiprojDecomposition(Z(F mod p2));
3: m1, . . . , ms′ ← Convert(u1, . . . , us′);
4: κ← 1;
5: while not Stop do
6: T 1,κ, . . . , T s,κ ← Lift(T 1,κ−1, . . . , T s,κ−1) mod p2κ

1 ;
7: N1,κ, . . . , N s,κ ← Convert(T 1,κ, . . . , T s,κ);
8: N1,κ

Q , . . . , N s,κ
Q ← RationalReconstruction(N 1,κ, . . . , N s,κ);

9: if {m1, . . . , ms′} Equals {N 1,κ
Q , . . . , N s,κ

Q } mod p2 then
10: Stop = true;
11: end if
12: κ← κ + 1;
13: end while
14: return N 1,κ−1

Q , . . . , N s,κ−1
Q ;

We still use the notation and assumption of Theorem 4.1.2. From [42, Th. 1], all

coefficients of N 1, . . . , N s have height in nO(1)(deg Z + hZ), which can explicitly be

bounded by hF . For p1 ≤ exp (2hF + 1), define

d = d(p1) =

⌈
log2

(
2hF + 1

log p1

)⌉
.

Then, p2d(p1)

1 has height at least 2hF + 1. In view of the prerequisites for rational

reconstruction, d(p1) bounds the number of lifting steps. From an intrinsic viewpoint,

at the last lifting step, 2κ is in O(nO(1)(deg Z + hZ)).

Suppose that p1 does not divide the integer A of Theorem 4.1.1. Then, Hensel

lifting computes approximations T 1,κ, . . . , T s,κ = T 1, . . . , T s modulo p2κ

1 . At the κth

lifting step, let N 1,κ, . . . , N s,κ be the output of Convert applied to T 1,κ, . . . , T s,κ, com-

puted modulo p2κ

1 ; let N1,κ
Q , . . . , N s,κ

Q be the same polynomials after rational number

reconstruction, if possible. By construction, they have rational coefficients of height

at most 2κ−1 log p1. Supposing that p2 does not divide the integer A of Theorem 4.1.1,

failure occurs only if for some κ in 0, . . . , d−1, and some j in 1, . . . , s, N j,κ
Q and N j dif-

fer, but coincide modulo p2. For this to happen, p2 must divide some non-zero number

of height at most hF +2κ−1 log p1+1. Taking all κ into account, this shows that for any

prime p1, there exists a non-zero integer Bp1 such that hBp1 ≤ (hF + 1)d + 2d log p1,

97

and if p2 does not divide Bp1, the lifting algorithm succeeds. One checks that the

above bound can be simplified into hBp1 ≤ bF .

Let C ∈ N be such that

C =

⌈
4aF + 2bF

ε

⌉
, so that C ≤ 1

2
exp (2hF + 1);

let Γ be the set of pairs of primes in [C +1, . . . , 2C]2 and γ be the number of primes in

C + 1, . . . , 2C; note that γ ≥ C/(2 log C) and that #Γ = γ2. The upper bound on C

shows that all primes p less than 2C satisfy the requested inequality log p ≤ 2hF + 1.

We can then estimate how many choices of (p1, p2) in Γ lead to failure. There are at

most aF/log C primes p1 in C+1, . . . , 2C which divide the integer A of Theorem 4.1.1,

discriminating at most γaF /log C pairs (p1, p2). For any other value of p1, there are

at most (aF + bF)/log C choices of p2 which divide A and Bp1. This discriminates

at most γ(aF + bF)/log C pairs (p1, p2). Thus the number of choices in Γ leading to

failure is at most γ(2aF + bF)/log C. The lower bound on γ shows that if (p1, p2) is

chosen randomly with uniform probability in Γ, the probability that it leads to failure

is at most

γ(2aF + bF)

#Γ log C
=

γ(2aF + bF)

γ2 log C
=

2aF + bF

γ log C
≤ 4aF + 2bF

C
,

which is at most ε, as requested.

To estimate the complexity of this algorithm, note that since we double the pre-

cision at each lifting step, the cost of the last lifting step dominates. From the

previous discussion, the number of bit operations cost at the last step is quasi-linear

in (L, hL, Cn, deg Z, 2κ, log p1). The previous estimates show that at this step, 2κ is in

O(nO(1)(deg Z + hZ)), whereas log p1 is quasi-linear in | log ε|, logh, d, log n. Putting

all these estimates gives the proof of Theorem 4.1.2.

4.4 Experimental Results

We realized a first Maple 9.5 implementation of our modular algorithm on top of the

RegularChains library [90]. Tests on benchmark systems [128] reveal its strong fea-

tures, compared with two other Maple solvers, Triangularize, from the Regular-

Chains library, and gsolve, from the Groebner library. Note that the triangular

decompositions modulo a prime, that are needed in our algorithm, are performed by

Triangularize. This function is a generic code: essentially the same code is used

98

over Z and modulo a prime. Thus, Triangularize is not optimized for modular

computations.

Our computations are done on a 2799 MHz Pentium 4. For the time being our

implementation handles square systems that generate radical ideals. We compare our

algorithm called TriangularizeModular with gsolve and Triangularize;

For each benchmark system, Table 4.1 lists the numbers n, d, h, h and Table 4.2

lists the prime p1, the a priori and actual number of lifting steps (d and a) and the

maximal height of the output coefficients (Ca). Table 4.3 gives the time of one call

to Triangularize modulo p1 (∆p), the equiprojectable decomposition (Ep), and the

lifting (Lift.) in seconds — the first two steps correspond to the “oracle calls” O2

mentioned in Theorem 4.1.2, which is a work in progress in [40]. Table 3 gives also

the total time, the total memory usage and output size for TriangularizeModular,

whereas Table 4.4 gives that data for Triangularize and gsolve.

The maximum time is set up to 10800 seconds; we set the probability of success

to be at least 90%.

TriangularizeModular solves 12 of the 14 test systems before the timeout, while

Triangularize succeeds with 7 and gsolve with 6. Among most of the problems

which gsolve can solve, TriangularizeModular shows less time consumed, less mem-

ory usage, and smaller output size. Noticeably, quite a few of the large systems can

be solved by TriangularizeModular with time extension: system 13 is solved in

18745 seconds. Another interesting system is Pinchon-1 (from the FRISCO project),

for which n = 29, d = 16, h = 20, h = 1409536095e + 29, which we solve in 64109

seconds. Both Triangularize and gsolve fail these problems due to memory allo-

cation failure. Our modular method demonstrates its efficiency in reducing the size

of the intermediate computations, whence its ability to solve difficult problems.

We observed that for every test system, for which Ep can be computed, the Hensel

lifting always succeeds, i.e. the equiprojectable decomposition over Q can be re-

constructed from Ep. In addition, TriangularizeModular failed chemkin at the

∆p phase rather than at the lifting stage. Furthermore, the time consumed in the

equiprojectable decomposition and the Hensel lifting is rather insignificant compar-

ing with that in triangular decomposition modulo a prime. For every tested example

the Hensel lifting achieves its final goal in less steps than the theoretical bound. In

addition, the primes derived from our theoretical bounds are of quite moderate size,

even on large examples.

99

Sys Name n d h h

1 Cyclohexane 3 4 3 4395
2 Fee 1 4 4 2 24464
3 fabfaux 3 3 13 2647
4 geneig 6 3 2 116587
5 eco6 6 3 0 105718
6 Weispfenning-94 3 5 0 7392
7 Issac97 4 2 2 1511
8 dessin-2 10 2 7 358048
9 eco7 7 3 0 387754
10 Methan61 10 2 16 450313
11 Reimer-4 4 5 1 55246
12 Uteshev-Bikker 4 3 3 7813
13 gametwo5 5 4 8 159192
14 chemkin 13 3 11 850088102

Table 4.1: Features of the Polynomial Systems for Modular Method

Sys p1 d a Ca

1 4423 7 2 15
2 24499 8 4 70
3 2671 7 5 110
4 116663 10 5 162
5 105761 10 3 40
6 7433 7 3 31
7 1549 6 5 102
8 358079 11 7 711
9 387799 11 4 89
10 450367 11 6 362
11 55313 9 2 19
12 7841 7 5 125
13 159223 10 - -
14 850088191 18 - -

Table 4.2: Data for the Modular Algorithm

100

Sys ∆p Ep Lift Total Mem. Output size

1 1 0.3 2 7 5 243
2 3 1 9 20 6 4157
3 8 0.4 6 22 7 5855
4 5 1 5 18 6 4757
5 12 1.5 6 35 6 2555
6 16 1.5 11 43 7 3282
7 66 0.4 4 133 8 4653
8 47 9 232 427 13 122902
9 1515 9 35 2873 11 9916
10 2292 6 82 4686 25 50476
11 3507 1 9 5569 38 2621
12 4879 2 22 8796 63 12870
13 ∞ - - - - -
14 - - - - fail -

Table 4.3: Results from our Modular Algorithm

Sys Triang. Mem. Size gsolve Mem. Size

1 0.4 4 169 0.2 3 239
2 2 6 1680 504 18 34375
3 512 275 6250 1041 34 27624
4 2.5 4 743 - fail -
5 5 5 3134 9 5 2236
6 3000 250 2695 4950 66 34932
7 - fail - 1050 31 31115
8 - fail - - error -
9 1593 18 55592 - fail -
10 ∞ - - - fail -
11 - fail - - fail -
12 - fail - - fail -
13 - fail - ∞ - -
14 - fail - - fail -

Table 4.4: Results from Triangularize and gsolve

101

4.5 An Application of Equiprojectable Decompo-

sition: Automatic Case Distinction and Case

Recombination

In the Maple session below, we first compute the lower echelon form and the inverse

(when it exists) of two matrices m modulo a regular chain rc. This regular chain

defines a tower of simple extensions with zero-divisors. Each matrix m leads to two

cases. The first matrix m is invertible in one case, but not in the other. The second

matrix m is invertible in both cases and the corresponding answers are recombined.

This recombination feature of the RegularChains library is a by-product of the no-

tion of the equiprojectable decomposition. In addition, this examples illustrate the

capabilities of the RegularChains library for solving linear systems over non-integral

domains. The detailed algorithms are listed afterwards.

> R := PolynomialRing([y,z]);

R := polynomial ring

> rc := Chain([z^4 +1, y^2 -z^2], Empty(R), R);

rc := regular chain

> Equations(rc, R);

[y2 − z2, z4 + 1]

> m := Matrix([[1, y+z], [0, y-z]]);

m :=




1 y + z

0 y − z





> lm := LowerEchelonForm(m, rc, R);

lm := [[



−2 z 0

0 y − z


 , regular chain], [




0 0

1 y + z


 , regular chain]]

> Equations(lm[1][2], R); Equations(lm[2][2], R);

[y + z, z4 + 1]

[y − z, z4 + 1]

> MatrixInverse(m,rc,R);

[[[




1 0

0 1/2 z3


 , regular chain]], [[“no Inverse ′′,




1 y + z

0 y − z


 , regular chain]]]

> m := Matrix([[1, y+z], [2, y-z]]);

102

m :=




1 y + z

2 y − z





> lm := LowerEchelonForm(m, rc, R);

lm := [[



−2 z 0

2 y − z


 , regular chain], [




4 z 0

1 y + z


 , regular chain]]

> Equations(lm[1][2], R); Equations(lm[2][2], R);

[y + z, z4 + 1]

[y − z, z4 + 1]

> mim := MatrixInverse(m,rc,R);

mim := [[[




1 0

−z3 1/2 z3


 , regular chain], [




0 1/2

−1/2 z3 1/4 z3


 , regular chain]], []]

> m1 := mim [1][1][1]: rc1 := mim [1][1][2]: Equations(rc1, R);

[y + z, z4 + 1]

> m2 := mim [1][2][1]: rc2 := mim [1][2][2]: Equations(rc2, R);

[y − z, z4 + 1]

> mc := MatrixCombine([rc1, rc2], R, [m1, m2]);

mc := [[




1/2 z3y + 1/2 −1/4 z3y + 1/4

−3/4 z3 + 1/4 z2y 3/8 z3 − 1/8 z2y



 , regular chain]]

> Equations(mc[1][2], R);

[y2 − z2, z4 + 1]

> MatrixMultiply(mc[1][1], m, mc[1][2], R);



1 0

0 1




It is likely to have several cases in the output of MatrixCombine. In the example

below, we generate four random matrices. When re-combining the four cases, we

cannot obtain a single recombination. Since the two ideals generated by rc1 and

rc2 are obviously relatively prime (no common roots in z), if we try to recombine

them, we create a polynomial in y with a zero-divisor as a leading coefficient. This is

forbidden by the properties of a regular chain, as shown by the followed check.

> R := PolynomialRing([x,y,z]);

R := polynomial ring

103

> sys := {x^2 + y + z - 1, x + y^2 + z - 1, x + y + z^2 - 1};
sys := {x + y + z2 − 1, x + y2 + z − 1, x2 + y + z − 1}

> lrc := Triangularize(sys,R, normalized=yes);

> map(Equations, lrc, R);

lrc := [regular chain, regular chain, regular chain, regular chain]

[[x− 1, y, z], [x, y − 1, z], [x, y, z − 1], [x− z, y − z, z2 + 2 z − 1]]
> lm := [seq(Matrix ([seq([seq(randpoly([x,y,z],degree=1),j=1..2)],

i=1..2)]), k=1..4)];

lm := [



−7 + 22 x− 55 y − 94 z 87− 56 x− 62 z

97− 73 x− 4 y − 83 z −10 + 62 x− 82 y + 80 z


 ,



−44 + 71 x− 17 y − 75 z −10− 7 x− 40 y + 42 z

−50 + 23 x + 75 y − 92 z 6 + 74 x + 72 y + 37 z


 ,




−23 + 87 x + 44 y + 29 z 98− 23 x + 10 y − 61 z

−8− 29 x + 95 y + 11 z −49− 47 x + 40 y − 81 z



 ,




91 + 68 x− 10 y + 31 z −51 + 77 x + 95 y + z

1 + 55 x− 28 y + 16 z 30− 27 x− 15 y − 59 z


]

> clr := MatrixCombine(lrc, R, lm);

clr := [[




−76 y + 15 −81 y + 31

y + 24 26 y + 52



 , regular chain],

[




178− 85 z − 87 z2 −17/2 + 88 z − 85
2

z2

43
2

+ 2 z − 41
2

z2 119
2
− 160 z − 59

2
z2


 , regular chain]]

> rc1 := clr[1][2]; Equations(rc1, R); rc2 :=

clr[2][2];Equations(rc2, R);

rc1 := regular chain

[x + y − 1, y2 − y, z]

rc2 := regular chain

[2 x + z2 − 1, 2 y + z2 − 1, z3 + z2 − 3 z + 1]
> Rz := PolynomialRing([z]); rc := Empty(Rz); rc1 :=

Chain([z],rc,Rz); rc2 := Chain([z^3 + z^2 - 3*z + 1], rc, Rz);

m1 := Matrix([[y^2 - y]]); m2 := Matrix([[2*y +z^2 -1]]); clr :=

MatrixCombine([rc1, rc2], Rz, [m1, m2]);

104

> m := clr[1][1]; rc := clr[1][2]; p := m[1,1];

init := Initial(p,R); invInit:=Inverse(init,rc,Rz);

Equations(invInit[1][1][3],R);map(Equations, invInit[2], R);

Rz := polynomial ring

rc := regular chain

rc1 := regular chain

rc2 := regular chain

m1 :=
[

y2 − y
]

m2 :=
[

2 y + z2 − 1
]

clr := [[
[

9 yz + z3 − 3 z − 3 yz3 − 3 yz2 + 2 z2 + z3y2 + z2y2 − 3 zy2 + y2 − y
]
,

regular chain]]

m :=
[

9 yz + z3 − 3 z − 3 yz3 − 3 yz2 + 2 z2 + z3y2 + z2y2 − 3 zy2 + y2 − y
]

rc := regular chain

p := 9 yz + z3 − 3 z − 3 yz3 − 3 yz2 + 2 z2 + z3y2 + z2y2 − 3 zy2 + y2 − y

init := z3 + z2 − 3 z + 1

invInit := [[[1, 1, regular chain]], [regular chain, regular chain]]

[z]

[[z2 + 2 z − 1], [z − 1]]

Algorithm 33 Matrix Combine

Input rc list: list of 0-dimensional and strongly normalized regular chains in
k[X1, . . . , Xn].
lm: list of matrices with polynomial entries in k[X1, . . . , Xn], and they
have the same dimension.

Output the equiprojectable decomposition of the variety given by rc list, and the
corresponding combined matrices.

MatrixCombine(rc list, lm) ==

1: (lrc, BezoutCoeffsTable)← RemoveCriticalPair(rc list);
#Bézout coefficients are recorded when gcds are computed for removing critical pairs by Algorithm 26

2: lm′ ← project(lm, lrc);
#reduce each corresponding matrix w.r.t its refined regular chains

3: (new lrc, new lm)← Merge(lrc, BezoutCoeffsTable, lm′);
#merged by Algorithm 27

4: return (new lrc, new lm);

105

Algorithm 34 Lower Echelon Form Modulo a Regular Chain

Input rc: 0-dimensional regular chain in k[X1, . . . , Xn].
A: matrix of dimension m× c with polynomial entries in k[X1, . . . , Xn].

Output list of cases [. . . , [Bi, Ti], . . .] such that Bi is the lower echelon form of A
modulo Ti.

LowerEchelonForm(rc, A) ==

1: case list←[[”todoEchelon”, rc, A]]; result← [];
2: while case list not empty do
3: case← Pop out one element from case list;
4: flag ← case[1]; rc′ ← case[2]; A′ ← case[3];
5: if flag =”doneEchelon” then
6: result← result ∪ [A′, rc′];
7: else if flag =”todoEchelon” then
8: intercase list← innerLowerEchelonFormModuloRC(rc′, A′);
9: case list← case list ∪ intercase list;

10: end if
11: end while
12: return result;

Algorithm 35 Normal Form of a Matrix

Input rc: 0-dimensional regular chain in k[X1, . . . , Xn].
A: matrix of dimension m× c with polynomial entries in k[X1, . . . , Xn].

Output fraction normal form of A modulo the saturated ideal of rc.

NormalFormMatrix(rc, A) ==

1: B ←zero matrix of dimension m× c;
2: for i from 1 to m do
3: for j from 1 to c do
4: B[i, j]← NormalForm(B[i, j], rc);
5: end for
6: end for
7: return B;

106

Algorithm 36 Matrix Inverse Modulo a Regular Chain

Input A: square matrix of dimension m with polynomial entries in k[X1, . . . , Xn].
rc: 0-dimensional regular chain in k[X1, . . . , Xn].

Output list of cases [Ai, Ti] or [”noInverse”, Bi, rci] such that Ai is the inverse of
A modulo Ti, or Bi has no inverse under rci.

MatrixInverse(rc, A) ==

1: inverse list← []; noinverse List← []; echelon result← [];
2: case list← [[”todoEchelon”, rc, A]];
3: while case list is not empty do
4: case←Pop up one element from case list;
5: flag ← case[1]; rc′ ← case[2]; A′ ← case[3];
6: if flag is “doneEchelonInverse”, or “noInverse”, or

“zeroDivisorInEchelon” then
7: echelon result← echelon result ∪ case;
8: else if flag is “todoEchelon” then
9: echcase list←LowerEchelonFormForInverseModuloRC(rc′, A′);

10: case list← case list ∪ echcase list;
11: else if flag is “todoEchelonInverse” then
12: Ae ← case[4]; At ← case[5];
13: invEchcase list←InverseLowerEchelonFormModuloRC(rc′, A′, Ae, At);
14: case list← case list ∪ invEchcase list;
15: end if
16: end while
17: while echelon result list is not empty do
18: case←Pop up one case from echelon result list;
19: if case’s flag is “noInverse”, or “zeroDivisorInEchelon” then
20: noinverse List← noinverse List ∪ case;
21: else
22: rc′ ← case[2]; invAe ← case[3]; At ← case[4];
23: inverse A←MatrixMatrixMultiplyModuloRC(rc′, invAe, At);
24: inverse list← inverse list ∪ [inverse A, rc′];
25: end if
26: end while
27: return [inverse list, noinverse List];

107

Algorithm 37 Inner Lower Echelon Form Modulo a Regular Chain

Input rc: 0-dimensional regular chain in k[X1, . . . , Xn].
A: matrix of dimension m× c with polynomial entries in k[X1, . . . , Xn].

Output list of cases as [flag, Ti, Ai]; flag = ”todoEchelon”, or “doneEchelon”. If
flag =“doneEchelon”, Ai is the lower echelon form of A mod Ti.

innerLowerEchelonFormModuloRC(rc, A) ==

1: #use Bareiss single step fraction-free Gaussian elimination, but computation may split by the D5 principle

2: case list← []; Ae ←copy of A;
3: r ← m; sign← 1; divisor inverse← 1;
4: for k from c to 1 by −1 do
5: if r < 1 then
6: break;
7: else
8: hasNonZeroP ivot, sign, Ae ←GetNonZeroPivot(rc, Ae, k, sign);
9: if hasNonZeroP ivot = true then

10: (inverse list, zerodivisor list)←InverseModuloRC(Ae[r, k], rc);
#may split by the D5 principle

11: if number of inverse list = 1 and zerodivisor list is empty then
12: for i from r − 1 to 1 by −1 do
13: for j from k − 1 to 1 by −1 do
14: Ae[i, j]← (Ae[r, k]Ae[i, j]− Ae[r, j]Ae[i, k])×divisor inverse;
15: Ae[i, j]← NormalForm(Ae[i, j], rc);
16: end for
17: Ae[i, k]← 0;
18: end for
19: Get inv from inverse list s.t. inv is the inverse of Ae[r, k] mod rc;
20: divisor inverse← NormalForm(inv, rc);
21: r ← r − 1;
22: else
23: for regular chain rc′ in inverse list or in zerodivisor list do
24: case list← case list ∪ [”todoEchelon”, rc′, A];
25: end for
26: return case list;
27: end if
28: end if
29: end if
30: end for
31: case list← [[”doneEchelon”, rc, Ae]];
32: return case list;

108

Algorithm 38 Lower Echelon Form for Inverse Modulo a Regular Chain

Input A: square matrix of dimension m with polynomial entries in k[X1, . . . , Xn].
rc: 0-dimensional regular chain in k[X1, . . . , Xn].

Output list of cases; a case can be [”noInverse”, A, rc], or [”todoEchelon”, A, Ti],
or [”todoEchelonInverse”, rc,A,Ae, At] where Ae is the lower echelon form
of A modulo rc, At is the companion matrix following the transformation for
generating Ae.

LowerEchelonFormForInverseModuloRC(rc, A) ==

1: #use Bareiss single step fraction-free Gaussian elimination, but computation may split by the D5 principle

2: case list← []; Ae ←copy of A; At ←identity matrix of dimension m;
3: r ← m; sign← 1; divisor inverse← 1;
4: for k from m to 1 by −1 do
5: if r < 1 then
6: break;
7: else
8: hasNonZeroP ivot, sign, Ae =GetNonZeroPivot(rc, Ae, k, sign);
9: if hasNonZeroP ivot = false then [[”noInverse”, A, rc]];

10: (inverse list, zerodivisor list)←InverseModuloRC(Ae[r, k], rc);
#may split by the D5 principle

11: if number of inverse list = 1 and zerodivisor list is empty then
12: for i from r − 1 to 1 by −1 do
13: for j from k − 1 to 1 by −1 do
14: Ae[i, j]← (Ae[r, k]× Ae[i, j]− Ae[r, j]× Ae[i, k])× divisor inverse;
15: Ae[i, j]← NormalForm(Ae[i, j], rc);
16: end for
17: Ae[i, k]← 0;
18: for s from m to 1 by −1 do
19: At[i, s]← (Ae[r, k]× At[i, s]− At[r, s]× Ae[i, k])× divisor inverse;
20: At[i, s]← NormalForm(At[i, s], rc);
21: end for
22: end for
23: Get inv from inverse list s.t. inv is the inverse of Ae[r, k] mod rc;
24: divisor inverse← NormalForm(inv, rc);
25: r ← r − 1;
26: else
27: for regular chain rc′ in inverse list or in zerodivisor list do
28: case list← case list ∪ [”todoEchelon”, A, rc′];
29: end for
30: return case list;
31: end if
32: end if
33: end for
34: case list← [”todoEchelonInverse”, rc, A, Ae, At];
35: return case list;

109

Algorithm 39 Inverse Lower Echelon Form Modulo a Regular Chain

Input rc: 0-dimensional regular chain in k[X1, . . . , Xn].
A: square matrix of dimension m with polynomial entries in k[X1, . . . , Xn].
Ae: lower echelon form of A modulo rc.
At: companion matrix following the transformation for generating Ae.

Output list of tasks as [”zeroDivisorInEchelon”, Ti, A], or [”todoEchelon”, Ti, A],
or [”doneEchelonInverse”, rc, invAe, At] where invAe is the inverse of Ae

modulo rc.

InverseLowerEchelonFormModuloRC(rc, A, Ae, At) ==

1: invAe ←zero matrix of dimension m;
2: for i from 1 to m do
3: (inverse list, zerodivisor list)←InverseModuloRC(Ae[i, i], rc);

#may split by the D5 principle

4: if number of inverse list = 1 and zerodivisor list is empty then
5: Get inv from inverse list s.t. inv is the inverse of Ae[i, i] mod rc;
6: invAe[i, i]← NormalForm(inv, rc);
7: else
8: for regular chain rc′ in inverse list or in zerodivisor list do
9: case list← case list ∪ [”todoEchelon”, rc′, A];

10: end for
11: return case list;
12: end if
13: end for
14: for j from 1 to m− 1 do
15: for i from j + 1 to m do
16: temp← 0;
17: for k from j to i− 1 do
18: temp← temp + Ae[i, k]× invAe[k, j];
19: end for
20: invAe[i, j]← −invAe[i, i]× temp;
21: invAe[i, j]← NormalForm(invAe[i, j], rc)
22: end for
23: end for
24: return [”doneEchelonInverse”, rc, invAe, At];

110

Algorithm 40 Matrix Matrix Multiply Modulo a Regular Chain

Input rc: 0-dimensional regular chain in k[X1, . . . , Xn].
A: matrix of dimension m× r with polynomial entries in k[X1, . . . , Xn].
B: matrix of dimension r × l with polynomial entries in k[X1, . . . , Xn].

Output product of A and B modulo the saturated ideal of rc

MatrixMatrixMultiplyModuloRC(rc, A, B) ==

1: D ←zero matrix of dimension m× l;
2: for i from 1 to m do
3: for k from 1 to l do
4: f ← 0;
5: for j from 1 to r do
6: fi ← A[i, j]× B[j, k];
7: f ← f + fi;
8: end for
9: D[i, k]← NormalForm(f, rc);

10: end for
11: end for
12: return D;

Algorithm 41 Get Non-Zero Pivot

Input rc: 0-dimensional regular chain in k[X1, . . . , Xn].
A: matrix of dimension m× c with polynomial entries in k[X1, . . . , Xn].
k: the number of starting column.
sign: effect of switching rows.

Output [flag, sign′, A′]; flag is true if non-zero pivot is found, and A′[k, k] is the
non-zero pivot; otherwise flag is false.

GetNonZeroPivot(rc, A, k, sign) ==

1: hasNonZeroP ivot← true; A′ ←copy of A;
2: if A′[k, k] is zeor modulo rc then
3: hasNonZeroP ivot← false;
4: for p from k to 1 by −1 do
5: if A′[p, k] is nonzero modulo rc then
6: hasNonZeroP ivot← true;
7: A′ ← switch the pth row and the kth row of A′;
8: if p <> k then
9: sign′ ← −sign;

10: end if
11: end if
12: end for
13: end if
14: return [hasNonZeroP ivot, sign′, A′];

111

4.6 Summary

We have presented a modular algorithm for triangular decompositions of 0-dimen-

sional varieties over Q and have demonstrated the feasibility of Hensel lifting in

computing triangular decompositions of non-equiprojectable varieties. Experiments

show the capacity of this approach to improve the practical efficiency of triangular

decomposition. The implementation of these methods brings to the Maple algebra

system a unique module for automatic case discussion and case recombination.

By far, the bottleneck is the modular triangularization phase. This is quite en-

couraging, since it is the part for which we relied on generic, non-optimized code.

The next step is to extend these techniques to specialize variables as well during the

modular phase, following the approach initiated in [63] for primitive element repre-

sentations, and treat systems of positive dimension.

112

Chapter 5

Component-level Parallelization of

Triangular Decompositions

In this chapter, we study the parallelization of algorithms for solving polynomial sys-

tems symbolically by way of triangular decompositions. We introduce a component-

level parallelism for which the number of processors in use depends on the geometry

of the solution set of the input system. Our long-term goal is to achieve an effi-

cient multi-level parallelism: coarse grained (component) level for tasks computing

geometric objects in the solution sets, and medium/fine grained level for polynomial

arithmetic such as GCD/resultant computation within each task.

Component-level parallelization of triangular decompositions belongs to the class

of dynamic irregular parallel applications, which leads us to address the following

question: How to exploit geometrical information at an early stage of the solving

process that would be favorable to parallelization? We report on the effectiveness

of the approaches that we have applied, including “modular methods”, “solving by

decreasing order of dimension”, “task pool with dimension and rank guided schedul-

ing”. We have extended the Aldor programming language to support multiprocessed

parallelism on SMPs and realized a preliminary implementation. Our experimenta-

tion shows promising speedups for some well-known problems and proves that our

component-level parallelization is efficient in practice. We expect that this speedup

would add a multiplicative factor to the speedup of medium/fine grained level paral-

lelization as parallel GCD and resultant computations.

113

5.1 Introduction

This work aims at investigating new directions in the parallelization of symbolic

solvers for polynomial systems. Ideally, one would like that each component of the

solution set of a polynomial system could be produced by an independent processor,

or a set of processors. In practice, the input polynomial system, which is hiding those

components, requires some transformations in order to split the computations into

subsystems and, then, lead to the desired components. The efficiency of this approach

depends on its ability to detect and exploit geometrical information during the solving

process. Its implementation, which involves parallel symbolic computations, is yet

another challenge.

Several symbolic algorithms provide a decomposition of the solution set of any sys-

tem of algebraic equations into components (which may be irreducible or with weaker

properties): primary decompositions [62, 122], comprehensive Gröbner bases [144],

triangular decompositions [146, 76, 86, 108, 140] and others. These algorithms tend

to split the input polynomial system into subsystems and, therefore, seem to be nat-

ural candidates for a component-level parallelization.

Unfortunately, such a parallelization is very likely to be unsuccessful, bringing no

practical speedup w.r.t. comparable sequential implementations of the same algo-

rithms. Indeed, even if computations split into sub-problems which can be processed

concurrently, the computing cost of the corresponding tasks are extremely irregular.

Even worse: for input polynomial systems with coefficients in the field Q of rational

numbers, a single heavy task may dominate the whole solving process, leading essen-

tially to no opportunities for component-level parallel execution. This phenomenon

follows from the following observation. For most polynomial systems with coefficients

in Q that arise in theory or in practice, see for instance www.SymbolicData.org, the

solution set can be described by a single component! The theoretical justification is

given by the celebrated Shape Lemma [12] for systems with finitely many solutions.

We show, in this work, how to achieve a successful component-level paralleliza-

tion for polynomial systems including for the case of rational number coefficients.

Among the algorithms that decompose the solution set of a polynomial system into

components, we consider Triade [108] for computing triangular decompositions. This

algorithm was presented in Section 2.7.

The first reason for this choice is that, triangular decompositions of polynomial

systems with coefficients in Q can be reduced to triangular decompositions of poly-

nomial systems modulo a prime number, as discussed in Chapter 4. This brings

114

rich opportunities for parallel execution. The second reason is that the Triade Algo-

rithm has been implemented in the Aldor language [3] and in the computer algebra

systems AXIOM [72] and Maple [105] as the RegularChains library [90]. This pro-

vides us with useful tools for our experimentation work. The third and main reason

is that the Triade Algorithm can generate the (intermediate or output) components

by decreasing order of dimension. As we show in Section 5.2, this allows us to exploit

the opportunities for parallel execution created by modular techniques, leading to

successfully component-level parallel execution.

Our objective is to develop a parallel solver for which the number of processors in

use depends on the intrinsic complexity of the input system, that is, on the geometry

of its solution set. This approach is not aimed to bring scalability. For instance,

for systems over Z/pZ with finitely many solutions, if the output consists of s com-

ponents with similar degrees, we cannot expect a speed-up much larger than s by

relying only on a component-level parallelism. We do not aim either at replacing the

previous parallel approaches at the level of polynomial reduction (or simplification)

in Buchberger’s Algorithm for computing Gröbner bases and in the Characteristic

Set Method of Wu. On the contrary, we aim at adding an extra level of parallelism.

The parallelization of two other algorithms for solving polynomial systems symbol-

ically have already been actively studied. First, Buchberger’s Algorithm (Algorithm 2

p. 27) for computing Gröbner bases, see for instance [23, 27, 29, 52, 7, 94]. Second,

the Characteristic Set Method (Algorithm 4 p. 33) of Wu [146], see [2, 147, 148].

In all these works, the parallelized operation is polynomial reduction (or simplifica-

tion). In both Algorithm 2 and Algorithm 4, this is Step (R). More precisely, given

two polynomial sets A and B (with some conditions on A and B, depending on the

algorithm) the reductions of the elements of A by those of B are executed in parallel.

The Triade algorithm also has a polynomial simplification level which relies on

polynomial GCDs and resultants. The parallelization of such computations is re-

ported in [115, 70]. The addition of this second level to the Triade algorithm is work

in progress. We also plan to integrate a third and fine grained level, for polynomial

arithmetic operations modulo a triangular set. In [97] the authors report on a suc-

cessful multithreaded implementation of arithmetic operations modulo a triangular

set. This would be a good foundational library for the linear algebra, and thus the

polynomial GCDs and resultants needed in triangular decompositions.

In Section 2.7, we presented the task model employed by the Triade algorithm.

We review also how this algorithm makes use of geometrical information discovered

during the computations.

115

We describe in Section 5.2 the techniques that we have developed to create and

exploit component-level parallelism. Our heuristically efficient Task Pool with Dimen-

sion and Rank Guided scheduling (TPDRG) is reported in Section 5.3. In the remain-

ing of this chapter, we report on our preliminary implementation and experimenta-

tion. We have extended the Aldor programing language for multi-processed parallel

programing on SMPs and realized a preliminary implementation of this component-

level parallel algorithm based on the BasicMath library [132]. We have conducted

an intensive experimentation on some well-known problems. A comparison on the

practical efficiency between our TPDRG scheduling and the generally good Greedy

scheduling has also been performed. These help in evaluating the efficiency of our

implementation and reveal its limitation as well. In the conclusion, we discuss the po-

tential to extend this work to achieve efficient multi-level parallelization for triangular

decompositions.

5.2 Parallelization

In Section 2.7, we discussed the main features of the Triade algorithm [108] with an

emphasis on those that are relevant to parallel execution. The notions of a Task,

Definition 2.7.1 and that of a delayed split, Definition 2.7.3 play a central role. Al-

gorithm 5 is the top-level procedure of the Triade algorithm: it manages a task pool.

The tasks are transformed by means of a sub-procedure (Algorithms 6 and 7) which

is dedicated to “simple tasks”. The execution of such a simple task can be highly

irregular and dynamic. It can also generate other tasks.

One could think of deriving a parallel scheme from Algorithm 5 by running the

procedure Triangularize(F, T) on one processor and running each call to Decompose

on any other available processors, following a greedy scheduling. As mentioned in the

Introduction, such parallelization is very likely to be unsuccessful, bringing no prac-

tical speed-up w.r.t. comparable sequential implementations of the same algorithms.

In characteristic zero, this mainly follows from the fact, for most polynomial systems,

the solution set can be described by a single component, though not necessarily ir-

reducible. In prime characteristic, however, even if a single component suffices, it is

more likely that polynomials factorize and thus that components split.

Using modular techniques. The previous remark suggests the use of modular tech-

niques for computing triangular decompositions. We rely on the algorithm proposed

in [39]. For a given input square system F ⊂ Q[x1, . . . , xn] this algorithm computes

the simple points of V (F) in four steps:

116

Sys Name n d p Degrees
1 eco6 6 3 105761 [1,1,2,4,4,4]
2 eco7 7 3 387799 [1,1,1,1,4,2,

4,4,4,4,4,2]
3 CassouNogues2 4 6 155317 [8]
4 CassouNogues 4 8 513899 [8,8]
5 Nooburg4 4 3 7703 [18,6,6,3,3,4,

4,4,4,2,2,2,
2,2,2,2,2,1,

1,1,1,1]
6 UteshevBikker 4 3 7841 [1,1,1,1,2,30]
7 Cohn2 4 6 188261 [3,5,2,1,2,1,1,

16,12,10,8,8,
4,6,4,4,4,4,2,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1]

Table 5.1: Polynomial Examples and Effect of Modular Computation

(S1) compute a prime number p such that V (F) can be reconstructed, with

high probability, from Vp := V (F mod p), the zero-set of F regarded in

Z/pZ[x1, . . . , xn],

(S2) compute a triangular decomposition of Vp,

(S3) compute the equiprojectable decomposition of p,

(S4) reconstruct by Hensel lifting the equiprojectable decomposition of V (F).

As reported in [39], the second step has the dominant cost. Therefore, we focus

on computing triangular decompositions of polynomial systems with coefficients in a

finite field.

Our test suite. Table 5.1 contains data about 7 well-known test systems that we

use through the experiments reported in this article. All of them are polynomial

systems over Q: for each we give its number of n equations, its total degree d,

the prime number p provided by the above Step (S1) and the list of the degrees of

the triangular decomposition computed at Step (S2) by the Triade algorithm. We

emphasize the fact that each of these systems, except for Cohn2, is equiprojectable,

that is, its equiprojectable decomposition consists of a single component. Hence, for a

direct computation over Q, the computations may not split. Therefore, our modular

approach has created opportunities for parallel execution.

117

Regularizing initials for controlling task irregularity. A call to the procedure De-

compose as given by Algorithm 7 may result in unpredictable amount of work. Indeed,

since the initial of p may not be regular w.r.t. Sat(T), the polynomial f computed

at Line 2 may have a different main variable than p. Hence we cannot predict the

main variables and degrees of the input polynomials in the calls to AlgebraicDecom-

pose and Extend. It could be the case that these calls lead to inexpensive operations,

say polynomial GCDs of univariate polynomials of low degrees, whereas the regular

chain contains very large polynomials in many variables. Therefore, Decompose(p, T)

may lead to inexpensive computations but expensive data communication. In order

to control this phenomenon, we strengthen the notion of a task in Definition 5.2.1:

the initial of every polynomial f ∈ F in a task [F, T] must be regular w.r.t. Sat(T).

The motivation of this Definition is twofold. First, we want to anticipate which oper-

ations will be performed by Algorithm 7. Second, we want to force light-load calls to

Decompose(p, T) to be performed inside heavily-load calls. Reaching the former goal

is discussed after Definition 5.2.1 while the latter one is achieved by the Split-by-height

strategy presented at the end of this section.

Definition 5.2.1. The task [F, T] is standard if for all f ∈ F , when modulo Sat(T),

f is not constant and its initial is regular w.r.t. Sat(T).

Estimating the cost of tasks. Assume from now on that every task in Algorithm 5 is

standard. When the polynomial p is chosen at Line 6, we know which operations will

be performed by the call Decompose(p, U1). Indeed, if the initial of p is regular w.r.t.

T := U1, Line 1 in Algorithm 7 is useless and we know that f = p holds. Let v be

mvar(p). Therefore, two cases arise: either v is algebraic w.r.t. T and GCD(Cv, p, C<v)

is called and its cost can be estimated (see for instance [41] for complexity estimates);

or v is not algebraic w.r.t. T and Extend(T ∪ {p}) is called, leading again to GCD

computations with predictable costs.

The Split-by-height strategy. Let [F, E] be a task. We introduce a new procedure,

called SplitByHeight(F, E), returning a delayed split of [F, E] with the following re-

quirement: If [G, U] is a task returned by SplitByHeight(F, T) and |U | = |T | holds then

G = ∅ holds. An algorithm for SplitByHeight(F, T) is easily derived from Algorithm 5

and Proposition 2.7.7, leading to Algorithm 42 below.

Based on SplitByHeight we derive a new implementation of Triangularize(F, T),

given as Algorithm 43.

Two benefits are obtained from Algorithm 43 in view of parallelization. Assume

that at each iteration of the while loop all tasks with maximum priority are executed

118

Algorithm 42 Split by Height

Input a task [F, T].

Output a delayed split of [F, T] such that for all output task [G, U] either |U | > |T |
holds, or both |U | = |T | and G = ∅ hold.

SplitByHeight(F, T) == generate

1: R := [[F, T]] # R is a list of tasks
2: while R 6= [] do
3: [F1, U1]← choose and remove a task from R
4: if |U1| > |T | then yield [F1, U1]
5: if F1 = ∅ then yield [F1, U1]
6: Choose a polynomial p ∈ F1; G1 := F1 \ {p}
7: if p ≡ 0 mod Sat(U1) then
8: R := cons ([G1, U1], R)
9: end if

10: for [H, T] ∈ Decompose(p, U1) do
11: R := cons ([G1 ∪H, T], R)
12: end for
13: end while

Algorithm 43 Parallel Triangularize

Input a task [F, T].

Output regular chains T1, . . . , Te solving [F, T] in the sense of Definition 2.7.1

Triangularize(F, T) == generate

1: R := [[F, T]], # R is a list of tasks
2: while R 6= [] do
3: Choose and remove [F1, U1] ∈ R with max priority
4: if F1 = ∅ then yield U1

5: for [H, T] ∈ SplitByHeight(F1, U1) do
6: R := cons ([H, T], R)
7: end for
8: Sort R by decreasing priority
9: end while

119

concurrently. Consequently, at most n (the number of variables) iterations are needed.

Indeed, after each call to SplitByHeight, and thus after each parallel step, the minimum

height of a regular chain in any unsolved tasks of R has increased at least by one.

Therefore, the depth of the task tree is at most n. Moreover, at each node, with high

probability, the work load has increased in a significant manner. The Split-by-height

strategy also respects the original scheme of solving by decreasing order of dimension

in favor of removing redundant computations at early stages of the solving process.

5.3 Preliminary Implementation and Experimen-

tation

In the previous section, we showed how to create parallel opportunities at a coarse-

grained level by making use of modular methods. Then, we introduced different

techniques (standard tasks in Definition 5.2.1 in order to estimate costs, the Split-

by-height strategy in order to “factorize” the task tree) so as to limit the irregularity

of tasks and thus to avoid cheap computations combined expensive data communica-

tions.

In this section, we first briefly introduce the framework based on Aldor [110]

that supports this implementation. Then, we present our dynamic “task farming”

parallel scheme and our Task Pool with Dimension and Rank Guided dynamic schedul-

ing (TPDRG) method, for achieving both load balancing and for removing redundant

computing branches at early stages. In the end, we report our experimentation on

some well-known problems.

5.3.1 Implementation Scheme

Our preliminary implementation is realized in the high-performance categorical paral-

lel framework reported in [110]. This framework provides a support of multi-processed

parallelism in Aldor on symmetric multiprocessor machines and multi-core proces-

sors. It has mechanisms to support dynamic task management, and offers func-

tions for data communication via shared memory segments for parametric data types

such as SparseMultivariatePolynomial by serialization. Further more, a sequen-

tial implementation [92] of the Triade algorithm has been developed together with the

BasicMath library for high performance computing. Many of the categories, domains

and packages in this sequential implementation (such as polynomial arithmetic, poly-

nomial GCD and resultant over an arbitrary ring) can be reused or extended for our

120

purpose. These provide us qualified support for realizing a preliminary implementa-

tion of the parallel algorithm in a reasonable period of time.

As discussed in the previous sections, this component-level parallelization of trian-

gular decompositions is dynamic and irregular. We propose to manage the dynamic

tasks by a “task farming” scheme, where a Manager processor distributes tasks to

worker processors. The Manager owns an identifier 0, and it also assigns a unique

identifier (TID) to each task generated at run time. When a task needs to be processed

and a processor is available, the Manager will launch a worker (i.e. process) and pass

the TID as a command line argument to the worker. The worker takes the task’s

TID as its virtual process identifier to guide its communication with the Manager, as

described in [110]. When a worker finishes processing an input task, it sends back

to the Manager all output unsolved tasks and writes its solved tasks to its standard

output.

Our task pool with dimension and rank guided dynamic scheduling is depicted in

Figure 5.1. The task pool (which can be seen as an implementation of the list R in

Algorithms 43) is managed by a Manager processor. The Manager first preprocesses

the input task [F, T] which generates child tasks. Then, the Manager selects unsolved

tasks with maximum priority (See the last paragraph in Section 2.7) determined by the

dimension information of the tasks, say Task1.1, Task1.2 and Task1.3, and estimates

the cost of each of the selected tasks (See Section 5.2), denoted by Cost1.1, Cost1.2

and Cost1.3, and sorts them decreasingly, say Cost1.1 ≥ Cost1.2 ≥ Cost1.3. Now the

manager will launch worker processes if there are processors available and distributes

these tasks following this order. Scheduling tasks by the order of decreasing cost

aims at obtaining the best trade off between the scheduling overhead and balanced

workload, as reported in [129]. When there is only one task in the selection, the

Manager will process it by itself. It will process on its own the tasks with very low

estimated cost. (See paragraph on Estimating the cost of tasks in Section 5.2.)

1 2 3

...

Manager

Task1.1 Task1.2 Task1.3 Task2.1Task2.2 Task2.3Task2.4

Tasks

Figure 5.1: Task Pool with Dimension and Rank Guided Dynamic Scheduling

121

The Manager then proceeds to step 2 to receive the results from the workers for

removing redundant components by inclusion test, and then starts another selection,

say the Task2’s shown in Figure 5.1. The overall solving process follows the decreasing

order of dimension, which indicates that the dimension of Task2’s is lower than the

dimension of Task1’s. The Manager repeats this scheduling rule until all the tasks

are solved. Other than scheduling, the work load of the Manager is very light and

it cannot be a bottleneck. The benefits of using standard tasks (to facilitate cost

estimates) and solving by decreasing order of dimension have been discussed near the

end of Section 5.2.

To evaluate the effectiveness of our task pool with dimension and rank guided

dynamic scheduling, we compare below its practical efficiency in our implementation

with the Greedy scheduling method [68]. In our case, it works as: whenever there

is an unsolved task and a free processor, a process is spawned to work on this task.

Theoretically, a greedy scheduler is always within a factor of 2 of optimal. However,

it cannot ensure the removal of redundant components at an early stage of the solving

process.

5.3.2 Experimentation

Our experimentation was accomplished on Silky in Canada’s Shared Hierarchical

Academic Research Computing Network (SHARCNET). Silky is a SGI Altix 3700

Bx2 SMP cluster having 128 Itanium2 Processors (1.6GHz). It is a heavy-loaded

multiprogrammed computing resource. The system schedules multi-user’s job to run.

Usually more than 95% memory is in use and almost all the CPUs are used up. This

situation does not allow us to test examples that consumes large amount of memory

and explains the level of difficulty of our test-examples.

For each problem listed in Table 5.1, its sequential running time with and without

the regularized initial condition, imposed by the use of standard tasks (See Defini-

tion 5.2.1), are listed in column noregSeq and column regSeq respectively in Table

5.2. The sequential runs are given by the Triade solver [92]. Column slowBy is the

ratio between these two timings. This result shows that the cost for maintaining the

property of standard tasks is negligible (0.01%). Column #P records the number of

processors which can give significant speedup to the example’s run, that is, beyond

it, the increase in the number of processors can not influence significantly its exe-

cution time any more. The parallel execution time using this number of processors

is recorded in column SigPar. The speedup ratio (SPD) is calculated by comparing

122

the parallel execution time with respect to the comparable sequential running time

regSeq.

Table 5.3 reports on the parallel execution time (wall time) of each problem on a

varied number of processors, from 3 to 21. For each run, one processor is always used

by the Manager. Thus, given P processors, there are actually P − 1 which can be

scheduled for workers. The corresponding speedups are reported in Table 5.4. By the

scheduling policy of Silky, the number of processors that a program requests are used

exclusively by itself. The timing reported here is based on one execution, since all of

our testing runs give very close results, with a standard deviation of about 0.001 (s).

These results demonstrate that, for these small and medium-sized problems, our

component-level (coarse grained) parallel triangular decomposition implemented in a

high-level categorical programming language can gain a speedup from 2 to 6, using a

considerably small number of processors (from 5 to 9). This is an encouraging result.

Unfortunately, this level of parallelization does not show good scalability. For all

these small examples, beyond some limit, the speedup cannot increase when adding

more processors. The theoretical results by Attardi and Traverso [7] reveal similar

nature for coarse grained parallel Gröbner basis computations. For instance, their

theoretical speedup of cyclic7(-last) is 11.08 by using 136 processors. Although

our parallelism is very different from theirs in terms of mathematical operations,

the performance of component-level parallelism for triangular decompositions also

depends on the geometrical property of the input system. The speed-up factor is “es-

sentially” bounded by the number of components with “large degrees” in the output

of our modular decompositions. For our Systems 1, 2, 4, 6, this number is clearly 3,

6, 2, 1 respectively, which is close to the corresponding speed-up factors 2.1, 6.1, 2.3

and 1.9. For Systems 5 and 7, which have larger ranges of output component degrees,

our claim needs to be refined but still gives a good first approximation. System 3 is

more subtle: several inconsistent branches explain why we obtain a speed-up of 2.3

with only 1 output component.

In Table 5.5, for each of the problems, we show the minimum parallel running

time (in column TPDRG) of our parallel implementation using our TPDRG scheduling

method and the number of processors used for gaining it, denoted by column #P

(A). To evaluate the efficiency of our TPDRG scheduling, we also implemented a

parallel version using the Greedy scheduling for comparison. To reveal the influence

of the number of processors, we investigate two timings for the Greedy scheduling

technique. One is using the same number of processors as used in our best parallel

run that we noticed. The second one is using 2 more processors than that in column

123

#P (A). Except for the very small example eco6, all other examples show a better

timing for the TPDRG scheduling method. This proves that our TPDRG scheduling

is heuristically efficient. It helps effectively removing redundant components, and

hence using less CPU time by avoiding working on redundant tasks. On the contrary,

the Greedy scheduling cannot ensure removing all redundant tasks, in particular, at

an early stage of the solving process.

5.4 Summary

We have introduced a component-level parallel algorithm for solving non-linear poly-

nomial systems symbolically by way of triangular decompositions. By using modular

methods, we have created opportunities for coarse-grained parallel solving of poly-

nomial systems with rational number coefficients. To exploit these opportunities, we

have transformed the Triade algorithm. We have strengthened its notion of a task and

replaced the operation Decompose by SplitByHeight in order to reduce the depth of

the task tree, create more work at each node, and be able to estimate the cost of each

task within each parallel step. This allows us to design a task pool with dimension

and rank guided scheduling scheme and obtain a heuristically efficient parallelization.

Our preliminary implementation and experimentation demonstrate good perfor-

mance gain with respect to the comparable sequential solver. We have shown that our

multi-processed parallel framework in Aldor is practically efficient for coarse-grained

parallel symbolic computations.

Our long-term goal is to achieve an efficient multi-level parallelism: coarse grained

(component) level for tasks computing geometric objects in the solution sets, and

medium/fine grained level for polynomial arithmetic such as GCD/resultant compu-

tation within each task. We expect that the speedup in the component level would add

a multiplicative factor to the speedup of medium/fine grained level parallelization as

parallel GCD/resultant computations. Parallel arithmetic for univariate polynomials

over fields is well-developed. We need to extend these methods to multivariate case

over more general domains with potential of automatic case discussion. A preliminary

work in this direction is reported in [97].

124

Sys noregSeq regSeq slowBy #P SigPara SPD

(s) (s) (s)

1 3.63 4.00 0.01 5 1.94 2.1
2 707.53 727.95 0.01 9 119.44 6.1
3 463.02 476.16 0.01 9 207.29 2.3
4 2132.87 2162.40 0.01 9 905.24 2.4
5 4.10 4.14 0.01 9 1.79 2.3
6 866.27 866.20 - 9 455.21 1.9
7 298.33 305.24 0.01 9 96.70 3.2

Table 5.2: Wall Time (s) for Sequential (with vs without Regularized Initial) and
Parallel Solving

#P Sys 1 Sys 2 Sys 3 Sys 4 Sys 5 Sys 6 Sys 7

3 3.14 355.08 278.70 1401.43 2.10 622.88 104.98
5 1.94 225.29 214.24 1004.69 2.10 481.73 98.44
7 1.91 142.74 209.17 939.40 1.91 470.18 97.19
9 1.91 119.44 207.29 905.25 1.79 455.21 96.70
11 1.95 119.48 207.08 894.27 1.63 453.13 96.38
13 - 119.09 206.38 874.53 1.61 451.93 96.42
17 - 120.01 211.70 865.51 1.63 451.57 96.20
21 - 119.17 - 852.49 - 451.36 96.54

Table 5.3: Parallel Timing (s) vs #Processor

#P Sys1 Sys2 Sys3 Sys4 Sys5 Sys6 Sys7

3 1.3 2.1 1.7 1.5 2.0 1.4 2.9
5 2.1 3.2 2.2 2.2 2.0 1.8 3.1
7 2.1 5.1 2.3 2.3 2.2 1.8 3.1
9 2.1 6.1 2.3 2.4 2.3 1.9 3.2
11 2.0 6.1 2.3 2.4 2.6 1.9 3.2
13 - 6.1 2.3 2.4 2.5 1.9 3.2

Table 5.4: Speedup vs #Processor

System TPDRG #P Greedy #P Greedy
(best) (A) (A) (B) (B)

1 1.91 7 1.79 9 1.78
2 119.09 13 120.51 15 120.52
3 206.38 13 213.21 15 213.35
4 852.49 20 896.79 22 939.62
5 1.61 13 1.63 15 1.63
6 451.36 20 500.50 22 469.35
7 96.20 17 100.78 19 96.17

Table 5.5: Best TPDRG Timing vs Greedy Scheduling (s)

125

Chapter 6

Multiprocessed Parallelism

Support in Aldor on SMPs and

Multicores

6.1 Introduction

Throughout the 1980s and 1990s the subject of parallel computer algebra was an

active area of research. Many researchers have contributed to this area, both through

the invention of parallel algorithms and the development and implementation of paral-

lel systems. An excellent overview of these developments is provided in the Computer

Algebra Handbook [67]. Over the past decade the area has received less intense at-

tention, but recent developments in widely available computer hardware make the

subject now more relevant than ever: Current hardware improvements have focused

on increasing the number of computations that can be performed in parallel rather

than on increasing clock speed alone. This change in focus has brought multi-core

workstations to the desktop, expanding interest in parallel algorithms and revitalizing

research in parallel computer algebra.

In this work we describe a high-level categorical parallel framework in Aldor

[3, 142] that supports high-performance computer algebra. This framework provides

multiprocess parallelism support in Aldor on symmetric multiprocessor (SMP) and

multi-core architectures. Our work complements previous work in the area. Gautier

and Mannhart previously developed a system known as
∏IT [58, 103], which utilized

MPI features in Aldor to provide computer algebra on distributed parallel architec-

tures. Their approach was to develop general facilities and demonstrate their use with

126

sample computer algebra problems. We have come at the problem from the opposite

direction: Our design has been motivated by a particular family of challenging prob-

lems in the computation of triangular decompositions, and we have tried to generalize

for broader applications. From a different perspective, Ashby, Kennedy and O’Boyle

have used Aldor for data-parallel QCD computations [6].

We have chosen Aldor as our implementation language because it provides both

facilities to support high-level mathematical abstraction as well as efficient access to

low-level machine control. Aldor is an extension of the AXIOM computer algebra

system which focuses on interoperability with other languages and high-performance

computing. The designers of Aldor and AXIOM overcame many of the challenges

associated with providing an environment for implementing the extremely rich re-

lationships that exists among mathematical structures. This was accomplished by

providing high-level categorical support which allows for the development of generic

algorithms for solving computer algebra problems. Some of the features currently

provided by Aldor are being introduced into Fortress, a language which is presently

being developed by Sun. Fortress is specifically designed for both high performance

computing and high programmability [127].

Our framework uses Aldor’s low-level access to the machine to make effective

use of shared memory multiprocessor and multi-core architectures, providing simple

yet powerful supercomputing support for computer algebra. We support the com-

munication of high-level objects between processes without requiring knowledge of

low level details, allowing researchers to concentrate on implementing mathematical

algorithms.

The remainder of this chapter describes our framework in detail. It is organized

in the following manner. Section 6.2 introduces our parallel computation framework.

Section 6.3 describes how data is communicated efficiently between the processes

and concurrency control. This is followed by a discussion of our serialization tools for

high-level Aldor objects in Section 6.4. Dynamic process management and user-level

scheduling techniques is discussed in Section 6.5. Benchmark performance results are

presented in Section 6.6. We present our summary in Section 6.7.

6.2 Overview of the Parallel Framework

Our goal is to develop a high level, categorical, parallel framework for high-

performance computer algebra that effectively exploits the parallel features of mod-

ern multi-core and multiprocessor computer architectures. In order to accomplish

127

this goal, we have introduced multiple process parallelism in Aldor by providing a

mechanism for spawning an arbitrary number of new processes dynamically at run-

time (within the limits imposed by the operating system). When multiple processors

or cores are available, these processes will execute in parallel. Furthermore, we have

also implemented the mechanisms necessary to coordinate the execution of these pro-

cesses and communicate data between them efficiently. A high level description of

our framework is presented in the remainder of this section. The technical details of

each component are presented in the sections that follow.

The Aldor programming language is a type-complete, strongly-typed, imperative

programming language. It uses a two-level object model consisting of categories and

domains. In many respects these concepts are analogous to interfaces and classes

in Java. Aldor provides a type system that provides the programmer with the

flexibility to build new types by creating new categories and domains, as well as the

flexibility to extend existing categories and domains. For example, new categories

and domains can be implemented to model algebraic structures (e.g. rings) and their

members (e.g. polynomial domains). Pervasive use of dependent types allows static

checking of dynamic objects and provides object-oriented features such as parametric

polymorphism.

FRISCO (A Framework for Integrated Symbolic/Numeric Computation) was a

project funded by the European Commission under the Esprit Reactive LTR Scheme

from 1996 to 1999. It resulted in the creation of a library, BasicMath, for polyno-

mial arithmetic and a sequential polynomial solver, triade, developed in Aldor.

Even today, Triade outperforms three solvers in Maple: Triangularize, RegSer and

SimSer [32]. Many of the categories, domains and packages of this sequential im-

plementation (such as polynomial arithmetic, polynomial greatest common divisor

and resultant over an arbitrary ring) can be reused or extended for general purpose

parallel symbolic computations.

Aldor source code can be compiled into a variety of formats. These include

native operating system executables; native operating system object files that can be

linked with each other, or with C or Fortran code to form other applications; portable

bytecode libraries; and C or Lisp source code [25]. Aggressive code optimizations

produce code that performs comparably to hand-optimized C [143]. This makes it

possible to build executables formed from source files written in several languages.

Furthermore, by compiling Aldor code to an object file, it can be linked into many

different executables that will be run as independent parallel processes. Aldor

also provides a primitive, run(...), for initiating a new program P from within a

128

program Q. The run(...) primitive is a wrapper for the C exec(...) function which

launches the target application as a separate process. These features give us the basic

functionality necessary for dynamic process management.

Because our parallel workloads will execute as separate processes, it is necessary to

establish a mechanism for interprocess communication in Aldor. We rely on shared

memory segments from the standard set of UNIX System V interprocess communica-

tion tools. A shared memory segment is a block of memory that can be accessed by

several processes. Shared memory segments are provided by most flavors of UNIX,

providing us with portability across many platforms. The number of shared memory

segments available on a system is normally confined to a small value. However, this

value can usually be increased. Shared memory segments are commonly regarded as

an effective way to communicate large amounts of data efficiently. The shared memory

segments are accessed in Aldor through a newly developed Aldor domain called

SharedMemorySegment. Our domain uses interoperability with the C programming

language to provide the required functionality.

Our implementation of shared memory segments in Aldor allows an array of

integers to be communicated between processes. High-level Aldor types can be

communicated by converting them into an array of integers and then copying the

integers into a shared memory segment. Similarly, the process receiving the data

constructs a new instance of the Aldor high-level data type from the provided array

of integers. This serialize/unserialize process is necessary because the data types

that represent sparse multivariate polynomials and dense multivariate polynomials

are implemented with pointers. Consequently, it is not possible to copy instances of

these Aldor domains directly from one process to another because the pointers will

not necessarily be valid in the destination process.

An additional shared memory segment is used to ensure that the serialized data

is communicated between processes in a synchronized manner. We will refer to the

second shared memory segment, which is a single integer value, as the tag. A protocol

was developed requiring the destination process to check the tag value before accessing

the polynomial data in the data shared memory segment. Our protocol exploits the

fact that writing a single integer value to a shared memory segment (or reading a

single integer value from a shared memory segment) is an atomic operation when the

integer is word aligned. The specification for shmat(), the function used to attach to

a shared memory segment, can be asked to return a pointer that is rounded down to

the nearest multiple of the segment low boundary address multiple [133], giving an

address that is guaranteed to be page aligned (and as such, will also be word aligned).

129

Consequently, because the tag value resides at the start of a shared memory segment,

it will reside at an address that is word aligned. As such, it will not span multiple cache

blocks, and read and write operations will be performed atomically. By following the

memory access ordering restrictions of our protocol and exploiting the atomic nature

of reads and writes, we are able to ensure that our data is accessed in a consistent

manner in the presence of parallel execution.

Since parallel applications in computer algebra are generally dynamic and irreg-

ular, we must provide scheduling mechanism for processes in Aldor to achieve load

balancing. This parallel framework supports dynamic process management, and it is

also feasible for users to apply scheduling techniques.

This section has provided a high level overview of the general concepts used to

implement our parallel computer algebra framework. The low-level technical details

are discussed in the following sections.

6.3 Data Communication and Synchronization

Our framework uses UNIX System V shared memory segments for both data commu-

nication and synchronization between parallel processes. We developed a new Aldor

domain, SharedMemorySegment, to provide easy access to shared memory segments

from Aldor source code. In order to transfer information from one Aldor process

to another, the information must be serialized into a primitive array of machine in-

tegers. The destination process unserializes the data, constructing a new high-level

Aldor datatype, before the data is utilized for other purposes.

Our SharedMemorySegment domain calls C functions in order to gain access to

shared memory segments. Prototypes are shown below for the most frequently used

functions:

key t ftok(const char *pathname, int proj id);

int shmget(key t key, size t size, int shmflg);

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

int shmctl(int shmid, int cmd, struct shmid ds *buf);

In our framework, we generally utilize these functions in the following manner:

1. A key is constructed for the shared memory segment using ftok, the path to a

file, and an integer.

130

Process_i

read/write/free

tag_ij data_ij

write

read/free

Process_j

write/read/free

Figure 6.1: Process i Sending Data to Process j

2. The shared memory segment associated with the key is created (or connected to

if it has already been created by another process) using shmget. The read/write

permission of the segment are set by passing an appropriate value for shmflg.

3. A pointer to the shared memory is acquired by attaching to the shared memory

segment using shmat().

4. Read and write operations are performed on the shared memory by using the

pointer returned by shmat().

5. Each process detaches itself from the shared memory using shmdt.

6. The shared memory segment is deleted by providing the appropriate command

flags to shmctl().

Each shared memory segment is uniquely identified by its key and its size. Any

process can access the shared memory segment if it knows both the key values and

the size of the segment, provided that the shared memory segment is world readable.

Note that it is imperative that applications free each shared memory segment that is

allocated, either by invoking shmctl() before the application terminates or by using

the ipcrm utility after the application completes because shared memory segments

are not automatically released when a program terminates.

In our framework, each Aldor process is assigned a unique virtual identifier, or

VPID, when it is created. These VPIDs guide the flow of information between Aldor

processes, serving a similar role to process ranks in MPI’s data communication model.

Let Process i and Process j be processes with VPIDs i and j respectively. Figure

6.1 illustrates the strategy used by Process i to send data to Process j.

Our communication protocol uses the tag ij shared memory segment to ensure

that the data ij segment is accessed in a safe manner. The keys for both the tag

131

and data segments are created using path names that are unique across our parallel

framework. In particular, the key for the tag segment is created using the path

/tmp/tag ij and the key for the data segment is created using the path /tmp/data ij.

As a result, we are assured that these shared memory segments will only be accessed

by Process i and Process j. Using a separate block of shared memory for each pair

of communicating processes eliminates both the need for complex synchronization

operations and the bottlenecks that can occur when many processes try to access a

shared memory segment at the same time.

The tag segment consists of a single integer. It is used by the sending process,

Process i, to inform the receiving process, Process j, of the size of the data that is

being transferred1. Initially, the value of the shared memory segment is 0, denoting

that no data is available to be read by Process j. We do not need to explicitly write

this 0 value to the shared memory segment because every byte in a shared memory

segment is automatically initialized to zero as part of the allocation process. This

initialization behavior is defined in IEEE Standard 1003.1 [133]. Once the polynomial

data shared memory segment has been created and the data being transferred has

been placed in the data segment by Process i, it changes the value in the tag segment

to the size of the data being transferred. Process i is not permitted to change any

value in either shared memory segment until it reads a 0 value from the tag segment.

When Process j sees a value greater than zero in the tag segment it is assured

that the required information is present in the data shared memory segment. Proc-

ess j writes the value −1 to the tag to indicate that it is currently accessing the

shared memory segment. Once Process j has successfully unserialized the data and

freed the data segment, it writes the value 0 to the tag segment, indicating that it

is done with that set of data. By freeing the shared memory segments immediately

after use, we reduce the overall memory footprint of our framework.

If the value initially read by Process j is −2 then Process j knows that the data

block being transmitted is empty. Consequently, it immediately writes a 0 back to

the tag acknowledging that there was no data to receive.

Regardless of the tag value read initially, Process j is not permitted to access the

data segment after writing 0 to the tag segment until the value of the tag changes to

a positive integer. Following this protocol ensures that Process j will always read

data that is complete and that Process i will never overwrite data that is still needed

by Process j. The tag shared memory segment is released by either Process i or

1The value −2 is used to indicate the transmission of an empty data block.

132

Process j before it terminates. Note that Process i is not permitted to release the

tag shared memory unless it reads a 0 value from the tag.

The complete algorithm followed by Process i and Process j is described below:

• Process i (Sending)

1. Create files “/tmp/data ij” and “/tmp/tag ij”

2. Generate the data segment and tag IPC keys, data ij and tag ij from the

integer i and the files “/tmp/data ij” and “/tmp/tag ij” respectively

3. Create or connect to the tag segment, setting the permission to allow both

reads and writes

4. Repeat until the value of the tag segment is 0

5. Create the data segment with sufficient size to hold the values being sent

to Process j

6. Write the data to the data shared memory segment

7. Detach from the data segment

8. Write the size of the data to the tag segment

• Process j (Receiving)

1. Create files “/tmp/data ij” and “/tmp/tag ij”

2. Generate the data segment and tag IPC keys, data ij and tag ij from the

integer i and the files “/tmp/data ij” and “/tmp/tag ij” respectively

3. Create or connect to the tag segment, setting the permission to allow both

reads and writes

4. Repeat until the value of the tag segment, t, is greater than 0

5. Write -1 to tag ij

6. Detach from the tag segment

7. Connect to the data segment using key data ij

8. Read t integers from the data segment

9. Detach from the data segment

10. Delete the data segment

11. Write 0 to the tag segment

133

We developed an Aldor domain named SharedMemorySegment to provide easy

access to shared memory segments from Aldor source code. This domain used Al-

dor’s interoperability with C in order to call the shared memory functions described

earlier in this section. The domain has methods for creating and connecting to a

shared memory segment, reading and writing values to and from the segment, and

detaching from and deleting a shared memory segment. While these methods do not

provide the full power of shared memory segments, they successfully hide many of the

cumbersome details while being sufficient to implement our communication protocol.

The InterProcessSharedMemoryPackage domain provides a further level of ab-

stract with the functions Send(i,j,data) and Receive(i,j). Send(i,j,data) performs all

of the operations described previously for Process i while Receive(i,j) performs all

of the operations described previously for Process j. Using this domain allows the

programmer to concentrate on solving computer algebra problems rather than the

details of shared memory segments and interprocess communication.

6.4 Serialization of High-Level Objects

On shared memory computer, it would be ideal if we could copy Aldor objects

directly between processes. Unfortunately, a direct copy cannot be performed because

Aldor objects are represented using pointers, and because each process executes in

its own address space. The memory usage within each address space will differ because

the specific problem being solved by each process differs. Consequently, a pointer that

is valid in one address space will not necessarily reference the correct piece of memory

when it is copied to another address space. Consequently, it is necessary to serialize

Aldor objects before they can be transferred to another process using shared memory

segments. This serialization process converts the high-level object into an array of

machine integers before it is placed in the shared memory segment. The destination

process uses the array of machine integers to reconstruct the high-level Aldor objects

and then performs additional computations using the objects.

We have developed a package named Serialization that serializes two poly-

nomial types in the Aldor BasicMath library. Presently, serialization is avail-

able for SparseMultivariatePolynomial, abbreviated SIMPLY, and Distributed-

MultivariatePolynomial, abbreviated DMPOLY. BasicMath includes other polyno-

mial representations such as DenseRecursiveMultivariatePolynomial and Spare-

AlternatedArrayMultivariatePolynomial. We plan to address the serialization of

these polynomial types in the future.

134

�0 y2 �0 y3

�

? ?

? ? ??

0 x2

4 -7 -8 4

Figure 6.2: Sparse Multivariate Polynomial (SMPOLY) Representation of g

- - -5 2 3 -8 2 0 -7 0 2 4 0 0

Figure 6.3: Distributed Multivariate Polynomial (DMPOLY) Representation of g

Both SMPOLY and DMPOLY are designed for the efficient representation and

manipulation of sparse multivariate polynomials. Solvers have been developed in

Aldor, such as triade [92] based on the algorithm presented in [108], which are

primarily designed for solving large systems with many variables [55]. In triade, a

polynomial system is solved by way of triangular decomposition. Triangular decom-

position requires a recursive vision of multivariate polynomials. Consequently, this

solver employs the SMPOLY polynomial domain constructor because the represen-

tation is sparse and recursive. Thus a SMPOLY is a univariate polynomial whose

coefficients are polynomials themselves. In broad terms, a SMPOLY is represented

by a tree. The interior nodes are non-constant polynomials while the leaves are coef-

ficients from the base ring. For example, the polynomial g = 5x2y3 − 8x2 − 7y2 + 4

with a variable order of x > y is viewed as (4−7y2)+(−8+5y3)x2. Figure 6.2 shows

the SMPOLY representation of g.

A DMPOLY is represented by a list of terms, where each term is an exponent

vector together with a coefficient. This data structure is flat. As such, it is more

efficient for accessing the monomials in a polynomial, making it a suitable represen-

tation for the polynomial arithmetic involved in Gröbner basis computations. Figure

6.3 illustrates the DMPOLY representation of g.

Our Serialization package provides a function, SerializeDMP() which converts

a DMPOLY into a primitive array of integers by traversing the values in the list of

terms. Two functions are provided for converting a SMPOLY into an array of integers.

One is called SerializeSMPbyKronecker() which turns a SMPOLY into a primitive

array of machine integers via a univariate polynomial using Kronecker substitution

[57]. A corresponding function is provided named UnserializeSMPbyKronecker().

It constructs a SMPOLY from a primitive array of machine integers. While we have

successfully used Kronecker substitution here in the context of spare multivariate

polynomials, one would expect this representation to be more suitable for representing

135

dense multivariate polynomials. As a result, our work on SerializeSMPbyKroneck-

er() represents preliminary work for a future investigation in the serialization of

DenseRecursiveMultivariatePolynomial.

Another function provided by the serialization package is SerializeSMPbyDMP().

It converts a SMPOLY into DMPOLY, and then into a primitive array of machine

integers. A corresponding function, named UnserializeSMPbyDMP(), constructs a

SMPOLY from a primitive array of machine integers. In addition, we provide func-

tions that convert a list of multivariate polynomials for some list of variables with the

ring characteristic into a primitive array of machine integers.

For our example polynomial g, shown previously, the SerializeSMPby-

Kronecker() function will return an array consisting of {5, 0, 0, 0,−7, 0, 0, 0,−8, 0, 4}.
Using SerializeSMPbyDMP() for g gives {5, 2, 3, 8, 2, 0, 7, 0, 2, 4, 0, 0}.

6.5 Dynamic Process Management

Since parallel applications in computer algebra are usually dynamic and irregular,

dynamic process management adds flexibility and eases dynamic task management.

Earlier research has suggested the importance of dynamic process management in

computer algebra [141]. In this section, we describe the dynamic process management

mechanism used in our parallel framework. In addition, we show that it is convenient

to use in user’s programs. Using dynamic process management reduces the complexity

of data communication and user-level scheduling for load balancing.

We created a new Aldor function, Spawn(command, argument), which allows

an Aldor program to create a new process. The command is the name (with path)

of a program to execute as a new process while argument is a list of arguments to

the command. We implemented our Spawn function using Aldor’s run() primitive.

Internally, run() uses the system() function provided as part of the standard C

library on most UNIX platforms. As a result, we are able to control how many new

processes we spawn, and the order in which the processes are created. Once the new

processes are created, their parallel execution is managed by the operating system’s

scheduler.

We define a task to be a program that can be executed independently that per-

forms some function or processes some data. In our framework, it is the the user’s

responsibility to pass an integer as part of the argument list which is the VPID of

the spawned process. This VPID is used to allow the process to communicate with

other spawned processes as was discussed previously in Section 6.3.

136

This is analogous to what a user must do when using MPI, where a procedure

being distributed to a processor is identified by the processor’s rank. Using its rank,

a procedure can communicate with other procedures executed by other processors.

By building on the run() primitive, our Spawn() function can be used within a

process (say running program A) to launch one or more additional processes that

will run other programs independently. What processor each of these processes will

execute on depends on the user-level scheduler and the operating system’s scheduler.

The key issue that a user needs to pay attention to is the organization of the unique

VPIDs within a parallel application. We provide a solution to a general computing

model described by a directed acyclic graph (DAG) for two common schemes: “task

farming” and “dynamic fully-strict task processing”.

The solution for the task farming scheme is simple. A manager process with

VPID 0 starts the main program and spawns worker processes. The manager also

sends the data to each worker process. When a worker completes its job, it sends its

result back to the manager and then it terminates. If the manager schedules tasks

so that the maximum number of worker processes can run in parallel is bounded by

ncpu, then the manager needs to maintain two integer variables: process counter and

VPID counter, abbreviated PC and V PIDC respectively. In addition, a list data

structure, listV PID, is needed to hold the VPIDs of the active worker processes.

PC is initialized to 0, and V PIDC is initialized to 1. Initially listV PID is empty.

When a task needs a worker process, the Manager will check if PC < ncpu. If the

result of the comparison is true then the manager will launch a new worker for the

task. The manager will pass the value of V PIDC as the VPID argument to this

worker and the manager will send the data needed as well. Then the Manager will

add V PIDC to listV PID and increment PC and V PIDC. The Manager will repeat

this procedure if there are additional tasks and PC < ncpu. Otherwise, the Manger

will traverse listV PID, checking if each worker is done. If a worker has completed,

the manager will collect the worker’s result, remove its VPID from listV PID and

decrement PC. These activities will be repeated until all of the tasks are solved. All

data communication between the manager and a worker is achieved by the techniques

described in Section 6.3.

The scheduling algorithm in this solution corresponds exactly to the greedy

scheduling method [68]. A greedy scheduler attempts to do as much work as pos-

sible at every step for a given number of processors, P . If there are at least P tasks

ready to run, it selects any P of them and runs them. When there are strictly less

than P tasks that are ready to run, the greedy scheduler runs them all. Given P pro-

137

1

11 12 13

111 112

Figure 6.4: Dynamic Fully-Strict Task Processing

cessors, a greedy scheduler executes any computation DAG in time: Tp ≤ T1/P +T∞,

where Tp is the minimum running time on P processors, T1 is the minimum running

time on 1 processor, and T∞ is the critical path length of a DAG. A greedy scheduler

is always within a factor of 2 of optimal. It is generally a good scheduler.

A variation based on this scheme is the task pool with dimension and rank guided

dynamic scheduling designed and implemented in Aldor for a parallel solver [111].

An implementation of the greedy scheduling method has also been realized in this

solver for performance evaluation.

Another scheme we provide a solution to is dynamic fully-strict task processing,

where tasks are generated dynamically and processed accordingly. In general, this

problem can be modeled by a DAG. Part of an example DAG is shown in Figure

6.4. This type of problem corresponds to a problem known as fully strict (i.e. well-

structured) multithreaded computations, originally published in [18]. A solution for the

organization of unique VPIDs for using multiprocessed parallelism by this framework

is illustrated in Figure 6.4.

In Figure 6.4, the dotted arrows denote data dependencies, while the solid arrows

show when new processes were spawned. The initial process has VPID 1, and starts

with the input data. Then the initial process spawns three new processes with VPIDs

of 11, 12 and 13 respectively. The following rule is used to generate and assign VPIDs

to any new processes it spawns. Let the process’ VPID be k. Let the number of new

processes it will spawn be n. For 1 ≤ i ≤ n, the ith new process is given a VPID

of ki, which is obtained by appending i to k. For instance, the first new process is

given a VPID of k1, the second new process is given a VPID of k2, etc. Constructing

the VPID as ki guarantees uniqueness within this application because the prefix, k,

was unique in its parent’s list of spawned processes and i is unique for each process

spawned from this process. We note that this solution is akin to the scheme for

handling the rank of spawned processes in MPICH2 [4].

138

The performance of dynamic process management in this parallel framework for

coarse grained parallel computations is reported in Section 6.6.

6.6 Experimentation

This parallel framework has been used successfully to implement a parallel symbolic

triangular decomposition solver [111]. It utilizes both the dynamic task management

and data communication techniques we have described previously to communicate

lists of multivariate polynomials to workers which execute in parallel. We describe

the performance gains that we have achieved using our framework. In addition, we

provide a detailed analysis of the overhead costs introduced such as the cost of process

spawning and data communication/serialization for both the Kronecker substitution

and DMPOLY serialization techniques. Results are presented for several well known

examples, allowing the performance and overhead of our parallel framework to be

compared with techniques developed by other authors.

Our experimental results were gathered on Silky, one of several multiprocessor

clusters and SMP systems that make up Canada’s Shared Hierarchical Academic

Research Computing Network (SHARCNET). Silky is classified by SHARCNET as

a mid-range symmetric multiprocessing (SMP) cluster. It is a SGI Altix 3700 Bx2,

equipped with 128 Itanium2 processors clocked at 1.6GHz. The cluster has 256GB of

main memory with a 6MB cache and runs SUSE Linux Enterprise Server 10 (ia64).

Unfortunately Silky is a shared machine accessed by a large number of researchers in

areas from computer algebra to computational physics. It is common for the active

processes to occupy over 95 percent of the main memory and all 128 processors. As

a result, we were unable to acquire sufficient resources on the machine to run large

memory examples such as Virasoro.

The parallel solver was developed based on a triangular decomposition algorithm

called Triade [108]. It makes use of the Aldor BasicMath library for polynomial

arithmetic over an arbitrary ring. We compare the performance of our framework with

the sequential triade solver in Aldor which uses the same underlying algorithm.

Thus, the performance results we present here represent how well we are able to use

the parallel resources available to us rather than the difference between two distinct

algorithms.

The Triade algorithm uses “incremental solving”, organizing the computation into

a dynamic task tree. A task is any pair [F, T] where F is a finite system of equations

to solve and T is a solved system. Splitting of a task is based on the D5 Principle

139

[43] and case distinction of the form f = 0 or f 6= 0. The parallelization of this

algorithm exploits the parallel opportunities created by the task splitting based on

the D5 Principle combined with modular techniques [39].

Parallelizing the problem in this manner provides a coarse grained division of

the work into separate processes. The parallelization is highly dynamic, with the

final shape of the task tree being determined only when a solution to the system is

achieved. The parallelization is also highly irregular, varying greatly with respect to

both the input system of equations and the size of the task represented by each node

in the tree. The implementation for this algorithm uses a “task farming” scheme

and a cost-guided scheduling algorithm. A manager process preprocesses the input

system and distributes intermediate tasks to the worker processes. If only one task

needs to be solved then the manager completes the task itself. The manager also

processes trivial tasks on its own.

When there is a task to perform, and an available processor, the manager spawns

a new worker process. The manager then forwards the data for the task to that

worker. The worker will process the task and send the intermediate results back to

the manager unless the task is solved. Once the intermediate results or solution are

determined the worker process terminates. In our example, each task consists of a

list of Aldor SMPOLY polynomials.

Table 6.1 lists the number of variables, n, and the total degree, d for each of

the examples. It also lists the prime number for modular computation and the time

required to reach a solution using the sequential solver Triade. Table 6.2 records the

time required to reach a solution in our parallel framework for the two serialization

techniques discussed previously. The number of CPUs used and the speedup relative

to the sequential algorithm are also reported in this table.

In Table 6.3 and Table 6.4 we report additional details about the behavior of the

Kronecker and DMPOLY serialization methods respectively. These details include

the number of workers, number of tags, number of integers read and written and the

percentage of zeros in the integers transferred. In every case, values for reads and

writes are reported from the perspective of the worker tasks. Note that each worker

process is created dynamically to process a specific task. The worker terminates when

it completes its task. Consequently, the total number of workers used is equal to the

total number of tasks being executed in parallel.

Table 6.5 and Table 6.6 show the time spent spawning workers, synchronizing their

execution and communicating data to and from them. The reading time includes

both the time required to read the array of machine integers from shared memory

140

Sys Name n d p Sequential
(s)

1 eco6 6 3 105761 4.00
2 eco7 7 3 387799 727.95
3 CNogues2 4 6 155317 476.16
4 CNogues 4 8 513899 2162.40
5 Nooburg4 4 3 7703 4.14
6 UBikker 4 3 7841 866.20
7 Cohn2 4 6 188261 305.24

Table 6.1: Polynomial Examples and Sequential Timing

Sys CPUs Kron. DMP Kron. DMP
(s) (s) Speedup Speedup

1 5 1.94 1.91 2.1 2.1
2 9 119.44 117.41 6.1 6.2
3 9 207.29 215.28 2.3 2.2
4 9 905.25 1002.56 2.4 2.2
5 9 1.79 1.81 2.3 2.3
6 9 455.21 463.24 1.9 1.8
7 9 96.70 102.55 3.2 3.0

Table 6.2: Parallel Timing on two Serializing Methods

Sys Workers Tags Read Write Total Zeros

(#) (#) (#int∗) (#int) (#int) (%)

1 9 9 4131 3586 7717 59
2 24 24 29307 27382 56689 72
3 32 32 57106 55696 112802 73
4 42 42 216000 214217 430217 83
5 14 14 13307 0 13307 72
6 49 49 128983 125162 254145 55
7 44 44 39146 38280 77426 39

Table 6.3: Dissection of Workers’ Overhead for Kronecker (* One int has 8 bytes)

Sys Workers Tags Read Write Total Zeros
(#) (#) (#int) (#int) (#int) (%)

1 9 9 5069 4449 9518 55
2 24 24 36893 35184 72077 57
3 32 32 64106 64106 127304 39
4 42 42 168178 167186 335364 39
5 14 14 12681 0 12681 44
6 49 49 271845 267761 539606 42
7 44 44 104486 103534 208020 40

Table 6.4: Dissection of Workers’ Overhead for DMPOLY

141

Sys Spawns Tags Read and Serialize Net Over-
(ms) (µs) Unserialize and Write Work head

(ms) (ms) (s) (%)

1 358 1067 492 76 3.80 24.4
2 579 3414 1264 184 660.54 0.3
3 773 4887 9682 623 469.48 2.4
4 1695 7221 68737 491 2164.62 3.3
5 452 1940 488 0 3.57 26.4
6 1558 7773 21762 823 871.04 2.8
7 925 6014 2378 369 289.15 1.3

Table 6.5: Dissection of Workers’ Time for Kronecker (Wall Time)

Sys Spawns Tags Read and Serialize Net Over-
(ms) (µs) Unserialize and Write Work head

(ms) (ms) (s) (%)

1 314 1211 347 79 3.71 20.0
2 685 3498 1345 623 611.16 0.4
3 1435 4676 1813 683 474.16 0.8
4 1723 7524 80490 2360 2134.71 3.8
5 552 2224 764 0 3.65 36.2
6 1994 7847 52157 5242 886.59 6.7
7 1110 6673 5881 2063 282.16 3.2

Table 6.6: Dissection of Workers’ Time for DMPOLY (Wall Time)

and the time required to reconstruct the high-level Aldor object. Similarly, the

writing time includes both the time spent serializing the high level objects and the

time spent to copy the serialized data into a shared memory segment. In addition, we

report the total net amount of work performed, which is the time spent by workers

excluding the time spent spawning processes and performing synchronization and

data communication. The percentage overhead is the ratio of the sum of the time

spent on overhead divided by the net amount of work performed. Table 6.7 and

Table 6.8 go on to show the average cost per worker spawned, per synchronization

tag used, per integer read and unserialized and per integer serialized and written for

the Kronecker and DMPOLY serialization methods respectively.

Examining the total parallel execution time reveals that there is little variation

between the Kronecker and DMPOLY serialization techniques. Similar performance

was observed because the examples presented here transfer data that is not very

sparse, as is indicated in the percent zeros column.

Most of the examples considered in this study show a low amount of parallel

overhead. Exceptions to this general pattern are Sys 1 and Sys 5 which are both

142

Sys Per Per Read and Serialize
Spawn Tag Unserialize and Write

(ms) (µs) (µs per int) (µs per int)

1 40 118 119 21
2 24 142 43 6
3 24 152 169 11
4 40 172 318 2
5 32 138 36 -
6 32 158 168 6
7 21 136 60 9

AVG 30 145 130 9

Table 6.7: Analysis of Workers’ Overhead for Kronecker

Sys Per Per Read and Serialize
Spawn Tag Unserialize and Write

(ms) (µs) (µs per int) (µs per int)

1 35 134 68 17
2 29 146 36 18
3 45 146 180 21
4 41 179 478 14
5 39 158 59 -
6 41 160 192 19
7 26 151 56 20

AVG 37 153 152 18

Table 6.8: Analysis of Workers’ Overhead for DMPOLY

smaller examples. Even though the level of overhead is low, our results show that this

parallel framework is only suitable for coarse grained parallel symbolic computations.

The granularity of this parallelization framework is very coarse, as shown by the

total number of workers (tasks) that are executed in parallel and the total number

of workers used in total. The average cost of spawning a process is approximately 35

milliseconds. Reading one integer and unserializing it to reconstruct the high-level

Aldor object normally takes between 36 and 192 microseconds on average. The

cost in Sys 4 is outside of this range, likely due to the relative high degree of the

polynomials in the data being transferred. We plan to investigate this phenomenon

further in the future.

We also observed that serializing and writing costs are much lower than the reading

and unserialization costs. This difference occurs because constructing a new high-level

object is expensive, involving numerous memory allocations to represent the object’s

complex structure. In contrast, serializing the object does not require any memory

allocation or deallocation operations. The time complexity of serialization via either

143

Kronecker substitution or DMPOLY is linear. Interestingly, the cost associated with

our synchronization tags was small in comparison to the other sources of overhead in

our parallel framework.

We also observed that the per integer serialization cost for a SMPOLY via DM-

POLY almost doubles compared to using Kronecker substitution. This doubling

reveals a drawback in our implementation, which requires that the SMPOLY must

be converted to a DMPOLY twice, once to determine the size of the shared memory

segment, and then a second time to write the serialized data into the shared memory

segment. We expect that it will be easy to remove this inefficiency by improving our

implementation.

Finally, we wish to point out that the dynamic nature of our task management

technique is particularly advantageous in a shared computing environment such as

SHARCNET. While there is overhead associated with spawning and terminating pro-

cesses, our technique ensures that a process only exists when it has useful work to

perform. There will not be any processes left idling, waiting for something to do.

This helps ensure that shared computing resources are used effectively. Furthermore,

removing idle processes ensures that we do not spend unnecessary time communicat-

ing with or synchronizing such processes. Because of this, we have found, both in

theory and in practice, that our communication costs do not increase with number of

CPUs utilized.

6.7 Summary

We have reported on a high-level categorical parallel framework to support high per-

formance computer algebra on SMPs and multicores. We have used the Aldor

programming language as our implementation vehicle since it has high-level categori-

cal support for generic algorithms in computer algebra, while providing the necessary

low-level access for high performance computing.

Our framework provides functions for dynamic process management and synchro-

nized data communication for high-level Aldor objects such as sparse multivariate

polynomials via the shared memory segments. This framework is complementary to
∏IT [103] which targeted distributed architectures.

Throughout the design and implementation of the framework, we have kept the

solution of multivariate polynomial systems as a motivating example. Indeed, this

framework has been used for the successful implementation of a sophisticated parallel

symbolic solver. Our evaluation of the parallel overhead has shown that this parallel

144

framework is efficient for coarse-grained parallel symbolic computations. More exper-

imentation on the granularity of parallelism supported by this framework is work in

progress.

We plan to develop a model for threads in Aldor to support finer grained paral-

lelization, as has been done for SACLIB [84, 121] and KAAPI [74, 59], and support

automatic scheduling based on “work stealing” [18, 56]. In this setting, Aldor’s

system of parametric types provides opportunities for elegant problem formulation.

As a practical matter, it will be necessary to review the Aldor run-time system to

take advantage of threads and modify it in a few places for thread safety. In partic-

ular, one current investigation is modification to use “localized tracing” [33], in the

garbage collector to allow it to make use of multiple threads.

145

Chapter 7

Overview of the RegularChains

Library in Maple

The RegularChains library provides facilities for symbolic computations with systems

of polynomial equations. In particular, it allows to compute modulo a set of algebraic

relations. It also allows automatic case discussion (and recombination) handling

zero-divisors and parameters, which permits triangular decomposition of polynomial

equations.

The RegularChains library in Maple was developed based on an algorithm for

triangular decompositions, called Triade [108]. The Triade algorithm has been realized,

during the last eight years, in three computer algebra systems: AXIOM, Aldor, and

Maple, targeting different communities of users. In this chaper, we also summarize

the challenges in implementing triangular decompositions, and presents a comparison

between three implementations, and highlights their advantages and weaknesses in

terms of efficiency, ease of use and targeted audience.

7.1 Organization of the RegularChains Library in

Maple

The RegularChains library is a collection of commands for solving systems of alge-

braic equations symbolically and studying their solutions. The field K of coefficients

can be Q, a prime field, or a field of multivariate rational functions over Q or a prime

field. In addition, a remarkable feature of the RegularChains library is that it also

provides functions for computing modulo regular chains, based on the algorithms of

[108, 109].

146

The most frequently used functions are accessible at the top level module in the

library. Two submodules, ChainTools and MatrixTools, contain additional com-

mands to manipulate regular chains and triangular decompositions.

7.1.1 The Top Level Module

In the top level module of RegularChains, the main function is Triangularize.

For a set F of polynomials, the command Triangularize computes the common

roots of F in an algebraic closure L of K in a form of a triangular decomposition

(If K is Q, then L is the field of the complex numbers.). By default, the sense of

Kalkbrener is used. An option for solving in the sense of Lazard is also available. The

operation PolynomialRing allows the user to define the polynomial ring R in which

the computations take place, together with the order of the variables.

One very useful function is RegularGcd, which computes gcds of two polynomials

p1 and p2 with common main variable v modulo a regular chain rc. It returns a

list of pairs [gi, rci] where gi is a polynomial and rci is a regular chain. For each

pair, the polynomial gi is a gcd of p1 and p2 modulo the saturated ideal of rci.

Moreover, the leading coefficient of the polynomial gi w.r.t. v is regular modulo the

saturated ideal of rci. Finally, the returned regular chains rci form a triangular

decomposition of rc (in the sense of Kalkbrener). See the example in Section 7.2.

Other useful functions are NormalForm (which applies only to strongly normalized

regular chains) and SparsePseudoRemainder (which can be used with any regular

chains) for “reducing” a polynomial modulo a regular chain.

7.1.2 The ChainTools Submodule

The ChainTools submodule is a collection of commands to manipulate regular

chains. These commands split into different categories. The commands Empty,

ListConstruct, Construct, Chain create regular chains from lists of polynomials

and other regular chains. Other commands allow to inspect the properties of a regu-

lar chain, such as IsZeroDimensional and IsStronglyNormalized.

The commands DahanSchostTransform and Lift perform transformation

on a regular chain, whereas the commands EquiprojectableDecomposition,

SeparateSolutions, Squarefree perform transformation on a triangular decompo-

sition.

The commands IsInSaturate and IsInRadical compare one polynomial p and

one regular chain T . The first one decides whether p belongs to the saturated ideal

147

I of T . This is done without computing a system of generators of I, just by pseudo-

division. In fact, the RegularChains module never computes explicitly a system of

generators for a saturated ideal. The second command decides whether p belongs to

the radical of I; this is achieved simply by gcd computations.

The commands EqualSaturatedIdeals and IsIncluded compare two regular

chains T1 and T2. More precisely, the first one can decide whether the saturated

ideals of T1 and T2 are equal or not. If the second command returns true, then the

saturated ideal of T1 is contained in that of T2. However, if it returns false, nothing

can be concluded.

7.1.3 The MatrixTools Submodule

The MatrixTools submodule is a collection of commands to manipulate matrices

of polynomials modulo regular chains, including IsZeroMatrix, JacobianMatrix,

LowerEchelonForm, MatrixInverse, MatrixMultiply, MatrixOverChain, and

MatrixCombine.

The main purpose of the commands of the MatrixTools submodule is to com-

pute the inverse of the Jacobian matrix of a polynomial system modulo (the saturated

ideal of) a regular chain. This question arises for instance in Hensel lifting techniques

for triangular sets [119]. The commands of the MatrixTools submodule are quite

standard, such as multiplication of matrices, computation of inverse or lower echelon

of a matrix. The lower echelon form of a matrix is computed following the standard

fraction-free Gaussian elimination [61]. However, these commands are considered here

in a non-standard context. Indeed, the coefficients of these matrices are polynomials

and the computations are performed modulo (the saturated ideal of) a regular chain.

In case of a zero-divisor, following the D5 principle [43], the computations split into

branches, where in each branch the zero-divisor becomes either zero or a regular

element. The MatrixCombine command is an application of the equiprojectable de-

composition. It generates a canonical output for automatic case discussion. See the

examples and algorithms about these functions in Chapter 4 Section 4.5.

7.2 The RegularChains Keynote Features

We present here an overview of the RegularChains library by means of a series of

examples. The first few ones are for non-experts in symbolic computation whereas

the next ones require some familiarity with this area.

148

7.2.1 Solving Polynomial Systems Symbolically

In this first example, we show how the RegularChains library can solve systems of

algebraic equations symbolically. After loading the library in our Maple session, we

define the ring of the polynomials of the system to be solved. Indeed, most operations

of the RegularChains library requires such polynomial ring as argument. This is

where one specifies the variable ordering. In our example we choose x > y > z. Other

arguments passed to the PolynomialRing command could be a set of parameters or

the characteristic of the ground field. By default, there are no parameters and the

characteristic is zero. Hence, in our example below, the polynomial ring is Q[x, y, z],

that is the ring of polynomials in x, y, z with rational number coefficients.

> R:=PolynomialRing([x,y,z]);

R := polynomial ring

Then we define a set of polynomials of R by

> sys := {x^2 + y + z - 1, x + y^2 + z - 1, x + y + z^2 - 1};
sys := {x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1}

Ideally, one would like to decompose the solutions of sys into a list of points. This

is what Triangularize does using symbolic expressions. However, some points are

grouped because they share some properties. These groups are precisely regular

chains.

> dec := Triangularize(sys, R);

dec := [regular chain, regular chain, regular chain, regular chain]

Because regular chains may involve large expressions, by default the output is not

displayed. However, one may ask to view them! The command Equations displays

the list of polynomials of a regular chain.

> map(Equations, dec, R);

[[x− 1, y, z], [x, y − 1, z], [x, y, z − 1], [x− z, y − z, z2 + 2 z − 1]]

The first three regular chains are very simple: each of them clearly corresponds

to a point in the space. Let us have a closer look at the last one. The polynomial in

z has two solutions. Each of them corresponds to a point in the space.

149

Since the above system has finitely many solutions, its equiprojectable decomposition

(the canonical form of output) is obtained by the following call.

> decepd := EquiprojectableDecomposition(dec, R); map(Equations,

decepd, R);

decepd := {regular chain}
{[x + y − 1,−y + y2, z], [2 x + z2 − 1, 2 y + z2 − 1, z3 + z2 − 3 z + 1]}

Triangularize can also handle inequations. Below we impose the condition x−z 6= 0.

Then, two points from the original decomposition are removed.

> decn := Triangularize(sys,[x-z],R); map(Equations, decn, R);

decn := [regular chain, regular chain]

[[x− 1, y, z], [x, y, z − 1]]

The option ’probability’=’prob’ of Triangularize is used to compute an equipro-

jectable decomposition of the input system using the probabilistic modular algo-

rithm in [39]. This algorithm applies only to square systems in characteristic zero.

For square input systems generating radical zero-dimensional ideals, this modular

and probabilistic algorithm is asymptotically faster than the general (and generic)

algorithm implemented by RegularChains:-Triangularize. The following is an

example.

> sys1 := [x*y^4+y*z^4-2*x^2*y-3, y^4+x*y^2*z+x^2-2*x*y+y^2+z^2,

-x^3*y^2+x*y*z^3+y^4+x*y^2*z-2*x*y];

> decepd := Triangularize(sys1, R, probability = 0.9);

decepd := [regular chain]

Below shows an example for solving over a polynomial ring with a prime character-

istic of 3. The ring is created by the value 3 to the optional parameter for prime

characteristic of PolynomialRing. Triangular decomposition will be performed

over this ring.

> R := PolynomialRing([x ,y ,z], 3);

R := polynomial ring

> decp := Triangularize(sys, R); map(Equations, decp, R);

decp := [regular chain, regular chain, regular chain, regular chain]

[[x + 2, y, z], [x, y + 2, z], [x, y, z + 2], [x + 2 z, y + 2 z, z2 + 2 z + 2]]

150

7.2.2 Solving Polynomial Systems with Parameters

The RegularChains library can solve systems of equations with parameters. To

illustrate this feature, let us consider a “generic” linear system with 2 unknowns and

2 equations. First we declare x,y,a,b,c,d,g,h all as variables.

> R:=PolynomialRing([x,y,a,b,c,d,g,h]): sys:={a*x+b*y-g,
c*x+d*y-h};

sys := {ax + by − g, cx + dy − h}

In this setting, with more unknowns than equations, our system has an infinite number

of solutions. There are two ways of solving such systems. First, one can describe its

“generic solutions”, which is done by computing a triangular decomposition in the

sense of Kalkbrener. This is the default behavior of the Triangularize command.

Observe that the cases where the determinant −c b + a d vanishes are not explicitly

described.

> dec := Triangularize(sys, R); map(Equations, dec, R);

dec := [regular chain]

[[cx + dy − h, (−cb + ad) y + cg − ah]]

Now let us compute all the solutions (generic or not), that is to compute a triangular

decomposition in the sense of Lazard. To do so, we use the option output=lazard of

the Triangularize command.

> dec := Triangularize(sys, R, output=lazard);

dec := [regular chain, regular chain, regular chain, regular chain, regular chain,

regular chain, regular chain, regular chain, regular chain, regular chain]

When a regular chain encodes an infinite number of solutions, these solutions are the

values canceling any of the polynomials returned by the Equations command and

none of the polynomials returned by the Inequations command. In the command

below, for each regular chain of dec, we display on the same line its list of equations eq

and its list of inequations ineq. For instance, the solutions given by the first regular

chain in dec satisfy simultaneously cx + dy − h = 0, (−cb + ad)y + cg − ah = 0,

−cb + ad 6= 0 and c 6= 0.

> [seq([eq=Equations(dec[i],R), ineq=Inequations(dec[i],R)],

i=1..nops(dec))];

151

eq = {cx + dy − h, (−cb + ad)y + cg − ah} ineq = {−cb + ad, c}
eq = {ax + by − g, dy − h, c}, ineq = {a, d}
eq = {cx + dy − h,−cb + ad,−dg + hb}, ineq = {h, c, d}
eq = {cx− h,−cg + ah, b, d}, ineq = {h, c}
eq = {dy − h, a,−dg + hb, c}, ineq = {h, d}
eq = {cx + dy,−cb + ad, g, h}, ineq = {c, d}
eq = {by − g, a, c, d, h}, ineq = {b}
eq = {x, b, d, g, h}, ineq = {}
eq = {y, a, c, g, h}, ineq = {}
eq = {a, b, c, d, g, h}, ineq = {}

Now, we change our polynomial ring in order to specify that g and h are parameters.

This means that we consider now the ring of polynomials in variables x,y,a,b,c,d

with coefficients in the field of rational functions Q(g, h). When solving our input

system in the sense of Lazard with this new polynomial ring, the last five cases above

are discarded since g = 0 or h = 0 cannot hold anymore.

> R2 := PolynomialRing([x,y,a,b,c,d],{g,h}):
> dec := Triangularize(sys, R2, output=lazard):
> [seq([eq=Equations(dec[i],R2), ineq=Inequations(dec[i],R2)],

i=1..nops(dec))];

eq = {cx + dy − h, (−cb + ad)y + cg − ah} ineq = {−cb + ad, c}
eq = {ax + by − g, dy − h, c}, ineq = {a, d}
eq = {cx + dy − h,−cb + ad,−dg + hb}, ineq = {c, d}
eq = {cx− h,−cg + ah, b, d}, ineq = {c}
eq = {dy − h, a,−dg + hb, c}, ineq = {d}

To summarize:

• one can specify (in advance) a set of variables to be viewed as parameters (this

was done with the latter call to Triangularize obtaining 5 cases)

• or one can discover the largest set of variables which can be viewed as parameters

(this was done with the first call to Triangularize, leading to the generic

points, in the sense of Kalkbrener)

• or one can view all variables as unknowns (as in the second call to

Triangularize, returning 10 cases).

152

7.2.3 Computation over Non-integral Domains

The RegularChains library provides linear algebra and polynomial computations

over towers of simple extensions. These algebraic structures, which appear naturally

when solving polynomial systems, may possess zero-divisors. Below, we construct a

regular chain rc with two simple algebraic extensions. The first one is the extension

of the field of rational numbers by
√

2. The second one is not a field extension but

introduces zero-divisors. Indeed, its defining polynomial y2 − y + x− 2 factorizes as

(y − x)(y + x− 1) modulo the defining polynomial x2 − 2 of the first extension.

> R := PolynomialRing([z,y,x]);

R := polynomial ring

> rc := Chain([x^2-2, y^2 -y + x -2], Empty(R), R);

rc := regular chain

> Equations(rc,R);

[y2 − y + x− 2, x2 − 2]

Let us compute the gcd of polynomials p1 and p2 below w.r.t. rc. The example is

made such that splitting is needed.

> p1 := (y-x)*z+(y+x-1)*(z+1);

p1 := (y − x) z + (y + x− 1) (z + 1)

> p2 := (y-x)*1+(y+x-1)*(z+1);

p2 := y − x + (y + x− 1) (z + 1)

> g:= RegularGcd(p1,p2,z,rc,R,normalized=yes);

g := [[2 y + zy + zx− z − 1, regular chain], [3 y2 − 2 yx− 2 y − x2 + 2 x, regular chain]]

> rc1 := g[1][2]: Equations(rc1, R);

[y − x, x2 − 2]

> rc2 := g[2][2]: Equations(rc2, R);

[y + x− 1, x2 − 2]

We obtain two cases. This case discussion comes from the following fact. Modulo the

regular chain rc1, the gcd of p1 and p2 has degree 1 w.r.t. z, whereas it has degree

0 modulo rc2. In general, the output of a gcd computation w.r.t. a regular chain is

a list of ”cases”. Indeed, such gcd is computed by applying the D5 principle.

153

7.2.4 Controlling the Properties and the Size of the Output

Solving systems of equations by means of regular chains can help in reducing the size

of the coefficients in the output. Even when no splitting arises! In the example below,

due to Barry Trager, we compare the size of the output of Triangularize with the

lexicographical Gröbner basis for the same variable ordering. Here, we do not print

the Gröbner basis nor the regular chain, only the size (as number of characters in the

output) of which is printed.

> R := PolynomialRing([x,y,z]);

R := polynomial ring

> sys := [-x^5 + y^5 -3*y -1, 5*y^4 -3, -20*x + y -z];

sys := [−x5 + y5 − 3 y − 1, 5 y4 − 3,−20 x + y − z]

> dec := Triangularize(sys, R);

dec := [regular chain]

> length(convert(map(Equations,dec,R),string));

654

> gb := Groebner:-gbasis(sys,plex(x,y,z)):

> length(convert(gb,string));

8672

On the contrary to the polynomial set gb, the regular chain dec[1] is not a reduced

Gröbner basis of the input system. However, the set gb is a regular chain and can be

obtained such as by using the option normalized=yes of Triangularize. In addition,

it is possible to obtain from this normalized regular chain (also called “triangular set”

in [42, 38, 87]) a more compact regular chain using the transformation of Dahan and

Schost [42], as shown below. Again, we only show the sizes.

> dec := Triangularize(sys, R, normalized=yes);

dec := [regular chain]

> length(convert(map(Equations,dec,R),string));

8674

> dec2 := map(DahanSchostTransform, dec, R);

dec2 := [regular chain]

> length(map(Equations,dec2,R),string);

1692

154

7.3 Challenges in Implementing Triangular De-

compositions

This section presents the main difficulties arising during the conception and the imple-

mentation of a polynomial system solver based on triangular decompositions. Among

those are:

- the sophisticated notions and rich properties attached to triangular decomposi-

tions,

- the prototyping of the algorithms, and their sub-routines for computing trian-

gular decompositions

- the validation and user-interface of such a solver.

Depending on the implementation environment, these difficulties must be treated

differently, depending on:

- the strengths and weaknesses of this environment,

- the level of expertise and expectation of its community of users.

In general, triangular decompositions can reveal geometrical information of the

solution sets better than other symbolic descriptions of polynomial systems such as

Gröbner bases. However, the specifications and algorithms for computing triangular

decompositions are quite sophisticated, which impose great challenges on their im-

plementation in mathematical software environments, their accessibility and ease of

use for users with various interests.

For an input system of polynomials F with rational coefficients, both a Gröbner

basis and a triangular decomposition of F give the full set of the complex solutions

of F . Consider the polynomial system F1 with the variables x > y > z:





x3 − 3x2 + 2x = 0

2yx2 − x2 − 3yx + x = 0

zx2 − zx = 0

155

It has lexicographical Gröbner basis:






x2 − xy − x

−xy + xy2

zxy

and triangular decomposition:

{
x = 0

⋃
{

x = 1

y = 0

⋃




x = 2

y = 1

z = 0

It is clearly shown that it consists of one point (x = 2, y = 1, z = 0), one line

(x = 1, y = 0), and one plane (x = 0).

This example reveals the first challenge in implementing triangular decomposi-

tions, that is, the representation of triangular decompositions. It is a list of lists

of polynomials with special properties, instead of just a list of polynomials as for

Gröbner basis.

In addition, for the same input polynomial system, there are different possible

output triangular decompositions. However, there is a canonical form of output (if

the system has finitely many solutions), called the equiprojectable decomposition [39],

which can be computed from another triangular decomposition, if needed. In practice

these different outputs are of varied benefits, but this makes it harder to specify the

results.

Let us illustrate by an example. For the following input polynomial system F2,

F2 :





x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

One possible triangular decomposition of the solution set of F2 is:




z = 0

y = 1

x = 0

⋃




z = 0

y = 0

x = 1

⋃




z = 1

y = 0

x = 0

⋃




z2 + 2z − 1 = 0

y = z

x = z

Another one is:




z = 0

y2 − y = 0

x + y = 1

⋃




z3 + z2 − 3z = −1

2y + z2 = 1

2x + z2 = 1

156

Both results are valid. The second one is the equiprojectable decomposition.

As a matter of fact, the second one can be computed from the first one by the

RegularChains:-EquiprojectableDecomposition function based on the techniques

explained in [39]. However, there is no canonical form of output yet when there is

an infinite number of solutions. Besides, different solvers may produce different valid

forms.

Although triangular decompositions display rich geometrical information, the so-

lutions can be hard to read, especially when there is an infinite number of solutions;

This problem has not been properly solved yet. See below for an example, which also

illustrates the differences between two kinds of triangular decompositions: one is in

the sense of Kalkbrener, and another one is in the sense of Lazard.

Given a polynomial system F1 having two polynomials with a variable order of

x > y > a > b > c > d > e > f :

{
ax + cy − e = 0

bx + dy − f = 0

The triangular decomposition of F1 in the sense of Kalkbrener consists of one

regular chain, which is

{
bx + dy − f

(da− cb) y − fa + eb

The triangular decomposition of F1 in the sense of Lazard consists of eleven regular

chains, which are

{
bx + dy − f

(da− cb) y − fa + eb
,






ax + cy − e

dy − f

b

,






bx + dy − f

da− cb

fc− ed

,






dy − f

a

b

fc− ed

,






bx− f

fa− eb

c

d

,





ax + cy − e

b

d

f

,





bx + dy

da− cb

e

f

,





cy − e

a

b

d

f

,





y

a

b

e

f

,





x

c

d

e

f

,





a

b

c

d

e

f

.

157

Due to the above reasons, code validation and output verification for such complex

symbolic solvers is extremely difficult. Moreover, the software packages are very large.

For example, the RegularChains Library in Maple consists of 50, 000 lines of code.

The command for solving involves almost all the functions in the library and invokes

the sophisticated operations on matrices and polynomials, etc.

In 1987, Wen-Tsün Wu [146] introduced the first algorithm computing triangular

decompositions of systems of algebraic equations, by means of the so-called “char-

acteristic sets”. Kalkbrener [76] provided an algorithm where he considered partic-

ular characteristic sets, namely regular chains, leading to theoretical and practical

improvements. See also the work of Wang [140], and the work of Lazard and his

students [8].

Our study employs the algorithm called Triade. This algorithm relies more inten-

sively on geometrical considerations than the previous ones for computing triangular

decompositions, leading to an efficient management of the intermediate computa-

tions and control of expression swell. Lazy evaluation techniques and a task manager

paradigm are also essential tools in this algorithm.

The implementation challenges on Triade are summarized as follows. The first

challenge is the prototyping. Indeed, most operations rely on automatic case discus-

sion and the computation may split into sub-cases; see Section 7.4.1 for this point.

Secondly, it has to be decided which functionalities will be provided to the end users,

and this will affect the ease of use of the package. This choice depends on the com-

puter algebra system and the different communities of users. Thirdly, code validation

is particularly difficult, because checking the computations in the case of triangular

decomposition is much harder than that for Gröbner bases computations. Therefore,

we need more advanced techniques, such as validating packages, comparison with

other softwares, and large test suites. We dedicate Chapter 9 to our solution for the

verificaition of polynomial system solvers. Finally, performance and optimization of

the implementations have special features. Again, they rely largely on the underly-

ing computer algebra system and the requirements of different groups of users. For

instance, the data representation used for polynomials and regular chains affects the

efficiency.

158

7.4 Comparison between Three Implementations

This section presents a comparison between three implementations of Triade in three

computer algebra systems: AXIOM, Aldor, and Maple, with focus on their ad-

vantages and weaknesses in terms of efficiency, ease of use and targeted audience.

AXIOM has been designed to express the extremely rich and complex variety

of structures and algorithms in computer algebra; the AXIOM implementation by

Moreno Maza (65,000 lines of code) of the Triade algorithm matches its theoretical

specifications; it is meant for researchers in the area of symbolic computation, and is

available in open source.

Aldor is an extension of the AXIOM system with a focus on interoperability

with other languages and high-performance computing. In Aldor, the Triade imple-

mentation (110,000 lines of code) is available in the form of specialized servers which

can solve polynomial systems with frequently used rings of coefficients; these servers

have been successfully used by researchers in theoretical physics and algebraic prob-

lems. Today, a parallel implementation of Triade in Aldor is under development on

multiple processor machines with shared memory.

Maple is a general purpose computer algebra system with users from broad

areas (students, engineers, researchers, etc.). The Maple implementation of the

Triade algorithm (50,000 lines of code) is available since the release 10 of Maple

as the RegularChains library. Non-expert users can access easily a first group of

easy-to-use functionalities for computing triangular decompositions and studying the

properties of the solutions of polynomial systems. Expert users can take advantage of

many options of these functionalities. In addition, sub-modules of the RegularChains

provide advanced features such as automatic case discussion in parametric problems,

and linear algebra over non-integral domains.

7.4.1 The AXIOM Implementation

The AXIOM designers attempted to overcome the challenges of providing an en-

vironment for implementing the extremely rich relationships among mathematical

structures [72]. Hence, their design is of somewhat different direction from that of

other computer algebra systems.

The AXIOM computer algebra system possesses an interactive mode for user

interactions and the SPAD language for building library modules. This language

has a two-level object model of categories and domains, which is similar to interfaces

and classes in Java. They provide a type system that allows the programmer the

159

flexibility to extend or build on existing types, or create new categories and domains,

as is usually required in algebra.

The SPAD language has also a functional programming flavor: types and func-

tions can be constructed and manipulated within programs dynamically like the way

values are manipulated. This makes it easy to create generic programs in which in-

dependently developed components are combined in many useful ways. For instance,

one can write a SPAD function q which takes as arguments a commutative ring R

and an element p ∈ R such that q(R, p) implements the quotient ring R/pR.

These features allowed us to implement the Triade algorithm in its full generality,

that is without any restrictions w.r.t. the theory presented in [108]. In particular,

our code can be used with any multivariate polynomial data-type over any field of

coefficients available in AXIOM.

One important characteristic of the algorithms producing triangular decomposi-

tions is the fact that the intermediate computations require many polynomial coeffi-

cient types leading to potentially many type conversions. More precisely, the typical

procedure, say proc,

• takes as input a quotient ring Q of the form K[X]/I, where I is an ideal of

K[X], and elements of Q, say f, g, and

• returns a list of pairs (Q1, h1), . . . , (Qs, hs) where Qj is a quotient ring K[X]/Ij

and hj is an element of Qj, for all 1 ≤ j ≤ s.

In the Dynamic Evaluation packages in AXIOM [65, 49] the signature of a function

implementing proc would match the specializations of proc precisely; in particular,

the types Q, Q1, . . . , Qs would be instantiated at run-time. In the implementation of

the Triade algorithm the quotient rings Q, Q1, . . . , Qs are not built explicitly; instead,

they are represented by the ideals I, I1, . . . , Is, and the polynomials f, g, h1, . . . , hs

are encoded by representatives in K[X]. This latter approach may look less elegant

than the former one. However, as reported in [107], it brings performance improve-

ment, by avoiding type instantiations and conversions; in addition, it offers more

opportunities for optimizations, by homogenizing the type of the intermediate quan-

tities. This approach was reused in the Aldor and Maple implementations of the

Triade algorithm.

As discussed in Section 7.3, another challenge in implementing triangular decom-

positions is code validation. Because a given input system F ⊂ K[X] may admit

different triangular decompositions, it is hard to use one implementation of these

decompositions to validate another. The safest approach, as mentioned in Appendix

160

A, is through computations based on Gröbner bases. However, this leads to com-

putations which, in practice and in theory, are much more expensive than those of

triangular decompositions. This difficulty was resolved by interfacing AXIOM with

a high-performance software package [53] for computing Gröbner bases; see [107, 9]

for details.

The AXIOM implementation of the Triade algorithm has been integrated in 1998

in the release 2.2 of AXIOM [131]. Experiments reported in [9] show that it often out-

performs comparable solvers. Moreover, combined with another symbolic solver [116],

it provides functionalities for isolating real roots of polynomial systems symbolically:

AXIOM was the first general purpose computer algebra system offering this feature,

which we illustrate by the fragment of AXIOM session shown in Appendix B.

In contrast to other general purpose computer algebra system such as Maple,

AXIOM is primarily destined for the community of researchers in computer algebra:

it requires good programming skills and a strong background in algebra. In particular,

every user is potentially an expert and a code developer. As a consequence, the

logical organization of the library modules relies simply on the algebraic hierarchies

of categories and domains; thus, there is less concern with “ease of use” than in

Maple.

To summarize, the AXIOM implementation of the Triade algorithm has reached

its goals: providing a generic, reliable and quite efficient polynomial system solver by

means of triangular decompositions.

7.4.2 The Aldor Implementation

The Aldor language was designed to be an extension language for the AXIOM

computer algebra system. In addition, an Aldor program can be compiled into:

stand-alone executable programs; object libraries in native operating system formats

(which can be linked with one another, or with C or Fortran code to form applica-

tion programs); portable byte code libraries; and C or Lisp source [25]. Aggressive

code optimizations by techniques such as program specialization, cross-file procedural

integration and data structure elimination, are performed at intermediate stages of

compilation [143]. This produces code that is comparable to hand-optimized C.

For these reasons we have used Aldor to develop high-performance implemen-

tations of the Triade algorithm since 1999. More recently, we have realized a parallel

implementation [101, 102] on a multiprocessor machine using shared memory for

data-communication.

161

Our Aldor implementation is much less generic than our AXIOM implementa-

tion. First, it is limited to particular, and frequently used, coefficient fields, such as

Q, the field of rational numbers, and finite fields. Secondly, it is available in form of

executable binary programs, like an operating system command. These “servers” are

quite easy to use, but they perform only very specific tasks; in particular, they offer

a very limited user interaction. However, their computational power outperforms the

AXIOM implementation and they were used to solve difficult problems in theoretical

physics [55] and in invariant theory [80].

To summarize, our Aldor implementation of the Triade algorithm is reaching its

main objective: high-performance computing.

7.4.3 The RegularChains Library in Maple

Maple [105] is a general-purpose computer algebra system. It offers an interpreted,

dynamically typed programming language. Maple has a very large audience among

the world. It is used by engineers, researchers as well as students, in much different

topics such as engineering, finance, statistics, education, etc. Maple is shipped

with a wide variety of libraries dealing, for instance, with linear algebra, differential

equations solving, numerical computations. Maple is intended to be powerful and

easy to use for the high end user. We have realized a Maple implementation of the

Triade algorithm, the RegularChains library [91], which is shipped with the Maple

software since the version 10 of Maple, released in 2005.

In contrast to AXIOM and Aldor, the Maple programming language does not

have a strong object-oriented flavor. Code organization and validation are, therefore,

even more challenging in this context. So, we describe our effort in these directions

for implementing the RegularChains library. Maple libraries are usually organized

as follows:

• a user-interface level providing functionalities accessible to the end-user in the

interactive mode; those functions usually check the input specifications,

• an internal level providing functionalities accessible only to the library program-

mers; they are called by the user-interface functionalities for doing the actual

computations.

The data structures are quite straightforward. The most complex data used are

the multivariate polynomials. We have chosen the native Maple polynomials which

are directed acyclic graphs (DAG). This choice has been made for simplicity reasons.

162

Indeed, all Maple directives manipulating polynomials handle DAG. All other ob-

jects, as regular chains, have been implemented with lists. Moreover, all structures

have been enriched with extra information of two different kinds. The first kind are

cached results which are computed frequently (for example the leading variable of a

polynomial). The second kind are flags that help optimizing certain functions (for

example, knowing that a regular chain represents an irreducible component helps

speeding-up computations).

The source code organization is rather standard too. We have split the library

source into different files, each one representing a different class of objects. The ob-

jective was to mimic the AXIOM/Aldor organization into categories and domains.

This split is very handy, because it emulates some kind of generic programming.

Indeed, if we want to use a different representation for polynomials, we only need

to change the file implementing polynomials. This makes it easy to compare the

efficiency of two different polynomial representations. As for prototyping, the in-

ternal functions have been organized similarly to AXIOM/Aldor, as discussed in

Section 7.4.1.

The RegularChains user-interface has been designed to provide ease of use to the

non-expert and advanced functionalities to the expert. The library offers numerous

primitives for computing and manipulating triangular decompositions. For instance,

it provides a rich variety of coefficient fields: Q, the field of rational functions, prime

fields, fields of rational functions over Q and prime fields. This is an additional chal-

lenge in the Maple framework, which has limited support for generic programming.

Combining ease of use and variety of advanced functionalities is achieved by a

two-level organization of the user-interface. The first level provides the basic func-

tionalities easy to use for the non-expert. Those functionalities allow to compute

triangular decompositions and manipulate polynomials. The second level of the user-

interface provides more technical functionalities that are available through optional ar-

guments of the basic functionalities and through two submodules, called ChainTools

and MatrixTools. Those two sub-libraries respectively provide tools for manipulat-

ing triangular decompositions and regular chains, and for doing linear algebra over

non-integral domains. This makes Maple the unique computer algebra system of-

fering automatic case discussion and recombination, as illustrated by the fragment of

Maple session in Appendix B.

The code validation is made through the Maple library test suites. A test suite

for RegularChains checks all the user interface functions, in order to validate any

changes that would be made to the code and the user-interface. Also, the primitive for

163

computing triangular decomposition, which is a crucial functionality, is tested through

a large set of problems. The outputs are partially checked in positive dimension

by checking that the radical of the input system is included in the radical of (the

saturated ideal of) each regular chain in the output. This ensures that we haven’t lost

any solution. A complete check in positive dimension has not been done as for those of

the AXIOM or Aldor implementations. However, the checking in zero dimension

has been done very thoroughly. Indeed, the output decomposition is processed in

a special way. We first make the decomposition radical (each regular chain of the

output is made radical), which removes multiple roots. Then the decomposition is

processed in such a way that all regular chains of the decomposition have distinct

roots. This ensures that the total number of solutions no without multiplicity of

the decomposition is exactly the sum of the number of solutions of each regular

chain (which is just the product of the leading degrees). Thus, if the input system

is reduced to zero by each regular chain of the decomposition, we know that the

solutions of the input are solutions of the decomposition. Therefore, if we know the

number of solutions of the input in advance, and if it is equal to no, we are sure that

no solutions have been lost or added, which means that the decomposition is correct.

7.5 Summary

Here are some highlights and additional comments regarding three implementations

of the Triade algorithm in AXIOM, Aldor and Maple.

The AXIOM implementation has been developed in a very general manner in the

sense the design is very close to the mathematical theory. This makes it powerful and

flexible. The drawback is that it is not suitable for high-performance, and hard to

use for non-experts.

The Aldor implementation is less general than the AXIOM implementation but

has several advantages. First of all, the Aldor compiler produces binaries which can

act as servers or regular applications. This makes it easier for interfacing the Triade

solver with other software. Moreover, Aldor provides an efficient interface with the

machine resources leading to higher performances.

Both Aldor and AXIOM implementations are organized into categories and

domains, and lots of functionalities can be used and extended. Therefore, they are

well adapted for expert users who aim at developing new algorithms and performing

advanced experimentations.

The Maple implementation RegularChains is different from the Aldor and

164

AXIOM ones, in numerous ways. First of all, Maple has a larger audience of users,

and is aimed at being user friendly. RegularChains is written in this spirit and is very

easy to use for non-experts. Advanced users are still able to make more complicated

computations by using optional arguments and the two submodules ChainTools and

MatrixTools. Secondly, the Maple programming language is interpreted and dy-

namically typed. The language syntax is straightforward and thus not difficult to

write Maple code. However, the code validation and maintenance is much harder

because type errors are only detected at execution. Therefore, coding requires a lot

of care and discipline.

Despite of this difficulty, it appears in practice that contributions from students

and collaborators are usually made to the Maple implementation rather than to

its Aldor and AXIOM counterparts. This is clearly due to the ease of use of the

RegularChains library. Consequently, some recent and efficient algorithms have been

implemented only in the RegularChains library. For instance, the modular algorithm

presented in Chapter 4 was implemented in Maple but not in Aldor. This is why,

on some test problems, the RegularChains library can outperform the Aldor and

AXIOM implementations of the Triade algorithm.

165

Chapter 8

Efficient Computation of

Irredundant Triangular

Decompositions

This chapter presents new functionalities that we have added to the RegularChains

library in Maple to efficiently compute irredundant triangular decompositions, and

reports on the implementation of different strategies. Our experiments show that, for

difficult input systems, the computing time for removing redundant components can

be reduced to a small portion of the total time needed for solving these systems.

8.1 Introduction

Efficient symbolic solving of parametric polynomial systems is an increasing need

in robotics, geometric modeling, stability analysis of dynamical systems and other

areas. Triangular decomposition provides a powerful tool for these systems. However,

for parametric systems, and more generally for systems in positive dimension, these

decompositions have to face the problem of removing redundant components. This

problem is not limited to triangular decompositions and is also an important issue in

other symbolic decomposition algorithms such as those of [140, 88] and in numerical

approaches [126].

When decomposing a polynomial system, removing redundant components at an

early stage of the solving process is necessary to avoid redundant computations and

hence improves the performance. This matter is discussed in [9].

Removing redundant components is also a requirement for solving certain prob-

166

lems. For instance, with the following question: given an integer n and a parametric

system F ∈ Q[U][X], determine the values of the parameters U for which F has

exactly n real roots. Such problems arise in the stability analysis of dynamical sys-

tems [137].

In this work, different criteria and algorithms for deciding whether a quasi-

component is contained in another are studied and compared. Then, based on these

tools, we obtain several algorithms for removing redundant components in a triangu-

lar decomposition. The implementation of these different solutions are realized within

the RegularChains library [91].

Among the new functionalities that we have added to the RegularChains library

for solving and manipulating quasi-algebraic systems, we focus in this report on the

inclusion test of quasi-components. Section 8.2 provides different algorithmic solu-

tions for this problem. Different strategies for performing the removal of redundant

components are described in Section 8.3. A divide and conquer approach is used for

efficiently removing the redundant components in a triangular decomposition (i.e. a

set of regular chains). The experimentation and comparison with these strategies is

summarized in Section 8.4.

8.2 Inclusion Test of Quasi-components

It is well-known that inclusion of quasi-algebraic sets reduces to radical membership of

polynomial ideals, see for instance [125]. For polynomial ideals given by generators,

this latter problem reduces to a Gröbner basis computation, see for instance [36].

When the ideal under consideration is the saturated ideal of the regular chain T ,

checking whether the polynomial p belongs to the radical of Sat(T) or not reduces to

GCD computations and pseudo-division [76].

In this section we describe our strategies for the inclusion test of quasi-components

based on the RegularChains library. We refer to [8, 108, 91] for the notion of a regular

chain, its related concepts, such as initial, saturated ideals, quasi-components and the

related operations.

Let T, U ⊂ K[X] be two regular chains. Let hT and hU be the respective prod-

ucts of their initials. In this section we discuss how to decide whether the inclusion

W (T) ⊆ W (U) holds or not. The proofs of the propositions stated here are stan-

dard and similar, so we provide only the one of the most significant result. We aim at

relying on the RegularChains library, which implies avoiding Gröbner basis compu-

tations. Unproved algorithms for this inclusion test are stated in [86] and [107]; they

167

appeared not to be satisfactory in practice, since they are relying on normalized reg-

ular chains, which tend to have much larger coefficients than non-normalized regular

chains as verified experimentally in [9] and formally proved in [42].

Proposition 8.2.1. The inclusion W (T) ⊆ W (U) holds if and only if the following

both statements hold

(C1) for all p ∈ U we have p ∈
√

Sat(T),

(C2) we have W (T) ∩ V (hU) = ∅.

If Sat(T) is radical, then condition (C1) can be replaced by:

(C ′
1) for all p ∈ U we have p ∈ Sat(T),

which is easier to check. Checking (C2) can be approached in different ways, depend-

ing on the computational cost that one is willing to pay. Recall in Chapter 10.1 we

describe an operation Intersect(p, T) which takes a polynomial p and a regular chain

T and returns regular chains T1, . . . , Te such that we have

V (p) ∩ W (T) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ V (p) ∩ W (T).

A call to Intersect can be seen as relatively cheap, since Intersect(p, T) exploits the

fact that T is a regular chain. Checking

(Ch) Intersect(hU , T)=∅,

is a good criterion for (C2).

However, when Intersect(hU , T) does not return the empty list, we cannot con-

clude. To overcome this limitation, we rely on Proposition 8.2.2 and the op-

eration Triangularize of the RegularChains library. For a polynomial system

F ⊂ K[X], Triangularize(F) returns regular chains T1, . . . , Te such that V (F) =

W (T1) ∪ · · · ∪ W (Te).

Proposition 8.2.2. The inclusion W (T) ⊆ W (U) holds if and only if the following

both statements hold

(C1) for all p ∈ U we have p ∈
√

Sat(T),

(C ′
2) for all S ∈ Triangularize(T ∪ {hU}) we have hT ∈

√
Sat(S).

168

Proof. Let us denote V (T), V (hT), V (U), V (hU) by A, B, C, D respectively.

The complement of a subset E of K
n

is denoted by Ec. The inclusion W (T) ⊆
W (U) rewrites to A \ B ⊆ C \ D, that is, A \ B ∩ (C \ D)c = ∅, that is finally:

A ∩ Bc ∩ Cc = ∅ and A ∩ Bc ∩ D = ∅. Translating back A ∩ Bc ∩ Cc = ∅ in terms

of V (T), V (hT), V (U), V (hU) we retrieve the condition (C1). Checking the condition

A ∩ D ∩ Bc = ∅ is equivalent to check whether V (T) ∩ V (hU) ⊆ V (hT) holds, that

is hT ∈
√
〈T, hU〉. The conclusion follows. �

Remark 8.2.3. Proposition 8.2.2 provides an effective algorithm for testing the in-

clusion W (T) ⊆ W (U). However, the cost for computing Triangularize(T ∪ {hU})
is clearly higher than that for Intersect(hU , T), since the former operation cannot

take advantage of the fact that T is a regular chain. In Triangularize(T ∪ {hU}), T

is just a polynomial set, and Triangularize(T, hU) will decompose the whole variety

V (T) ∩ V (hU), not just W (T) ∩ V (hU). This approach clearly leads to a computa-

tional overhead. Indeed, the ideal generated by 〈T 〉 may have a more complex struc-

ture than Sat(T). This happens, in particular, when 〈T 〉 is not equidimensional. Con-

sider for instance with n = 4 the regular chain T = X1−X2, X2X3−X1, X1X4−X2.

The ideal generated by T has two associated primes P1 = 〈X1, X2〉 and P2 =

〈X4− 1,−1 + X3,−X1 + X2〉. We have in fact 〈T 〉 = P1 ∩ P2, whereas Sat(T) = P2.

8.3 Removing Redundant Components in Trian-

gular Decompositions

Let F ⊂ K[X] and let T = T1, . . . , Te be a triangular decomposition of V (F), that is,

a set of regular chains such that we have V (F) = W (T1) ∪ · · · ∪ W (Te). We aim at

removing every Ti such that there exists Tj, with i 6= j and W (Ti) ⊆ W (Tj).

Remark 8.3.1. Let Ti,1, . . . , Ti,ei
be regular chains such that W (Ti) ⊆ W (Ti,1) ∪ · · ·

∪ W (Ti,ei
) ⊆ W (Ti) holds. Then, replacing Ti by Ti,1, . . . , Ti,ei

in T1, . . . , Te leads

again to a triangular decomposition of V (F).

Based on the results of Section 8.2 and Remark 8.3.1, we have developed three

strategies: two heuristic ones and a deterministic one. Let T, U ⊂ K[X] be two

regular chains. We describe these strategies below.

heuristic-no-split: It checks whether (C ′
1) and (Ch) hold. If both hold, then

W (T) ⊆ W (U) has been established and [true, T, U] is returned. Otherwise,

no conclusions can be made and [false, T, U] is returned.

169

heuristic-with-split: It tests the conditions (C1) and (Ch). Checking (C1) is

achieved by means of the operation Regularize [91, 108]: for a polynomial p and

a regular chain T , Regularize(p, T) returns regular chains T1, . . . , Te such that

we have

• W (T) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ W (T),

• for each 1 ≤ i ≤ e the polynomial p is either 0 or regular modulo Sat(Ti),

• no drop of dimension in any of T1, . . . , Te.

Therefore, Condition (C1) holds iff for all Ti returned by Regularize(p, T) we

have p ≡ 0 mod Sat(Ti). For those Ti for which this does not hold we return

[false, Ti, U]. For the others: if Intersect(hu, Ti) returns the empty list (which

implies W (Ti) ∩ V (hu) = ∅) then we return [true, Ti, U] otherwise we return

[false, Ti, U] (which does not imply W (Ti) ∩ V (hu) = ∅).

certified: It checks conditions (C1) and (C ′
2). If both hold, then W (T) ⊆ W (U)

has been established and [true, T, U] is returned. If at least one of the conditions

(C1) or (C ′
2) does not hold, then the inclusion W (T) ⊆ W (U) does not hold

either and [false, T, U] is returned.

Divide and Conquer Approach. Let inclusion-test be one of the tests

heuristic-no-split, heuristic-with-split or certified. In order to describe

the general mechanism by which redundant components are removed, we define a

function RCCompare based on inclusion-test and working as follows: On input

(T, U), passed to inclusion-test, it returns all the Ti from the tuples [false, Ti, U]

and discard those from the [true, Ti, U]. For removing the redundant components in

the triangular decomposition of V (F) which is a set of regular chains, we use a divide

and conquer approach. See Figure 8.1 for a sketch of the algorithm.

RemoveSQ([T1, . . . , Tn])

RemoveSQ([T1, . . . , Tbn/2c]) RemoveSQ([Tbn/2c+1, . . . , Tn])

MergeSQ

RemoveSQ([T1]) RemoveSQ([T2])

MergeSQ

Figure 8.1: Divide and Conquer Approach for Removing Redundant Components in
a Triangular Decomposition

170

1. RemoveSQ(T) takes as input a triangular decomposition T of some quasi-

algebraic set Q and returns a triangular decomposition S of Q such that the

quasi-components of S are pairwise noninclusive.

2. MergeSQ(T1, T2) takes as input two triangular decompositions T1 and T2 of quasi-

algebraic sets Q1 and Q2, where each of them is already irredundant; then

returns a triangular decomposition S of Q1 ∪Q2 such that the quasi-components

of S are pairwise noninclusive.

3. Compare(T1, T2) takes as input two list of regular chains T1 and T2, where each

of them is already noninclusive; then returns the regular chains from T1 which

are not included in T2.

Now we give a short explanation about the base case of the algorithm and highlight

some key points. Concrete comparison work is done only in cases that the input lists

contain at most two regular chains. If one regular chain splits when applying inclusion

test w.r.t another one, we guarantee the output is noninclusive. To merge two lists

of noninclusive regular chains, first we compare in one direction and then update the

input for comparing in the other direction.

Figure 8.3 presents such a common situation in which a quasi-component W (T1)

is the union of two quasi-components W (TA) and W (TB) and a quasi-component

W (T2) is the union of the quasi-components W (TB) and W (TC). The data flow of

the algorithm is pictured in Figure 8.3 where the dotted red arrow highlights the

updating step. All real computations are done in MergeSQ function which intrigues

the RCCompare function. Note that the final result relies on the order of the input list

of regular chains. Here the output is [TA, T2], whereas if we compare [T2, T1] first then

the output would be [TB, T1]. In both cases, we obtain irredundant representations

of the quasi-variety W (T1) ∪W (T2).

TA TB TC

T1 T2

RemoveSQ([T1 , T2])

MergeSQ([T1], [T2])

Compare([T1], [T2]) Compare([T2], [TA])

RCCompare(T1, T2) RCCompare(T2, TA)

[TA]

Update T1

[TA] [T2]

[T2, TA]

[TA, T2]

Figure 8.2: Base Case: Removing Redundant Components in Two Triangular Sets

171

The details of the divider and conquer algorithms are described in Algorithms 44,

45 and 46 .

Algorithm 44 Remove Redundant Quasi-components

Input T = [T1, . . . Tn]: a triangular decomposition of a quasi-algebraic set Q.

Output a triangular decomposition S of Q such that the quasi-components of S
are pairwise noninclusive.

RemoveSQ(T) ==

1: if n < 2 then
2: Return T ;
3: else
4: z := xn/2y;
5: return MergeSQ(RemoveSQ(T [1..z]), RemoveSQ(T [z + 1..− 1]));
6: end if

Algorithm 45 Merge Quasi-components

Input T1 = {T1, . . . Tm}: an irredundant triangular decomposition of a quasi-
algebraic set Q1.
T2 = {T ′

1, . . . T ′
n}: an irredundant triangular decomposition of a quasi-

algebraic set Q2.

Output a triangular decomposition S of Q1 ∪ Q2 such that the quasi-components
of S are pairwise noninclusive.

MergeSQ(T1, T2) ==

1: T1NotInT2 ← Compare(T1, T2);
2: T2NotInT1 ← Compare(T2, T1NotInT2);
3: return T1NotInT2 ∪ T2NotInT1;

8.4 Experimental Results

This experimentation deals with the removal of redundant (quasi-)components in

triangular decompositions of algebraic varieties. Its first objective is to test new

functionalities of the RegularChains library for computing with quasi-algebraic sys-

tems. In particular, we want to challenge their efficiency. The second objective is to

compare the different strategies described in Section 8.3.

The input polynomial systems are well-known systems which can be found at [128].

The system names appear in the second column of Table 8.1. For each of them, the

172

Algorithm 46 Compare Quasi-components

Input T1 = {T1, . . . Tm}: an irredundant triangular decomposition of a quasi-
algebraic set Q1.
T2 = {T ′

1, . . . T ′
n}: an irredundant triangular decomposition of a quasi-

algebraic set Q2.

Output the regular chains from T1 which are not included in T2

Compare(T1, T2) ==

1: result← [];
2: for rc1 in T1 do
3: for rc2 in T2 do
4: result← result ∪ RCCompare(rc1, rc2);
5: end for
6: end for
7: output result;

zero set has dimension at least one. Indeed, redundant components appear rarely

when computing triangular decompositions of zero-dimensional polynomial systems.

The third column of Table 8.1 reports on the number of components and run-

ning time with Triangularize without removal of redundant components, obtaining

a decomposition T (F) for each input system F .

The fourth column of Table 8.1 (called Certification), the second column of Ta-

ble 8.2 (called heuristic removal without split) and the fourth column of Table 8.2

(called heuristic removal with split) correspond to the removal of the redundant

components performed by the procedure described in Section 8.3 applied to T (F)

and using respectively the inclusion tester certified, heuristic-no-split and

heuristic-with-split.

The third and the fifth column of Table 8.2 reports on the number of components

and running time when applying the deterministic removal of the redundant com-

ponents to the output produced by the heuristic removal without split and to the

output produced by the heuristic removal with split. Therefore, these data allow us

to compare three strategies for a complete (or certified) removal of the redundant

components:

• by performing directly a certified removal (fourth column of Table 8.1),

• by performing first a heuristic removal without split, followed by a certified

removal (second and third columns of Table 8.2),

173

Triangularize Certification
Sys Name (No removal) Proposition 8.2.2

] RC time(s)] RC time(s)

1 genLinSyst-3-2 20 1.684 17 1.182
2 Butcher 15 9.528 7 0.267
3 MacLane 161 12.733 27 7.144
4 neural 10 14.349 4 8.948
5 Vermeer 6 27.870 5 58.396
6 Liu-Lorenz 23 29.044 16 121.793
7 chemical 7 71.364 5 7.727
8 Pappus 393 37.122 120 141.702
9 Liu-Lorenz-Li 22 1796.622 9 96.364
10 KdV572c11s21 41 8898.024 7 6.980

Table 8.1: Triangularize without Removal and with Certified Removal

• by performing first a heuristic removal with split, followed by a certified removal

(fourth and fifth columns of Table 8.2).

We make the following observations:

1. The heuristic removal without split performs very well. First, for all examples,

except sys 8, it discovers all redundant components. Second, for all examples,

except sys 8, its running time is a relatively small portion of the solving time

(third column of Table 8.1).

2. Theoretically, the heuristic removal with split can eliminate more redundancies

than the other strategies. Indeed, it can discover that a quasi-component is

contained in the union of two others, meanwhile these three components are

pairwise noninclusive.

3. In practice, the heuristic removal with split does not generate more irredundant

components than the heuristic removal without split, except for systems 5 and

6. However, the running time overhead is large (roughly, it multiplies by 3 the

solving time).

4. The direct deterministic removal is also quite expensive on several systems (5,

6, 8). Unfortunately, the heuristic removal without split, used as pre-cleaning

process does not really improve the cost of a certified removal of the redundant

components.

174

Heuristic Certification Heuristic Certification
(C ′

1) and (Ch) (C1) and (Ch)
Sys (without split) (Deterministic) (with split) (Deterministic)

] RC time(s)] RC time(s)] RC time(s)] RC time(s)

1 17 0.382 17 1.240 17 0.270 17 1.214
2 7 0.178 7 0.259 7 0.147 7 0.325
3 27 3.437 27 8.470 27 3.358 27 8.239
4 4 1.881 4 8.353 4 6.429 4 14.045
5 5 0.771 5 60.108 8 54.455 8 109.928
6 16 1.937 16 123.052 18 96.492 18 203.937
7 5 0.243 5 7.828 5 5.180 5 12.842
8 124 42.817 120 135.780 124 48.756 120 148.341
9 9 8.186 9 101.668 10 105.598 10 217.837
10 7 4.878 7 6.688 7 5.881 7 7.424

Table 8.2: Heuristic Removal, without and with Split, followed by Certification

8.5 Summary

In this work, new functionalities have been added to the RegularChains library in

Maple for solving and manipulating quasi-algebraic systems. This allows the user

to compute triangular decompositions without redundant components. Components

contained in the union of several other ones can also be removed.

Our implementation has demonstrated the efficiency of these methods. Indeed,

the complete removal of the redundant components can always be achieved in a

reasonable amount of time comparing to the solving time of the input system. In

addition, the heuristic removal without split is very efficient in practice.

175

Chapter 9

Verification of Polynomial System

Solvers

In this chapter, we discuss the verification of mathematical software solving polyno-

mial systems symbolically by way of triangular decomposition. Standard verification

techniques are highly resource consuming and apply only to polynomial systems which

are easy to solve. We exhibit a new approach which manipulates constructible sets

represented by regular systems. We provide comparative benchmarks of different ver-

ification procedures applied to four solvers on a large set of well-known polynomial

systems. Our experimental results illustrate the high efficiency of our new approach.

In particular, we are able to verify triangular decompositions of polynomial systems

which are not easy to solve.

9.1 Introduction

Solving systems of non-linear, algebraic or differential equations is a fundamental

problem in mathematical science. It has been studied for centuries and has stimu-

lated many research developments. Algorithmic solutions can be classified into three

categories: numeric, symbolic and hybrid numeric-symbolic. The choice for one of

them depends on the characteristics of the system of equations to solve. For instance,

it depends on whether the coefficients are known exactly or are approximations ob-

tained from experimental measurements. This choice depends also on the expected

answers, which could be a complete description of all the solutions, or only the real

solutions, or just one sample solution among all of them.

Symbolic solvers are powerful tools in scientific computing: they are well suited

for problems where the desired output must be exact, and they have been applied

176

successfully in areas like digital signal processing, robotics, theoretical physics, cryp-

tology, dynamical systems, with many important outcomes. See [67] for an overview

of these applications.

Symbolic solvers are also highly complex software. First, they implement sophis-

ticated algorithms, which are generally at the level of on-going research. Moreover,

in most computer algebra systems, the solve command involves nearly the entire

set of libraries in the system, challenging the most advanced operations on matrices,

polynomials, algebraic and modular numbers, polynomial ideals, etc.

Secondly, algorithms for solving systems of polynomial equations are by nature

of exponential-space complexity. Consequently, symbolic solvers are extremely time-

consuming when applied to large examples. Even worse, intermediate expressions

can grow to enormous size and may halt the computations, even if the result is of

moderate size. The implementation of symbolic solvers, then, requires techniques that

go far beyond the manipulation of algebraic or differential equations, such as efficient

memory management, data compression, parallel and distributed computing, etc.

Last, but not least, the precise output specifications of a symbolic solver can be

quite involved. Indeed, given an input polynomial system F , defining what a symbolic

solver should return implies describing what the geometry of the solution set V (F)

of F can be. For an arbitrary F , the set V (F) may consist of components of different

natures and sizes: points, lines, curves, surfaces. This leads to the following difficult

challenge.

Given a polynomial system F and a set of components C1, . . . , Ce, it is hard, in

general, to tell whether the union of C1, . . . , Ce corresponds exactly to the solution

set V (F) or not. Actually, solving this verification problem is generally (at least) as

hard as solving the system F itself.

Because of the high complexity of symbolic solvers, developing verification algo-

rithms and reliable verification software tools is a clear need. However, this verifica-

tion problem has received little attention in the literature. In this chapter, we present

new techniques for verifying a large class of symbolic solvers. We also report on in-

tensive experimentation illustrating the high efficiency of our approach w.r.t. known

techniques.

We assume that each component of the solution set V (F) is given by a so-

called regular system. This is a natural assumption in symbolic computations, well-

developed in the literature under different terminologies, see [8, 135] and the references

therein. In broad words, a regular system consists of several polynomial equations

177

with a triangular shape

p1(x1) = p2(x1, x2) = · · · = pi(x1, x2, . . . , xn) = 0

and a polynomial inequality

h(x1, . . . , xn) 6= 0

such that there exists (at least) one point (a1, . . . , an) satisfying the above equations

and inequality. Note that these polynomials may contain parameters.

Let us consider the following well-known system F taken from [47].





x31 − x6 − x− y = 0

x8 − z = 0

x10 − t = 0

We aim at solving this system for x > y > z > t, that is, perversely expressing x as

a function of y, z, t, then y as a function of z, t and z as a function of t. One possible

decomposition is given by the three regular systems below:





(t4 − t) x− ty − z2 = 0

t3y2 + 2t2z2y + (−t6 + 2t3 + t− 1) z4 = 0

z5 − t4 = 0

t4 − t 6= 0

,





x2 − z4 = 0

y + t2z2 = 0

z5 − t = 0

t3 − 1 = 0

,





x = 0

y = 0

z = 0

t = 0

Another decomposition is given by these other three regular systems:






(t4 − t)x− ty − z2 = 0

tzy2 + 2z3y − t8 + 2t5 + t3 − t2 = 0

z5 − t4 = 0

z (t4 − t) 6= 0

,






zx2 − t = 0

ty + z2 = 0

z5 − t = 0

t3 − 1 = 0

tz 6= 0

,






x = 0

y = 0

z = 0

t = 0

These two decompositions look slightly different (in particular, in the second compo-

nents) and one could think that, if each of them was produced by a different solver,

then at least one of these solvers has a bug. In fact, both decompositions are valid, but

proving respectively that they encode the solution set V (F) is not feasible without

computer assistance. However, proving that they define the same set of points can

be achieved by an expert hand without computer assistance. This is an important

observation that we will guide us in this work.

178

Let us consider now an arbitrary input system F and a set of components

C1, . . . , Ce encoded by regular systems S1, . . . , Se respectively. The usual approach

for verifying that C1, . . . , Ce correspond exactly to the solution set V (F) is as follows.

(1) First, one checks that each candidate component Ci is actually contained in

V (F). This essentially reduces to substitute the coordinates of the points given

by Ci into the polynomials of F : if all these polynomials vanish at these points,

then Ci is a component of V (F), otherwise, (and up to technical details that

we will skip in this introduction) Ci is not a component of V (F).

(2) Secondly, one checks that V (F) is contained in the union of the candidate

components C1, . . . , Ce by:

(2.1) computing a polynomial system G such that V (G) corresponds exactly to

C1, . . . , Ce, and

(2.2) checking that every solution of V (F) cancels the polynomials of G.

Steps (2.1) and (2.2) can be performed using standard techniques based on compu-

tations of Gröbner bases, as we discuss in Section 9.6.1. These calculations are very

expensive, as shown by our experimentation, reported in Section 9.7.

In this work, we propose a different approach, summarized in non-technical lan-

guage in Section 9.2. The main idea is as follows. Instead of comparing a candidate

set of components C1, . . . , Ce against the input system F , we compare it against the

output D1, . . . , Df produced by another solver. Both this solver and the compari-

son process are assumed to be validated. Hence, the candidate set of components

C1, . . . , Ce corresponds exactly to the solution set V (F) if and only if the comparison

process shows that D1, . . . , Df and C1, . . . , Ce define the same solution set.

The technical details of this new approach are given in Sections 9.3, 9.4, 9.5 and

9.6. In Section 9.3, we review the fundamental algebraic concepts and operations

involved in our work. In particular, we specify the kind of solvers that we consider in

this study, namely those solving polynomial systems by means of triangular decom-

positions.

The key computational concept behind these triangular decomposition computed

is that of a constructible set, so we dedicate Section 9.4 to it. Section 9.5 is a formal

and complete presentation of our process for comparing triangular decompositions.

In Section 9.6, we summarize the different verification procedures that are available

for triangular decompositions, including our new approach. In Section 9.7, we report

179

on experimentation with these verification procedures. Our data illustrate the high

efficiency of our new approach.

9.2 Methodology

Let us consider again an arbitrary input polynomial system F and a set of components

C1, . . . , Ce encoded by regular systems S1, . . . , Se respectively. As mentioned in the

Introduction, checking whether C1, . . . , Ce corresponds exactly to the solution set

V (F) of F can be done by means of Gröbner bases computations. This verification

process is quite simple, see Section 9.6, and its implementation is straightforward.

Thus, if the underlying Gröbner bases engine is reliable, such verification tool can be

regarded as safe. See [9] for details.

Unfortunately, this verification process is highly expensive. Even worse, as shown

by our experimental results in Section 9.7, this verification process is unable to check

many triangular decompositions that are easy to compute.

We propose a new approach in order to overcome this limitation. Assume that

we have at hand a reliable solver computing triangular decompositions of polynomial

systems. We believe that this reliability can be acquired over time by combining

several features.

• Checking the solver with a verification tool based on Gröbner bases for input

systems of moderate difficulty.

• Using the solver for input systems of higher difficulty where the output can be

verified by theoretical arguments, see [11] for an example of such input system.

• Involving the library supporting the solver in other applications.

• Making the solver widely available to potential users.

Suppose that we are currently developing a new solver computing triangular decom-

positions. In order to verify the output of this new solver, we can take advantage of

the reliable solver.

This may sound natural and easy in the first place, but this is actually not.

Indeed, as shown in the Introduction, two different solvers can produce two different,

but valid, triangular decompositions for the same input system. Checking that these

two triangular decompositions encode the same solution set boils down to computing

the differences of two constructible sets. This is a non-trivial operation, see the survey

paper [125].

180

The first contribution of our work is to provide a relatively simple, but efficient,

procedure for computing the set-theoretical differences between two constructible sets.

See Section 9.5. Such a procedure can be used to develop a verification tool for our

new solver by means of our reliable solver. Moreover, this procedure is sufficiently

straightforward to implement that it can be trusted after a relatively short period of

testing, as the case for the verification tool based on Gröbner bases computations.

The second contribution of our work is to illustrate the high efficiency of this

new verification tool. In Section 9.7, we consider four solvers computing triangular

decomposition of polynomial systems:

• the command Triangularize of the RegularChains library [91] in Maple

• the Triade solver of the BasicMath library [132] in Aldor

• the commands RegSer and SimSer of the Epsilon library [136] in Maple.

We have run these four solvers on a large set of well-known input systems from the

data base [104, 128, 140]. For those systems for which this is feasible, we have verified

their computed triangular decompositions with a verification tool based on Gröbner

bases computations. Then, for each input system, we have compared all its computed

triangular decompositions by means of our new verification tool.

Based on our experimentation data reported in Section 9.7 we make the following

observations.

• All computed triangular decompositions, that could be checked via Gröbner

bases computations, are correct.

• However, the verification tool based on Gröbner bases computations failed to

check many examples by running out of computer memory.

• For each input system F , most pairs of triangular decompositions of F could

be compared successfully by our new verification tool.

• Moreover, for any system F to which all verification tools could be applied, our

new approach runs much faster.

This suggests that the four solvers and our new verification tool have a good level of

reliability. Moreover, our verification tool allows to process cases that were previously

out of reach.

181

9.3 Preliminaries

In this section we introduce notations and review fundamental results in the theory

of regular chains and regular systems [8, 22, 76, 108, 135, 140].

We shall use some notions from commutative algebra (such as the dimension of

an ideal) and refer for instance to [118] for this subject.

9.3.1 Basic Notations and Definitions

Let K[Y] := K[Y1, . . . , Yn] be the polynomial ring over the field K in variables Y1 <

· · · < Yn. Let p ∈ K[Y] be a non-constant polynomial. The leading coefficient and

the degree of p regarded as a univariate polynomial in Yi will be denoted by lc(p, Yi)

and deg(p, Yi) respectively. The greatest variable appearing in p is called the main

variable denoted by mvar(p). The degree, the leading coefficient, and the leading

monomial of p regarding as a univariate polynomial in mvar(p) are called the main

degree, the initial, and the rank of p; they are denoted by mdeg(p), init(p) and rank(p)

respectively.

Let F ⊂ K[Y] be a finite polynomial set. Denote by 〈F 〉 the ideal it generates in

K[Y] and by
√
〈F 〉 the radical of 〈F 〉. Let h be a polynomial in K[Y], the saturated

ideal 〈F 〉 : h∞ of 〈F 〉 w.r.t h, is the set

{q ∈ K[Y] | ∃m ∈ N s.t. hmq ∈ 〈F 〉},

which is an ideal in K[Y].

A polynomial p ∈ K[Y] is a zerodivisor modulo 〈F 〉 if there exists a polynomial

q such that pq is zero modulo 〈F 〉, and q is not zero modulo 〈F 〉. The polynomial

is regular modulo 〈F 〉 if it is neither zero, nor a zerodivisor modulo 〈F 〉. Denote by

V (F) the zero set (or solution set, or algebraic variety) of F in K
n
. For a subset

W ⊂ K
n
, denote by W its closure in the Zariski topology, that is the intersection of

all algebraic varieties V (G) containing W for all G ⊂ K[Y].

Let T ⊂ K[Y] be a triangular set, that is a set of non-constant polynomials with

pairwise distinct main variables. Denote by mvar(T) the set of main variables of

t ∈ T . A variable in Y is called algebraic w.r.t. T if it belongs to mvar(T), otherwise

it is called free w.r.t. T . For a variable v ∈ Y we denote by T<v (resp. T>v) the subsets

of T consisting of the polynomials t with main variable less than (resp. greater than)

v. If v ∈ mvar(T), we say Tv is defined. Moreover, we denote by Tv the polynomial in

T whose main variable is v, by T6v the set of polynomials in T with main variables

182

less than or equal to v and by T>v the set of polynomials in T with main variables

greater than or equal to v.

Definition 9.3.1. Let p, q ∈ K[Y] be two nonconstant polynomials. We say rank(p)

is smaller than rank(q) w.r.t Ritt ordering and we write, rank(p) <r rank(q) if one

of the following assertions holds:

• mvar(p) < mvar(q),

• mvar(p) = mvar(q) and mdeg(p) < mdeg(q).

Note that the partial order <r is a well ordering. Let T ⊂ K[Y] be a triangular

set. Denote by rank(T) the set of rank(p) for all p ∈ T . Observe that any two ranks

in rank(T) are comparable by <r. Given another triangular set S ⊂ K[Y], with

rank(S) 6= rank(T), we write rank(T) <r rank(S) whenever the minimal element of

the symmetric difference (rank(T)\rank(S))∪ (rank(S)\rank(T)) belongs to rank(T).

By rank(T) 6r rank(S), we mean either rank(T) < rank(S) or rank(T) = rank(S).

Note that any sequence of triangular sets, of which ranks strictly decrease w.r.t <r,

is finite.

Given a triangular set T ⊂ K[Y], denote by hT be the product of the initials of T

(throughout the work we use this convention and when T consists of a single element

g we write it in hg for short). The quasi-component W (T) of T is V (T) \ V (hT), in

other words, the points of V (T) which do not cancel any of the initials of T . We

denote by Sat(T) the saturated ideal of T : if T is empty then Sat(T) is defined as

the trivial ideal 〈0〉, otherwise it is the ideal 〈T 〉 : h∞
T .

Let h ∈ K[Y] be a polynomial and F ⊂ K[Y] a set of polynomials, we write

Z(F, T, h) := (V (F) ∩W (T)) \ V (h).

When F consists of a single polynomial p, we use Z(p, T, h) instead of Z({p}, T, h);

when F is empty we just write Z(T, h). By Z(F, T), we denote V (F) ∩W (T).

Given a family of pairs S = {[Ti, hi] | 1 ≤ i ≤ e}, where Ti ⊂ K[Y] is a triangular

set and hi ∈ K[Y] is a polynomial. We write

Z(S) :=
e⋃

i=1

Z(Ti, hi).

We conclude this section with some well known properties of ideals and triangular

sets. For a proper ideal I, we denote by dim(V (I)) the dimension of V (I).

183

Lemma 9.3.2. Let I be a proper ideal in K[Y] and p ∈ K[Y] be a polynomial reg-

ular w.r.t I. Then, either V (I) ∩ V (p) is empty or we have: dim(V (I) ∩ V (p)) ≤
dim(V (I))− 1.

Lemma 9.3.3. Let T be a triangular set in K[Y]. Then, we have

W (T) \ V (hT) = W (T) and W (T) \W (T) = V (hT) ∩ W (T).

Proof. Since W (T) ⊆ W (T), we have

W (T) = W (T) \ V (hT) ⊆ W (T) \ V (hT).

On the other hand, W (T) ⊆ V (T) implies

W (T) \ V (hT) ⊆ V (T) \ V (hT) = W (T).

This proves the first claim. Observe that we have:

W (T) =
(
W (T) \ V (hT)

)
∪
(
W (T) ∩ V (hT)

)
.

We deduce the second one.

Lemma 9.3.4 ([8, 22]). Let T be a triangular set in K[Y]. Then, we have

V (Sat(T)) = W (T).

Assume furthermore that W (T) 6= ∅ holds. Then V (Sat(T)) is a nonempty unmixed

algebraic set with dimension n − |T |. Moreover, if N is the free variables of T , then

for every prime ideal P associated with Sat(T) we have

P ∩ K[N] = 〈0〉.

9.3.2 Regular Chain and Regular System

Definition 9.3.5 (Regular Chain). A triangular set T ⊂ K[Y] is a regular chain if

one of the following conditions hold:

• either T is empty,

• or T\{Tmax} is a regular chain, where Tmax is the polynomial in T with maximum

rank, and the initial of Tmax is regular w.r.t. Sat(T \ {Tmax}).

184

It is useful to extend the notion of regular chain as follows.

Definition 9.3.6 (Regular System). A pair [T, h] is a regular system if T is a regular

chain, and h ∈ K[Y] is regular w.r.t Sat(T).

Remark 9.3.7. A regular system in a stronger sense was presented in [135]. For

example, consider a polynomial system [T, h] where T = [Y1Y4 − Y2] and h = Y2Y3.

Then [T, h] is still a regular system in our sense but not a regular system in Wang’s

sense. Also we do not restrict the main variables of polynomials in the inequality part.

At least our definition is more convenient for our purpose in dealing with zerodivisors

and conceptually clear as well. We also note that in zero-dimension case (no free

variable exist) the notion of regular chain and that of a regular set in [135] are the

same, see [8, 135] for details.

There are several equivalent characterizations of a regular chain, see [8]. In this

chapter, we rely on the notion of iterated resultant in order to derive a characterization

which can be checked by solving a polynomial system.

Proposition 9.3.8. For every regular system [T, h] we have Z(T, h) 6= ∅.

Proof. Since T is a regular chain, by Lemma 9.3.4 we have V (Sat(T)) 6= ∅. By

definition of regular system, the polynomial hhT is regular w.r.t Sat(T). Hence, by

Lemma 9.3.2, the set V (hhT) ∩ V (Sat(T)) either is empty, or has lower dimension

than V (Sat(T)). Therefore, the set

V (Sat(T)) \ V (hhT) = V (Sat(T)) \ (V (hhT) ∩ V (Sat(T)))

is not empty. Finally, by Lemma 9.3.3, the set

Z(T, h) = W (T) \ V (h) = W (T) \ V (hhT) = V (Sat(T)) \ V (hhT)

is not empty.

Notation 9.3.9. For a regular system R = [T, h], we define rank(R) := rank(T). For

a set R of regular systems, we define

rank(R) := max{rank(T) | [T, h] ∈ R}.

For a pair of regular systems (L, R), we define rank((L, R)) := (rank(L), rank(R)).

For a pair of lists of regular systems, we define

rank((L,R)) = (rank(L), rank(R)).

185

For triangular sets T, T1, . . . , Te we write W (T)
D−→ (W (Ti), i = 1 . . . e) if one of the

following conditions holds:

• either e = 1 and T = T1,

• or e > 1, rank(Ti) < rank(T) for all i = 1 . . . e and

W (T) ⊆
e⋃

i=1

W (Ti) ⊆ W (T).

9.3.3 Triangular Decompositions

Definition 9.3.10. Given a finite polynomial set F ⊂ K[Y], a triangular decomposi-

tion of V (F) is a finite family T of regular chains of K[Y] such that

V (F) =
⋃

T∈T
W (T).

For a finite polynomial set F ⊂ K[Y], the Triade algorithm [108] computes a

triangular decomposition of V (F). We list below the specifications of the operations

from Triade that we use in this work.

Let p, p1, p2 be polynomials, and let T , C, E be regular chains such that C ∪ E

is a triangular set (but not necessarily a regular chain).

• Regularize(p, T) returns regular chains T1, . . . , Te such that

– W (T)
D−→ (W (Ti), i = 1 . . . e),

– for all 1 ≤ i ≤ e the polynomial p is either 0 or regular modulo Sat(Ti).

• For a set of polynomials F , Triangularize(F, T) returns regular chains T1, . . . , Te

such that we have

V (F) ∩W (T) ⊆ W (T1) ∪ · · · ∪W (Te) ⊆ V (F) ∩ W (T).

and for 1 ≤ i ≤ e we have rank(Ti) < rank(T).

• Extend(C ∪ E) returns a set of regular chains {Ci | i = 1 . . . e} such that we

have W (C ∪ E)
D−→ (W (Ci), i = 1 . . . e).

• Assume that p1 and p2 are two non-constant polynomials with the same main

variable v, which is larger than any variable appearing in T , and assume that

186

the initials of p1 and p2 are both regular w.r.t. Sat(T). Then, GCD(p1, p2, T)

returns a sequence

([g1, C1], . . . , [gd, Cd], [∅, D1], . . . , [∅, De]),

where gi are polynomials and Ci, Di are regular chains such that the following

properties hold:

– W (T)
D−→ (W (C1), . . . , W (Cd), W (D1), . . . , W (De)),

– dim V (Sat(Ci)) = dim V (Sat(T)) and dim V (Sat(Dj)) < dim V (Sat(T)),

for all 1 6 i 6 d and 1 6 j 6 e,

– the leading coefficient of gi w.r.t. v is regular w.r.t. Sat(Ci),

– for all 1 6 i 6 d there exists polynomials ui and vi such that we have

gi = uip1 + vip2 mod Sat(Ci),

– if gi is not constant and its main variable is v, then p1 and p2 belong to

Sat(Ci∪{gi}).

9.4 Representations of Constructible Sets

The constructible set [50, 69] is a classical concept in elimination theory. In this

section, we present two types of representations for constructible sets in Kn.

Definition 9.4.1 (Constructible set). A constructible subset of Kn is a subset which

can be represented by a finite union of the intersection of an open algebraic subset

with a closed algebraic subset.

Let F be the set of all constructible subsets of Kn w.r.t K0. From Exercise 3.18

in [69], we have

• all open algebraic sets are in F ;

• the complement of an element in F is in F ;

• the intersection of two elements in F is in F .

Moreover, these three properties describe exactly all constructible sets.

Given a set of polynomial F and f ∈ Pn, we denote D(F, f) the difference of V (F)

and V (f), which is also called a basic constructible set. If F is the empty set, then

we write D(f) for short. Note that for a regular system in [135], D(T, h) = Z(T, h)

holds.

187

Gröbner basis representation Now Gröbner bases have become a standard tool

to deal with algebraic sets; and they can be applied to manipulate constructible sets

as well. Given a constructible set C, according to the definition, one can represent C

by a unique sequence of closed algebraic sets whose defining ideals naturally can be

characterized by their reduced Gröbner bases [112].

However, the constructible set is a geometrical object intrinsically. We pay extra

cost to manipulate them, since it is very hard to compute the intersection of two

ideals and even to compute the radical ideal of an ideal. However, there exist effective

algorithms to manipulate constructible sets. We shall use regular systems to do the

same jobs in a more efficient manner.

Regular system representation In this section, we show that (Theorem 9.4.3)

every constructible set C can be represented by a finite set of regular systems{[Ti, hi] |
i = 1 . . . e}, that is,

C =
e⋃

i=1

Z(Ti, hi).

Combining with Lemma 9.3.8, we know that if a regular system representation of a

constructible set is empty then C is an empty set. This fact leads to an important

application of verifying polynomial system solver. The proof of Theorem 9.4.3 is par-

tially constructible which relies on an algorithm called Difference. As a consequence,

we reach the following theorem by means of Difference.

Theorem 9.4.2. Given two regular systems [T, h] and [T ′, h′], there is an algorithm

to compute the regular system representations of:

(1) the difference Z(T, h) \ Z(T ′, h′);

(2) the intersection Z(T, h)
⋂

Z(T ′, h′).

Proof. (1) follows from the algorithm Difference. Note that given two sets A

and B, A ∩B = A \ (A \B). (2) follows from a successive call to Difference.

Theorem 9.4.3. Every constructible set can be represented by a finite set of regular

systems.

Proof. Consider the following family F̃ of subsets of Kn:

F̃ = {S | S =
e⋃

i=1

Z(Ti, pi)},

188

where [Ti, pi] are regular systems. First, every open subset can be decomposed into

the finite union of open subsets D(f) which can be represented by the empty regular

chain and f . Hence F̃ contains all open subsets. Secondly, consider two elements S

and T in F̃ ; and assume that

S =

e⋃

i=1

Z(Si, pi) and T =

f⋃

j=1

Z(Tj, qj).

We have

S
⋂

T =
e⋃

i=1

f⋃

j=1

(
Z(Si, pi)

⋂
Z(Tj, qj)

)
.

By Theorem 9.4.2, S
⋂

T has a regular system representation, that is to say, S
⋂

T ∈
F̃ . By induction, any finite intersection of elements of F̃ is in F̃ . Finally, we shall

prove that the complement of an element in F̃ is in F̃ . Essentially, we only need to

show that for each 1 ≤ i ≤ e, Z(Si, pi)
c is in F̃ . Indeed,

Z(Si, pi)
c = W (Si)

c
⋃

V (pi) = V (Si)
c
⋃

V (pihSi
)

is in F̃ , since both V (Si)
c and V (pihSi

) have regular system representations.

9.5 Difference Algorithms

In this section, we present an algorithm to compute the set theoretical difference of

two constructible sets given by regular systems. As mentioned in the Introduction,

a naive approach appears to be very inefficient in practice. Here we contribute a

more sophisticated algorithm, which heavily exploits the structure and properties of

regular chains.

Two procedures, Difference and DifferenceLR, are involved in order to achieve this

goal. Their specifications and pseudo-codes can be found below. The rest of this

section is dedicated to proving the correctness and termination of these algorithms.

For the pseudo-code, we use the Maple syntax. However, each of the two functions

below returns a sequence of values. Individual value or sub-sequences of the returned

sequence are thrown to the flow of output by means of an output statement. Hence

an output statement does not cause the termination of the function execution.

Algorithm 47 Difference([T, h], [T ′, h′])

Input [T, h], [T ′, h′] two regular systems.

189

Output Regular systems {[Ti, hi] | i = 1 . . . e} such that

Z(T, h) \ Z(T ′, h′) =

e⋃

i=1

Z(Ti, hi),

and rank(Ti) 6r rank(T).

Algorithm 48 DifferenceLR(L,R)

Input L := {[Li, fi] | i = 1 . . . r} and R := {[Rj, gj] | j = 1 . . . s} two lists of

regular systems.

Output Regular systems S := {[Ti, hi] | i = 1 . . . e} such that

(
r⋃

i=1

Z(Li, fi)

)
\
(

s⋃

j=1

Z(Rj, gj)

)
=

e⋃

i=1

Z(Ti, hi),

with rank(S) 6r rank(L).

To prove the termination and correctness of above two algorithms, we present a

series of technical lemmas.

Lemma 9.5.1. Let p and h be polynomials and T a regular chain. Assume that

p /∈ Sat(T). Then there exists an operation Intersect(p, T, h) returning a set of regular

chains {T1, . . . , Te} such that

(i) h is regular w.r.t Sat(Ti) for all i;

(ii) rank(Ti) <r rank(T);

(iii) Z(p, T, h) ⊆ ∪e
i=1Z(Ti, h) ⊆ (V (p) ∩W (T)) \ V (h);

(iv) Moreover, if the product of initials hT of T divides h then

Z(p, T, h) =
e⋃

i=1

Z(Ti, h).

Proof. Let

S = Triangularize(p, T),

R =
⋃

C∈S

Regularize(h, C).

190

Algorithm 47 Difference of Two Regular Systems

Difference([T, h], [T ′, h′]) ==

1: if Sat(T) = Sat(T ′) then
2: output Intersect(h′hT ′, T, hhT)
3: else
4: Let v be the largest variable s.t. Sat(T<v) = Sat(T ′

<v)
5: if v ∈ mvar(T ′) and v /∈ mvar(T) then
6: p′ ← T ′

v; output [T, hp′]
7: output DifferenceLR(Intersect(p′, T, hhT), [T ′, h′])
8: else if v /∈ mvar(T ′) and v ∈ mvar(T) then
9: p← Tv; output DifferenceLR([T, h], Intersect(p, T ′, h′hT ′))

10: else
11: p← Tv; G ← GCD(Tv, T

′
v, T<v)

12: if |G| = 1 then
13: Let (g, C) ∈ G
14: if g ∈ K then
15: output [T, h]
16: else if mvar(g) < v then
17: output [T, gh]
18: output DifferenceLR(Intersect(g, T, hhT), [T ′, h′])
19: else if mvar(g) = v then
20: if mdeg(g) = mdeg(p) then
21: D′

p ← T ′
<v ∪ {p} ∪ T ′

>v; output Difference([T, h], [D′
p, h

′hT ′]);
22: else if mdeg(g) < mdeg(p) then
23: q ← pquo(p, g, C); Dg ← C ∪ {g} ∪ T>v; Dq ← C ∪ {q} ∪ T>v

24: output Difference([Dg, hhT], [T ′, h′])
25: output Difference([Dq, hhT], [T ′, h′])
26: output DifferenceLR(Intersect(hg, T, hhT), [T ′, h′])
27: end if
28: end if
29: else if |G| ≥ 2 then
30: for (g, C) ∈ G do
31: if |C| > |T<v| then
32: for E ∈ Extend(C, T>v) do
33: for D ∈ Regularize(hhT , E) do
34: if hhT /∈ Sat(D) then output Difference([D, hhT], [T ′, h′])
35: end for
36: end for
37: else
38: output Difference([C ∪ T>v, hhT], [T ′, h′])
39: end if
40: end for
41: end if
42: end if
43: end if

191

Algorithm 48 Difference of a List of Regular Systems

DifferenceLR(L, R) ==

1: if L = ∅ then
2: output ∅
3: else if R = ∅ then
4: output L
5: else if |R| = 1 then
6: Let [T ′, h′] ∈ R
7: for [T, h] ∈ L do
8: output Difference([T, h], [T ′, h′])
9: end for

10: else
11: while R 6= ∅ do
12: Let [T ′, h′] ∈ R, R← R \ { [T ′, h′] }
13: S ← ∅
14: for [T, h] ∈ L do
15: S ← S ∪ Difference([T, h], [T ′, h′])
16: end for
17: L← S
18: end while
19: output L
20: end if

We then have

V (p) ∩W (T) ⊆
⋃

R∈R

⊆ V (p) ∩ W (T).

This implies

Z(p, T, h) ⊆
⋃

R∈R, h/∈Sat(R)

Z(R, h) ⊆ (V (p) ∩W (T)) \ V (h).

Rename the regular chains {R | R ∈ R, h /∈ Sat(R)} as {T1, . . . , Te}. By the

specification of Regularize we immediately conclude that (i), (iii) hold. Since p /∈
Sat(T), by the specification of Triangularize, (ii) holds. By Lemma 9.3.3, (iv) holds.

Lemma 9.5.2. Let [T, h] and [T ′, h′] be two regular systems. If Sat(T) = Sat(T ′),

then h′hT ′ is regular w.r.t Sat(T) and

Z(T, h) \ Z(T ′, h′) = Z(h′hT ′ , T, hhT).

Proof. Since Sat(T) = Sat(T ′) and h′hT ′ is regular w.r.t Sat(T ′), h′hT ′ is

192

regular w.r.t Sat(T). By Lemma 9.3.3 and Lemma 9.3.4, we have

Z(T, hh′hT ′) = W (T) \ V (hh′hT ′)

= W (T) \ V (hh′hT hT ′)

= W (T ′) \ V (hh′hT hT ′)

= W (T ′) \ V (hh′hT)

= Z(T ′, hh′hT).

Then, we can decompose Z(T, h) into the disjoint union

Z(T, h) = Z(T, hh′hT ′)
⊔

Z(h′hT ′ , T, hhT).

Similarly, we have:

Z(T ′, h′) = Z(T ′, hh′hT)
⊔

Z(hhT , T ′, h′hT ′).

The conclusion follows from the fact that

Z(T, hh′hT ′) \ Z(T ′, hh′hT) = ∅ and Z(h′hT ′, T, hhT) ∩ Z(T ′, h′) = ∅.

Lemma 9.5.3. Assume that Sat(T<v) = Sat(T ′
<v). We have

(i) If p′ := T ′
v is defined but not Tv, then p′ is regular w.r.t Sat(T) and

Z(T, h) \ Z(T ′, h′) = Z(T, hp′)
⊔

(Z(p′, T, hhT) \ Z(T ′, h′)) .

(ii) If p := Tv is defined but not T ′
v, then p is regular w.r.t Sat(T ′) and

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(p, T ′, h′hT ′).

Proof. (i) As init(p′) is regular w.r.t Sat(T ′
<v), it is also regular w.r.t Sat(T<v).

Since Tv is not defined, we know v /∈ mvar(T). Therefore, p′ is also regular w.r.t

Sat(T). On the other hand, we have a disjoint decomposition

Z(T, h) = Z(T, hp′)
⊔

Z(p′, T, hhT).

193

By the definition of p′, Z(T ′, h′) ⊆ V (p′) which implies

Z(T, hp′)
⋂

Z(T ′, h′) = ∅.

The conclusion follows.

(ii) Similarly, we know p is regular w.r.t Sat(T ′). By the disjoint decomposition

Z(T ′, h′) = Z(T ′, h′p)
⊔

Z(p, T ′, h′hT ′),

and Z(T, h) ∩ Z(T ′, h′p) = ∅, we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(p, T ′, h′hT ′),

from which the conclusion follows.

Lemma 9.5.4. Assume that Sat(T<v) = Sat(T ′
<v) but Sat(T6v) 6= Sat(T ′

6v) and that

v is algebraic w.r.t both T and T ′. Define

G = GCD(Tv, T
′
v, T<v);

E =
⋃

(g,C)∈G, |C|>|T<v|

Extend(C, T>v);

R =
⋃

E∈E

Regularize(hhT , E).

Then we have

(i)

Z(T, h)

=




⋃

R∈R, hhT /∈Sat(R)

Z(R, hhT)



⋃



⋃

(g,C)∈G, |C|=|T<v|

Z(C ∪ T>v, hhT)


 .

(ii) rank(R) <r rank(T), for all R ∈ R.

(iii) Assume that |C| = |T<v|. Then

(iii.a) C ∪ T>v is a regular chain and hhT is regular w.r.t it.

(iii.b) If |G| > 1, then rank(C ∪ T>v) <r rank(T).

194

Proof. By the specification of GCD we have

W (T<v) ⊆
⋃

(g,C)∈G

W (C) ⊆ W (T<v).

That is,

W (T<v)
D−→ (W (C), (g, C) ∈ G).

From the specification of Extend we have: for each (g, C) ∈ G such that |C| > |T<v|,

W (C ∪ T>v)
D−→ (W (E), E ∈ Extend(C ∪ T>v)).

From the specification of Regularize, we have for all (g, C) ∈ G such that |C| > |T<v|
and all E ∈ Extend(C ∪ T>v),

W (E)
D−→ (W (R), R ∈ Regularize(hhT , E)) .

Therefore, by applying the Lifting Theorem [108] we have:

W (T) = W (T<v ∪ T>v)

⊆
(
⋃

R∈R

W (R)

)
⋃



⋃

(g,C)∈G, |C|=|T<v|

W (C ∪ T>v)




⊆ W (T<v ∪ T>v)

= W (T),

which implies,

Z(T, h) = Z(T, hhT)

⊆




⋃

R∈R, hhT /∈Sat(R)

Z(R, hhT)



⋃



⋃

(g,C)∈G, |C|=|T<v|

Z(C ∪ T>v, hhT)




⊆ W (T) \ V (hhT) = Z(T, h).

So (i) holds. When |G| > 1, by Notation 9.3.9, (ii) and (iii.b) hold.

If |C| = |T<v|, by Proposition 5 of [108], we conclude that (iii.a) holds.

Lemma 9.5.5. Assume that Sat(T<v) = Sat(T ′
<v) but Sat(T6v) 6= Sat(T ′

6v) and that

195

v is algebraic w.r.t both T and T ′. Define p = Tv, p′ = T ′
v and

G = GCD(p, p′, T<v).

If |G| = 1, let G = {(g, C)}. Then the following properties hold

(i) C = T<v.

(ii) If g ∈ K, then

Z(T, h) \ Z(T ′, h′) = Z(T, h).

(iii) If g /∈ K and mvar(g) < v, then g is regular w.r.t Sat(T) and

Z(T, h) \ Z(T ′, h′)

= Z(T, gh)
⊔

(Z(g, T, hhT) \ Z(T ′, h′)) .

(iv) Assume that mvar(g) = v.

(iv.a) If mdeg(g) = mdeg(p), defining

q′ = pquo(p′, p, T ′
<v)

D′
p = T ′

<v ∪ {p} ∪ T ′
>v

D′
q′ = T ′

<v ∪ {q′} ∪ T ′
>v,

then we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′),

rank(D′
p) < rank(T ′) and h′hT ′ is regular w.r.t Sat(D′

p).

(iv.b) If mdeg(g) < mdeg(p), defining

q = pquo(p, g, T<v)

Dg = T<v ∪ {g} ∪ T>v

Dq = T<v ∪ {q} ∪ T>v,

then we have: Dg and Dq are regular chains such that rank(Dg) < rank(T),

196

rank(Dq) < rank(T), hhT is regular w.r.t Sat(Dg) and Sat(Dq), and

Z(T, h) = Z(Dg, hhT)
⋃

Z(Dq, hhT)
⋃

Z(hg, T, hhT).

Proof. Since |G| = 1, by the specification of the operation GCD and Notation

1, (i) holds. Therefore we have

Sat(C) = Sat(T<v) = Sat(T ′
<v) (9.1)

There exist polynomials A and B such that

g ≡ Ap + Bp′ mod Sat(C). (9.2)

From (9.2), we have

V (Sat(C)) ⊆ V (g − Ap− Bp′) (9.3)

Therefore, we deduce

W (T)
⋂

W (T ′)

= W (T<v ∪ p ∪ T>v)
⋂

W (T ′
<v ∪ p′ ∪ T ′

>v)

⊆ (W (T<v) ∩ V (p))
⋂

(W (T ′
<v) ∩ V (p′))

⊆ V (Sat(T<v))
⋂

V (p)
⋂

V (p′) by (9.1)

⊆ V (g − Ap− Bp′)
⋂

V (p)
⋂

V (p′) by (9.3)

⊆ V (g).

that is

W (T)
⋂

W (T ′) ⊆ V (g). (9.4)

Now we prove (ii). When g ∈ K, g 6= 0, from (9.4) we deduce

W (T)
⋂

W (T ′) = ∅. (9.5)

197

Thus we have

Z(T, h) \ Z(T ′, h′)

= (W (T) \ V (h)) \ (W (T ′) \ V (h′))

= (W (T) \ V (h)) by (9.5)

= Z(T, h).

Now we prove (iii). Since C = T<v and mvar(g) is smaller than or equal to v, by the

specification of GCD, g is regular w.r.t Sat(T). We have following decompositions

Z(T, h) = Z(T, gh)
⊔

Z(g, T, hhT),

Z(T ′, h′) = Z(T ′, gh′)
⊔

Z(g, T ′, h′hT ′).

On the other hand,

Z(T, gh)
⋂

Z(T ′, gh′)

= (W (T) ∩ V (gh)c)
⋂

(W (T ′) ∩ V (gh′)c)

⊆ (W (T) ∩ V (g)c)
⋂

(W (T ′) ∩ V (g)c)

= (W (T) ∩W (T ′))
⋂

V (g)c

= ∅ by (9.4).

Therefore,

Z(T, h) \ Z(T ′, h′)

= (Z(T, gh) \ Z(T ′, gh′))
⊔

(Z(g, T, hhT) \ Z(T ′, h′))

= Z(T, gh)
⊔

(Z(g, T, hhT) \ Z(T ′, h′)) .

Now we prove (iv.a). First, both h′ and h′
T are regular w.r.t Sat(C) = Sat(T<v) =

Sat(T ′
<v). From the construction of D′

p, we have h′hT ′ is regular w.r.t Sat(D′
p).

Assume that mvar(g) = v and mdeg(g) = mdeg(p). We note that mdeg(p′) >

mdeg(p) holds. Otherwise we would have mdeg(g) = mdeg(p) = mdeg(p′) which

implies:

p ∈ Sat(T ′
>v) and p′ ∈ Sat(T>v). (9.6)

198

Thus

Sat(T6v) = 〈T6v〉 : h∞
T6v

= 〈T<v ∪ p〉 : h∞
T6v

⊆ Sat(T ′
6v) : h∞

T6v
by (9.6)

= Sat(T ′
6v),

that is Sat(T6v) ⊆ Sat(T ′
6v). Similarly, Sat(T ′

6v) ⊆ Sat(T6v) holds. So we have

Sat(T ′
6v) = Sat(T6v), a contradiction.

Hence, mvar(q′) = v.

By Lemma 6 [108], we know that D′
p and D′

q′ are regular chains. Then with

Theorem 7 [108] and Lifting Theorem [108], we know

Z(T ′, h′) ⊆ Z(D′
p, h

′)
⋃

Z(D′
q′ , h

′)
⋃

Z(hp, T
′, h′)

⊆ W (T ′) \ V (h′).

By Lemma 9.3.3, we have

Z(T ′, h′) = Z(D′
p, h

′hT ′)
⋃

Z(D′
q′, h

′hT ′)
⋃

Z(hp, T
′, h′hT ′).

Since

Z(D′
q′, h

′hT ′) = Z(D′
q′, hph

′hT ′)
⋃

Z(hp, D
′
q′, h

′h′
T)

= Z(D′
q′, phph

′hT ′)
⋃

Z(p, D′
q′, hph

′h′
T)
⋃

Z(hp, D
′
q′, h

′h′
T)

and

Z(p, D′
q′, hph

′h′
T) ⊆ Z(D′

p, h
′hT ′)

Z(hp, D
′
q′, h

′h′
T) ⊆ Z(hp, T

′, h′hT ′),

we deduce

Z(T ′, h′) = Z(D′
p, h

′hT ′)
⊔

Z(D′
q′, ph

′hT ′)
⊔

Z(hp, T
′, h′hT ′).

199

Now observe that

Z(T, h)
⋂

Z(D′
q′, ph

′hT ′) = ∅, and

Z(T, h)
⋂

Z(hp, T
′, h′hT ′) = ∅.

We obtain

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′).

Finally we prove (iv.b). We assume that mvar(g) = v and mdeg(g) < mdeg(p);

this implies mvar(q) = v. Applying Lemma 6 in [108] we know that Dg and Dq are

regular chains and satisfy the desired rank condition. Then by Theorem 7 [108] and

Lifting Theorem [108] we have

Z(T, h) = Z(Dg, hhT)
⋃

Z(Dq, hhT)
⋃

Z(hg, T, hhT).

This completes the whole proof.

Definition 9.5.6. Given two pairs of ranks (rank(T1), rank(T ′
1)) and

(rank(T2), rank(T ′
2)), where T1, T2, T

′
1, T

′
2 are triangular sets. We define the

product order <p of Ritt order <r on them as follows

(rank(T2), rank(T ′
2)) <p (rank(T1), rank(T ′

1))

⇐⇒
{

rank(T2) <r rank(T1) or

rank(T2) = rank(T1), rank(T ′
2) <r rank(T ′

1).

In the following theorems, we prove the termination and correctness separately.

Along with the proof of Theorem 9.5.7, we show the rank conditions are satisfied

which is part of the correctness. The remained part, say zero set decomposition, will

be proved in Theorem 9.5.8.

Theorem 9.5.7. Algorithms Difference and DifferenceLR terminate and satisfy the

rank conditions in their specifications.

Proof. The following two statements need to be proved

(i) Difference terminates with rank(Difference([T, h], [T ′, h′])) 6r rank([T, h]),

(ii) DifferenceLR terminates with rank(DifferenceLR(L,R)) 6r rank(L).

We prove them by induction on the product order <p.

200

(1) Base case: there are no recursive calls to Difference or DifferenceLR. The ter-

mination of both algorithms is clear. By line 2, 18 of the algorithm Difference,

rank(Difference([T, h], [T ′, h′])) 6r rank([T, h]). By line 2, 4 of the algorithm

DifferenceLR, rank(DifferenceLR(L,R)) 6r rank(L).

(2) Induction hypothesis: assume that both (i) and (ii) hold with inputs whose

ranks are smaller than the rank of ([T, h], [T ′, h′]) w.r.t. <p.

(3) By (1), if no recursive calls occur in one branch, then (i) and (ii) already

hold. When recursive calls occur, by line 8, 11, 21, 25, 30, 31, 32, 41, 46 and

Lemma 9.5.1, 9.5.3, 9.5.4, 9.5.5, we know the inputs of recursive calls to both

Difference and DifferenceLR have smaller ranks than rank(([T, h], [T ′, h′])) w.r.t

<p. By induction hypothesis, (i) holds. Finally, by line 8, 15 of algorithm

DifferenceLR and (i), (ii) holds.

Theorem 9.5.8. Both Difference and DifferenceLR satisfy their specifications.

Proof. By Theorem 9.5.7, Difference and DifferenceLR terminate and sat-

isfy their rank conditions. So it suffices to prove the correctness of Difference and

DifferenceLR, that is

(i) Z(T, h) \ Z(T ′, h′) = Z(Difference([T, h], [T ′, h′])),

(ii) Z(L) \ Z(R) = Z(DifferenceLR(L,R)).

We prove them by induction on the product order <p.

(1) Base case: no recursive calls to Difference and DifferenceLR occur. First, by

line 2, 15 of the algorithm Difference and Lemma 9.5.1, 9.5.2, 9.5.5, (i) holds.

Second, by line 2, 4 of the algorithm DifferenceLR, (ii) holds.

(2) Induction hypothesis: assume that both (i) and (ii) hold with inputs whose

ranks are smaller than the rank of ([T, h], [T ′, h′]) w.r.t. <p.

(3) By (1), if no recursive calls occur, (i) and (ii) already hold. When there are

recursive calls, we first show (i) holds. From the proof of Theorem 9.5.7, in

Difference, the inputs of recursive calls to Difference and DifferenceLR will have

smaller ranks w.r.t. the product order <p. Therefore, by (2), line 6, 7, 9, 17,

18, 21, 24, 25, 26, 34, 38 and Lemma 9.5.1, 9.5.3, 9.5.4, 9.5.5, (i) holds.

Finally, by (i) and line 5− 18 of algorithm DifferenceLR, (ii) holds.

201

9.6 Verification of Triangular Decompositions

In this section, we describe how to verify the output from a triangular decomposition.

Verification in Kalkbrener’s sense is still unknown whether we can circumvent Gröbner

basis computations. However, in Lazard’s sense, we will present both Gröbner basis

and triangular decomposition methods.

9.6.1 Verification with Gröbner bases

The following two lemmas state the Gröbner basis methods to verify whether two

basic constructible sets are equal or not.

Lemma 9.6.1. Let {F, f} and {G0, g0} be two polynomial systems. The following

statements are equivalent

1. D(F, f) \D(G0, g0) ⊆
⋃r

i=1 D(Gi, gi).

2. For every {i1, . . . , is} ⊆ {0, . . . , r}, 0 ≤ s ≤ r,

√
〈F ∪ {gi1 , . . . , gis}〉 ⊇

∏

k∈{0,...,r}\{i1,...,is}

〈f〉〈Gk〉. (9.7)

Proof. (1) is equivalent to D(F, f) ⊆ ⋃r
i=0 D(Gi, gi).

D(F, f)
⋂
(

e⋂

i=0

D(Gi, gi)
c

)
= ∅.

Using the distributive property, we deduce that (1) is equivalent to

(
D(F, f)

⋂
V (gi1, . . . , gis)

)⋂



⋂

k∈{0,...,r}\{i1,...,is}

V (Gk)
c


 = ∅,

for all subsets {i1, . . . , is} of {0, . . . , r}. The proof easily follows.

Lemma 9.6.2. Let {F, f} and {G, g} be two polynomial systems. The following

statements are equivalent

1. D(F, f) \D(G, g) ⊇ ⋃r
i=1 D(Hi, hi).

2. For all 1 ≤ i ≤ r, we have

hig ∈
√
〈Hi ∪G〉, hi ∈

√
〈Hi, f〉, and 〈hi〉〈F 〉 ⊂

√
〈Hi〉. (9.8)

202

Proof. (1) holds if and only if for each 1 ≤ i ≤ r we have

{
D(Hi, hi)

⋂
D(F, f)c = ∅,

D(Hi, hi)
⋂

D(G, g) = ∅,

which holds if and only if






V (Hi)
⋂

V (hi)
c
⋂

V (F)c = ∅,
V (Hi)

⋂
V (hi)

c
⋂

V (f) = ∅,
V (Hi)

⋂
V (hi)

c
⋂

V (G)
⋂

V (g)c = ∅.

The proof easily follows.

9.6.2 Verification with Triangular Decompositions

Given two Lazard’s triangular decompositions {Ti | i = 1 . . . e} and {Sj | j = 1 . . . f}.
Checking ∪e

i=1W (Ti) = ∪f
j=1W (Sj) amounts to checking both

(
e⋃

i=1

W (Ti)

)
\
(

f⋃

j=1

W (Sj)

)
and

(
f⋃

j=1

W (Sj)

)
\
(

e⋃

i=1

W (Ti)

)

being empty, after computing the regular system representations of above two con-

structible sets. According to Lemma 9.3.8, we solve the verification problem with the

algorithm DifferenceLR in Lazard’s sense.

9.7 Experimentation

We have implemented a verifier, named Diff-verifier, according to the DifferenceLR

algorithm proposed in Section 9.5, and it has been implemented in Maple 11 based

on the RegularChains library. To verify the effectiveness of our Diff-verifier, we have

also implemented another verifier, named GB-verifier, applying Lemma 9 and 10, on

top of the PolynomialIdeals package in Maple 11.

We use these two verifiers to examine four polynomial system solvers herein. They

are the Triangularize function in the RegularChains library [91], the Triade server

in Aldor, written with the BasicMath library [132], the RegSer function and the

SimSer function in Epsilon [136] implemented in Maple. The first two solvers solve

a polynomial system into regular chains by means of the Triade algorithm [108]. They

can work in both Lazard’s sense and Kalkbrener’s sense. In this work, we use the

203

options for solving in Lazard’s sense. The RegSer function decomposes a polynomial

system into regular systems in the sense of [135], and the SimSer function decomposes

a polynomial system into simple systems, as in [139].

The problems used in this benchmark are chosen from [104, 128, 136]. In Table 9.1,

for each system, we give the dimension sequence of the triangular decomposition

computed in Kalkbrener’s sense by the Triade algorithm. The number of variables is

denoted by n, and d is the maximum degree of a monomial in the input. We also

give the number of components in the solution set for each of the methods we are

studying.

Table 9.2 gives the timing of each problem solved by the four methods. In this

study, due to the current availability of Epsilon, the timings obtained by the RegSer

and the SimSer commands are performed in Maple 8 on Intel Pentium 4 machines

(1.60GHz CPU, 513MB memory and Red Hat Linux 3.2.2-5). All the other timings

are run on Intel Pentium 4 (3.20GHz CPU, 2.0GB total memory, and Red Hat 4.0.0-

9), and the Maple version used is 11. The Triade server is a stand-alone executable

program compiled from a program in Aldor.

Table 9.3 summarizes the timings of GB-verifier for verifying the solutions of the

four methods. Table 9.3 illustrates the timings of Diff-verifier for checking the solu-

tions by Maple Triangularize against Aldor Triade server, Maple Triangularize

against Epsilon RegSer, and Epsilon RegSer against Epsilon SimSer. For the case

where there is a time, the verifying result is also true. The ′−′ denotes the case where

the test stalls by either reaching the time limit of 43200 seconds or causing a memory

failure.

This experimentation results illustrate that verifying a polynomial solver is a truly

difficult task. The GB-verifier is very costly in terms of CPU time and memory. It

only succeeds for some easy examples. Assuming that the GB-verifier is reliable, for

the examples it succeeds, the Diff-verifier agrees with its results by pair-wise checking,

while it takes much less time. This shows the efficiency of our Diff-verifier. Further

more, the tests also show that the Diff-verifier can verify more difficult problems by

pair-wise checking. The tests indicate that all of the four methods are solving tools

with a high probability of correctness, since the checking results would not agree with

each other otherwise.

204

Number of Components
Maple Aldor Epsilon Epsilon

Sys Name n d Dimension Triangularize Triade server RegSer SimSer
1 Montes S1 4 2 [2,2,1] 3 3 3 3
2 Montes S2 4 3 [0] 1 1 1 1
3 Montes S3 3 3 [1,1] 2 2 2 3
4 Montes S4 4 2 [0] 1 1 1 1
5 Montes S6 4 3 [2,2,2] 3 3 3 3
6 Montes S7 4 3 [1] 2 2 3 6
7 Montes S8 4 12 [2,1] 2 2 6 6
8 Alonso 7 4 [3] 3 3 3 4
9 Raksanyi 8 3 [4] 4 4 4 10

YangBaxter
10 Rosso 6 3 [4,3,3,1,1,1,1] 7 7 4 13

[0,0,0,0,0,0,
11 l-3 4 3 0,0,0,0,0,0,0] 25 13 8 8
12 Caprasse 4 4 [0,0,0,0,0] 15 5 4 4
13 Reif 16 3 [] 0 0 0 0

Buchberger
14 WuWang 5 3 [2] 3 3 3 4
15 DonatiTraverso 4 31 [1] 6 3 3 3
16 Wu-Wang.2 13 3 [1,1,1,1,1] 5 5 5 5
17 Hairer-2-BGK 13 4 [2] 4 4 5 6
18 Montes S5 8 3 [4] 4 4 4 10
19 Bronstein 4 3 [1] 4 2 4 9
20 Butcher 8 4 [3,3,3,2,2,0] 7 6 6 6
21 genLinSyst-2-2 8 2 [6] 11 11 11 11
22 genLinSyst-3-2 11 2 [8] 17 18 18 18
23 Gerdt 7 4 [3,2,2,2,1,1] 7 6 10 10
24 Wang93 5 3 [1] 5 4 6 7
25 Vermeer 5 5 [1] 5 4 12 14
26 Gonnet 5 2 [3,3,3] 3 3 9 9
27 Neural 4 3 [1,1] 4 3 – –
28 Noonburg 4 3 [1,1] 4 3 – –

[12,12,11,
29 KdV 1 0 11,11,11,11] 7 7 – –
30 Montes S12 8 2 [4] 22 17 23 –

[6,6,6,6,6,
31 Pappus 12 2 6,6,6,6,6] 124 129 156 –

Table 9.1: Features of the Polynomial Systems for Verification

205

Maple Aldor Epsilon Epsilon
Sys Triangularize Triade server RegSer SimSer

1 0.104 0.164 0.01 0.03
2 0.039 0.204 0.03 0.02
3 0.069 0.06 0.019 0.111
4 0.510 0.072 0.049 0.03
5 0.052 0.096 0.03 0.03
6 0.150 0.06 0.09 5.14
7 0.376 0.072 0.2 1.229
8 0.204 0.065 0.109 0.16
9 0.460 0.066 0.141 0.481
10 1.252 0.108 0.069 0.21
11 5.965 0.587 1.53 2.91
12 2.426 0.167 1.209 2.32
13 123.823 1.886 1.979 2.36
14 0.2 0.101 0.049 0.109
15 2.641 0.08 0.439 0.7
16 105.835 1.429 5.49 6.14
17 23.453 0.688 1.76 1.679
18 0.484 0.078 0.13 0.471
19 0.482 0.071 0.24 1.000
20 9.325 0.442 1.689 2.091
21 0.557 0.096 0.13 0.21
22 1.985 0.173 0.431 0.411
23 4.733 0.499 3.5 4.1
24 7.814 5.353 2.18 30.24
25 26.533 0.580 4.339 60.65
26 3.983 0.354 2.18 2.48
27 15.879 1.567 – –
28 15.696 1.642 – –
29 9245.442 49.573 – –
30 17.001 0.526 2.829 –
31 79.663 4.429 11.78 –

Table 9.2: Solving Timings in Seconds of the Four Methods

206

GB-verifier timing(s) Diff-verifier timing(s)

Maple Aldor Epsilon Epsilon M.T. M.T. E.R.
Triangularize Triade server RegSer SimSer vs vs vs

sys (M.T.) (A.T.) (E.R.) (E.S.) A.T. E.R. E.S.

1 0.556 0.526 0.518 0.543 0.58 0.439 0.445
2 0.128 0.127 0.129 0.131 0.039 0.02 0.013
3 0.584 0.575 0.585 2.874 0.182 0.108 0.427
4 0.104 0.133 0.139 0.137 0.037 0.027 0.023
5 1.484 1.472 1.457 1.469 0.591 0.339 0.356
6 76.596 72.374 71.853 – 7.204 5.268 15.334
7 0.616 0.601 4.501 4.536 0.573 0.758 1.017
8 – – – – 1.196 1.564 2.618
9 – – – – 5.442 9.837 18.252
10 – – – – 10.888 22.638 22.649
11 – – – – 14.652 4.541 3.585
12 – 58.332 33.469 35.213 2.52 2.398 3.113
13 – – – – 0 0 0
14 1.96 1.937 2.165 5.739 0.924 0.915 1.155
15 330.317 – – – 2.244 4.782 4.201
16 10466.587 – – – 4.34 4.408 3.207
17 – – – – 6.348 6.109 15.719
18 – – – – 5.32 10.485 17.897
19 1.544 0.717 5.046 – 7.838 7.986 43.506
20 – – – – 13.04 10.218 9.978
21 – – – – 10.872 15.098 11.048
22 – – – – 61.147 48.865 32.184
23 – – – – 11.144 15.981 16.222
24 – – – – 1564.654 1918.968 870.962
25 – – – – 2144.726 – 2182.401
26 – – – – 3.839 6.041 9.550
27 11383.335 – – – 1088.563 – –
28 – – – – 1119.449 – –
29 – – – – 30.016 – –
30 – – – – – – –
31 – – – – – – –

Table 9.3: Timings of GB-verifier and Diff-verifier

207

Chapter 10

Conclusions and Future Work

10.1 Conclusions

By fast algorithms, modular methods, parallel approaches and software engineering,

we aim at improving the theoretical and practical efficiency for solving non-linear

polynomial systems symbolically by way of triangular decompositions.

We have extended fast algorithms for polynomial addition, multiplication, GCD

and quasi-inverse over field to direct products of fields presented by triangular sets.

Our complexity analysis proves that they have quasi-linear time complexity (i.e.

nearly-optimal). They are fundamental operations for polynomial arithmetic for com-

puting triangular decompositions. If they are implemented efficiently, it will speedup

significantly the computations for triangular decompositions.

The equiprojectable decomposition that we introduced here is canonical and has

good computational properties. Our modular method based on Hensel lifting tech-

niques is designed for solving systems with a finite number of solutions. The complex-

ity is proved to be quasi-linear. The implementation and experimental results show

its capability for solving difficult problems which are impossible for other solvers.

This work also provides functionalities (as a byproduct) for linear algebra over non-

integral domains and automatic case discussion. The next step is to extend this

modular method to treat systems with infinite number of solutions.

We believe that our implementation experience in making a symbolic solver avail-

able to different communities of users can benefit other algorithms in this area. The

tools for efficiently computing irredundant triangular decompositions and verifying

the outputs of solvers are useful for both developers and users.

Symbolic methods are powerful tools in scientific computing. The implementation

of these methods is still a highly difficult task. Using parallel and distributed comput-

208

ing to gain practical efficiency for solving polynomial systems is a promising direction.

Our implementation for the component-level parallelization of the Triade algorithm

demonstrates a certain degree of speedup for solving some well-known problems, how-

ever we have noticed the limited parallelism by nature in this coarse grained level.

Our implementation also indicates that the parallel overhead of multi-processing and

data communication cannot be neglected. One of our research plans is to achieve

efficient multi-level parallelization of triangular decompositions and develop libraries

for fast and parallel polynomial arithmetic. Some details of this plan are reported in

the next section.

10.2 Towards Efficient Multi-level Parallelization

of Triangular Decompositions

The field of computer algebra has reached the stage where algorithms for polynomial

systems on high performance architectures are of great interest. This contrasts sharply

with the state of affairs of only a few years ago, where the computational complexity

of known algorithms made treatment of large problems infeasible. Our proposed

research in the near future is to extend the approach of this thesis into three promising,

strongly-related areas:

• to design a suitable high-level categorical framework for computer algebra that

can be efficiently specialized to important parallel environments and, within

this,

• to explore techniques for polynomial arithmetic on clusters of multi-core pro-

cessors and determine a suitable set of primitives for multivariate polynomials,

akin to BLAS [130] and LinBox [114] and parallel systems [45, 78] for linear

algebra, to allow effective definitions on different parallel architectures, and to

use this

• to develop algorithms with multiple levels of parallelization for multivariate

systems.

We shall use the Aldor programming language as the implementation vehicle, since

it has high-level categorical support for generic algorithms in computer algebra, while

providing the necessary low-level access for high performance computing. These fea-

tures are some of what Fortress is attempting to build for Fortran.

209

In this thesis study, we have noticed that the heavy overhead from dynamic process

management and data communication can be a bottleneck for an efficient parallel

execution. In fact, this is an important challenge for parallel symbolic computations

in general. It is also the case that our coarse-grained tasks are highly irregular and

problem dependent. In many occasions a few heavy tasks dominate the computing

time.

The first objective of our future work is to adapt a thread model for Aldor,

as has been done for SACLIB [84, 121] and KAAPI [74, 59]. Threads allow the

right level of granularity for parallel symbolic computation, but the Aldor run-

time system must be altered to take advantage of threads where possible (e.g. in

its garbage collector [33]), and must be revised in some places for thread safety.

Other than concurrency control issues, we must ensure that parametric types, such

as polynomial data types, are properly treated.

Since parallel applications in computer algebra are generally dynamic and irreg-

ular, we must provide scheduling mechanism for threads in Aldor to achieve load

balancing. We will apply the provably efficient ”work-stealing” scheduling algorithm

based on the ”work first principle” [18, 56] to support automatic scheduling for threads

in Aldor, as it has been used in Cilk [89] and KAAPI. Of course, we shall also provide

support for data locality and adaptivity on multiprogrammed environment.

The second objective is to use this platform to develop a library for parallel

and fast polynomial arithmetic, and to use it to investigate multi-level parallel al-

gorithms for triangular decompositions of polynomial systems. We plan to investi-

gate combining coarse grained level for tasks to compute geometric of the solution

sets, and medium/fine grained level for polynomial arithmetic such as multiplica-

tion, GCD/resultant, and factorization. Parallel polynomial arithmetic over fields

for linear algebra and univariate polynomials are well-developed. We need to extend

these methods to the multivariate case over more general domains with potential of

automatic case discussion.

The software resulting from this work should help solve application problems usu-

ally out of reach for other symbolic solvers. The parallel framework and the library

for multivariate polynomial arithmetic will benefit other algorithms in symbolic com-

putations in adapting emerging architectures.

210

Bibliography

[1] W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. American

Mathematical Society, 1994.

[2] I. A. Ajwa. Parallel algorithms and implementations for the Gröbner Bases Al-

gorithm and the Characteristic Set Method. PhD thesis, Kent State University,

Kent, Ohio, 1998.

[3] aldor.org. The Aldor compiler web site. University of Western Ontario, Canada,

2007. http://www.aldor.org.

[4] Argonne National Laboratory. MPICH2.

http://www-unix.mcs.anl.gov/mpi/mpich2/.

[5] E. A. Arnold. Modular algorithms for computing Gröbner bases. J. Symb.

Comp., 35(4):403–419, 2003.

[6] T. Ashby and A. K. M. O’Boyle. A modular iterative solver package in a

categorical language. In LNCS vol.47, pages 123–132, 1993.

[7] G. Attardi and C. Traverso. Strategy-accurate parallel Buchberger algorithms.

Journal of Symbolic Computation, 21(4):411–425, 1996.

[8] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.

J. Symb. Comp., 28(1-2):105–124, 1999.

[9] P. Aubry and M. Moreno Maza. Triangular sets for solving polynomial systems:

A comparative implementation of four methods. J. Symb. Comp., 28(1-2):125–

154, 1999.

[10] P. Aubry and A. Valibouze. Using Galois ideals for computing relative resol-

vents. J. Symb. Comp., 30(6):635–651, 2000.

211

[11] J. Backelin and R. Fröberg. How we proved that there are exactly 924 cyclic

7-roots. In S. M. Watt, editor, Proc. ISSAC’91, pages 103–111. ACM, 1991.

[12] E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The shape of the shape

lemma. In Proc. of ISSAC94, pages 129–133, New York, NY, USA, 1994. ACM

Press.

[13] T. Becker and V. Weispfenning. Gröbner Bases: a computational approach to

commutative algebra, volume 141 of Graduate Texts in Mathematics. Springer

Verlag, 1991.

[14] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Technical

Journal, 46:1853–1859, 1967.

[15] E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics

of Computation, 24(7):713–735, 1970.

[16] D. J. Bernstein. Faster factorization into coprimes. .

http://cr.yp.to/papers.html$\#$dcba2, 2004.

[17] D. J. Bernstein. Factoring into coprimes in essentially linear time. J. Algorithms,

54(1):1–30, 2005.

[18] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. In IEEE FOCS94, 1994.

[19] F. Boulier, L. Denis-Vidal, T. Henin, and F. Lemaire. Lépisme. In International

Conference on Poynomial System Solving. University of Paris 6, France, 2004.

[20] F. Boulier and F. Lemaire. Computing canonical representatives of regular

differential ideals. In proceedings of ISSAC 2000, pages 37–46, St Andrews,

Scotland, 2000. ACM Press.

[21] F. Boulier, F. Lemaire, and M. Moreno Maza. PARDI ! Technical Report LIFL

2001–01, Université Lille I, LIFL, 2001.

[22] F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems on trian-

gular systems and the D5 principle. In Proc. of Transgressive Computing 2006,

Granada, Spain, 2006.

[23] R. Bradford. A parallelization of the Buchberger algorithm. In Proc. of IS-

SAC90, New York, NY, USA, 1990. ACM Press.

212

[24] R. Brent, F. Gustavison, and D. Yun. Fast solution of Toeplitz systems of

equations and computations of Padé approximants. Journal of Algorithms,

1:259–295, 1980.

[25] P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morisson, J. M. Steinbach, R. S.

Sutor, and S. M. Watt. AXIOM Library Compiler User Guide. NAG, The

Numerical Algorithms Group Limited, Oxford, United Kingdom, 1st edition,

November 1994. AXIOM is a registered trade mark of NAG.

[26] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-

lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Univer-

sity of Innsbruck, 1965.

[27] R. Bündgen, M. Göbel, and W. Küchlin. A fine-grained parallel completion

procedure. In ISSAC ’94: Proceedings of the international symposium on Sym-

bolic and algebraic computation, pages 269–277, New York, NY, USA, 1994.

ACM Press.

[28] D. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary

algebras. Acta Informatica, 28:693–701, 1991.

[29] S. Chakrabarti and K. Yelick. Distributed data structures and algorithms for

Gröbner basis computation. LISP AND SYMBOLIC COMPUTATION: An

International Journal, 7:147–172, 1994.

[30] C. Chen, F. Lemaire, O. Golubitsky, M. Moreno Maza, and W. Pan. Compre-

hensive triangular decomposition. In Proc. of CASC’07. Springer, 2007.

[31] C. Chen, F. Lemaire, M. Moreno Maza, W. Pan, and Y. Xie. Efficient com-

putations of irredundant triangular decompositions with the regularchains

library. Proc. of CASA2007, 2007.

[32] C. Chen, M. M. Maza, W. Pan, and Y. Xie. On the verification of polynomial

system solvers. In Proceedings of AWFS 2007, 2007.

[33] Y. Chicha and S. M. Watt. A localized tracing scheme applied to garbage

collection. In APLAS 2006, 2006.

[34] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Spinger-

Verlag, 1st edition, 1992.

213

[35] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Spinger-

Verlag, 2nd edition, 1997.

[36] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Graduate Text in

Mathematics, 185. Springer-Verlag, New-York, 1998.

[37] X. Dahan, M. Moreno Maza, W. W. É. Schost, and Y. Xie. On the complexity

of the D5 principle. Poster, ISSAC 2005, 2005.

[38] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Equiprojectable

decompositions of zero-dimensional varieties. In A. Valibouze, editor, Interna-

tional Conference on Poynomial System Solving. University of Paris 6, France,

2004.

[39] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques

for triangular decompositions. In ISSAC’05, pages 108–115. ACM Press, 2005.

[40] X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. The complexity of the

Split-and-Merge algorithm. In preparation.

[41] X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the

D5 principle. In Proc. of Transgressive Computing 2006, Granada, Spain, 2006.

[42] X. Dahan and É. Schost. Sharp estimates for triangular sets. In ISSAC 04,

pages 103–110. ACM, 2004.

[43] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for com-

puting in algebraic number fields. In Proc. EUROCAL 85 Vol. 2, volume 204

of Lect. Notes in Comp. Sci., pages 289–290. Springer-Verlag, 1985.

[44] S. Dellière. Triangularisation de systèmes constructibles. Application à

l’évaluation dynamique. PhD thesis, Université de Limoges, 1999.

[45] A. Dı́az, M. Hitz, E. Kaltofen, A. Lobo, and T. Valente. Process scheduling

in DSC and the large sparse linear systems challenge. JSC, 19(1–3):269–282,

1995.

[46] A. Dı́az and E. Kaltofen. FoxBox: a system for manipulating symbolic objects

in Black Box representation. In Proc. ISSAC’98, pages 30–37, 1998.

[47] L. Donati and C. Traverso. Experimenting the Gröbner basis algorithm with

the ALPI system. In Proc. ISSAC’89, pages 192–198. ACN Press, 1989.

214

[48] D. Duval. Questions Relatives au Calcul Formel avec des Nombres Algébriques.

Université de Grenoble, 1987. Thèse d’État.

[49] D. Duval. Algebraic numbers: an example of dynamic evaluation. J. Symb.

Comp., 18(5):429–446, November 1994.

[50] D. Eisenbud. Commutative Algebra. Graduate Text in Mathematics, 150.

Springer-Verlag, New-York, 1994.

[51] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry.

Springer-Verlag, New York-Berlin-Heidelberg, 1995.

[52] J.-C. Faugère. Parallelization of Gröbner bases. In Proc. PASCO’94. World

Scientific Publishing Company, 1994.

[53] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases. J. Pure

and Appl. Algebra, 139(1-3):61–88, 1999.

[54] A. Filatei, X. Li, M. Moreno Maza, and É. Schost. Implementation techniques

for fast polynomial arithmetic in a high-level programming environment. In

Proc. ISSAC’06, pages 93–100. ACM Press, 2006.

[55] M. Foursov and M. Moreno Maza. On computer-assisted classification of cou-

pled integrable equations. J. Symb. Comp., 33:647–660, 2002.

[56] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5

multithreaded language. In ACM SIGPLAN, 1998.

[57] J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, 1999.

[58] T. Gautier and N. Mannhart. Parallelism in Aldor – the communication library
∏IT for parallel, distributed computation. In ACPC-2, LNCS vol.734, pages

204–218, 1998.

[59] T. Gautier, J. Roch, and F. Wagner. Fine grained distributed implementation of

a language with provable performance. In Proceedings of ICCS2007/PAPP2007,

May 2007.

[60] T. Gautier and J.-L. Roch. NC2 computation of gcd-free basis and application

to parallel algebraic numbers computation. In PASCO ’97: Proceedings of the

215

second international symposium on parallel symbolic computation, pages 31–37.

ACM Press, 1997.

[61] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra.

Kluwer Academic Publishers, 1999.

[62] P. Gianni, B. Trager, and G. Zacharias. Gröbner bases and primary decompo-

sition of polynomial ideals. J. Symb. Comp., 6:149–167, 1988.

[63] M. Giusti, J. Heintz, J. E. Morais, and L. M. Pardo. When polynomial equation

systems can be solved fast? In AAECC-11, volume 948 of LNCS, pages 205–231.

Springer, 1995.

[64] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial

system solving. J. Complexity, 17(1):154–211, 2001.

[65] T. Gómez Dı́az. Quelques applications de l’évaluation dynamique. PhD thesis,

Université de Limoges, 1994.

[66] M. González-López and T. Recio. The ROMIN inverse geometric model and the

dynamic evaluation method. In A. M. Cohen, editor, Proc. of the 1991 SCAFI

Seminar, Computer Algebra in Industry. Wiley, 1993.

[67] J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors. Computer Algebra

Handbook. Springer, 2003.

[68] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of

Applied Mathematics, 17(3):416–429, March 1969.

[69] R. Hartshorne. Algebraic Geometry. Springer-Verlag, New-York, 1997.

[70] H. Hong and H. W. Loidl. Parallel computation of modular multivariate polyno-

mial resultants on a shared memory machine. In B. Buchberger and J. Volkert,

editors, Proc. of CONPAR 94–VAPP VI, Springer LNCS 854., pages 325–336.

Springer Verlag, September 1994.

[71] É. Hubert. Notes on triangular sets and triangulation-decomposition algo-

rithms. I. Polynomial systems. In Symbolic and numerical scientific computation

(Hagenberg, 2001), volume 2630 of LNCS, pages 1–39. Springer, 2003.

[72] R. D. Jenks and R. S. Sutor. AXIOM, The Scientific Computation System.

Springer-Verlag, 1992. AXIOM is a trade mark of NAG Ltd, Oxford UK.

216

[73] J. R. Johnson, W. Krandick, and A. D. Ruslanov. Architecture-aware classical

taylor shift by 1. In ISSAC’05, pages 200–207. ACM Press, 2005.

[74] KAAPI Group. KAAPI: Kernel for Adaptive, Asynchronous Parallel and In-

teractive programming. http://kaapi.gforge.inria.fr/.

[75] M. Kalkbrener. Three contributions to elimination theory. PhD thesis, Johannes

Kepler University, Linz, 1991.

[76] M. Kalkbrener. A generalized euclidean algorithm for computing triangular

representations of algebraic varieties. J. Symb. Comp., 15:143 – 167, 1993.

[77] E. Kaltofen. Fast parallel absolute irreducibility testing. JSC, 1(1):57–67, 1985.

Misprint corrections: JSC. vol.9, p.320 (1989).

[78] E. Kaltofen and A. Lobo. Distributed matrix-free solution of large sparse lin-

ear systems over finite fields. Algorithmica, 24(3–4):331–348, July–Aug. 1999.

Special Issue on “Coarse Grained Parallel Algorithms”.

[79] E. Kaltofen and B. Trager. Computing with polynomials given by Black Boxes

for their evaluations: Greatest common divisors, factorization, separation of

numerators and denominators. JSC, 9(3):301–320, 1990.

[80] I. A. Kogan and M. Moreno Maza. Computation of canonical forms for ternary

cubics. In T. Mora, editor, Proc. ISSAC 2002, pages 151–160. ACM Press, July

2002.

[81] T. Krick, L. M. Pardo, and M. Sombra. Sharp estimates for the arithmetic

Nullstellensatz. Duke Math. J., 109(3):521–598, 2001.

[82] L. Kronecker. Die Zerlegung der ganzen Grössen eines natürlichen Rationalitäts-

Bereichs in ihre irreductibeln Factoren. J. für die Reine und Angewandte Math-

ematik, 94:344–348, 1897.

[83] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen

Grössen. J. für die Reine und Angewandte Mathematik, 92:1–122, 1897.

[84] W. W. Küchlin. PARSAC-2: A parallel SAC-2 based on threads. In AAECC-8,

LNCS vol.508, pages 341–353, 1990.

217

[85] L. Langemyr. Algorithms for a multiple algebraic extension. In Effective meth-

ods in algebraic geometry (Castiglioncello, 1990), volume 94 of Progr. Math.,

pages 235–248. Birkhäuser Boston, 1991.

[86] D. Lazard. A new method for solving algebraic systems of positive dimension.

Discr. App. Math, 33:147–160, 1991.

[87] D. Lazard. Solving zero-dimensional algebraic systems. J. Symb. Comp.,

15:117–132, 1992.

[88] G. Lecerf. Computing the equidimensional decomposition of an algebraic closed

set by means of lifting fibers. J. Complexity, 19(4):564–596, 2003.

[89] C. E. Leiserson and M. Frigo. The Cilk Project .

http://supertech.csail.mit.edu/cilk/, 2007.

[90] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In

Maple 10, Maplesoft, Canada, 2005. Refereed software.

[91] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias

S. Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

[92] F. Lemaire, M. Moreno Maza, and Y. Xie. Making a sophisticated symbolic

solver available to different communities of users. In Proc. of Asian Technology

Conference in Mathematics’06, 2006.

[93] A. K. Lenstra, J. H. W. Lenstra, and L. Lovász. Factoring polynomials with

rational coefficients. Mathematische Annalen., 261:515–534, 1982.

[94] A. Leykin. On parallel computation of Gröbner bases. In ICPP Workshops,

pages 160–164, 2004.

[95] X. Li. Efficient management of symbolic computations with polynomials, 2005.

Masters Thesis, University of Western Ontario.

[96] X. Li and M. Moreno Maza. Efficient implementation of polynomial arithmetic

in a multiple-level programming environment. In A. Iglesias and N. Takayama,

editors, Proc. Mathematical Software - ICMS 2006, pages 12–23. Springer, 2006.

[97] X. Li and M. Moreno Maza. Multithreaded parallel implementation of arith-

metic operations modulo a triangular set. In Proc. ISSAC’07, pages 53–59, New

York, NY, USA, 2006. ACM Press.

218

[98] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets:

From theory to practice. In Proc. ISSAC’07, pages 269–276, New York, NY,

USA, 2007. ACM Press.

[99] X. Li, M. Moreno Maza, and É. Schost. On the virtues of generic program-

ming for symbolic computation. In Proc. of the International Conference on

Computational Science (2), pages 251–258. Springer, 2007.

[100] H. Lombardi. Structures algébriques dynamiques, espaces topologiques sans

points et programme de hilbert. Ann. Pure Appl. Logic, 137(1-3):256–290,

2006.

[101] M. Moreno Maza and Y. Xie. An implementation report for parallel triangular

decompositions on a shared memory multiprocessor. In Proc. of Symposium on

Parallelism in Algorithms and Architectures’06. ACM Press, 2006.

[102] M. Moreno Maza and Y. Xie. Parallelization of triangular decompositions.

In Proc. of Algebraic Geometry and Geometric Modelling’06, pages 96–100,

Barcelona, Spain, 2006.

[103] N. Mannhart.
∏IT : a portable communication library for distributed computer

algebra. PhD thesis, Swiss Federal Institute of Technology, 1997.

[104] M. Manubens and A. Montes. Improving DISPGB algorithm using the discrim-

inant ideal (extended abstract). In In A3L-2005 Proceedings, 2005.

[105] Maplesoft. Maple 10. http://www.maplesoft.com/, 2005.

[106] T. Mora. Solving Polynomial Equation Systems I. The Kronecker-Duval Phi-

losophy. Number 88 in Encyclopedia of Mathematics and its Applications.

Cambridge University Press, 2003.

[107] M. Moreno Maza. Calculs de Pgcd au-dessus des Tours d’Extensions Simples et

Résolution des Systèmes d’Équations Algébriques. PhD thesis, Université Paris

6, 1997.

[108] M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical

Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-2000

Conference, Bath, England. http://www.csd.uwo.ca/∼moreno.

[109] M. Moreno Maza and R. Rioboo. Polynomial gcd computations over towers of

algebraic extensions. In Proc. AAECC-11, pages 365–382. Springer, 1995.

219

[110] M. Moreno Maza, B. Stephenson, S. M. Watt, and Y. Xie. Multiprocessed

parallelism support in Aldor on SMPs and multicores. In Proc. PASCO’07,

pages 60–68, New York, NY, USA, 2006. ACM Press.

[111] M. Moreno Maza and Y. Xie. Component-level parallelization of triangular

decompositions. In Proc. PASCO’07, pages 69–77, New York, NY, USA, 2006.

ACM Press.

[112] J. O’Halloran and M. Schilmoeller. Gröbner bases for constructible sets. Journal

of Communications in Algebra, 30(11), 2002.

[113] F. Pauer. On lucky ideals for Gröbner basis computations. J. Symb. Comp.,

14(5):471–482, Nov. 1992.

[114] Project LinBox. Exact computational linear algebra. http://www.linalg.org/.

[115] M. O. Rayes, P. S. Wang, and K. Weber. Parallelization of the sparse modular

gcd algorithm for multivariate polynomials on shared memory multiprocessors.

In Proc. of the international symposium on Symbolic and algebraic computation,

pages 66–73, New York, NY, USA, 1994. ACM Press.

[116] R. Rioboo. Real algebraic closure of an ordered field, implementation in AX-

IOM. In Proc. ISSAC’92, pages 206–215. ISSAC, ACM Press, 1992.

[117] J. F. Ritt. Differential Equations from an Algebraic Standpoint, volume 14.

American Mathematical Society, New York, 1932.

[118] P. Samuel and O. Zariski. Commutative algebra. D. Van Nostrand Company,

INC., 1967.

[119] É. Schost. Degree bounds and lifting techniques for triangular sets. In T. Mora,

editor, Proc. ISSAC 2002, pages 238–245. ACM Press, July 2002.

[120] É. Schost. Complexity results for triangular sets. J. Symb. Comp., 36(3-4):555–

594, 2003.

[121] W. Schreiner and H. Hong. The design of the PACLIB kernel for parallel

algebraic computation. In ACPC-2, LNCS vol.734, pages 204–218, 1993.

[122] T. Shimoyama and K. Yokoyama. Localization and primary decomposition of

polynomial ideals. J. Symb. Comput., 22(3):247–277, 1996.

220

[123] V. Shoup. A new polynomial factorization algorithm and its implementation.

J. Symb. Comp., 20(4):363–397, 1995.

[124] V. Shoup. The number theory library, 1996–2006.

[125] W. Sit. Computations on quasi-algebraic sets. In R. Liska, editor, Electronic

Proceedings of IMACS ACA’98, 1998.

[126] A. Sommese, J. Verschelde, and C. Wampler. Numerical decomposition of

the solution sets of polynomial systems into irreducible components. SIAM J.

Numer. Anal., 38(6):2022–2046, 2001.

[127] Sun Fortress project group. The Sun Fortress Project. fortress.sunsource.net,

2007.

[128] The SymbolicData Project. http://www.SymbolicData.org, 2000–2006.

[129] L. N. T. Tzen. Trapezoid self-scheduling: a practical scheduling scheme for

parallel compilers. IEEE Transactions on Parallel and Distributed Systems,

4(1), 1993.

[130] The BLAS Project Group. BLAS (Basic Linear Algebra Subprograms).

http://www.netlib.org/blas/, 2007.

[131] The Computational Mathematics Group. AXIOM 2.2. NAG Ltd, Oxford, UK,

1998.

[132] The Computational Mathematics Group. The BasicMath Library. NAG Ltd,

Oxford, UK, 1998. http://www.nag.co.uk/projects/FRISCO.html.

[133] The Open Group Base Specifications Issue 6. IEEE Std 1003.1, 2004 Edition.

http://www.opengroup.org/onlinepubs/009695399/.

[134] W. Trinks. On improving approximate results of Buchberger’s algorithm by

Newton’s method. In EUROCAL 85, volume 204 of LNCS, pages 608–611.

Springer, 1985.

[135] D. Wang. Computing triangular systems and regular systems. Journal of Sym-

bolic Computation, 30(2):221–236, 2000.

[136] D. Wang. Elimination Practice: Software Tools and Applications. Imperial

College Press, London, UK, UK, 2004.

221

[137] D. Wang and B. Xia. Stability analysis of biological systems with real solution

classfication. In M. Kauers, editor, Proc. 2005 International Symposium on

Symbolic and Algebraic Computation (ISSAC), pages 354–361, New York, 2005.

ACM Press.

[138] D. M. Wang. An elimination method for polynomial systems. J. Symb. Comp.,

16:83–114, 1993.

[139] D. M. Wang. Decomposing polynomial systems into simple systems. J. Symb.

Comp., 25(3):295–314, 1998.

[140] D. M. Wang. Elimination Methods. Springer, Wein, New York, 2000.

[141] S. M. Watt. A system for parallel computer algebra programs. In LNCS Vol.204,

pages 537–538, 1985.

[142] S. M. Watt. Aldor. In J. Grabmeier, E.Kaltofen, and V. Weispfenning, editors,

Computer Algebra Handbook, pages 265 – 270. Springer, 2003.

[143] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison, J. M.

Steinbach, and R. S. Sutor. A first report on the A# compiler. In Proceedings

of ISSAC ’94, New York, NY, USA, 1994. ACM Press.

[144] V. Weispfenning. Canonical comprehensive Gröbner bases. In ISSAC 2002,

pages 270–276. ACM Press, 2002.

[145] W. T. Wu. On zeros of algebraic equations – an application of Ritt principle.

Kexue Tongbao, 31(1):1–5, 1986.

[146] W. T. Wu. A zero structure theorem for polynomial equations solving. MM

Research Preprints, 1:2–12, 1987.

[147] Y. Wu, W. Liao, D. Lin, and P. Wang. Local and remote user interface for

ELIMINO through OMEI. Technical report, Kent State University, Kent, Ohio,

2003. http://icm.mcs.kent.edu/reports/.

[148] Y. Wu, G. Yang, H. Yang, W. Zheng, and D. Lin. A distributed computing

model for Wu’s method. Journal of Software (in Chinese), 16(3), 2005.

[149] L. Yang and J. Zhang. Searching dependency between algebraic equations:

an algorithm applied to automated reasoning. Technical Report IC/89/263,

International Atomic Energy Agency, Miramare, Trieste, Italy, 1991.

222

[150] C. Yap. Fundamental Problems in Algorithmic Algebra. Princeton University

Press, 1993.

[151] T. Yuasa, M. Hagiya, and W. F. Schelter. GNU Common Lisp.

http://www.gnu.org/software/gcl.

[152] Zassenhaus, H. On Hensel factorization I. Journal of Number Theory, 1:291–

311, 1969.

223

Curriculum Vitae

Name: Yuzhen Xie

Post-Secondary

Education and

Degrees:

The University of Western Ontario

London, Ontario, Canada

Ph.D. Computer Algebra

September 2007

The University of Western Ontario

London, Ontario, Canada

M.Sc. and B.Sc. Computer Science

May 2002

B.E.Sc. in Systems Modeling

Civil & Environmental Engineering

Tsinghua University, 1988

Selected Honors

and Awards:

NSERC PDF, 09/2007 - 08/2009

UWO Thesis Award, 2007

CS Publications Incentive Award, 2005 - 2006

Computer Science Department, UWO

Ontario Graduate Scholarship (OGS)

2004, 2005 and 2006

ISSAC’2005 Distinguished Student Author Award, 2005

ISSAC’2005 Best Poster Award, 2005

Deans Honor List, UWO, 2001

224

Selected Honors

and Awards

Continued:

Canadian New Millennium Scholarship, 2000

Nominee of Award of Excellence in Teaching Assistance

UWO, 1999

Western Graduate Research Scholarship

UWO, 1998, 1999, 2002 and 2003

1st Prize for National Academic Progress

National Education Committee of China, 1993

Honor of China National Scholarship

Peking University, 1991

Graduate Award of Academic Excellence

Tsinghua University, 1988

Related Work

Experience:

Research Assistant & Teaching Assistant

Computer Science Department

University of Western Ontario

2002 - 2007

Software and Systems Developer

FAG Aerospace Canada

2000 - 2001

Research Assistant & Teaching Assistant

Civil & Environmental Engineering Department

University of Western Ontario

1998 - 1999

Engineer

Design and Planning Division

China Urban Planning and Design Institute

1991 - 1997

225

Refereed

Papers:

Moreno Maza, M. and Xie, Y. (2007) Component-level

parallelization of triangular decompositions. Proceedings of

Parallel Symbolic Computation (PASCO), p69-77, London,

Canada.

Moreno Maza, M. and Xie, Y. (2007) Multiprocessed parallelism

support in Aldor on SMPs and multicores. Proceedings of

PASCO2007, p60-68, London, Canada.

Chen, C., Moreno Maza, M., Pan, W. and Xie, Y. (2007) On

the verification of polynomial system solvers. Proceedings of

Fifth Asian Workshop on Foundations of Software (AWFS),

p116-144, Xiamen, China.

Chen, C., Lemaire, F., Moreno Maza, M., Pan, W. and Xie, Y.

Efficient computations of irredundant triangular decompositions

with the RegularChains library. Proceedings of the Fifth

International Workshop on Computer Algebra Systems and

Applications, p268-271, Beijing.

Lemaire, F., Moreno Maza, M. and Xie, Y. (2006) Making a

sophisticated symbolic solver available to different communities

of users. Proceedings of 11th Asian Technology Conference in

Mathematics, 10 pages, Hong Kong.

Moreno Maza, M. and Xie, Y. (2006) Parallelization of

triangular decompositions. Proceedings of Algebraic Geometry

and Geometric Modeling 2006 (AGGM), p96-100, Barcelona

University, Spain.

Moreno Maza, M. and Xie, Y. (2006) Brief Announcement: An

implementation report for parallel triangular decompositions.

Proceedings of 19th ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), p235, MIT, US.

Dahan, X., Moreno Maza, M., Schost, É. and Xie, Y. (2006) On

the complexity of D5 principle. Proceedings of Transgressive

Computing, p149-167, Granada, Spain.

226

Refereed Papers

Continued:

Dahan, X., Moreno Maza, M., Schost, É., Wu, W. and Xie, Y.

(2005) Lifting techniques for triangular decompositions.

Proceedings of International Symposium on Symbolic and

Algebraic Computation (ISSAC), p108-115, Beijing.

(ISSAC’2005 Distinguished Student Author Award)

Lemaire, F., Moreno Maza, M. and Xie, Y. (2005) The

RegularChains library in Maple, Maple Conference, p355-368,

Waterloo, Canada.

Dahan, X., Moreno Maza, M., Schost, É., Wu, W. and Xie, Y.

(2004) Equiprojectable decomposition of zero-dimensional

varieties. Proceedings of International Conference on Polynomial

System Solving, p69-71, Univ. of Paris 6, France.

Watt, S. M. and Xie, Y. (2002) A family of modular XML

schemas for MathML. Proceedings of Internet Accessible

Mathematical Computation Conference, 8 pages, Lille, France.

Watt, S., Padovani, L. and Xie, Y. (2002) A Lisp subset based

on MathML. Proceedings of MathML 2002 Conference, 8 pages,

Chicago, US.

Rowe, R.K., Shang, J.Q. and Xie, Y. (2002) Effect of

permeating solutions on complex permittivity of compacted clay,

Canadian Geotechnical Journal, 39: 1016-1025.

Rowe, R.K., Shang, J.Q. and Xie, Y. (2001) Complex

permittivity measurement system for detecting soil

contamination, Canadian Geotechnical Journal, 38: 498-506.

227

Refereed

Conference

Posters:

Chen, C., Moreno Maza, M., Pan, W. and Xie, Y. (2007) On

the verification of polynomial system solvers. ISSAC2007,

Waterloo, Canada.

Moreno Maza, M. and Xie, Y. (2006) Parallel triangular

decompositions. The Mathematics of Information Technology

and Complex Systems (MITACS) 7th Annual Conference,

Toronto, Canada.

Moreno Maza, M. and Xie, Y. (2006) Solving polynomial

systems symbolically and in parallel, ISSAC2006, Genova, Italy.

Dahan, X., Moreno Maza, M., Schost, É., Wu, W., and Xie, Y.

(2005) On the complexity of D5 principle. ISSAC2005, Beijing.

(ISSAC’2005 Best Poster Award)

Lemaire, F., Moreno Maza, M., Wu, W., and Xie, Y. (2005) The

RegularChains library in Maple 10, ISSAC’2005, Beijing.

Dahan, X., Moreno Maza, M., Schost, É., Wu, W., and Xie, Y.

(2005) Equiprojectable decomposition of zero-dimensional

varieties. MITACS 6th Annual Conference, Calgary, Alberta.

228

Software

Packages:

Chen, C., Moreno Maza, M., Pan, W. and Xie, Y. (2007) A

verifier for symbolic solvers (on top of the RegularChains

library). Prepared to be released with Maple 12.

Moreno Maza, M. and Xie, Y. (2007) Parallel solver in Aldor

for computing triangular decompositions (with parallel

framework). Available on request.

Dahan, X., Moreno Maza, M., Schost, É., Wu, W. and Xie, Y.

(2006) Modular methods for triangular decompositions in the

RegularChains library. Distributed in Maple 11, Maplesoft,

Waterloo, Canada, August 2006

Lemaire, F., Moreno Maza, M. and Xie, Y. (2005) The

RegularChains library. Shipped with Maple since Version 10,

Maplesoft, Waterloo, Canada, May 2005.

http://www.maplesoft.com

Xie, Y. (2002) ”XML-Scheme Interpreter” software package,

ORCCA, London, Ontario. http://www.orcca.on.ca/mathml/

Xie, Y. (2001) ”enttran” program (to perform conversion

between the types of entity references in an XML file or HTML

file), ORCCA, London, Ontario.

http://www.orcca.on.ca/mathml/

Xie, Y. (2000) ”Design and Process List (DPL) Project

Manager”, enterprise distributed software, FAG Aerospace

Canada (Industrial development)

