Practical Aspects of
Interacting Garbage Collectors

Yannis Chicha

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario
London, Ontario
July, 2002

(© Yannis Chicha 2002



THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Chief Advisor Examining Board

Advisory Committee

The thesis by
Yannis Chicha
entitled

PrAcCTICAL ASPECTS OF INTERACTING GARBAGE COLLECTORS

is accepted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Date Chair of Examining Board

i



Abstract

In this thesis we investigate a novel approach to creating tools for the study
and implementation of garbage collectors (GC) in contexts ranging from hand-
held computers to the Web. We define interactions between GC entities and
the global strategy that uses them, e.g. distributed garbage collection (DGC)
algorithms. In this setting, we define the notion of a generic collector to be the
representation of the ideal collection entity from the global strategy point of view.
This definition helps create several tools to improve the way people work with
uniprocessor and distributed garbage collectors.

This work has led us to consider a new heap organization for uniprocessor
GCs. We have designed a Localized Tracing Scheme to optimize GC tracing
process at caching and paging levels with possible applications to platforms with
limited resources such as hand-held computers. We provide experimental results
and show how this organization naturally applies to a parallel setting.

To help implement DGCs, we propose a design method based on generic col-
lectors. This method uses models to list important characteristics of each entity
in a system. Our methodology explains how to use these models to create local
collectors adapted to a particular DGC. This process also allows the design of
heterogeneous systems, where each node can choose its own GC.

Finally, we use this method to design and implement a garbage collection
mechanism for the World Wide Web. After exploring the mapping of memory
management paradigms onto concepts of the Web environment, we show that
DGC algorithms can be used to detect garbage in websites and avoid dangling

links on webpages. We observe that web authors are currently managing web

il



objects explicitly, and an automatic solution should be beneficial. We report on
practical implementations and experiments in this web setting. This study leads
to the creation of a Web-based platform for experiments in garbage collection

research.

Keywords: Garbage Collection, Distributed Garbage Collection, World Wide
Web.

v



Dedication

I would like to dedicate this thesis to Chantal Chicha, my mother, who gave
me life, love, support and who taught me to always try and do my best. Thanks

Mom.



Acknowledgments

First of all, I would like to thank my supervisor, Dr Stephen Watt, for his sup-
port, advice and precious guidance all along this thesis. During these five years,
Dr Watt allowed me to work on many interesting topics such as Aldor and the
FRISCO project. This helped me discover and appreciate many aspects of re-

search and administrative work. Thank you for this invaluable experience.

Thank you to my advisors, Hanan Lutfiyya and Mark Giesbrecht, who helped
me on a number of occasions with documents, discussions, and useful advice.
Thanks to people in the SCL for many great discussions and advices. Thanks to
Cosmin, Laurentiu, Jason and Florence for proof-reading this thesis. I would also
like to thank Richard Jones for his very useful Garbage Collection bibliography.
Thanks to Angie, Bethany, Cheryl, Dianne, Janice, and Sandra for your help and

kindness.

Finally, many thanks to Florence Defaix for helping and supporting me during
this thesis. Her love and moral support mean everything to me, and gave me a

lot of strength. Thanks Flo, I could not have done it without you.

vi



Contents

1 Introduction, Motivation and Direction 1
1.1 Thesisoutline . . . . .. ... .. .. ... ... .. 3
1.2 Motivation . . . . . . . ... 3
1.3 Directions for this thesis . . . . . ... ... ... ... ...... 7
2 Garbage Collection and Interactions 10
2.1 Generalities . . . . . ..o 11
2.2 Acronym definition . . . . . .. .. ... o 12
2.3 Uniprocessor GC . . . . . . .. ... o 17
2.4 Multiprocessor garbage collection . . . . .. ... ... ... ... 25
2.5 Distributed garbage collection . . . . . . ... ... ... ... .. 32
2.6 Interaction semantics in a DGC environment . . . . . . . .. ... 50
3 Generic Garbage Collector 57
3.1 Model . . . .. 58
3.2 Example: Liskov’s Migration algorithm [54] . . . ... ... ... 60
3.3 Inpractice . . . . . . . .. 65
4 A Localized Tracing Scheme Applied to Garbage Collection 66
4.1 Presentation . . . . . . . .. ... 67
4.2 The LTS algorithm . . . .. ... .. ... ... ... ...... 69
4.3 Example . . . . . .. 76
4.4 Interactions . . . . . . . .. .. 79
4.5 A proof of correctness for the LTS . . . . . . ... ... ... ... 80
4.6 Experiments and results . . . . . ... ... ... 82
4.7 Multiprocessor LTS . . . . . . . . . . . . ... . 100
4.8 Related work . . . . . . ... 103
4.9 Conclusion . . . . . . ... 105
5 DGC Design 107
5.1 Designing DGCs . . . . .. ... ... ... ... . . 108
5.2 Designmodels . . . . . ... oo 117
5.3 Design method . . . . ... ... ... Lo 125

vii



Table of Contents

Yannis Chicha

5.4 GC Interoperability in a distributed environment
5.5 Example: (MS,MOS,RC) with Cyclic SSPC
5.6 Extensions and DGCs interoperability

6 W3GC: Garbage Collecting the Web
6.1 Motivation . . . . . . .. ... L
6.2 Related work . . . . . ... ... oL
6.3 Web vs Memory: semantic correspondence . . . . . . .
6.4 Issues . . . . . . . . ...
6.5 Counting cycles . . . . . .. ... oL
6.6 Experiments . . . . . ... ... ... L0 L.
6.7 Conclusion . . . . . .. ... ... ... ... ...
7 Designing and Implementing W3GC
7.1 Designing garbage collectors for the Web . . . . . . ..
7.2 Stand-alone collector . . . . . . . ... ... ... ..
73 DRC .. ...
74 GCW ...
7.5 Implementation issues . . . .. .. .. ... ... ...
7.6 Conclusion . . . . ... ... . ... ... ...,
8 A Platform for Experiments on DGCs
8.1 DGC research experiment platform . . . ... ... ..
8.2 Software Development Kit . . . . . .. ... ... ...
8.3 Logs and snapshots . . . . . ... ... ... .. ...
8.4 Interoperability experiments . . . . . . . ... ... ..
85 Conclusion . . . . ... ... ... ... ... ...
9 Conclusion
9.1 Summary . . . . . ...
9.2 Future directions . . . . .. ... ... L.
Bibliography
A Glossary

B Models for common Memory Management techniques
B.1 Explicit Memory Management
B.2 Reference Counting
B.3 Mark-and-Sweep
B.4 Localised Mark-and-Sweep
B.5 Mark-and-Copy
B.6 Generational GC
B.7 Mature Object Space

215
216
221
227
234
241
245

246
247
252
261
266
271

273
273
277

283

293



List of Tables Yannis Chicha

C Models for common Distributed Garbage Collectors
C.1 Distributed Reference Counting . . . . . .. ... ... ... ...
C.2 GCOW . . e
C.3 Migration-based . . . . . . . . .. ...
C.4 Cyclic version of SSPC . . . . . .. .. ... ...

D Some mappings between Generic GC and stand-alone GCs
D.1 GCW and Mark-and-Sweep . . . . .. ... .. .. ... .....
D.2 GCW and Generational . . . ... ... ... ... ........
D.3 GCW and MOS: Solution1 . . .. ... ... ... ........
D.4 GCW and MOS: Solution 2 . . . . .. .. ... ... ... ....
D.5 GCW and MOS: Solution 3 . . . . .. ... .. ... ... ....
D.6 GCW and MOS: Solution 4 . . . ... ... ... ... .. ....
D7 GCWand RC . . . . . ... ... . ..
D.8 Cyclic SSPC and Mark-and-Sweep . . . . . . . .. .. ... ...
D.9 CyclicSSPCand RC . . . . . ... ... ... ... ........
D.10 CSSPC and MOS: Solution 1 . . . . . . .. ... ... ... ...
D.11 CSSPC and MOS: Solution 2 . . . . . ... .. .. ... .....
D.12 CSSPC and MOS: Solution 3 . . . . . . ... ... ... .....
D.13 CSSPC and MOS: Solution4 . . . ... ... ... ... .....
D.14 Controlled Migration and MC . . . . . .. ... ... ... ...
D.15 Controlled Migration and Explicit . . . . . . .. ... . ... ...
D.16 DRC and Mark-and-Sweep . . . . . . . . .. .. ... ...

Curriculum Vitae

X



List of Tables

4.1 Testresults . ... ... .. ...

6.1 W3GC: Semantic correspondence



List of Figures

2.1 General DGCmodel . ... ... ... ... ... ........ 33
22 GCW:anexample . . ... .. .. ... .. ... ... . ... 54
4.1 LTSstepl. .. . . . . 76
4.2 LTSstep 2. . . . . . 77
4.3 LTSstep3. . . . . . 7
4.4 LTSstepd . . . . . . e 78
4.5 LISstepb. . . . . . . e 78
5.1 Design process for DGC . . . ... .. ... ... ... 116
6.1 Javadoc Smapshots . . . . . .. .. .. ... ... ... ... 159
6.2 CSD Webpage snapshot . . . . .. .. ... .. ... ....... 165
6.3 FError 404 example . . . . . ..o 168
6.4 URLredirection . . . . . . . .. .. ... .o 170
6.5 Example of cycle on the Web . . . . . .. ... ... ... ... 173
6.6 Javascript example . . . . . ..o 177
6.7 Backpointer. . . . . .. ..o 184
6.8 The order of visit is important. . . . . . .. .. ... 187
7.1 PDF file snapshots . . . . . .. ... ... L. 223
7.2 WebObjects and HT'TPObject . . . . . . . . .. ... ... ... 225
7.3 MarkSheet and MS . . . . . . ... ... L 226
74 Extraclasses . . . . ... L 226
7.5 Classrelations . . . . . . . . . ... ... 227
7.6 DRC architecture . . . . . . . . .. ... 230
7.7 Opaque addressing . . . . . . . .. ..o 231
7.8 DRC Server . . . . . . . . . . e 231
7.9 DRC Local GC . . . . . . . ... 232
7.10 Import references . . . . . . . ... oL 232
7.11 Opaque Addressing for GCW . . . .. ... .. ... ... .... 235
712 GCW Server . . . . . . . . . . e 236
7.13 Local GC for GCW . . . . . . . .. .. ... ... . ... ... 237
7.14 Import references for GCW . . . . .. . ... ... ... ..... 237

xi



List of Figures Yannis Chicha

7.15 DTD example . . . . . . . . . ... . ... 238
7.16 Action abstract class . . . . . . . . .. ... ... ... ... ... 240
7.17 Token class . . . . . . . . . . . . 241
7.18 Extract of alogfile . . . . . . . .. ... oo 244

xii



Chapter 1

Introduction, Motivation and

Direction

Automatic memory management gains in popularity and many developers now
consider this feature as essential.

Modern languages, such as Java [58] or Aldor [48], feature garbage collectors
to handle this activity. In a parallel or distributed context, explicit allocation
and deallocation are a true challenge that shifts the attention of programmers
from algorithms to memory maintenance. Automatic memory management thus
proves necessary in these environments. Java RMIs [59] use a Distributed Refer-
ence Counting algorithm to detect distributed garbage. Currently, such a garbage
collection scheme is sufficient because distributed applications rely mostly on a
client-server model. In this architecture, reclaiming only most distributed garbage
(as opposed to all of it) does not usually hamper the execution of the programs.
We expect, however, applications to become truly distributed over time, and for
network sites to communicate with others directly without relying on any hier-
archical organization. Peer-to-peer architectures gain in popularity and loosely
coupled networks, such as the World Wide Web, become ubiquitous. Although the

Internet has a hierarchical organization to route messages, the application level



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

does not rely on this structure to function properly. Two-way communication
and data exchange between two network sites have the unfortunate consequence
that many distributed cycles of objects can be created. This implies that devel-
opers will soon need to rely on distributed garbage collectors (DGCs) capable
of detecting distributed garbage cycles. Several sophisticated algorithms already
exist, but very few implementations have been realized so far. A possible reason is
the difficulties and challenges posed by the design and implementation of DGCs.
Very few support tools are available to help with this activity, and many issues
have to be faced.

In this thesis, we propose an approach that helps create support tools for
various garbage collection environments including DGCs. To achieve this result,
we observe and define interactions between GC entities and the global strategies
that link them together. As we will see, such entities may be local collectors
for a DGC, but also specific parts of a uniprocessor algorithm. This results in
the creation of a novel entity: the Generic GC, which builds a clear and explicit
bridge between GC entities and their global strategy. We use this element to
implement an optimized tracing scheme — called Localized Tracing Scheme (LTS)
— for uniprocessor GCs. Around the notion of Generic collector, we also con-
struct a design method to help implement DGCs and, in particular, we introduce
the idea of GC interoperability which allows different GC techniques to work to-
gether with a single global strategy. Finally, we propose the first work on garbage
collecting objects in the World Wide Web environment. This web management
tool, that we call W3GC, can be used both to maintain link integrity on web-
sites and to experiment with DGCs in simple and efficient manner. We show the
design and implementation of two uniprocessor GCs (Mark-and-Sweep and Gener-
ational) and two DGCs (distributed reference counting and “Garbage Collecting
the World” [51]). Finally, we analyze the results of our empirical experiments

about the structure of websites in four different contexts.



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

1.1 Thesis outline

The rest of this chapter presents our motivations in more detail and introduces the
various research directions of our work. The thesis itself is organized as follows.
Chapter 2 provides a detailed background on garbage collection and present our
study of interactions between garbage collection entities and their overall strat-
egy. Chapter 3 introduces the Generic Garbage Collector that we created to help
us understand and work with distributed collectors. Chapter 4 reports our re-
search about an optimized tracing scheme for uniprocessor collectors. Its design
is a direct consequence of our study on interactions. In Chapter 5, we use the
generic garbage collector to create models and a method to facilitate the design
of homogeneous, as well as heterogeneous, distributed garbage collection envi-
ronments. We also introduce the notion of interoperability of garbage collectors
in a DGC context. Chapter 6 presents W3GC, a distributed garbage collection
mechanism for the World Wide Web. Chapter 7 describes how W3GC was imple-
mented using our design method and models, and allows one to detect dangling
links as well as unlinked web pages in websites or a group of websites. Chapter 8
is preliminary study of an extension to this work. We claim that the Web is a
convenient platform for the development of an experimentation platform destined
to support research in garbage collection. Finally, Chapter 9 concludes the thesis

and presents future directions.

1.2 Motivation

We explain our motivation for this thesis by discussing important aspects of
distributed garbage collection. We have identified these from the literature study
presented in Chapter 2. In particular, we emphasize the need for various software

and theoretical tools.



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

1.2.1 Difficult implementation

One of the main challenges in the field of distributed garbage collection is im-
plementation. Very few — about half a dozen — distributed cyclic collectors have
actually been implemented so far in spite of the existence of several algorithms.

There are several reasons for this state of affairs:

e Nature of algorithms. Currently, distributed GCs exist mostly in re-
search environments. A reason for the lack of usable implementations lies
in the nature of the algorithms. Most of them were created either as a purely
algorithmic solution or as a module for a very specific application. It ap-
pears however that certain algorithms could be adapted to many situations,

if proper support were available.

e Difficult design and adaptation for a given system. Most imple-
menters need to integrate a DGC within an already working framework.
It would not be efficient to redesign the entire environment from scratch
simply to integrate a DGC. However, the lack of support tools makes this

a complicated task. We provide more details in Section 1.2.2.

e Practical implementation barriers. Activities such as testing and de-
bugging DGCs usually prove difficult due to the complexity of most algo-
rithms. Furthermore, it is difficult to evaluate the resources to allocate to
writing a DGC. Finally, distributed garbage collection is a complex problem
leading to complex algorithms, understanding their behavior and comparing

them can be quite challenging.

1.2.2 Challenging design

The design of distributed garbage collectors reveals many challenges. Obviously,

a difficult design is one the main reasons for a small number of implementations.



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We list here choices and challenges one faces when designing a DGC:

e There are a large number of parameters: choice of local collectors, con-

straints of the underlying system, need for future evolution, and so on.
e There is no means to evaluate the suitability of a DGC for specific needs.

1. No complexity analysis of DGCs.

2. No estimate of the feasibility of a DGC implementation under the

constraints of an environment.

3. Difficult identification of important characteristics in a DGC (features,

assumptions, needs, etc.)

e There is no support to manage heterogeneous systems (i.e. using different
local GCs) in a simple and flexible manner. In addition, to our knowl-
edge, there exists no support tool to easily analyze the existing memory

management situation on a distributed system. This has two consequences:

1. If we start with an existing pool of local GCs, it is difficult to know if
the collectors are going to work with the DGC. It is equally challenging
to understand what is required to adapt them to the DGC.

2. If a DGC has to be replaced by another on a given system, it is dif-
ficult to identify potential problems, such as supporting algorithms
(distributed termination detection for example), adapting local GCs,

and so on.

1.2.3 Lack of tools

In the study of the situation presented above, we observe that there is a need
for support tools both at a theoretical and at a practical level. Most DGCs are

still in the form of algorithms or prototypes for experimentation purpose, and



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

the transition has to be made to generally available implementations. This can
happen only if the GC community provides the means to study the behavior of
distributed collectors, debug their implementations, teach their algorithms, and
classify each aspect of a distributed collector. In the following paragraphs, we
discuss a number of tools that could prove useful to attain this goal.

To support practical implementation, we need debugging, testing, and profiling
tools. Particularly, we observe that traces are required to understand and to
study the behaviors of allocators and collectors. Such traces already exist in
certain environments. For example, in a uniprocessor context, Chilimbi, Jones
and Zorn [20] propose the use of a language called MetaTF to efficiently format
traces for allocation events. Tools to exploit such traces are currently being
designed (see [61] for more details). On the distributed side, we can cite the
PerDis [77] project, that uses a distributed collector, and traces within a memory
simulator to experiment with diverse allocation strategies.

In terms of testing, fair comparisons between garbage collection techniques
must use standard benchmarks. There exists a number of these (for example, GC
benchmarks for Scheme implementations can be found at [21]) for uniprocessor
GCs. Unfortunately, this does not seem to be the case for distributed garbage col-
lection. A reason is that few applications currently require complex DGC mecha-
nisms. On a practical note, we believe that repositories of DGCs implementations
and/or algorithms would prove beneficial. These could be accompanied by users’
evaluations, descriptions of integration work, listings of characteristics, known

benchmarks, and so on.

Although practical tools are required to support the implementation of dis-
tributed collectors in application contexts, theoretical tools can also prove bene-
ficial in a number of situations. For example, little work has been done to create
a general mechanism to prove properties of distributed garbage collection algo-

rithms, and provide formal representations to study them. Evaluating collectors



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

according to chosen criteria such as performance or security proves difficult as
well, because no support is provided.

Choosing a DGC for implementation should be done with respect to diverse
analyses conducted beforehand (for example, a method to analyze the complexity
of a technique). In order to implement a DGC, we also need methods to analyze
its characteristics and organize its different components. Such an analysis would
also be useful in studying the behavior of collectors. Subsequent tools would
include integration methods in preexisting environments with a set of local GCs

and/or other DGCs, for example.

1.3 Directions for this thesis

This thesis provides solutions to a number of needs described in the previous
section. We present an approach based on the study of interactions between local
GCs and DGCs, using an abstract view of their relations. This leads to different
tools supporting design and implementation of DGCs as well as experiments into

their behaviors.

1.3.1 Interactions in garbage collection

First, we propose a study of interactions between garbage collection entities and
the overall strategy that ties them together. We observe different configurations in
various environments: uniprocessor, multiprocessor, and distributed. Although
traditional uniprocessor collectors are monolithic, certain techniques are orga-
nized differently: generational garbage collection schemes use two or more logical
GCs, CMM (3] divides the heap according to memory management needs, and
so on. Multiprocessor collectors are divided into two categories: parallel and
concurrent. Concurrent GCs, where a processor is dedicated to collect garbage

while mutation is running, do not propose an architecture to study this particular



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

question. Parallel GCs, however, relate several entities and an overall strategy.
Finally, distributed GCs contain several entities and organize their cooperation.
We focus on the relationships between the DGC algorithm and each of the local
collectors.

In a DGC environment, we identify these interactions, and deduct a model to
classify them. We introduce the notion of Generic Garbage Collector, which is
defined as a template to list the characteristics necessary to a local GC to support

the algorithm of a given DGC.

1.3.2 Localized Tracing Scheme

We use our study of interactions between GC entities and a general strategy to
investigate the tracing process of uniprocessor GCs. We present a technique to
visit all nodes in a forest of data structures that takes into account locality of
reference to improve traffic in the memory hierarchy. This method is applicable
to a wide range of garbage collection algorithms for a uniprocessor, and general-
izes naturally to a multiprocessor setting. We call this technique the “Localized
Tracing Scheme” as it improves locality of reference during the object tracing

activity.

1.3.3 DGC design and implementation

One obstacle to promoting the use of distributed garbage collection is the small
number of usable implementations. We suspect the reason for this is the com-
plexity of design. Implementing a DGC is difficult because there are many issues
to take into account, and no support method exists to help identify and classify
them. We use our study of interactions between local GCs and DGCs to propose
a solution for such design questions.

The basis of our work is the semantic separation between local GCs and stand-

alone GCs. A stand-alone collector is a GC that has no concept of a distributed



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

system, and does not consider remote pointers. A local collector is both a collector
for a specific node and a representative of the DGC algorithm at this specific
node. Using the notion of generic garbage collection we developed earlier, we
explore a design method to transform a stand-alone GC into a local GC. This has
the interesting property of allowing a natural design of heterogeneous systems,
where several types of local collectors participate in a single distributed garbage

collection.

1.3.4 Garbage Collecting the Web

In order to test our design method, we choose to study distributed garbage col-
lection in a non-trivial context, namely the World Wide Web. This environment
provides a challenging and interesting platform to work with. Although it may not
be obvious at first, we can view the Web as a very large distributed memory. Each
site serves pages with information and references to other sites or pages roughly
in the same way objects and pointers are manipulated in a primary memory en-
vironment. We explore the use of garbage collection in this context by designing
and implementing a distributed garbage collector called “Garbage Collecting the
World” (see [51] for details). Beyond simply testing our design method, we believe

that this application can be a powerful tool for web management.

1.3.5 W3GC: a platform for experiments

Understanding the behavior of distributed collectors is difficult and little support
exists for experimentations. Furthermore, finding applications to test and study
DGCs proves to be a difficult task. Our experience with implementing garbage
collectors for the Web resulted in the observation that this is a convenient platform
for distributed garbage collection research. We propose a preliminary design of a
Web-based experimentation platform to support behavior study, fair comparison

and implementation experimentation for distributed garbage collectors.



Chapter 2

Garbage Collection and

Interactions

In this chapter, we present an overview of garbage collectors as well as a novel
point of view to describe them. We explain widely used techniques and show spe-
cific algorithms for uniprocessor (Section 2.3), multiprocessor (Section 2.4) and
distributed (Section 2.5) garbage collection. Further details about these algo-
rithms and presentations of other ones may be found in other surveys, including
Jones’ book [41] on Garbage Collection. Up to date references to papers can be
found at Baker’s GC webpage [4], Jones’” GC webpage [42] and Harlequin’s GC
reference page (now hosted by Ravenbrook) [78]. Please note that a glossary is
provided in Appendix A.

In order to prepare the reader for the discussion of this thesis, we also ex-
amine the architecture of selected algorithms from a novel point of view. These
algorithms use several entities cooperating according to the rules of a global strat-
egy. Our presentation lists those entities and explores their interactions with the

global strategy.

10



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

2.1 Generalities

Before describing GC techniques, we start with a brief reminder of what garbage
collection represents. Garbage collection is about memory management. It is
essentially a technique to automatically find out and reclaim unused objects. Any
program needs a way to store and retrieve data that is created, manipulated, and
modified for the purpose of an application. Most environments use the concept of
dynamically allocated data. The heap is a logical space where all data necessary
to the execution of a program is stored. A heap mainly uses RAM, but can also
use virtual memory on secondary storage when primary storage fills up.
Managing the data or objects stored in the heap can become quite complicated
when done manually. A garbage collector is run regularly to find out what objects
are no longer needed (because they are no longer referenced by the program). Re-
lying on an automatic tool also results in the disappearance of unreliable pointers
to objects. If programmers are allowed to manage data in the heap, it is likely
that certain objects will be forgotten leading to memory leaks and certain others
will be erased even when the program is still able to access them. This can get
worse if a new object is allocated in the heap at the exact location of a previous
object. If the program accesses this new object believing it is the old one, this
may have disastrous consequences. Another advantage of garbage collection is
to help gain abstraction on the programming process. When details of memory
management are hidden, programmers have more time to concentrate on the logic
of the program, rather than on details for maintaining it. This results in cleaner
code, stripped from all undesirable primitives used for memory management.
Although garbage collection has existed since 1960 (see [55]), and was used
for example in Lisp and Smalltalk, it never made its way into the most popular
languages before Java. Well known languages such as C or C++ have typically
used explicit memory management. The programmer has access to some prim-

itives to allocate and deallocate memory (e.g malloc and free in C). It is the

11



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

programmer’s responsibility to free the memory when there is no longer a link to
an object, leading to possible problems as explained earlier. Although garbage
collection removes the burden of explicit memory management, many program-
mers did (and still do) not like this tool for two main reasons. The first one is
that, in the early days, garbage collection algorithms were slow (20% to 40% over-
head), with uncontrolled starting times. C programmers are usually focused on
performance (e.g. in system programming), and unpredictable, time-consuming
memory management techniques were clearly not acceptable. We observe that
this is no longer the case, and except for some very specific fields of application,
garbage collection is efficient enough and can be controlled to avoid unpredictable
pauses. The second reason is psychological: a number of programmers like allo-
cating the memory they need “themselves”. Some process dealing with “their”
memory behind their back raises suspicion.

In this chapter, we first describe garbage collection algorithms in a uniproces-
sor setting. This is currently the most widely used environment for GC. We then
move to concurrent and parallel GC, a topic born in 1975 with Steele’s algorithm
[84]. Nowadays distributed systems are more common and distributed collectors
are becoming of more interest. As we are going to see, many issues arise with

distributed GC making it a complex field to study and to implement.

2.2 Acronym definition

ACK: Acknowledgment. Message found in most network protocols.

AMD: Advanced Micro Devices.

API: Application Programming Interface.

BDW garbage collector: Boehm, Demers, Weiser garbage collector.
Widely used implementation of a uniprocessor GC for C and C++. See [13].

12



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e BP: Back Pointer.

e CCS: Calculus of Communicating Systems. See [60].

e CMM: Customizable Memory Management.

e CORBA: Common Request Object Broker Architecture. See [70].

e CGIL: Common Gateway Interface. Standard for the environment passed

by a server to scripts used in the WWW.
e CSD: Computer Science Department.
e CSSPC: Cyclic version of SSPC. See [52].
e DGC: Distributed Garbage Collection.
e DMOS: Distributed Mature Object Space. See [37].
e DRC: Distributed Reference Counting. See Section 2.5.2.
e DRL: Distributed Reference Listing. Variant of DRC. See Section 2.5.3.

e DTD: Distributed Termination Detection. Process used to decide whether
a global state corresponds to one in which a distributed computation has

terminated.

e FRISCO: FRamework for Integrated Symbolic/numeric COmputation. Eu-
ropean ESPRIT project. See [69].

e GC: Garbage Collection.
e GGC: Generic Garbage Collector.

e GIF': Graphics Interchange Format.

e GCW: Garbage Collecting the World. See [51].

13



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e HDRC: Hierarchical Distributed Reference Counting. See [63].
e HP: Hewlett-Packard.
e HREF: Hypertext Reference.

e HTML: HyperText Markup Language. Standard web page description

language.

e HTTP: HyperText Transfer Protocol. Standard network protocol on the
World Wide Web.

e HTTPS: HTTP over SSL.

e IBM: International Business Machines.
e ID: Identifier.

e IP: Internet Protocol.

e IMG: Image.

e INRIA: Institut National de Recherche en Informatique et en Automa-

tique.
e JDK: Java Development Kit. See [58].
e JPEG: Joint Photographic Experts Group.
e KB: KiloByte.
e LGC: Local Garbage Collector.

e LiLo: Linux Loader. Small program used by Linux systems to boot the
system. In particular, it offers the possibility to choose which partition of

a hard drive to boot.

14



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

LISP: LISt Processor. Language featuring the first garbage collector. See [55].

e LMS: Localised Mark-and-Sweep. Mark-and-Sweep using the LTS. See
SectionB.4.

e LTS: Localised Tracing Scheme. See Chapter 4.
e MB: MegaByte.

e M&C or MC: Mark-and-Copy. Also called Stop-and-Copy. See Sec-
tion 2.3.3.

e MHz: MegaHertz.

e MIME: Multipurpose Internet Mail Extension.

e MOS: Mature Object Space. See [38].

e M&S or MS: Mark-and-Sweep. See Section 2.3.2.
e NF'S: Networked File System.

e OMT: Object Modeling Technique. See [80].

e OO: Object-Oriented. Design and programming style using objects to de-

scribe an environment.
e OS: Operating System.
e PDF': Portable Document Format.

e PHP: PHP: Hypertext Preprocessor (this is a recursive acronym). This is
a scripting language that is usually embedded in HTML files to allow web
authors to provide dynamically generated pages. Connections to databases

are supported.

15



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e POPL: Principles Of Programming Languages. Annual ACM conference

on programming languages.
e RAM: Random Access Memory.
e RC: Reference Counting. See Section 2.3.1.
e RDFPCC: Rooted Depth First Partial Cycle Count. See 6.5.
e REF': Reference.
e RISC: Reduced Instruction Set Computer.

e RMI: Remote Method Invocation. This is a high-level Java library for
distributed programming. See [59].

e SCL: Symbolic Computation Laboratory.
e SDK: Software Development Kit.

e SSL: Secure Socket Layer. This is a security protocol for TCP/IP. It is
widely used on the Web.

e SSPC: Stub-Scion Pair Chain. See [81].
e TCP: Transmission Control Protocol.

e UDMA: Ultra Direct Memory Access. This is a norm for hard disk ac-
cess speeds and can be found in various models: UDMA33, UDMAGG,
UDMA100, and so on.

e UML: Unified Modeling Language. Object-oriented design method. See [14].
e URI: Universal Resource Identifier.

e URL: Uniform Resource Locator.

16



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e UWO: University of Western Ontario.

W3C: World Wide Web Consortium.

W3GC: World Wide Web Garbage Collector. See Chapter 6.

WWW: World Wide Web.

XHTML: XML version of HTML.

e XML: eXtensible Markup Language.

2.3 Uniprocessor GC

This section details techniques used in uniprocessor garbage collection. The term
“uniprocessor” is used to differentiate these algorithms from the concurrent, par-
allel and distributed ones. Unlike these other techniques, a uniprocessor GC only
deals with one process managing one heap.

Historically, the first garbage collector was designed for a programming lan-
guage called LISP. In 1960, J. McCarthy published a paper [55] where he explained
the details of this language including a good half page on a technique to auto-
matically reclaim dead memory cells. This technique would be later known as
Mark-and-Sweep.

We present here five important techniques in garbage collection: reference
counting, mark-and-sweep, mark-and-copy, generational, and, finally, incremen-

tal. For a complete overview, please refer to Paul Wilson’s survey [91].

2.3.1 Reference Counting

The idea behind reference counting is fairly simple. With each object, we associate
a counter of pointers. At the creation of the object, the counter is 1 (one pointer is

returned from the allocation function). When a pointer to the object is created,

17



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

the counter is increased. If a pointer to the object is deleted the counter is
decreased. At this time, if the counter reaches the value of 0, the object can
safely be reclaimed as it is no longer referenced.

The advantage of this technique is that memory is reclaimed as soon as it is
no longer needed. However, one can also identify three main problems. First, the
extra counter incurs a non-negligible space overhead. Second, circular structures
are not dealt with. Imagine a cell which contains data and a pointer to itself. Its
counter never reaches zero and, thus, the object is never recycled. Third, pointer
assignments can no longer be simple register operations. Each assignment must

read and write memory for the reference counts.

2.3.2 Mark & Sweep

Mark & Sweep is the first garbage collection algorithm in history. In 1960, Mc-
Carthy described this technique in a paper about the LISP language [55].

We consider the directed graph of objects G = (V, E). Each vertex v € V
represents an object, and each edge e € E represents a pointer (e.origin € V and
e.dest € V). R C V is a special subset of vertices that we call roots. Usually,
the roots contain all references in the stack (for example, local variables), the
processor registers and the static area (global variables). For convenience, a color
is associated with each vertex and can be accessed via v.color. We use two colors:
black and white. Black means “marked” and white means “not marked yet”. The

algorithm for the mark phase proceeds as follows:
e Yv € V v.color := white.

e Vv € R,v.color := black.

18



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Repeat
Ve € E s.t e.origin.color = black, and e.dest.color = white,
e.dest.color := black.

until Ae € E s.t e.origin.color = black and e.dest.color # black.

At the end of this phase, all vertices that are still colored in white are known
as garbage because they are not reachable from the roots. This means that there
is no path between any vertex in R and these vertices. In computer programming
terms, garbage objects are no longer in use, because there is no way for the
program to access those objects. The only way to access an object is through the
roots (stack, registers, static area).

Garbage objects can be recycled or swept. This is the sweep phase:
e Yv €V s.t v.color = white, add v to the freelist and remove v from V'

The freelist links together all free space that is allocated to a program by the
OS. It is used by the allocator to try and get memory space for an object before
asking the operating system for extra memory. The freelist is managed by the

program, not by the OS.

2.3.3 Mark & Copy

We describe here the simple but space-inefficient technique of “semi-spaces”. The
heap H is divided into two equal subheaps H4 and Hg. We are now going to
use aliases to name these subheaps: Hon, Will refer to H4 and Hy, refers to Hp.
Although, at this moment, it may seem unclear that these aliases are needed, the
following explanation will (hopefully) clarify this.

Object allocations and mutations are only done in H ¢4y, while Hy, is consid-
ered empty. When the collector runs, it considers the directed graph of objects

G = (V,E) € Hypom- As for the Mark&Sweep (M&S) algorithm, we follow all

19



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

possible paths from the roots. Unlike M&S, we do not mark (or blacken) en-
countered objects (or vertices). Instead, they are copied to Hy,. This part is also
called Compact because objects are likely to be scattered in H,om. When objects
are moved to Hy,, space is allocated sequentially thus allocating contiguous spaces
for related objects (linked via pointers). Once live objects have been moved, the
roles of Hy and Hp are reversed. H ¢yon, refers now to Hp and Hy, refers to Hy.
After the next GC, Hy,opn will refer again to Hy and Hy, to Hp.

One of the main issues with Mark&Copy occurs when two or more objects
X; point to one object O. Assuming O is reachable, the first time the collector
encounters it, O will be moved to Hy,. Because O is referred to by several objects,
the collector will reach the old location of O through another path. If no special
action is taken, incorrect behavior occurs. For example, the contents of the object
is copied again to H;,. The solution is to set a “forwarded” flag in the header
of the object, and put a forwarding pointer at O’s old location. This allows the
collector to know that O has been moved and where. To know where is important,
because the pointer to O in each X; object has to be updated. For information
on more efficient Mark&Copy algorithms, please refer to [91].

Mark&Copy has two advantages compared to Mark&Sweep. First, there is no
sweep phase, this avoids looking at ALL the objects in the heap to figure out which
ones should be recycled. Indeed, time complexity with a Mark&Copy collector
depends on the number of live objects, not on the total number of objects. The
second advantage is compaction. M&C offers better locality of objects, which
means that the mutator is likely to run faster, avoiding cache misses and page
faults. Locality is also good for the collector, because cache misses and page faults
will be avoided in the trace phase of subsequent GCs. However, Mark&Copy has
the drawback of moving objects. This is a costly procedure, which can prove very
inefficient when many objects are live. Also, it requires certain data structures

(such as hash tables) which rely on addresses to be reconstructed at each copy.

20



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Java (in version 1.1 and 1.2) uses both algorithms (see [29]), and implements
a policy to switch from one kind of GC to another so that there is a minimum

loss of efficiency.

2.3.4 Generational GCs

Generational collectors [53] rely on the observation (made from practical experi-
ments) that objects tend to die young. This means that, a short period of time
after their allocation, these objects are no longer needed by the program and can
thus be reclaimed. Consequently, one can organize the heap to provide a specific
location for young (i.e. newly allocated) objects. The knowledge of this location
allows one to run a garbage collector focusing only on young objects and thus to
reduce the time spent doing garbage collection.

Concretely, the heap is divided into memory areas called “generations”, the
area reserved for young objects being called nursery. Objects that survived a
garbage collection in a given generation are promoted to the next generation. In
general, only two generations are used: young (or nursery) and old. The young
generation is collected very often, while the old generation is not. The technique
to collect garbage in each generation can be of type Mark-and-Sweep or Mark-
and-Copy.

From the implementation point of view, there exists one major issue: inter-
generational pointers. When a given generation is collected, we need to take into
account those pointers from other generations to objects in the current genera-
tion. A first observation is that few pointers normally exist from old objects to
young objects, while pointers from young to old objects are frequent. Also, young
generations are usually much smaller than old generations. Consequently, when
a generation is collected, all younger generations are collected as well. This mea-
sure avoids extra work to identify young-to-old pointers. Various techniques exist

to identify old-to-young pointers when collecting young generations: remembered

21



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

sets [88], card marking [83], page marking [62], and so on. Pointers originating
from an older generation are considered as roots.

Finally, we note an interesting work on a high level view of generational al-
gorithms: age-based algorithms [85]. Different strategies can be applied based
on the age of objects. Generational algorithms, as described above, become a

particular case of age-based algorithms.

From the interactions point of view. ..

Generational collectors [53] use several GC entities. We can view the collection
phase of the young generation as a different entity than the collection phase of the
old generation. The global strategy defines the generational architecture and the
rules that each entity should follow. These rules are what we call “interactions”
between local entity (a generation) and global strategy (the generation algorithm
itself).

Firstly, each entity has a well-defined scope of action. The collection phase
of the nursery limits its visit of the heap to the nursery, while collecting the
old generation usually performs a visit of the full heap. Secondly, the main
interactions we identify relate to cross-generation pointers. To handle young-to-
old pointers, the strategy specifies that younger generations should be collected
along with older generations.

For old-to-young pointers, we identify three interactions. One is actually
an interaction between allocator and collector: the allocator records — for GC
purpose — these pointers when they are created. The other interaction requires
a generation to consider as roots those pointers coming from older generations.
Finally, the last interaction is to record that some of these pointers are not special
anymore once a collection occurred. This is necessary because surviving objects

will be promoted and, thus, certain pointers will not remain inter-generational.

22



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

2.3.5 Incremental GCs

Applications like real-time software require a bound on the time spent doing each
GC. By limiting the amount of memory collected at each GC, it is possible to
offer such a bound.

We describe the train algorithm [38] (also known as MOS), which has been
integrated in Java since version 1.3 [58]. This algorithm is the result of observa-
tions and experiments about generational algorithms. In most generational GCs,
the nursery is small (to allow fast collection) and the oldest generation is very
large. Although the nursery collection runs quickly, the not-often run GC for the
oldest generation (which actually collects the whole heap) can be disruptive and
is not suitable for real-time applications.

The idea is to divide the old generation into blocks called cars. All cars have
the same size, as determined by the implementation. To handle cycles spanning
several blocks, cars are grouped into larger structures called trains. A car belongs
to only one train and trains are ordered by age. At each collection of the old
generation, only one car is collected along with the nursery (it is assumed that
the generational algorithm used as a basis has only two generations). Which car
is being collected is a matter of implementation policy, the article [38] describing
the algorithm proposes a round-robin mechanism. It is important to start from
the oldest train to evacuate all its objects and reclaim quickly the garbage it
holds. As for the generational technique, the garbage collector for each car can
be of type Mark-and-Sweep or Mark-and-Copy.

As can be imagined, keeping track of inter-car pointers is essential so a re-
membered set (see Section 2.3.4) is associated with each car. A remembered set
is also associated to each train and is the union of its cars’ remembered sets (rem-
sets) minus all pointers between its cars. Before each collection, the remset of the
train owning the chosen car is checked. If the remset is empty, all objects inside

the train are garbage and the train is reclaimed as a whole.

23



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Now we can see easily why this algorithm is incremental. Each collection is
bounded by the size of a car. It is possible to compute precisely the upper bound

of the time needed to perform the GC.

From the interactions point of view. ..

As for generational collectors, the main interactions are induced by cross-boundary
pointers. In this case, pointers across cars and across trains. Remembered sets
(remsets) are used to keep track of them. We identify collection entities as those
GC phases collecting a car and focus on the interaction between collection entities
for maintenance of the remembered sets. Each collection entity agrees to use its
remset as an additional root set.

We also observe that a normal collector, such as a Mark-and-Sweep or Mark-
and-Copy, has to be modified to limit its work to only one car at once and to
use the car’s remset as a root set. In this sense, it is an interaction between the
low-level collection algorithm and MOS. MOS determines the strategy that the

collector has to follow.

2.3.6 CMM: Customizable Memory Management

CMM (3] is a garbage collection framework for uniprocessor environments that
organizes the heap into subheaps (composed of non-contiguous blocks of memory).
Each subheap can use its own memory manager. The framework is composed of
a primary collector, a variant of Bartlett’s “Mostly-Copying” algorithm [5], and
C++ classes to handle multiple heaps. The main challenge in CMM is to handle
cross-boundary pointers. This is done using specific methods and by controlling
the actions of a collector when it visits a subheap it does not manage.

In this GC, we identify collection entities as the collectors handling each sub-
heap. The primary collector is one entity for example. CMM specifies that when

a collector traverses a subheap it does not manage, no modification should be

24



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

made by this collector. This rule constitutes the only interaction between col-
lection entities in CMM. Concretely, the use of the methods traverse (to visit
objects in memory) and scavenge (to move or mark live objects) help implement
this interaction. When a GC entity traverses a subheap it does not manage, the
method scavenge does nothing, (it does not move live objects, for example). The
method traverse depends on the type of object rather than the collection entity
and is thus helpful for the collection activity but not central to our discussion.
In summary, any collection entity in CMM allows other GCs to traverse its
subheap, and expects them to do nothing with live objects found there. In prac-

tice, this is enforced by the method scavenge.

2.4 Multiprocessor garbage collection

As single-memory, multiprocessor machines began to spread, people interested
in garbage collection were tempted to dedicate a number of processors to do
the collection concurrently with working processors. The overhead of garbage
collection becomes minimal, thus allowing this memory management technique
to be used in a wide range of applications.

Before reviewing some techniques, we describe the general idea behind the
term “concurrent GC”, and differentiate the terms concurrent and parallel as
they are often interchanged whereas they probably should not be. In a traditional
uniprocessor system, the garbage collector operates in stop-the-world mode. This
means that the GC may stop the computation at almost any time to fulfill its
requirements, and mutation resumes after the collection. Multiprocessor collec-
tors propose two possibilities. Either collection is performed concurrently with
mutation, or mutation is stopped, as in a uniprocessor environment, and garbage
collection is done in parallel by all the processors. We can see the difference be-
tween concurrent collectors and parallel collectors. The former runs at the same

time as mutation and requires minimal pauses from the mutator. The latter

25



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

pauses the mutator and performs garbage collection very fast.

In this section, we summarize the ideas of four relevant papers: Steele’s 1975
article [84] which is the first paper on the topic, Dijkstra et al’s 1978 article [28]
which introduced the terms of collector and mutator, Boehm’s 1991 paper [12]
which shows a more recent example of research work on the topic, and Endo’s
work [30] on a parallel garbage collector. With the latter, we provide a detailed

study of interactions.

2.4.1 Multiprocessing compactifying GC — Steele

This work was published in 1975 by Steele [84] and has the advantage to present
multiprocessor garbage collection as a “fresh idea”. Interesting issues are ex-
plained including concurrency aspects and problems occurring when more than
two processors are used. Experiments were conducted using a Lisp dialect, the
working processor was called a “list processor”.

The main challenge of this algorithm resides in the fact that the collector
compacts data (i.e. move objects close together in memory). In a uniprocessor
environment, this does not present any particular problem: data is copied from
one place to another in memory, pointers are updated and the computation is
restarted. However, in a concurrent environment, processors used for computation
may try to dereference an object that has already been moved. The relocation
algorithm thus needs a way to handle this problem. The solution is to implement
forwarding pointers coupled with semaphores. Like in the uniprocessor Mark-and-
Copy algorithm, forwarding pointers are left in the old location to refer to the new
one until all references have been updated (this is guaranteed to happen because
the collection process visits all objects). Semaphores are needed to synchronize
with the computation processors: the GC locks access to an object while it is
moving it. Once the semaphore is released, the computation simply needs to

follow the forwarding pointers updating its reference at the same time.

26



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Other problems include the management of the freelist and newly created
cells. New cells have to be marked in some way to warn the collector of their
existence. To avoid concurrency problems, free cells are added to the end of the
freelist. The allocator takes free cells at the head of the list.

[84] also discusses various multiprocessor configurations. In particular, the
case of more than two processors is explored. As long as only one collection
processor is used, there is no noticeable difference. However, if we use several
collectors, two possible schemes are identified. In the first one, all collectors are
synchronized and in the same state. The work is divided and everything happens
as if we have only one collector. Another interesting case is to have synchronous
collectors. For example, we can divide the memory in several blocks, each block
being managed by a collector. Of course, inter-block pointers have to be taken

into account. Further details can be found in [84].

2.4.2 On-the-fly Garbage Collection — Dijkstra

In [28], Dijkstra et al explore the minimum constraints required to obtain a
fully concurrent garbage collector (computation processors are required to as-
sist garbage collection processors). This paper also introduces the now widely
used terms of mutator and collector.

To solve the problem of collecting garbage using another processor, the authors
propose to use a graph algorithm. As we have seen in Section 2.3.2, the heap
can be considered as a graph for GC purpose. Objects correspond to vertices and
pointers are similar to edges. The scheme is based on a graph traversal algorithm.
Concretely, the GC algorithm used in this paper is of type Mark-and-Sweep.

Tricolor marking is used to keep track of garbage and non-garbage objects.
During a collection, black denotes a reachable object, gray means that an object is
potentially reachable, and white corresponds to garbage. Gray is used to handle

the fact that a pointer can be modified by the mutator at any time, even during

27



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

collection. If the collector has already examined the object, then something has
to be done to indicate to the collector that it should examine it again.

The paper is focused on finding the minimum level of interaction between
the two processors. It is proved by an example that shows that the muta-
tor is required to take actions to help the collector (i.e. mutator and collector
can not be completely independent). We consider three cells A, B and C. A
and B are reachable nodes. Originally B and C' are linked. The mutator and

collector are working in parallel. The following steps may occur in this order:

1. The collector examines A and marks it as reachable. A has no descendant.
2. The mutator creates a new link A-C. A now has a descendant.
3. The mutator breaks the link B-C.

4. The collector examines B and marks it as reachable. B has no descendant.

Eventually, C' will be reclaimed because it has not been marked as reachable,
which is wrong. We need the mutator to take specific actions when it manipulates
already marked pointers. From this result, the authors designed an algorithm that
solves this problem using the smallest possible constraints. The main idea is to
reduce large synchronized operations to the smallest possible actions in order to

avoid loss of efficiency on the mutator side.

2.4.3 Mostly Parallel Garbage Collection — Boehm

The paper [12] looks at a practical solution to implement a concurrent GC and
explores a compromise between practical and fully concurrent GC. We start this
description with a warning about terminology: in that paper, the term “parallel”
is used in place of “concurrent”. This is unfortunate as it may lead to confusion.
Our overview “translates” and explains the algorithm as if the paper were called

“Mostly Concurrent Garbage Collection”.

28



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Dijkstra’s solution [28] to a concurrent M&S is rather complicated and an
implementation could become complex as well. Instead of trying to achieve op-
timal concurrency, the technique of [12] strives to achieve practicality. Indeed,
the resulting algorithm is very simple. It relies on dirtying (i.e. marking as modi-
fied) pages during the concurrent phase and on an hopefully small stop-the-world
pause to adjust certain marks. The length of the pause varies according to the
allocation behavior of the mutator. If the mutator allocates memory frequently
after the beginning of the GC, the pause is likely to be important. However, it is

noted in the article that this behavior has rarely been observed in practice.

2.4.4 Parallel GC — Endo

Endo et al [30] designed a parallel garbage collector based on the BDW collec-
tor [13]. Mutation is stopped to let the processors work on the heap. Objects are
marked from the local roots of each processor. An important characteristic of the
collector is that dynamic load balancing is employed to handle load imbalance
between processors (e.g. when a large tree is shared between processors, only one
processor will mark it, leaving the other ones idle). From the description of the
algorithm, we gathered many interactions with the overall strategy. Processors
can not simply run a uniprocessor GC independently of the others. Specific data

structures and actions are needed. We found the following elements:

e Each processor has its own local mark stack (a mark stack is a buffer used
to tell the collector what pointer to follow next). The global strategy defines

this new data structure.

e Each processor marks objects from its local roots. This is the basic
interaction. No mention has been made of a common static area as root,
hence we do not discuss interactions resulting from possible synchronization

choices at this level.

29



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Synchronization is needed to mark objects. Before a processor accesses an

object, it attempts to acquire a lock on the mark bits.

e A minimal solution to the problem of load balancing is brought with steal-
able mark queues. This is a new data structure to handle. This allows
processors to “steal” tasks (i.e. pointers to follow) when they are idle. Ev-
ery processor should perform several steps regularly. No specifics are given
on the matter of exactly when these have to be performed. This interaction

seems to be left open to implementers. The steps are as follows:

— Check if the associated stealable mark queue is empty.

— If it is, pointers from the mark stack are moved to the stealable mark

queue.
This effectively defines an algorithm that each GC entity has to handle.

e Processors also have to use the stealable mark queue. The overall strategy
defines rules for this to happen. This is another algorithm that each pro-
cessor has to execute. When a processor becomes idle, it verifies stealable
mark queues (starting with its own), tries to lock one, and steals half of

the entries by integrating them into its own mark stack.

e Termination is detected with a global counter. Interactions lie here in the
need to increment and decrement the counter, whenever an event occurs

(idle, awake).

e To handle the sweep phase in parallel, processors are required to acquire a
number of heap blocks, and merge contiguous free blocks when possible.
This happens repeatedly until all blocks have been examined. This avoids

the need for synchronization.

These interactions are sufficient to define how a processor operates within the

global strategy. However, it was observed during Endo’s experiments that the

30



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

speed-up could be made better when certain operations are handled differently.

This means that new interactions happen.

e To avoid load imbalance due to large objects, a processor is required to
split such objects into chunks to allow other processors to steal the task of
marking and examining one chunk, rather than waiting for one processor

to complete the marking of a large object.

e Synchronization can be improved with a different procedure. Instead of
waiting to lock a queue to steal its contents, a processor is required to only

try and proceed to next queue if the lock could not be acquired.

e A problem is the cost linked to detecting termination. Instead of a serial-
ized access to the global counter, additional data is maintained. Two flags
are associated with the mark stack and stealable mark queue for each pro-
cessor. No lock is needed to check them. However, each processor needs to
check all flags in order to detect termination. A third flag is used to allow

synchronized checks without locking the flags.

e During the mark phase, mark bits of objects are locked for checking and
possibly marking. However, this locking operation occurs even to simply
check if an object is already marked, which is not efficient. The new opera-
tion required by the overall strategy first reads the mark bit without locking
and continues if the object is already marked, otherwise an attempt is made

at acquiring the lock.

An interesting observation here is that this collector does not act on any
subheap. It operates on all the objects that it can access. This is different
from what we have seen with uniprocessor collectors and what we will see with
distributed GCs. This peculiarity comes from the fact that the architecture is
“reversed”: several computing devices act on a single store, instead of a single

device acting on several logical stores or multiple devices acting on multiple stores.

31



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

2.5 Distributed garbage collection

Distributed computing environments require powerful and flexible memory man-
agement. Although theoretical papers have been published in the area of dis-
tributed garbage collection since the early 1980s, design and implementation
of DGCs have always been considered too complex for practical use. Indeed,
a number of new and interesting problems arise when considering a distributed
scale. This section discusses distributed garbage collection by presenting a general
model, a classification of DGCs, various DGC-related issues, and an overview of
several current algorithms. A more complete presentation of distributed garbage

collection can be found in [1], [75], and [41].

2.5.1 Basics

Terminology

Let us consider a distributed system with the architecture illustrated in Figure 2.1.
From the memory management point of view, we define several layers of the
system. First, we consider the graph of objects including heap objects and
their links (pointers). The second layer is the graph of network nodes (also
called sites or spaces) with logical links between them. Such links are defined by
the application rather than physical configuration. Finally, the network graph
corresponds to the physical layout of the machines involved in the distributed
system. In all schemes we present in this section, message passing is the only
means of communication. No read/write in a shared memory has been considered.

Distributed garbage collectors primarily focus on public objects, which cor-
respond to those objects referenced by objects on a remote node. A node usually
denotes a process managing its own heap (i.e. using its own garbage collector to
handle the local graph of objects). The graph of objects on a node is organized as

follows. Local roots (stack, static area, and registers) keep objects alive. As long

32



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Q
B DA
Machine 1
_ Physical link
Y Machine 2
Logical link
********* - Pointer

Figure 2.1: General DGC model

33



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

as an object is accessed locally or accesses other local objects, no difference can
be made with a uniprocessor environment. However, in a distributed setting, it is
likely that certain objects become public and are accessed by objects on another
node using what is known as remote pointer. Such a pointer is a cross-node
link between two memory objects. We also introduce two new sets of elements
that are part of the heap: entry items and exit items. They are gathered
under the term opaque addressing, and can be thought of as representatives of
local objects for other nodes. Entry items contain pointers to their corresponding
objects and are referenced by other nodes that need to manipulate this object.
Exit items act like proxies, when a local object references a remote one. This
technique provides a simple way to access remote memory objects as if they were
local. Only these special items will hold network addresses and data needed to
access the actual remote object.

It should be clear now that a DGC is not a single entity that migrates from

node to node collecting garbage. Rather, a DGC is a composition of:

e Local GCs which handle memory management at each node of the dis-
tributed system. They are usually responsible for reclaiming garbage that

has been discovered either locally or by actions of the DGC algorithm.

e Network protocols which define messages that should be transmitted be-
tween nodes to coordinate the distributed garbage collection effort. Once a
node knows what objects are used by another node, it can figure out what
objects to keep and what objects to collect. For example, a Distributed
Reference Counting algorithm relies on “increment” and “decrement” mes-

sages.

e A general algorithm which explains the global strategy as well as some

optimization ideas (e.g. batching of messages).

34



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Classes of distributed collectors

We distinguish the following families of distributed garbage collectors: Distributed
Reference Counting, Hybrid, Global structure based, and DTD-based.

A DRC algorithm relies on counters placed on entry items to keep track
of the number of remote references to a local object. No local action other than
maintaining the local proxies and associated counters is required. Basically, this
type of DGC needs the local GC to handle counter increment and decrement
operations, resulting from the export of a reference or the reception of a DECRE-
MENT message. The local GC handles the updating of counters and reclaims
entry items when their counters reach zero. The subsequent actions depend on
the nature of the local GC. If it is a reference counting scheme, the corresponding
counter will immediately be updated. Otherwise, the object previously referenced
by the entry item will be considered for reclamation if no other object references
it. Local GCs can use any technique (although explicit memory management may
require some adaptation).

In this class of DGCs, we find techniques such as Weighted Reference Counting
(see [90]) or Distributed Reference Listing algorithms (e.g. Shapiro’s SSPC [81],
Moreau’s HDRC [63] and so on). DRL algorithms are slightly different in that
they list the nodes referencing a particular object instead of simply counting them.
This allows for a finer management and aids in supporting failure handling.

Of course the problem with DRC algorithms is that garbage cycles can not
be collected. Hybrid algorithms usually provide a way to deal with such data
structures in the form of a specific algorithm on top of a DRC collector. Such
techniques are also called “Augmented DRC” or “Augmented DRL”, because they
are actually a layer on top of those algorithms. This layer is usually derived from
a Mark-and-Sweep style algorithm and adapted to a distributed environment.
Hybrid techniques are widespread as they provide simple solutions involving low

development time. In terms of local requirements, hybrid collectors are very de-

35



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

manding. They often require the propagation of information within a node from
entry items to exit items. This is the usual way to maintain global information
about the distributed graph of objects. Of course, there is no synchronized “stop-
the-world” process and global consistency does not exist in this environment (as
mentioned in [82]). Using a local collector allows one to use incomplete knowledge
while providing a reliable solution to reclaim all garbage (i.e. to be complete).
Furthermore, hybrid collectors usually rely on a Distributed Termination De-
tection algorithm to assess the end of a detection phase. Upon termination, it
is possible to identify objects that are part of a garbage cycle using the marks
(whatever their nature is: constant values, timestamps, ...) propagated by the
local GCs.

Global structure collectors describe a class of distributed collection algo-
rithms that rely on maintaining distributed data structures other than the graph
of objects. For example, [37] describes the port of the local GC called MOS [38]
(a.k.a. the train algorithm) to a distributed setting. The idea is to maintain a
distributed version of the trains by using specifically developed protocols. This
class is different from the hybrid class in that it manages extra distributed data
structures just for the purpose of garbage collection. This is likely to result in
different requests for local GCs. Indeed, instead of simply requiring specific ac-
tions, the local GC has to maintain this distributed structure. This means that its
nature might change according to what part of the structure is locally managed.
For example, DMOS — as described in [37] — requests the local GC to behave like
MOS, managing cars and trains. In comparison, hybrid collectors do not require
any change in behavior except for managing independently created and managed
local data structures.

The ideas developed in [8] define a separate class of DGC algorithms: DTD-
based distributed collectors. The idea is to extend a stand-alone GC to a dis-

tributed setting by adding new network protocols to map the garbage collection

36



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

paradigm to that of a DTD algorithm. In a sense, it is the only class which
actually distributes a garbage collector over a network of nodes. The technique
described in this paper requires the exact same actions from all local GCs: cre-
ating and managing jobs and tasks for the DTD algorithm. Although we found
only one paper on this topic, we believe that such high-level garbage collection
schemes similar to this technique are likely to become more widespread because
they propose a simple solution to a quite complex problem. The next step would
be to try implementing such algorithms. In Chapter 5, we describe a design

method that could be useful for this task.

2.5.2 Distributed Reference Counting

Distributed reference counting is the most common form of distributed garbage
collection. For example, it is used in Java RMIs [59] in association with leases
(which are expiry dates: an object is made available for a certain period — a lease
— and can be reclaimed after this period has passed). Important characteristics
of this technique are its simplicity and, like its uniprocessor version, the inability
to detect garbage cycles. We first detail a simple algorithm, and then explain an

optimization allowing reduction of the number of messages.

Simple version

We start by explaining how basic DRC works. We rely on the general DGC model
and terminology described in Section 2.5.1.

A counter is associated with each entry item. Remote nodes send increment
and decrement messages to allow these items to maintain accurate information
about public object reachability (the degree of accuracy depends on the chosen
mechanisms for synchronization and ordering of messages). Counters are initial-
ized when entry items are created. Their initial value is usually 1 because an

entry item is created when the reference to an object is exported. A counter on

37



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

an entry item reaching zero means that no remote pointer exists on the object
represented by the entry item. This item can then be reclaimed. Exit items do
not have to hold a counter, because they are handled by the local GC on each
node. Entry items are used by the local garbage collector as roots. For example, if
the local GC is a Mark-And-Sweep scheme, marking will be done from the stack,
the registers, the static area (i.e. local roots) and from any entry item whose
counter is not zero. The sweep phase would reclaim all non-marked objects and
all entry items whose counter is zero.

Adapter code may be required depending on the local GC scheme. For exam-
ple, if the local GC is reference counting, entry items whose counter reaches zero
will be reclaimed right away, decrementing counters on the local objects they ref-
erence. Furthermore, it is not advisable — although possible — to move entry items
when using a copying-based scheme. Indeed, remote references to a local object is
done through these entry items, and remote nodes store addresses of these entry
items in their exit items along with the remote node identification. Moving an
entry item would require either a listing of nodes referring to the item and many
update messages or forwarding pointers left for an undetermined amount of time.
As mentioned earlier, this is possible, but it does not seem to be a particularly

efficient mechanism.

Indirect Reference Counting

Different methods have been proposed to improve performance over the naive
version of distributed reference counting. The most widely known is probably
“Weighted Reference Counting” (see [90]) where weights are used instead of coun-
ters. Each time a remote pointer is duplicated, its weight is divided. This allows
to reduce the number of “increment” messages because when a remote reference
is created, a weight is automatically assigned. Also, duplications are handled

without informing the “home node” of the referenced object because weights are

38



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

simply divided. This method does not reduce the number of decrement messages.

We now explain the concept of pointer duplication in a distributed environ-
ment. We consider that a node p is the owner of object o, and it sends a reference
to o to node ¢q. Then, node r sends a request to node q for a copy of this pointer.
If node q agrees then the pointer is duplicated. The problem is that duplication
happens without node p knowing about it. There are several ways to deal with
this. The naive solution is for node r to send an increment message to p. As we

are going to see, indirect reference counting avoids this cost.

Indirect Reference Counting is a technique to eliminate increment messages.
It is sufficient to send pointers to other nodes along with some information.

To achieve this, an inverted tree structure called a diffusion tree is maintained
globally. Please note that we are going to use the term site instead of network
node for this explanation to avoid confusion with tree nodes. There exists one tree
per public object. Each site manages its own node of this distributed tree. Each
tree is single-rooted and the root is the home site of the object being remotely
accessed.

Four scenarios are handled:

e Creation of a remote pointer.

e Duplication of a remote pointer.
e Deletion of a remote pointer.

e Migration of the object.

Each node counts its direct children. This means that when a site creates
a remote pointer to one of its objects, the pointer is sent and the counter of
direct children (remember this is an inverted tree) is incremented locally (how-
ever, a decrement message is needed if the remote pointer already existed at the

destination node).

39



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

When a pointer is duplicated, the same process occurs but the home site of the
object does not need to know about it. The node of the tree at the destination
site sets its “parent” to be the node who agreed to send a duplicate. The counter
of direct children does not change at all, thus avoiding the cost of an increment
message.

Deletion of a remote pointer can be a problem. Remember that the tree
represents the “history” of duplication of remote pointers to an object. It does
not represent an actual distributed structure used by the mutator. The situation
is the following: node ¢ deletes its remote pointer to an object o. If the site was
represented by a leaf in the tree, then this leaf can be removed and a decrement
message is sent to the parent node in the tree.

A problem occurs when the site is represented by an interior node. It can
not be removed because other sites rely on this node to link them to the tree.
Consequently, a “ghost” node is used and automatically removed as soon as it
becomes a leaf (i.e. there are no children anymore). A decrement message is sent
only when this node is removed.

Migration is handled by changing the root of the tree. The new node rep-
resenting the home site is detached from the tree (if it previously existed in the
tree) with its whole subtree and becomes the new root of the tree. The node of
the old home site becomes a child of that node. We can see that very few updates
are necessary.

Please refer to [73] for more details about issues and implementation. From
this algorithm, Piquer derived a more general model called Indirect Garbage

Collection and published an algorithm called Indirect Mark-And-Sweep [74].

2.5.3 Distributed Reference Listing

Distributed Reference Listing is an extension of Distributed Reference Counting.

Instead of recording the number of remote pointers to an object, the exact list of

40



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

hosts referring to this object is recorded and maintained. This allows for better
fault management. For example, if a faulty node is known, measures can be taken
to decide the future behavior of the memory management scheme (exclusion, for

example). As DRC, this technique does not reclaim distributed garbage cycles.

Hierarchical Distributed Reference Counting [63]

This DRL scheme presents a solution to the scalability problem (see Section 2.5.5).
Certain objects are popular and many hosts have references to them. In this
context, the number of messages may become enormous. This DGC solves the
problem with a hierarchical organization which helps reduce the burden on most
nodes of the system.

Although its title refers to reference counting, this scheme is really a reference
listing DGC. It uses the concept of hierarchical organization of nodes to achieve
better scalability. The model follows a regular model for reference listing, each
node maintaining a list of hosts associated with each reference. In [63], two reasons
are given to explain why distributed garbage collectors based on reference listing
do not scale: (i) popular objects impose large space requirements to record their
referents, (ii) locality is not taken into account (i.e. DRL algorithms do not rely
on any notion of node proximity).

The claim here is that “massively distributed computations may be conceptu-
ally organized in a hierarchy”. We can imagine machines in a lab, several labs in
a department, several departments in a university and so on. This is a hierarchy
of machines. For every level in the hierarchy, a gateway is set up which acts as
the representative of its subnodes for the outside and conversely. This is actually
a conceptual hierarchy, because the gateway may be part of the computation at
the same level as its subnodes.

Total space needed in the system is greatly reduced although the higher a

node is in the hierarchy, the larger its reference listing set must be. The root of

41



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

the hierarchy will contain all references, which might be a problem as it becomes
a special node in the system. It is important to note that this hierarchical or-
ganization is only used by the garbage collector. Mutation messages can be sent
directly to any node (DGC messages are sent to nodes in hierarchical order to
maintain consistency). The paper presents two schemes: flat distributed refer-
ence counting and hierarchical distributed reference counting. To our knowledge,
only the first one has been implemented to date. This work is, to our knowledge,
the first to address directly the scalability problem. It also considers the idea of

physical locality of computation nodes.

Stub-Scion Pair Chain [81]

In this section, we describe a scheme which provides fault tolerance and robustness
to lost and non-ordered messages. Shapiro and Plainfossé suggest that a garbage
collector has to be able to cope with failures. Based on reference listing, this
scheme uses timestamps to achieve this result.

Stub-Scion Pair Chain (SSPC) is an acyclic distributed garbage collector re-
lying on reference listings and timestamps on messages. As we saw in the previ-
ous section, reference listings imply a limitation on the scalability aspect of the
scheme. The reason is that it is costly for each object of each node to maintain
a list of all nodes that have a reference to it. This scheme does not propose any
solution for this scalability problem. However, it provides a complete solution to
handle failures.

The model of the SSPC scheme is as follows. The distributed system is a
set of nodes called spaces. Asynchronous messages constitute the unique way
to communicate. These messages may be lost, duplicated or delivered out of
order. Remote referencing uses opaque addressing: stubs are very much like exit
items and scions correspond to entry items. Timestamps are used to control the

order of messages. Each space checks its communications with all other spaces

42



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

by maintaining a threshold. If a message arrives too late, it is refused and has
to be retransmitted. Each space regularly sends a message to announce what are
its live objects. Remote spaces can then update their view about the liveness of

remote references.

2.5.4 Cyclic DGCs

Although DRC and DRL collectors are simple to implement, they lack an impor-
tant feature: they can not reclaim distributed garbage cycles. Several solutions
have been designed to solve the problem. Most algorithms are of the Hybrid class
and are thus augmented DRCs or DRLs. In this section, we will see an example
of an augmented distributed reference counting scheme as well as an example
of augmented distributed reference listing. We will also present a DGC of the
Global structure-based class. This algorithm called DMOS is the only existing
distributed collector based on an incremental GC algorithm (MOS). We conclude
by presenting a migration-based algorithm which migrates garbage to a single

node to let it be reclaimed by the local collector.

Augmented DRC: Garbage Collecting the World [51]

This scheme is one of the most interesting because it provides answers to a num-
ber of issues. It claims to be fault-tolerant, to avoid the need for a centralized
control and to be comprehensive. We explain how these results are achieved and
emphasize on three characteristics: groups, reclamation of distributed garbage
cycles, and fault-tolerance.

Based on distributed reference counting, this algorithm integrates a solution to
detect and reclaim distributed garbage cycles using a mark-and-sweep technique.
A specific architecture is created around the notion of group that is simply defined
as a set of nodes.

A group limits the scope of action of the DGC, which thus detects distributed

43



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

garbage cycles in an acceptable timeframe even in very large networks because it
only acts on part of the network rather than the entire system. Several groups can
be defined to cover the entire network. Groups also help to manage fault-tolerance
by allowing dynamic removal upon detection of failed nodes.

The technique used to detect dead cycles is a distributed Mark-and-Sweep.
The main idea is to have local collectors propagate marks from roots and entry
items to exit items. A special network protocol is used to globally propagate
marks from exit items to entry items. After global stabilization of the system
(i.e. marks on items are definitive), the system can look at non-marked items
and reclaim them, thus breaking the cycles and leaving the rest of the work to

local collectors.

Augmented DRL: Cyclic SSPC [52]

This extension of the SSPC algorithm uses timestamps to reclaim cycles. It relies
on a central server to compute a minimum global time from local minima sent from
all the nodes. The idea is that, at each local collection, a constantly increasing
timestamp will be propagated among stubs and scions. If a garbage cycle exists,
stubs and scions will hold a constant timestamp. When the minimum global time
is increased to a value greater than the one held in the garbage cycle, the cycle
can be reclaimed. Due to the need of timestamp propagation, this DGC requires

a tracing algorithm for its local GC. For more details about this extension to

SSPC, please refer to [52].

Garbage Collecting the World: one car at a time [37]

This DGC explores the possibility of using an incremental scheme for a distributed
system. The paper [37] proposes to use the train algorithm (also known as the
MOS system [38]) in a distributed environment. This scheme is called Distributed

Mature Object Space.

44



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

The idea behind the train algorithm is that, in generational schemes, the
collection of the old generation can be disruptive because the memory area is
usually large. The train technique, as we have described for MOS, divides the old
generation into a number of blocks called cars, so that, at each collection, only
one car is collected. The time of one collection is thus bounded. Trains group cars
together to collect cycles spanning several cars (concretely trains group together
data structures larger than a car).

In DMOS, we distinguish three elements: computation, objects and pointers.
The computation represents the node (a process managing its own heap). Ob-
jects are the basic structures used in the computation and pointers link objects
together within a single node or over a network. This is a classical model. Nodes
communicate via messages. A computation is allowed to mutate or move any
object. A particular object can only reside on one node, called the home of the
object, at a time.

The garbage collector is a locally copying collector. This means it is allowed
to move objects within a node, but not from one node to another. Only the
mutator is allowed to perform this operation. The scheme describes algorithms
and protocols to handle object migration (using a “pointer tracking algorithm”).
The purpose of DMOS is to provide a comprehensive scalable scheme also offering
safety and incrementality. Fault-tolerance is not handled in this scheme, because
the authors suggest that this aspect is the responsibility of the underlying system.

Each local collector is a modified MOS collector. A car belongs to one node
only whereas trains can span several nodes. Reclaiming distributed garbage cycles
is allowed through this facility. By isolating a distributed cycle in one train only
(even if it spans several nodes) and evacuating live objects from this train, it is
possible, upon detection, to reclaim the entire train, releasing its memory space.

This is done asynchronously on each node.

45



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Recently, the authors published an update to this algorithm [8], using a new
technique — based on distributed termination detection algorithms — to simplify

most of its aspects.

Migration-based

Migration-based distributed garbage collection algorithms rely on moving ob-
jects from one node to another. Many people consider migration for GC purpose
unacceptable, arguing that garbage collection should be “transparent”. In partic-
ular, DGCs should not migrate objects between nodes because it could hurt the
computation process in terms of performance (the location of an object might be
a strategic choice made for optimal performance).

Migration-based DGCs took the step to propose techniques to reclaim dis-
tributed garbage cycles by trying to move them to a single node where they can
be reclaimed by the local collector. We are going to take a look at a partic-
ular technique called “Controlled Migration” [54]. This technique, created for
databases and persistent systems, avoids unnecessary migration by scheduling for
migration only those objects part of a distributed garbage cycle. Furthermore, it
strives to reduce the number of “leaps” from one node to another by estimating
the final destination node. In this case, migration is acceptable, because garbage
objects are not accessible to the mutator.

The algorithm proposed in [54] is based on a reference listing mechanism. It
migrates garbage objects deemed part of a distributed garbage cycle to a single
node (which may be different for each cycle) to let the local GC take care of
reclaiming the cycle. The probability of being part of a distributed garbage cycle
is assessed by a threshold on estimated distances to a root object. The use of this
threshold avoids as much as possible migration of live objects (although there is
no guarantee that live objects will not be moved). Optimizations include objects

batching and estimation of final destination to avoid multiple migrations.

46



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

This DGC has been created for an object-oriented database system called
Thor [34] where many objects are persistent and their respective locations are
vital for good overall performance. In such a system, failure handling and efficient
garbage cycle reclamation is very important. Failure handling is supported by
the distributed garbage collector through the use of a distributed reference listing
DGC. The terminology used in this article is inlists for references to a local
object (entry items) and outlists for references to remote objects (exit items).

Cycles are handled by estimating, for each object, the minimum distance
across nodes to a root (it is actually to a persistent root, but it is not important
for this overview). To compute the distance of an object, the shortest path from
a root to this object is chosen. Locally reachable objects have a distance of
zero. If an object o is on node B and is accessible only from a root r on node
A, then the distance of 0 is 1. The idea is that garbage objects that are part
of a cycle will have a constantly increasing distance as they are not linked to
any root. This happens because distances are estimated with a distance field in
inlists and outlists. When a local collection occurs, distances are propagated from
roots and inlists to outlists. The distance field of an outlist will contain 1 4 the
minimum distance propagated to it. It is important to note that distance fields
are associated only with inlists and outlists not with all objects, and, to simplify
distance propagation, inlists are sorted by distance. When local propagation of
distances occurs, garbage objects part of a cycle will not have roots to keep their
distances low. At each node, the local GC propagates distances and adds 1, thus
increasing distances without bound. The algorithm computes a threshold value
beyond which objects are considered as garbage. This value is based on expected
distances of live objects. This is why there is no guarantee that live objects will
not be migrated. However, the scheme is still safe and complete, because live
objects, even if migrated, can not be incorrectly reclaimed, and all garbage is

eventually deleted.

47



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

To optimize migration, all related garbage objects on a node are batched for
transmission to avoid creating too many remote references while having to mi-
grate these objects anyway but at a later date. The question of where to migrate
garbage objects is also an important one. Multiple migration should be avoided
for performance reasons. A possible solution is to use a fixed “dump node”, but
this has the drawback of placing unnecessary stress on a single node. Instead, the
algorithm of [54] orders nodes by IDs (identifiers) and tends to migrate objects
to the node with the highest ID, which holds a part of the distributed garbage
cycle. To estimate this node, a “destination” field is added to inlists and outlists
and destinations are propagated in the same way than distances. Instead of a
termination detection algorithm, a second threshold is used to decide when the
destination has been evaluated. Once again, there is no guarantee that the desti-
nation node will be correctly evaluated. However, this affects only performance,

not safety and completeness of this DGC.

2.5.5 Issues

Garbage collection is a useful technique to automatically deal with memory man-
agement problems such as garbage objects and dangling pointers. However, a
certain number of issues have to be solved. In a uniprocessor environment, these
issues are: completeness (to reclaim all garbage) and safety (to reclaim only
garbage). In a concurrent environment, the most important problem is concur-
rent accesses to the heap. In a distributed system, other problems arise:

One important issue is related to node failures. Distributed garbage col-
lection has to continue working even in the presence of failure. This question
receives a different attention in published algorithms according to the authors
point of view. Opinions range from “failure is the responsibility of the underlying
system” to “failure handling is critical and DGCs have to handle or even support

it”. This problem is hard to solve and the solution is usually not cost effective.

48



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

People usually assume that the frequency of failures is not worth trying to solve
the problem. This is true for small local networks. However, on a system like the
Internet, nodes may fail very often.

Of all problems, scalability is probably the least treated issue. Most schemes
claim to be scalable, but this is rarely proven or even discussed convincingly. None
of the schemes encountered presented an analysis of their scalability. However,
Moreau [63] took a first step by providing a solution to improve scalability in DRL
algorithms. Furthermore, most DGCs deal with a maximum of ten or twenty
machines in their experiments. Handling thousands or even millions of machines
remains an open problem.

Efficiency is, of course, an important issue but not specific to distributed
environments, since uniprocessor techniques are also concerned with efficiency.
Yet, certain details may make this question more problematic in a distributed
environment. Communication between processes is achieved by message passing.
On a slow (compared to internal communications) network, a designer has to be
careful about the number of messages needed.

In the literature, published DGC algorithms often provide informal state-
ments destined to sketch a correctness proof. Unfortunately, these statements
are rarely accurate and may not be reliable. The lack of simple formal constructs
makes proving the correctness of DGC algorithms awkward. Distributed collec-
tors have to cope with many parameters that can affect their correctness. The
paper [65] defines a formal method to study and prove properties about garbage
collection. Garbage collection is defined as “a relation that removes portions of
the heap without affecting the outcome of the evaluation.” Other interesting
results of this paper include a proof that there exists no optimal collector and
a technique that uses type inference to collect accessible but unused objects. A
formal language called Ag¢ is described which makes operations of allocation ex-

plicit, and exposes the heap as a property of a program. Specific definitions are

49



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

provided for different techniques of garbage collection. Details are available in
[65] and a proof of correctness can be studied in [66]. [89] proposes an extension
to handle distributed memory management. To our knowledge, this is the first
and only work on this topic. This paper defines a new calculus called A,, which
combines Age and CCS, used for parallel and distributed systems and defined
in [60]. In A/, allocation, processes, and communications are made explicit. A
program is a set of nodes which are threads associated with heaps. This high-level
calculus allows us to express allocation and mutation in the heaps, and manipu-
lates integers, and GC and DGC algorithms can be expressed in a concise manner.
Proofs rely on the definition of the “Program equivalence” property. As in [65],
garbage collection is a transition preserving evaluation of programs. The program
resulting from a garbage collection at a node is equivalent to the program before
GC, in the sense that the thread part is not modified, the same evaluation is
maintained and the resulting heap is smaller than the original heap.

The last DGC issue we describe here is the question of Local/Global GC
cooperation. This aspect has largely been forgotten because algorithm design-
ers focused on a specific architecture: most cyclic DGCs are a combination of
DRC/DRL algorithms with a technique based on information propagation. Local
collectors should be of the tracing family to accommodate these DGCs. Unfortu-
nately, this does not take into account local needs of nodes where memory man-
agement performance is usually the most important. The purpose of local /global
GC cooperation is to provide the DGC with global knowledge about the state of
the system without requiring any synchronization (in [82], Shapiro compared the

GC problem to the consistency problem). We study this question in Section 2.6.

2.6 Interaction semantics in a DGC environment

As we did for uniprocessor and multiprocessor environments, we now look at dis-

tributed garbage collectors from the point of view of interactions between global

20



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

strategy and local elements. We also use the DGC presented in Lang’s “Garbage
Collecting the World” [51] as an example. Our goal is to understand the structure
of a distributed garbage collector and try to break it down in several well-defined
pieces. As a result, we create a new element, called “Generic Garbage Collector”,
that separates the concerns of distributed protocols and local GC strategies in a

DGC environment. The generic GC is described in Chapter 3.

2.6.1 Terminology

We start this study by establishing important terminology distinctions.

First, we call stand-alone GC, a GC that is not part of a distributed system
or does not concern itself with the distributed environment it is possibly in. This
includes uniprocessor and multiprocessor GCs. We prefer the term of stand-
alone because it can relate to both. Also the terminology of uniprocessor and
multiprocessor is historic. It does not take into account recent development such
as threads with which we can have parallel or concurrent GCs using only one
processor. The use of multiple processors can be left to the operating system to
deal with.

A local GC is a GC that takes its distributed environment into account.
Usually a local GC is a stand-alone GC that has been modified to work with a
particular DGC. For example, to work with the “Garbage Collecting the World”
[51] scheme, a Mark-and-Sweep algorithm can be adapted to propagate DGC
marks while marking. To illustrate the difference between both terms, in the case
of GCW, a stand-alone GC would be a normal M&S algorithm and a local GC
for GCW would be the same algorithm modified to propagate GCW’s marks.

2.6.2 Interactions

The interaction between a local GC and a distributed GC can be characterized

as a client/server relationship. The DGC is the client which requests actions to

o1



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

be taken by the local GC. We call the set of services that should be provided by
the local GC from the DGC point of view “requirements or need of the DGC.”
If those requirements are not provided, the DGC will not be able to operate
properly. Depending on the class of the DGC, requirements will be more or less
demanding. We focus on hybrid collectors, which have the largest number of
algorithms.

Although we do not concentrate our efforts on the interactions between local
collectors, it is still useful to mention this here for comparison. A DGC is a strategy
for local GCs to cooperate across networks and manage cross-node references
safely. This means that local GCs are required by the DGC to interact and
they do so through network protocols. Messages sent between nodes prove vital
to this global strategy, and it is important for a local GC to know what and
when information should be sent. The answers to those questions determine
the behavior and efficiency of the distributed collector. Thus, these particular
elements are part of the interactions between GC and DGC, because they are
consequences of the interactions between local GCs in a DGC environment.

Most of hybrid distributed collectors have two important requirements: local
propagation of data and termination of dead cycle identification. Local propaga-
tion is an activity usually performed by the local collector on a node (but it does
not have to be). The local collector examines entry items on this node and copies
their associated values (e.g. a timestamp, the nature of these values is determined
by the DGC algorithm) to the corresponding exit items located on the same node,
by following the paths of pointers within local memory. If an exit item is reach-
able from several entry items, the “strongest” value is usually selected. strongest
means highest value, more recent timestamps, or something else, as determined
by the distributed collector. When an exit item is reachable from an element of
the local root set, the propagated value is the strongest possible, as determined

by the distributed collector. The local collector also helps with dead cycle iden-

92



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

tification by supporting the DTD algorithm chosen by the distributed collector.
The local GC is usually responsible for computing one or several values that will
help assessing the progress made towards termination. It is often the case that

these values are computed right after local propagation.

We illustrate the nature of these interactions with an example using the DGC
presented in Lang’s paper “Garbage Collecting the World” [51] and described in
Section 2.5.4.

Figure 2.6.2 illustrates how GCW operates. The black color indicates a HARD
mark, gray indicates a SOFT mark, and white indicates no mark. We explain

each step:

1. The algorithm uses two marks: HARD and SOFT. It starts by setting
initial marks on entry items on the nodes belonging to the group (HARD
for objects reachable from outside the group and SOFT for objects only
reachable from inside the group). The requirement for maintaining marks

and opaque addressing items is a first interaction.

2. Each node takes care of propagating these marks from entry items to exit
items. At the same time, if an exit item happens to be reachable from a
local root, its mark is set to HARD. This means that the local GC is asked

to propagate marks. This is a second interaction.

3. Once local propagation is completed, messages are sent to connected nodes
to propagate marks globally. This operation constitute a third interaction
because sending a message should be done by the local GC as required by
the DGC. As soon as all marks have been propagated throughout the group,
global stability is reached. To discover this fact, the DGC requires each node
to provide local stability information (not shown in the figure). This is a

fourth interaction.

23



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Node A Node B —FNHO
Node A
Group of nodes .
‘ Initial state (1) Local propagation (2)
R
RO
Node A Node B
Group of nodes
Global propagation (3)
R
@)
RO
Node A Node B
Group of nodes
Breaking cycles (4)
R
RO
Node A Node B

Group of nodes
Reclaim garbage (5)

Figure 2.2: Garbage collecting the World: an ezample.

o4



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4. When global stability is decided, items marked SOFT are deemed part of a
distributed garbage cycle. Such cycles are broken artificially by setting the

pointers on corresponding entry items to NULL (fifth interaction).

5. Local GCs will then take care of reclaiming the garbage. Although this is

an implicit requirement, we can consider this as a sixth interaction.

In this example, we can observe the different interactions between the local
and distributed GC. We can observe that new data structures appear: entry
and exit items with counters for the DRC algorithm and marks for the extension
handling distributed garbage cycles. Network protocols also have to be handled
by each node:

e increment and decrement messages to deal with distributed reference count-

ing,
e negotiation protocol to create groups,

e global propagation of marks (i.e. between nodes, from exit items to entry

items), and,

e a distributed termination detection protocol will be used to detect global

stability of the system.

Furthermore, local actions are required from the node. Two important op-
erations have to be dealt with locally as mentioned earlier in this chapter: prop-
agation of marks (from entry items to exit items) and detection of local stability
for the DTD algorithm. Although these actions would be performed more easily
if they were integrated within the local GC, they are not required to be part of
it. Indeed, we can even imagine that there is no local GC and local memory
management is explicit. Some specific protocol would then be needed within the

mutator to take care of the DGC’s requirements.

95



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

This leads us to an interesting observation: identifying garbage objects can
normally be done independently of any actual garbage collection. The work of
a DGC is to inform the local collector that objects previously used by a remote
entity do not need to be exported anymore. However, it is up to the local collector
to actually reclaim those objects and free the memory. Consequently, another
interaction between GC and DGC is the implicit trust that the local collector is
actually going to take some action about the objects identified as garbage by the
DGC.

26



Chapter 3

Generic Garbage Collector

In this chapter, we describe a novel entity that we call “Generic Garbage Col-
lector”. The generic GC can be applied to uniprocessor and multiprocessor col-
lectors, even though we focus on distributed garbage collection. The purpose of
the generic GC is the definition of a local garbage collector perfectly suited to
answer the needs of a distributed collector. The DGC uses this entity to list its
needs in terms of local treatment. The generic collector never exists as a piece
of software, but rather acts as a template to specify interactions between a local
collector and a distributed collector. It allows one to concretely model the dif-
ferent interactions recorded between GCs and DGCs. In essence, it is the model
that has to be adapted when transforming a stand-alone collector into a local one
for a specific DGC. It is a contract between both entities.

In this chapter, we present the model and an annotated example based on
Liskov’s Migration algorithm [54]. Finally, we explain how the generic GC has
been used in practice in the context of our work on a DGC for the World Wide
Web.

o7



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

3.1 Model

Focus class

Object-focused or Region-focused or Heap-focused.

This class defines the general type of a local collector. It helps un-
derstand the view that the local GC should have of the local heap.
This characteristic can be thought of as a high-level “hint” of what
the DGC requires from its local GC. Most DGCs we encountered are
said to work with “tracing local collectors.” The corresponding class
is Heap-focused, because each GC phase should visit the heap in its
entirety.

Object-focused memory management techniques act on one object at
a time. The graph of objects in memory is never seen in its entirety.
Examples of such techniques are Explicit memory management and
Reference Counting.

In contrast, heap-focused GCs have a complete view of the graph of
objects at each collection. They visit each and every live object, but,
depending upon the technique, garbage objects may not be visited.
Classical examples of such GCs are Mark-and-Sweep and Mark-and-
Copy.

Finally, region-focused techniques consider a subgraph of the graph of
objects at each collection. Each collection visits only a specific part
of the heap. The order of visiting is determined by the algorithm.

Generational collectors are members of this class.

Concurrency class
Uniprocessor or Multiprocessor Parallel or Multiprocessor Concurrent.
Current distributed collectors assume uniprocessor GCs only. How-

ever, applications now use threads and garbage collectors are likely

28



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

going to use multiprocessor techniques more often. A distributed
garbage collector may require a multiprocessor GC for performance

reasons, for example.

Data structures
A local garbage collector is often required to maintain DGC-related
data structures. We describe them using the following high-level in-

formation:

e [dentification. To identify and refer to the data structure.

e Description. Description of purpose, usage, peculiarities, and so
on, of this data structure using natural language. Although, this

is not necessary, it may be useful for better understanding.

e Operations. Operations allowed on this data structure. Each
operation should indicate its input, output and effect on the

structure.

Data
In a local collector, there is usually a number of important constant
values or global variables. It is useful to clarify the roles of each of
them to support the description of the “Actions.” We use the following
elements to describe a datum:

e [dentification. To identify and refer to the datum.

e Description. To explain the purpose and use of the datum.

e (ontents. Show the datum itself possibly with its type and value.

29



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Actions

DGCs usually require their local collectors to take specific actions to
support distributed garbage collection. While distributed reference
counting simply asks for a decrement operation of entry items, cyclic

collectors usually need sophisticated operations to be performed.

e [dentification. To identify and refer to the algorithm.

e Description. Basic, high-level information about the action. It

can be used to specify assumptions for example.
e [nput. Data or data structures provided to the action.
e Qutput. Results from this action.
e Side-effects. Non direct results from the action.

e [Ds of needed data and data structures. List of variables, con-

stants and structures used and relied upon by the action.

e Algorithm. This is a formal description of the steps required to

perform the action.

3.2 Example: Liskov’s Migration algorithm [54]

The distributed collection algorithm displayed in this section migrates objects
deemed part of a distributed garbage cycle to a single node for local reclamation.
The interested reader is referred to Section 2.5.4 for an overview of the algorithm.
The local GC for this DGC essentially computes and propagates distance values.

It triggers migration of objects when necessary.

60



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Focus class: Heap-focused.
e Concurrency class: Uniprocessor.
e Data structures:
1. — ID: inlist
— Description: List of public objects. This corresponds
to entry items.
— Operations:

* create. Input: received outlist, Output: inlist, Effect:
inlist contains pointers to remotely accessed objects,
as well as estimated distances and destinations.

* getDistance. Input: index of a pointer in the list,
Output: distance to the referenced object as computed
so far by remote nodes, Effect: none.

* getDestination. Input: index of a pointer in the list,
Output: estimated destination for deemed garbage as
computed so far by remote nodes, Effect: none.

* getOrigin. Input: index of a pointer in the list, Out-
put: ID of the node referring to the corresponding
local object, Effect: none.

2. — ID: outlist
— Description: Records pointers to remote objects. This
corresponds to exit items.
— Operations:

* addRef. Input: (node ID, reference on remote node),
Output: none, Effect: new remote reference added.

* setDistance. Input: (index, new distance), Output:

none, Effect: distance of pointer in the list is updated.

61



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

* setDistance. Input: (index, new destination), Out-
put: none, Effect: destination of pointer in the list is

updated.
3. — ID: Distance

— Description: This type is used to find out what objects

are part of garbage cycles. The distance is based on the
knowledge of the location of root objects. When an ob-
ject is pointed to by a rooted object in the same node,
the distance between them is 0, when this object is on a
node A, the distance is 1. If a rooted object o; on node
A points to 0y on node B and oy points to o3 on node C,
the distance for o3 is 2.
Distances are propagated from one node to another, the
smallest distance for an object is the distance of this ob-
ject. Garbage cycles will hold objects with potentially
infinite distances as there will be no root to keep the
value from increasing as this goes from one node to an-
other.

typedef int Distance.
— Operations:

% compare. Input: another Distance, Output: less than,

equal, greater than. Effect: none.

The focus class of the algorithm is Heap-focused due to the requirement of
propagation of distances. We also observe that, like most DGCs, this collector
relies on opaque addressing, using inlists and outlists. The notion of “Dis-
tance” is central to the DGC algorithm. This is why the description is detailed,

although its representation is very simple.

62



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Data

1. — ID: Threshold

— Description: Chosen value that will serve as a thresh-
old to decide whether or not objects are to be migrated
because they might belong to a garbage cycle. Refer to

[54] for more details about how to choose this value.
— Contents:
Threshold = A_CHOSEN_THRESHOLD

2. — ID: Threshold2

— Description: Chosen value that will serve as a thresh-
old to decide when the final estimated destination for
the objects of this garbage cycle has been determined
and propagated. Once this is done, migration can begin.
This value is thus very important. Refer to [54] for more

details about how to choose this value.
— Contents:

Threshold2 = A_CHOSEN_THRESHOLD
e Actions

1. — ID: local propagation
— Description: This function implements the core func-
tionality of the collector. It describes what actions should
be taken by each node to support the DGC activity. This
local propagation can be easily integrated within a trac-
ing collector such as Mark-and-Sweep. The main tasks
are: propagate and update distances, propagate and up-
date destination nodes. The Controlled Migration DGC

is based on a DRL, the outlist is reconstructed at each

63



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

call to this function.

— Input: inlist.

— Qutput: outlist.

— Side effects: update outlists with distances and destina-
tions from inlists and roots.

— Data Structures IDs: outlist, inlist.

2. — ID: propagate_local roots

— Description: helper function for local_propagation. Its
purpose is to trace objects and propagate distance values
to the outlist. This starts with a distance value of 0 as
we start from roots.

— Input: none.

— Qutput: outlist.

— Side effects: update outlists with distances and destina-
tions from roots.

— Data Structures IDs: outlist

Although not all of the required operations are listed in this example, this
should be sufficient to illustrate the Actions category of the Generic GC model.
A more complete model (including the description of the “Algorithm”s) is given
in Section C.3. Interactions between local collectors and this migration-based
DGC are visible within the described model. The DGC requires data structures
such as inlist and outlist. The local GC must estimate new distances and
destinations for remotely accessed objects. To achieve this, the local GC expects
its inlist to be updated regularly. If these interactions are preserved and the
needs of the DGC are fulfilled, the overall strategy (i.e. distributed collector) can

operate properly.

64



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

3.3 In practice

As we will see in Chapter 7, we used the generic garbage collector to help us imple-
ment a DGC mechanism for the Web. The generic GC allowed us to identify the
various parts of the system we wanted to build and we could then deduce the dif-
ferent steps in our design. We also gained in modularity because the layers defined
by this architecture are part of the design from the beginning. This allowed us
to create a complementary local collector (in the context of experimenting with
interoperability in Chapter 8) for our distributed GC implementation without

modifying the rest of our code.

65



Chapter 4

A Localized Tracing Scheme
Applied to Garbage Collection

We present a method to visit all nodes in a forest of data structures that takes
into account locality of reference to improve traffic within the memory hierarchy.
This method is applicable to a wide range of uniprocessor garbage collection
algorithms, and to a multiprocessor setting.

We call this technique a Local Tracing Scheme (LTS) as it improves locality of
reference during the object tracing activity. An LTS can be used as an optimiza-
tion technique at several levels of the memory hierarchy (cache, virtual memory,
network).

We organize the heap into regions and use trace queues in the same way entry
items are used in a Distributed Garbage Collection environment. Experiments
with a Mark-and-Sweep collector for the language Aldor show performance im-
provements up to 75% at the virtual memory level. Although preliminary tests
at cache level did not show significant speed-ups, increasing cache sizes and cache
line sizes should allow the LTS to optimize this level of memory hierarchy even-

tually.

66



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4.1 Presentation

Many algorithms require visiting all objects in a forest of data structures in a
systematic manner. When there are no algorithmic constraints on the visiting
order, we are free to choose any strategy to optimize system performance. An
instance of this situation occurs in memory management where reachable objects
must be visited as part of a garbage collection method.

Uniprocessor garbage collection is mature and offers satisfactory performance
for many applications. It is now possible to use garbage collected memory in
situations where it would not have been suitable just a few years ago. Incremen-
tal improvements in garbage collection technology thus have impact on a much
broader audience than before.

These techniques share a common characteristic: they trace heap objects.
Starting from specific objects known to be live (these are usually called roots),
the process follows all paths in the graph of objects. It terminates when all vertices
in the graph or predefined sub-graph (i.e. objects of the heap or predefined sub-
heap) have been visited.

Mark-and-Sweep (M&S) collectors first visit all live objects, marking them,
and then sweep the memory area to recover unused space. Optimization of mem-
ory traffic during the sweep phase has been considered by Boehm [13]. We observe
that memory hierarchy traffic can be improved during the mark phase using an
LTS. Since objects do not move in memory, the benefits of an LTS are similar
at each GC occurrence, if data structures are preserved. Improvements of the
overall GC time decrease when few objects are live. In this case, the mark phase
is short and optimizations have a small impact.

Stop-and-Copy (S&C) garbage collectors move objects to a new location at
each GC occurrence. To do this, they must visit all live objects. Although
objects are close together in memory once copied, performance of the collector

and the allocator may not improve with respect to this locality (see chapter 11

67



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

on cache-conscious algorithms in Jones’ book [41]). Furthermore, Boehm [10]
and Zorn [94] argue that S&C collectors do not necessarily perform better than
M&S. Particularly, Zorn compares both techniques in a generational setting and
concludes that M&S typically uses 20% less memory than S&C, but was 3%-6%
slower on the problems he tested. While a copying collector apparently improves
locality over time, these analyses prove that this factor is not sufficient to clearly
improve performance. It is not clear whether the LTS could be beneficial for a
S&C algorithm, and further study is needed. An obstacle is the fact that objects
are copied in a far location and then examined for pointers that would typically
be in the vicinity of the original location of the object.

Generational collectors [53] also use tracing because each generation is handled
by a copying or mark-and-sweep collection algorithm (although copying is used

more often).

The contribution of this work is to propose an optimization for the tracing
algorithm used by these garbage collectors. Preliminary tests showed that most
pointer distances are small. The difference between heap addresses at both ends
of a pointer is very often less than the size of one or two pages. From this
observation, we investigated how limiting the scope of tracing to deal with small
distances first and larger distances later could improve a collector’s performance.
The LTS organizes its visit of the heap based partly on the graph of objects, and
partly on the location of objects. A consequence is that the Localized Tracing
Scheme is memory hierarchy friendly, which means that it is able to optimize visits
of objects at different levels of the memory hierarchy: cache, virtual memory,
network.

This technique divides the heap into regions. With each region, we associate
a trace queue which holds a list of objects to visit. To a certain degree, this
data structure is similar to the notion of mark stack used by Boehm [13]. Trace

queues are actually the origin of the performance improvements displayed by the

68



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

LTS. They help to delay the tracing of “remote objects” (i.e. located in another
region), concentrating on “local objects”. This is a way to simulate locality of
objects, relying on object location rather than object connectivity. The sizes of
regions and trace queues are determined by the level of the memory hierarchy
we wish to optimize for. For example, to obtain a cache-conscious algorithm, a
region and the trace queues should be small enough to fit entirely in the cache.
The rest of this chapter is organized as follows. Section 4.2 describes a family
of tracing algorithms dividing the heap to control visiting order. We also present
our algorithm (the LTS) and make a comparison with a traditional technique.
Section 4.3 details an example to illustrate the LTS. Section 4.4 presents our
scheme from the point of view of the study on interactions presented in Chap-
ter 2. Section 4.5 discusses an informal proof of correctness for this algorithm.
Section 4.6 details our experiments and results with the GC for the Aldor compiler
(see [48], [47] and [49]). We also discuss the different parameters of the algorithm.
Section 4.7 explores advantages and drawbacks of the LTS in a multiprocessor
environment. Section 4.8 and Section 4.9 present related work and conclude this

chapter.

4.2 The LTS algorithm

The LTS can be customized in a number of ways, while retaining its main charac-
teristic: to control the visiting strategy of the heap to improve performance over

a regular, depth-first traversal of data structures.

4.2.1 Regular trace phase

We start by considering a regular trace algorithm (that we can find, for example,
in a mark-and-sweep collector). This is useful for comparison purposes with our

tracing algorithm and to explain a couple of issues we observed.

69



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Main: For each root r
Trace(r)

Trace(p): Mark object o pointed by p
For each valid pointer p’ in o
Trace(p’)

The operation called “Mark” has different meanings according to the collection
algorithm that is used. For example, a mark-and-sweep collector simply sets a
bit corresponding to the object, while a copying collector moves this same object
to a “live area”. In any case, the technique chosen to mark an object is only
essential to the LTS to ensure termination of the process. It does not add to the
principal idea of the optimization we propose in this work. Instead, we focus on
how objects are visited.

We observe that the algorithm presented above uses a depth-first traversal.

We identify two problems with this technique:

e The topology of the graph of objects has a direct influence on the behavior
of the process within the memory hierarchy. A traditional tracing algorithm
does not take advantage of the relative locations of objects in the heap. The
focus is usually put on locality of reference rather than actual closeness of
addresses. A possible consequence is a poor behavior up and down the
memory hierarchy. For example, when virtual memory is required (i.e. the
heap is larger than physical memory), a page may be brought from disk
to main memory to visit only one object even if other live objects become
available in main memory. The page can then be discarded to visit related
objects that may be on another page. This could lead to thrashing. The

same observations can be made for caching behavior.

e Recursion can be very deep (e.g. with a linked list). This causes a lot
of activity on the stack side (allocation/deallocation of stack frames, ...).

Traversing large data structures such as trees, matrices, linked lists, and so

70



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

on, is likely to incur significant stack traffic during the tracing phase of a

GC.

In the rest of this chapter, we study the possibility of improving on those two
aspects by transforming this depth-first process into a “semi-breadth-first” one.
The following paragraphs will describe a family of these algorithms and a possible

instance we call the LTS.

4.2.2 Family of tracing algorithms

The principal idea behind our tracing technique is to defer visiting objects which
lie outside of a working set by maintaining queues in close memory (cache for
example). When a queue becomes full, the deferred visits are made, altering the
working set in a controlled fashion. This idea to localize the tracing process can
be applied with minimal, localized modification to existing trace based garbage
collectors.

Several strategies are possible for managing the deferred trace queues:

e One may keep all deferred object pointers in a common list, allowing or dis-
allowing duplicates. When the list becomes full, it is analyzed to determine
how to alter the working set. This has the advantage that the memory of
the global queue is fully used, but the cost of the analysis may outweigh

the benefit of making the optimal choice of working set alteration.

e One may associate a sub-queue to each range of addresses (heap region),
with the number of ranges and size of sub-queues being parameters. De-
ferred object pointers are added to the appropriate sub-queue, allowing or
disallowing duplicates. When a queue is full, the associated region is added
to the working set and visits are made. This has the advantage that defer-

ring visits is fast, but the disadvantage is the deferred trace queue as a whole

71



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

may be largely empty. This may be addressed by dynamically adjusting the

size of the sub-queues based on use.

We have enumerated six strategies (common list, static sub-queues or dynamic
sub-queues each of which allows or disallows duplicate deferred object pointers).
We would expect the sub-queue strategies to be best when the far memory (RAM
or secondary storage) speed is within a few orders of magnitude of the close
memory (cache or RAM) speed. Beyond this, we would expect the common list
strategy to yield better results.

Note that performing the deferred visits in a region (let us call it region A)
may cause the trace queue of another region (region B) to fill before region A
has been handled completely. It is then necessary to remove region A from the
working set to allow the newly filled trace queue (for region B) to be handled.
Unfortunately, this may cause thrashing if A’s and B’s deferred trace queues are
nearly full for too many mutually referencing pages. Tracing then degenerates
to the usual handling of tracing, but with substantial additional overhead. This
may be avoided by taking one additional action: before performing the deferred
marks on a region, the trace queue can be flushed into local store in the region
itself. This local queue can be substantially larger than the per-region queue

maintained in near memory.

4.2.3 Algorithm

We present a tracing algorithm where trace queues are associated with each heap
region (the static sub-queues allowing the duplicates strategy described above).
To allow fast access to these queues, they are contained in one contiguous area
that we choose to be small enough to be maintained in cache.

Each region contains objects that will be marked and scanned. The difference
with a regular tracing process is that scanning an object can reveal pointers

inside the region currently collected or outside. If the pointer is to an object in

72



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

the region, the object is visited recursively. When it points to another region
of the heap, it means that following this pointer would not be optimal for the
working set or cache behavior. In this case, we simply place this pointer in a
trace queue for later examination. We thus maintain the working set for as long
as possible, and reduce the number of cache misses or page faults.

When the process for a region is completed, we proceed to another region. The
policy to determine the order in which regions are visited is implementation- or
even application-dependent. However, it is likely that choosing a region with a full
or close to full trace queue will improve performance. A simpler solution, which
avoids the cost of choosing the most populated queue, is to use a round-robin
mechanism, and visit regions one by one. This is what we describe here.

In the initial step of the algorithm, roots are entirely dispatched into the
different trace queues as if those pointers originated from an “external” region.
Once the roots have all been visited, actual marking begins.

The complete algorithm is as follows:

mainTrace()
InitialRootsScan() —-— to fill in trace queues
While not all queues are empty
Q := choose a trace queue
emptyQueue Q

emptyQueue (Q)
While Q is not empty
p := dequeue Q
followRef p

followRef (p)
0 := object pointed to by p
if (not marked(o))
mark o
Trace o

InitialRootsScan()
For each root r

Q := get trace queue for region where r points to
enqueue(Q,r)

73



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Trace(obj)
For each valid pointer p in obj
if p points in the current region

o := object pointed to by p

if (not marked(o))
mark o
Trace o

else
Q := get trace queue for region where p points
enqueue (Q,p)

4.2.4 Algorithm with finite-size queues

We choose to explore the static sub-queues strategy. In this scenario, it is required
that a limit is placed on the size of the queues. We thus need to handle the
problem of untimely full queues. In particular, when we visit a region and need
to enqueue a pointer into a full queue, the current working set is progressively
discarded to switch to a new one dealing with the region corresponding to the

full queue. Several strategies can be adopted:
e empty the queue and deal with the pointer
e deal with the pointer first and then empty the queue
e empty a percentage of the queue and insert the pointer in the queue.

The first strategy is likely to be the safest, because the first action is to remove
a pointer from the queue which is not full anymore, thus allowing a new pointer
to be enqueued. A situation, where we need to add a new pointer to this queue,
can occur if, for example, the first visited object holds a pointer to a region which
has also a full queue. In this case, this region is chosen to be visited and the first
pointer may be to an object holding a pointer to the region we just visited. The
second strategy allows to follow the new pointer first, thus removing the need

to keep its information on the stack, but it is likely to become too costly in the

74



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

case described above. The last strategy we described may be chosen when the
working set is not entirely filled by pages of the current region. In this case, a
certain number of pages can be brought into memory without dismantling the
current working set.

We choose here to empty the queue first and then deal with the pointer,

although experiments would be required to decide what are the best strategies.

mainTrace()
InitialRootsScan() -- to fill in trace queues
While not all queues are empty
Q := choose a trace queue
emptyQueue Q

emptyQueue (Q)
While Q is not empty
p := dequeue Q
followRef p

followRef (p)
o := object pointed to by p
if (not marked(o))
mark o
Trace o

InitialRootsScan()
For each root r
Q := get trace queue for region where r points
if (not full(Q)) enqueue(Q,r)
else
emptyQueue Q
followRef r

Trace(obj)
For each valid pointer p in obj
if (p points in the current region) followRef p

else
Q := get trace queue for region where p points
if (not full(Q)) enqueue(Q,p)
else

emptyQueue Q
followRef p

75



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Figure 4.1: Step 1: copy roots.

4.3 Example

This section presents an example of the behavior of our algorithm. We follow the
process of the LTS step by step.

First, the roots (taken from registers, stack and static area) are copied to the
trace queues:

Once the initial phase is completed, we can see that two pointers have been
recorded in the trace queue Q1. We dequeue the first pointer and mark (using
black coloring) the corresponding object. This object holds a pointer to another
object in the same region R1; we thus continue tracing along this path to mark
the other object (see Figure 4.3).

We now use the second pointer recorded in Q1. The object it points to is
marked and scanned, and is found to hold a pointer to an object in R2. This
pointer is thus recorded in Q2 as shown in Figure 4.3. Once this is done, we see
that Q1 is empty for now, so we continue the process with Q2.

We retrieve each pointer of Q2 and mark the objects, as we did for Q1. We

76



Yannis Chicha

Practical Aspects of Interacting Garbage Collectors

R3

—
EEEE
Q [T

Figure 4.2: Step 2: Marking in region 1.

R3

ANEN
EENE
9 T

Figure 4.3: Step 3: Marking in region 1. Pointer outside region 1.

77



Yannis Chicha

Practical Aspects of Interacting Garbage Collectors

® .Ore %
| O=fO |

l
! . >. . >CA> III
A
I
I
I
I

1

| R1 R2 . R3
Eﬁ Eﬂ II
-
L
L]
Q2 Q3

Figure 4.4: Step 4: Marking in region 2.

® o-—© ®
O<IO

o —-0-0—0

R1 R2

E= ¢

o1 Q2 03
Figure 4.5: Step 5: Marking in region 3. Complete marking

can see in Figure 4.3 that Q1 has been updated because an object of R2 was

pointing to R1. A pointer is also added to Q3. Once Q2 is empty, we visit Q3.
It is now empty, and

Q3 is visited and all reachable objects are marked.
we continue with Q1. Once Q1 has been visited, all queues are empty, and the
tracing process is thus over (see Figure 4.3).

We can see that these trace queues act in a manner similar to entry items in
a distributed garbage collection environment. Each pointer included in the queue

indicates that an object of the region is reachable. All objects identified as live in

78



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

a given phase of the LTS (depending on the graph of objects, there may be several
phases) will be visited before starting the visit of another region, thus improving
locality of treatment. Another analogy can be done: our trace queues are simply

remembered sets that will be used to keep track of cross-boundary pointers.

4.4 Interactions

The idea of the LTS comes from our study of GC interactions presented in Chap-
ter 2. In the present case, we considered collectors such as Mark-and-Sweep.
We imagine how such a GC could be considered a global strategy and what its
components would be.

Coordinating actions on regions of heap is similar to the work of a distributed
collector which organizes cooperation between different components of a large
distributed memory. We thus consider that each visit of a region is done by a
different entity, which relates in some way to the overall tracing activity.

Interactions we find in the LTS are very close to the ones we find in CMM
and generational collectors. The object is to define a method to handle cross-
boundary pointers. The only difference is that, with these methods, such pointers
are a burden. In our case, they are essential to optimize the process.

We rely on the following interactions:

e Do not follow pointers to an outside region.

e Record such “remote” pointers in the queue corresponding to its region.
e Use trace queues as local roots.

It is interesting to observe that these interactions are exactly those relations we
can find in any DGC context: remote pointers, proxies, use of proxies as roots.

The only difference is that there is only one entity working on all the regions

79



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

in sequence. However, we present an extension to a multiprocessor setting in

Section 4.7.

4.5 A proof of correctness for the LTS

This informal proof shows that the LTS algorithm rephrases a regular mark phase
algorithm which is assumed to be correct. The LTS algorithm has two phases:
initial root scan and trace phase. The code for the initial scan shows a simple
reorganization of the roots. It is correct as it does not lose any root and uses
only roots (as guaranteed by the statement for each root). Roots are simply
dispatched into different data structures called “trace queues”.

We now focus on the rest of the algorithm. We first prove its correctness with
the assumption that trace queues have infinite sizes (i.e we can never reach a

state where a queue is full). Later, we explain the case of finite size queues.

4.5.1 Safety and Completeness properties
Definition

In this section, we start this informal proof of correctness for the LTS by looking
at the GC properties of “Safety” and “Completeness”. The LTS verifies the Safety
property in the sense that it will not allow the collector to reclaim live objects. It
also verifies the Completeness property of garbage collectors by allowing the GC

to reclaim all the garbage.

Proof

while not all queues are empty guarantees that if a pointer is in a queue, it
will be seen eventually. The only place in the code where we dequeue is just be-
fore dealing with the reference (possibly marking and scanning the corresponding

object). We do not lose references because the only purpose of removing a pointer

80



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

from a queue is to visit the referenced object. If we find a valid pointer, there are

two cases:

1. pointer to current region: recursive call similar to the original algorithm

(marking ensures termination).

2. outside region: pointer added to a trace queue. We already argued that this

is guaranteed to be seen. Thus, safety is ensured.

The LTS is also complete: no garbage object is marked by the process. Indeed,
only objects that would be visited by the original algorithm will also be visited
by the LTS. This is guaranteed by the fact that we use the same root set as a
starting point. Consequently, only pointers found inside an object pointed to by

a root or by a reachable object can be recorded in the queues.

4.5.2 Termination

The number of objects is bounded (even if the size of queues is not). Termination
occurs when all queues are empty. This is ensured by marking objects as live
and not visiting marked objects. Termination occurs for these two reasons: there
exists a limited number of objects and these are marked when reachable. The
argument is same for the original tracing algorithm and using trace queues does
not affect termination. However, we observe that one element is not guaranteed
in our description of the algorithm: fairness of visits of queues. The action
choose a trace queue is not described, because it can be chosen independently
of the algorithm (see Section 4.6.4). Trace queues can be organized into a queue,
a heap, or any chosen data structure. To guarantee termination, all trace queues
must eventually be visited. For example, if trace queues are organized into a
queue, then we can think of the trace queues as one big queue, thus ensuring

termination.

81



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4.5.3 Argument of correctness for fixed-size queues

So far, we discussed correctness and termination proofs in the case of queues with
infinite sizes. We pursue our proof in a more practical scenario and show that
correctness and termination are still guaranteed.

Safety: There is no loss of reference. The only case where this might happen
with fixed size queues is when a queue is full and the reference we want to add to
the queue is lost. However, the algorithm specifies that once the full queue has
been emptied, we actually deal with this reference.

Completeness: The size of queues has no impact on the visited objects. We
still start from the roots, in the same way the non-LTS algorithm does. Garbage
is still guaranteed to be found.

Termination: In the new algorithm, the only obstacle to termination would
be to indefinitely cycle through queues (emptying Qa fills Qb up, so we need to
empty Qb but it fills Qa up). We guarantee progression by dequeuing first (thus
changing the state of the queue to “non-full”). Emptying a queue will treat at
least one object, and since there are a finite number of objects it is impossible to

indefinitely cycle through queues.

4.6 Experiments and results

In this section, we present the results of our experiments with the LTS. This
algorithm was implemented within the garbage collector of the Aldor compiler
(available at [48]). The GC featured by this compiler is of conservative mark-
and-sweep type, because Aldor code compiles down to C, and encourages multi-
language programming. We compared the performance of the LTS-based mark
phase with that of the traditional mark phase. In our tests, we found that the
mark phase was very sensitive to the topology of the graph of objects. If the graph

is composed of a single linked list, for example, very few cross-region pointers

82



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

will exist, leading to no improvement due to our technique, because paging or
caching behavior will be close to optimal. Our experiments focus on improving
paging performance, but we also made preliminary tests with cache-conscious
configurations. The following paragraphs discuss benchmarks, test results, and

consequences of the experiments.

4.6.1 Benchmarks

Finding appropriate benchmarks for garbage collection algorithms is quite dif-
ficult. We discovered that GC benchmarks are quite rare and usually focus on
small sizes of applications (see [9] and [36]). In particular, we did not find any
standard benchmark using heaps larger than the size of physical memory.

A reason for this is that most test applications are typically contained in
today’s main memory sizes. Programs using swap are long-lived and are often
considered inappropriate test cases.

Furthermore, new computing devices such as hand-held computers feature
RAM sizes that were common on desktop computers a few years ago. Running
today’s applications on such platforms proves challenging and requires important
resources to be allocated to the development of adapted versions of software. It
is conceivable to use virtual memory across networks for these computers, rather
than secondary storage in the same machine. This would help to use applications
that are difficult to distribute, directly without any update. We propose that
the LTS can be used to improve GC timings on very large applications both for
workstations — in this case, large means gigabytes — and for hand-held computers
— in this case, large means a few hundred megabytes.

In this context, we built a test suite that uses small programs by today’s
standards of desktop machines but that helps us confirm that the LTS is indeed an
appropriate solution for large applications. Note that our tests are obviously not

designed to represent real-life programs; rather, we have tuned them to exercise

83



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

specific situations that we suspected would help us understand better the limits of
the LTS. In particular, we found out that the LTS allows interesting improvements
when there is little or no garbage in the heap. Conversely, if few objects are live,
the tracing phase is not likely to be improved by the LTS. Section 9.2 describes

future experiments that would test the LTS in more realistic contexts.

Test environment

Our tests have been conducted with a Pentium IIT - 500MHz under Redhat Linux
7.1 (kernel 2.4.2). It is important to note that the disk is using the UDMAG6
technology. Machines using UDMA33 or UDMA100 will obviously result in dif-
ferent improvements (tests conducted on a machine using UDMA33 technology
showed up to 78% improvement instead of 75% here).

We remark that we are interested in testing our algorithm in an environment
that features a heap several times larger than physical memory. Testing very
large programs is time-consuming, so we simulated the situation by working with
programs using heaps of up to 178MB while using LiLo’s ability to set the amount
of RAM at 32MB. At boot time, we used the following command: 1inux mem=32M.

Test suite

Most benchmarks published in the literature use small amounts of memory (20MB
or 30MB). Consequently, finding appropriate tests for our algorithm was quite
complicated. A good test for the LTS is a test that has a memory consumption of
several times the amount of RAM available. This is not a sufficient but a necessary
condition, because programs using only main memory cannot be improved by the
LTS, if optimized for virtual memory behavior.

Programs using a linear graph of objects or featuring very few live objects
should not be used with the LTS. The reason is that the LTS improves the way

live objects are traced; if there are only a few live objects, there will be no

84



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

improvement. However, we will see that the LTS can be used to optimize the
garbage collection process when the program generates few or no garbage. If a
linear graph of objects is used, the overhead of the algorithm (to maintain trace
queues) will not be compensated by the slight improvement we may observe.
Consequently, such programs cannot demonstrate the advantage of the LTS.
Favorable tests should feature many data structures that span several regions.
The size of the heap should be larger than the amount of available RAM. Finally,
there should be little garbage. Our tests have been tailored to reflect these re-
quirements. We made “favorable tests” as well as tests that show an overhead

(based on the observations we made above).

Test suite common algorithm

The test program we used as a basis for most of our experiments creates arrays
holding lists of integers. Additional code can be activated to run a loop in which
new lists are created to replace old ones and/or existing lists are assigned to a
different array.

The program’s parameters are:
e Location of the arrays

e Behavior of the program (list creation only or list creation and list reassign-

ment)

e Size of the problem (i.e amount of memory needed by the program)

85



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

The following is the general algorithm of this test program. The different tests

will modify it to achieve their goal.

NBARRAYS = <value>
SIZEARRAY := <value>
SIZELISTS := <value>

Allocate NBARRAYS arrays

-- These arrays are independent, there is no structure

-- holding them together.

—-—- NBARRAYS is simply used to avoid using an actual number.
-- In the actual code, arrays are names A, B, C, D and so on.
-- This is important because we want several root pointers to
-- the graph of computation.

Initialize arrays with empty lists

for idx in 1..SIZEARRAY repeat
for each array ARR -- won’t appear in actual code
ARR[idx] := nil
for i in 1..SIZELISTS repeat
for each array ARR -- won’t appear in actual code
ARR[idx] := cons(RANDOM_VALUE, ARR[idx]);
-- The order of the loops is important.
-- It allows lists to be allocated ‘‘interlaced’’ rather
-- than in sequence. This gives a better mix in memory

¢ ¢

-- and thus creates many ‘‘remote’’ references.

—-- Depending on the tests, the code will continue or not.
-- In the following "some" either means "all" or "every other"
for i in 1..SOME_VALUE

Swap some lists in the array

Remove some lists from the array

Create new lists to replace removed lists

This test program has the advantage of simplicity. Simplicity is important
here, because test suites have to be flexible in order to experiment with several
configurations. The test program also uses a large amount of memory very fast,
which allows many tests. From this algorithm, we tested 7 scenarios and 1 other
test which does not use this code, but tests the behavior of the GC with a linear

structure.

86



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4.6.2 Detailed description of the test suite

Test 1: Fit in RAM

RAM used by the test: 6MB - Total RAM available: 32MB.

Description.

Parameters SIZELISTS and SIZEARRAYS are chosen so that the graph of objects
fits entirely in RAM. Because the tested version of the LTS is configured to
improve timings in presence of page swapping, we should observe an overhead due

to the management of extra data. This test allows us to quantify this overhead.

87



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Test 2: Linear structure

RAM used by the test: 90MB - Total RAM available: 32MB.

Description.

Our algorithm improves paging behavior during tracing. If the graph of objects is
structured linearly (i.e. a single linked list), paging behavior is acceptable in a non-
LTS environment because the tracing process looks at each object in sequence.
In this situation, the only advantage that the LTS could bring is the decrease
of the maximum stack size by cutting the recursion and keeping already marked
objects in memory to check whether they contain more pointers or not. This can
be useful because the non-LTS trace process is depth-first. This means that, once
a pointer is found in an object, all children accessible via this pointer should be
visited before checking the object again for another pointer — even though there
are none. The purpose of this test is to find out if the overhead is compensated
by this small speed-up.

The list structure for each element is as follows:
[ Pointer to Big Object, Pointer to Next ]

This allows to fill the memory pretty quickly as well as maintaining a linear
structure. Because the mark phase scans each object starting with the first word,
objects will be marked before the next element in the list, thus preserving a linear

visit of memory.

38



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Test 3: Parallel list creation

RAM used by the test: 90MB - Total RAM available: 32MB.

Description.

In this test, the last part of the general algorithm is omitted. The program
consists in a simple loop of parallel creation of the lists. A picture of memory

looks like this:

Step 1: Arrays creation

< Arays

Heap

Region 1 Region 2 Region 3 Region 4

Arrays are created in the first region of the heap because they are created first.

Step 2: First elements of the first lists

Heap +—

Region 1 Region 2 Region 3 Region 4

By creating the lists interlaced, we see that they will actually be parallel in memory.

89



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Step 3: More elements of the first lists

Heap

i

Region 1 Region 2 Region 3 Region 4

When the first region has been filled, the next regions will be used. We can see
that the lists are still being created in parallel. Note that the head of the lists are

not in the first region (due to the use of ’cons’).

Step 4: Next lists

EEEE
s s [

Region 1 Region 2 Region 3 Region 4

Once the first lists have been created, we get to the next index of the arrays and
create more lists. The first elements of these lists will be allocated in remote
TegIONS.

As can be seen, there is a particularity to this test due to list programming.
By using the cons primitive, we construct a list that is reversed with respect to

allocation order: the first object allocated is the last object of the list.

90



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Test 4: Parallel list creation and use.

RAM used by the test: 178MB - Total RAM available: 32MB.

Description.

This is the general algorithm. It shows what happens when the arrays are modi-
fied. Once all lists are created, a loop of modifications is started. First, lists are
swapped to allow the order of marking to be different from the original created
structure. Then, we delete some lists, thus creating a bit of garbage. Finally, we
create new lists, still in parallel, to re-populate the arrays. This test shows the
behavior of the LTS in a case when there is update of the memory and garbage

is created. This is closer to a “real” application.

Test 5: Pointers everywhere!

RAM used by the test: 178MB - Total RAM available: 32MB.

Description.

Here, the general algorithm is modified to allocate and populate the arrays dif-
ferently. Indeed, by allocating all arrays at the beginning, we create a specificity:
the first region of memory contains all starting points. This test brings us closer
to a real-world application by behaving the following way: create an array, popu-
late it with lists created in parallel, create another array and so on. Arrays which

contain root pointers of the lists are now spread all over the heap.

Test 6: Cons-reversed lists.

RAM used by the test: 178MB - Total RAM available: 32MB.

Description.

Here, the algorithm of the test 4 is modified to use reversed lists. This is achieved
by reversing the list after it has been created. This effectively transforms list
connectivity to match the order of list elements to heap addresses. In the first

part, regular lists are created and, then, all of them are reversed. The second

91



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

part creates and moves lists as in test 4, but all the new lists are also reversed.
With this test, we would like to observe the behavior of the algorithm when data

structures are organized from the beginning of the heap towards the end.

Test 7: Mixed-order lists.

RAM used by the test: 178MB - Total RAM available: 32MB.

Description.

We use the test 6 but modify it to only reverse every other list. Arrays are still
located at the beginning of the heap. This mixed order should show the behavior

of the LTS in presence of data structures that are accessible from different regions.

Test 8: Mixed-order lists with pointers everywhere.

RAM used by the test: 178MB - Total RAM available: 32MB.

Description.

This test is a blend of Test 5 and Test 7. Arrays are spread all over the heap
while some lists are in reversed order and other are not. We hope to observe
the behavior of the algorithm in presence of a graph of objects evolving in a less

obvious manner than previous tests.

4.6.3 Test results: page-level tests

We discuss the results of our tests displayed in Table 4.1. Tests were run three
times in a row and numbers shown here are the average of the results we obtained.
We observed very little variation in the results (as can be expected because these
tests are not random). The table displays test numbers as the header of each

column, and the explanation for the header of the rows is as follows:

e Total app time is the total application time (including the time taken by
the Non-LTS GC).

92



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Non-LTS corresponds to the results obtained with a regular tracing algo-

rithm.

o LTS-XX-YY shows the results using the LTS with a region size of X XMB
and a total size for the trace queues of YYKB. For example, LTS-4-512

corresponds to a test with a region size of 4MB and trace queues of 512KB.

Results show the time spent by each element (application, non-LTS GC, LTS
GC) on each test. They also show the ratio between results with the non-LTS
GC and the LTS GC.

Test 1: Fit in RAM

This test illustrates a situation which is not favorable to our configuration. This is
explained by the fact that extra maintenance is needed to deal with the queues.
Here, we use regions up to 16MB, and we obtain an overhead of up to 25%.
However, we note that this is for a total application time of 1 second, and this
actual overhead is about 70ms, which is extremely small in most cases. Also, note
that this overhead disappears if the GC is configured to use the LTS only when
it can be beneficial (a simple criterion is “do not run the LTS when the heap is

smaller than available RAM”), see Section 4.6.4 for more details.

Test 2: Linear structure

With a single linked list, there exist very few cross-region pointers. Consequently,
it is unjustified to delay recursive marking in this case. This incurs an overhead
due to unnecessary operations. We can see in these results that the overhead can
be very serious: up to 57%. However, it is equally important to acknowledge the
differences in absolute time spent in the mark phase, and not only to look at the
proportional comparison. Also, we can see that by choosing carefully the size of

the region and the queues, this overhead can be brought down to a minimal level

(15%).

93



Practical Aspects of Interacting Garbage Collectors

Yannis Chicha

(1) (2) (3)
Total app time 1 second 1mn48 6mn44
Non-LTS 297 ms Omnb53 4mn34
LTS-4-256 366 ms (1.23) | 1lmn02 (1.17) | 2mn07 (0.46)
LTS-4-512 366 ms (1.23) | 1lmn05 (1.28) | 2mn08 (0.47)
LTS-4-1024 366 ms (1.23) | 1lmn01 (1.15) | 2mnll (0.48)
LTS-8-256 371 ms (1.25) | 1mn08 (1.28) | 2mnll (0.48)
LTS-8-512 371 ms (1.25) | 1lmnl2 (1.36) | 2mn25 (0.53)
LTS-8-1024 372 ms (1.25) | 1mn09 (1.30) | 2mn21 (0.51)
LTS-16-256 371 ms (1.25) | 1mn23 (1.57) | 2mnl9 (0.51)
LTS-16-512 371 ms (1.25) | lmnl5 (1.41) | 2mn21 (0.51)
LTS-16-1024 371 ms (1.25) | 1lmn20 (1.51) | 2mn21 (0.51)
(4) (5) (6)
Total app time 32mn03 50mn38 28mnl17
Non-LTS 20mn22 30mn31 20mnl7
LTS-4-256 5mn22 (0.26) | 12mn35 (0.41) | 5mn4l (0.28)
LTS-4-512 5mnl7 (0.26) | 15mnb8 (0.52) | bmnd2 (0.28)
LTS-4-1024 5mnl2 (0.25) | 17mn4l (0.58) | 5mn47 (0.28)
LTS-8-256 5mn26 (0.27) | 19mn05 (0.62) | 6mn03 (0.30)
LTS-8-512 5mnb52 (0.29) | 17mn05 (0.56) | 5mn58 (0.29)
LTS-8-1024 5mn44 (0.28) | 17mn19 (0.57) | 6mn01 (0.30)
LTS-16-256 5mn38 (0.28) | 14mn32 (0.48) | 6mn08 (0.30)
LTS-16-512 5mn50 (0.29) | 15mn21 (0.50) | 6mn21 (0.31)
LTS-16-1024 5mnb55 (0.29) | 16mn34 (0.54) | 6mnl6 (0.31)
(7) (8)
Total app time 32mn26 50mnb51
Non-LTS 21mn03 31mn09
LTS-4-256 5mn52 (0.28) | 21mn36 (0.69)
LTS-4-512 5mn36 (0.27) | 21lmnb51 (0.70)
LTS-4-1024 5mn50 (0.28) | 23mn46 (0.76)
LTS-8-256 5mn29 (0.26) | 22mn01 (0.71)
LTS-8-512 5mn32 (0.26) | 23mn05 (0.74)
LTS-8-1024 5mn22 (0.25) | 23mn54 (0.77)
LTS-16-256 5mn38 (0.27) | 19mn23 (0.62)
LTS-16-512 5mnb53 (0.28) | 19mn04 (0.61)
LTS-16-1024 6mn00 (0.28) | 19mnl6 (0.62)

Table 4.1: Results of the tests (with ratio LTS/Non-LTS)

94




Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We note that no improvement due to re-examining the object for pointers has
been possible. This is because the original GC already has specific code to use

tail recursion when the pointer we examine is located at the end of the object.

Test 3: Parallel list creation

This is the first test where we can observe the advantage of using the LTS. As
explained before, lists in this example are created in parallel, resulting in many
cross-region pointers. While the regular GC recursively marks the objects, abu-
sively swapping pages in, the LTS considers that marking some of these objects
can be delayed to improve the paging behavior. This results in an interesting

improvement (at least 2mn for a 6mn application).

Test 4, 6, and 7:

These tests give significant results: the structure of the lists in memory (from
beginning to end, or end to beginning, or mixed) does not seem to influence
the behavior of the tracing process. All three cases are different from test &
because they manipulate the lists and thus create a graph that is not so linear.
Consequently, the non-LTS tracing process will require paging when visiting the
objects, while the LTS controls this activity. We note that — with test 4 for

example — we gain about 14mn on a 32mn application!

Test 5 and 8:

Although speedups are less spectacular, they are still quite interesting: between
38% and 59% for test 5 and between 23% and 39% for test 8. These results can be
explained by the fact that “roots” (i.e the arrays that hold the lists) are scattered
in memory. Instead of gathering all of them in the same set of pages, the GC has
to swap extra pages in to reach these special objects. Even though we improve
paging, a slight overhead is incurred due to the configuration of the graph of

objects in this application. For test &, it is interesting to observe that the size

95



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

of a region appears to play an important role: we get 38% or 39% improvement

when we use regions of 16MB.

Conclusion

We observe a loss of performance for applications smaller than main memory. We
first note that although the overhead can be up to 57%, it mostly concerns small
applications which tend to be fast anyway (on the order of 5 or 6 seconds). Im-
provements we show can reach 75% for 30 to 50 minutes of runtime. Furthermore,
in Section 4.6.4, we discuss a technique that can remove the overhead. We simply
have to add a dynamic choice between a standard mark phase and an LTS-based
mark phase according to the size of memory that is used. As we will see, we can
also add criteria to help make better decisions.

These results are quite encouraging and these benchmarks could be reused to
test the LTS on hand-held computers (see future directions in Section 9.2). We
also observe that the different sizes we chose in our experiments do not change

the results dramatically. We find little difference between these values.

4.6.4 Consequences of the experiments

In this section, we discuss the implications of the experimental results on different

aspects of the LTS.

Choosing proper values for the parameters

We distinguish two parameters of the LTS: size of regions and size of trace queues.
The main issue is probably the choice of the optimal size of “window of collection”
(or region). A region should be large enough to avoid the need for large trace
queues and small enough to avoid thrashing and to keep a reasonable working
set. Obviously, there is no best choice, as the size of a region largely depends on

the nature of the applications. In our experiments, we found that region sizes of

96



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4MB gave the best results most of the time, but this is not always the case (see
for example test 7 and 8). An interesting future work would be to categorize the
applications and see if a pattern emerges. We could then tune the GC with the
proper sizes accordingly.

The second parameter is the size of the trace queues and is dependent on the
size of a region. Both should be chosen at the same time, although the main
criterion seems to be the type of application that is run. Our experiments did
not show any consistent difference in terms of performance. Although more tests
would be required, we can conclude that the size of a region has more importance

than the size of trace queues.

Optimal conditions

The LTS appears to perform best with specific patterns of applications. Partic-
ularly, this technique provides improvements as soon as virtual memory is used
(see test 1) and the graph of objects is not trivial (see test 2). The graph of ob-
jects should be complex enough to produce important 10 activity within a normal
tracing (non-LTS) behavior. Although further experiments should be performed
on this topic, it would also appear that the “roots” (i.e. main entry points) of the
graph of objects should be located in the same area. Finally, we observe that the
LTS algorithm performs better in hard cases of garbage collection where little or

no garbage exists.

Loss of performance and workaround

Our algorithm performs better when swap space is involved. Most small programs
fit in RAM and, thus, do not need the LTS. In fact, as emphasized by our experi-
ments, our modifications may generate some overhead due to unnecessary actions
such as tests to figure out if two objects are in the same region. This is a case

where we cannot improve paging behavior because there is none. Unfortunately,

97



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

if the LTS is active, it still requires extra data structures to be maintained. These
are the reason for the overhead. We propose a solution to avoid this cost.

We simply add a test before starting the tracing process. If the size of the heap
is smaller than main memory, then no thrashing can occur and the LTS becomes
undesirable. If the heap is larger than main memory, we activate the LTS. Another
solution would be to activate the LTS in a cache-oriented configuration when
the heap is smaller than main memory. Further experiments are required to
understand the pros and cons of such a solution.

We can imagine a more sophisticated version of this solution, which would
require dynamic feedback on the application pattern. This topic is outside the
scope of this thesis. As future work, we believe that studying tracing behaviors
with respect to application patterns could lead to a very efficient tracing process.
It would dynamically choose between different techniques according to past GC
behaviors and predicted application patterns.

As a first approximation, we implemented a policy to decide, at the beginning
of each GC, whether to use the LTS or not. This policy is a simple test comparing
the total amount of memory used by the program and the RAM available in the
system. If the heap is larger than available RAM, our tracing algorithm is selected,
if not the regular tracing method is chosen. This results in removing the overhead

due to extra data structures maintenance when the problem fits in RAM.

4.6.5 Cache-level preliminary tests

We started our study of cache behavior in the context of the LTS by using the
same tests as for our page-level study. Smaller sizes were chosen, with applications
using heaps up to 10MB instead of 128MB, and regions of up to 256KB instead
of 16MB or 32MB. We found that the LTS offered very little improvement (a
maximum of 2% or 3% on a total application time of 8-10 seconds).

We believe the reason is that our benchmark model is oriented towards improv-

98



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

ing paging behavior. The unit it uses is the page while cache behavior depends
on cache lines. This leads us, for future tests, to consider an additional model of
application to test and use the cache version of the LTS. A cache line is typically
small (32 bytes on a Pentium III-500). When it is imported into cache, it is not
likely to contain a large number of objects unlike pages which hold 4KB of data
on a Pentium III-500. Importing objects as a side-effect of swapping in a page is
the main source of improvement with the LTS. In the context of the cache, this
advantage disappears.

A cache line is usually reused by the tracing process if it does not contain a
pointer that leads to a large data structure. If pointed-to structures are small, a
cache line for a given sequence of bytes will not be removed from cache. In this
case, finding out if an object (or part of an object) has more pointers becomes
very fast. This is the aspect we should capitalize on in our future tests.

These preliminary experiments are interesting because they emphasize the
need for several benchmark families. Current uniprocessor benchmarks appear
quite limited as they use very little memory and understanding their allocation
and mutation is a complicated task. We see here the need for page-level, cache-
level, and network-level (for hand-held computers) tests. Also, as we said in the
introduction to this chapter that preliminary tests showed that pointer distances
in certain applications are rarely greater than 1 or 2 pages; this is not good news
for improving cache performance with the LTS. However, we believe that certain
applications will not show the same results. That is why a classification of mu-
tators and the development of appropriate benchmarks for each of these families
would be useful. Most current benchmarks are derived from actual applications
and have thus more value than artificial programs, but new memory management
techniques such as the LTS could lead to new mutation patterns. This is why we
believe that artificially created tests are of value and help us shape new classes

of applications.

99



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4.7 Multiprocessor LTS

The LTS organizes the heap in such a manner that parallelization becomes nat-
ural. The heap is divided into regions that can each be mapped to a thread or
a processor. In this section, we discuss various aspects of porting the LTS to a
multiprocessor environment. Experiments are required to assess the value of the

LTS in such a context.

4.7.1 Paging behavior

The optimization discussed in this chapter describes the control of the working set
to reduce inefficiencies within the memory hierarchy during tracing. A multipro-
cessor version should consequently strive to preserve this essential characteristic
of the algorithm. We can easily imagine regions to be handled independently and
in parallel by several threads, which could be mapped onto several processors.
Each thread would scan a group of regions repeatedly and update the different
trace queues.

Although performance is likely to improve due to the parallel nature of pro-
cessing, this technique does not preserve the working set and might lead to bad
paging behaviors. When each thread concentrates its work on a particular region
of memory, pages of this region are imported. If the region size is chosen to be
almost the same as the size of physical memory, each page brought by a thread
is likely to result in swapping out a page previously imported by another thread.

This problem could be solved by using region sizes that depend both on the
size of physical memory and the number of threads. Each thread would then
limit its activity to a small region, allowing other threads to import pages in
main memory without thrashing. Practical experiments can be made to estimate

optimal, or at least acceptable, region sizes and number of threads.

100



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4.7.2 Caching behavior

When the LTS is configured to improve cache behavior, its multiprocessor version
can also be optimized. This results from an interesting property of multiprocessor
environments. While the heap is common to all processing units, there is actually
one cache per processor. This leads us to consider the multiprocessor LTS in the
context of several processors rather than several threads. We note, however,
that advances in semiconductor technology may result in integrating multiple
processors on a single chip, with shared cache mechanisms (see [68] for more
details). It is outside the scope of this thesis to study this scenario further.

Our conjecture is that, when several processors are used (in the context of a
parallel collector), each of them will use its cache while accessing objects. Cache
improvements due to the preservation of the working set will be visible at each
processor. An advantage of the LTS is that cache consistency is maintained very
simply by assigning a range of regions to each processor. A given processor will
never visit an object in a region assigned to another one (except in the case of
work stealing as described below, but, in this case, the region can be reassigned
to another processor). The only synchronization required is to manage accesses
to trace queues.

As for the uniprocessor version, it would be possible to dynamically choose
the type of optimization that is required according to various parameters. This
illustrates an interesting property of this technique: that is, non-intrusiveness.
Using the LTS has no impact whatsoever on allocation or garbage collection. It
can be activated or deactivated at any GC phase, because a given tracing process

only lives during each GC and is completely independent of previous phases.

101



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4.7.3 Issues

An advantage of the heap organization in the LTS is that it leads to a very simple
implementation with minimal synchronization. A parallel LTS requires solutions

to two issues: termination and trace queue synchronization.

Termination

A simple idea to discover termination is to maintain a counter of threads going
to sleep when no more work is available. If a thread adds a pointer to a queue,
it wakes the associated thread up. Termination occurs when the last thread goes
to sleep. If a thread appears to be the last one going to sleep, it synchronously
checks the counter and the queues to make sure no reference has been left behind
(this can happen only if the associated thread is in the process of waking up, but

did not update the counter yet).

Work stealing

It is possible that regions are unequally populated. One region may hold a large
number of objects, while others contain no or few objects. In this case, most
processors “starve” due to the lack of work. Endo [30] proposed a solution in the
form of work stealing [16].

The idea of work stealing is quite simple. In our case, each thread maintains
a “work queue” associated with each region. It contains pointers that the thread
should examine next. Once it is empty, there are two possibilities: 1. the thread
goes to sleep until something has been put in its queue, 2. the thread helps other
threads by “stealing” pointers from their queues and inserting them into its own
queue.

As can be observed, if work-stealing is used as is, the parallel version of the
LTS reverts to Endo’s technique where several processors scan a single region,

involving a synchronization mechanism to access objects. This can be avoided by

102



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

making regions small enough to assign several regions to one processor. It would
visit each region in a certain order that can be implementation-dependent. When
all regions assigned to a processor have been visited, regions — instead of pointers
— can be stolen. This requires a simple locking mechanism at the level of regions
and not objects anymore. We believe this coarser-grained approach could lead to

a significant improvement over Endo’s results.

4.8 Related work

This section presents garbage collection techniques — both in uniprocessor and
multiprocessor contexts — that we can relate to the LTS.

Generational algorithms divide the heap into “regions” (called generations) to
reduce to a minimum the work done by the collector at each call. Because each
collection of the nursery is focused in a small area of memory, a side-effect of this
organization is to localize data treatment thus reducing page faults and possibly
cache misses. Collecting the old generation often involves collecting the entire
heap. In this case, the LTS can be used in the same way as with non-generational
algorithms. We would then benefit from the use of generations and of an improved
trace process for the collection of old generations when large heaps are collected.

The observation that collecting the old generation is disruptive has been pre-
viously made in MOS [38]. This incremental GC precisely defines the memory
block to examine at each call of the collector for the old generation (see Sec-
tion 2.3.5). It is claimed that this allows a more suitable solution for real-time
applications, for example. While the LTS does not solve the problem of real-time
applications, we believe it proposes a simple, useful technique to reduce the time
spent in collecting the old generation.

Attardi’s CMM [3] proposes a heap organization similar to the LTS but for a
different purpose. In CMM, each region of the heap is associated with a specific

memory management scheme. This allows to potentially use a different GC for

103



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

each subheap. Consequences for paging and caching behaviors were not consid-
ered. The point of view proposed by the LTS could be used to CMM’s advantage.
The natural technique used by CMM is to allow collectors to follow pointers even
in other subheaps to possibly discover live objects in the current subheap. Such
out-of-subheap pointers could be buffered in trace queues to preserve the working
set of the collector, which is the job of the LTS.

In [11], Boehm studies a technique to improve caching behavior during tracing
of a Mark-and-Sweep garbage collection. It relies on a standard hardware feature
(which can be found on Intel and AMD platforms, as well as HP RISC machines)
to prefetch “children” objects into the cache when an object is examined. When
the object is required by the tracing process, it is already in cache. In comparison,
the LTS acts at another level of tracing. Instead of importing objects before they
are needed, it keeps objects in cache as much as possible to increase the probability
they will be available in case they are needed. It is likely that both techniques
could be combined.

[11] also mentions an improvement of the sweep phase, which uses a bitmap
to mark dirty pages. A dirty page is a page which contains live objects. When
sweeping memory, the GC checks the bitmap before examining a page in detail
to rebuild its free list of fixed-sized objects. If the bit is not set, the page can be
reclaimed as a whole. The LTS provides a simple solution to store the bitmap: it
may be placed in the trace queues. In addition to storing pointers, we maintain
a bitmap of pages in the same memory area. This is useful because trace queues
are designed to fit in main memory of cache, which also allows fast access to
the bitmap. The overhead is of 1 bit per page, that is 512 bytes for a region of
16MB on a Pentium III machine. Preliminary experiments showed up to 55%
improvement with the Aldor compiler.

Multiprocessor parallel collectors do not benefit from the same attention as

concurrent GCs. However, several techniques were studied: [30] and [87], for

104



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

example. An advantage offered by the LTS compared to the parallel collector
described by Endo et al in [30] is that there is no need for synchronization at the
object level. Even though Endo proposed an optimization to access these objects,
a synchronization mechanism is still required. This can lead to a costly marking
process (although this aspect is not the only issue, as observed in the paper).
Instead of asking each processor to trace a given data structure from beginning
to the end, the LTS limits the activity of each processor to regions of memory. If
a structure steps over a “frontier”, the rest of its tracing is handled by another
processor. This removes the need for complex synchronization at this level.

We also note that, as mentioned in Section 4.7, the LTS offers a simple or-
ganization of the heap to be ported to a parallel configuration of the heap. The
advantage is that uniprocessor and multiprocessor environments can use the same
memory management technique with very little modification, and featuring in-
teresting performance optimization in the uniprocessor case. If future cache-level
experiments show interesting performance improvement, the LTS will also im-
prove cache behavior of its parallel version when several processors are used.
This aspect of parallel garbage collection has not been studied in the literature

we found, and could trigger interesting future developments.

4.9 Conclusion

In this chapter, we described the Localized Tracing Scheme, a technique to im-
prove performance of tracing activities used in garbage collectors such as Mark-
and-Sweep. The LTS localizes the tracing process by dividing the heap into
regions. This limits the working set to only one region of the heap rather than
the entire heap. If the region can entirely fit in cache, cache misses are reduced.
In the same way, if the region is smaller than available RAM, thrashing due to
numerous page faults diminishes. Consequently, optimizations can be made at

different levels of the memory hierarchy: cache, virtual memory, network.

105



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We implemented this algorithm in Aldor and created a test suite to observe
the behavior of the LTS in practice. We obtained up to 75% improvement with
a configuration oriented towards virtual memory optimization. Cache-level pre-
liminary experiments did not reveal significant improvements. Cache and cache
lines will soon increase in size, Itanium2 [26] already features up to 4MB, and
[44] mentions that the next generation (“Madison”) could increase this to 6MB.
We expect the LTS may display interesting improvements on these platforms.

Finally, we presented an extension work to this algorithm: a multiprocessor
version. We observed two axes: (i) independently of any optimization, the or-
ganization of the heap in regions results in a natural setting for parallel garbage
collections, and (ii) parallel GCs in multiprocessor environments may be improved
at cache and virtual memory levels. Future work on the topic will implement this
parallel version and compare results with other techniques such as Endo’s scalable

parallel Mark-and-Sweep [30] or Boehm’s “Mostly Parallel GC” [12].

106



Chapter 5

DGC Design

We observe that practical implementations of distributed garbage collectors are
rare, and we believe this is due to the numerous difficulties involved in the creation
of a memory management solution. Although garbage collection was introduced
to alleviate the burden of memory management, it is now common for application
implementers to design certain low-level parts of their system according to the
available memory management strategy. This is unfortunate because it shifts the
focus back to memory management and away from the logic of the program.

In this chapter, we present a method to choose, organize, and design a dis-
tributed garbage collection environment. The resulting DGC is flexible at the
levels of design and implementation, and it becomes quite simple to modify the
architecture of the system. This design method and its associated models are a
direct result of our work on interactions presented in Chapter 2 and Chapter 3.
A major aspect described in this thesis is the possibility to choose any garbage
collection algorithm to act as a local GC for any distributed collector. A product
of this work is the natural application of this method to solve the problem of GC
interoperability. We observe that each node of a distributed system should be
allowed to use its own memory management strategy, leading to a heterogeneous

system. Our method, based on the organization of interactions between local

107



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

collectors and the distributed strategy, naturally allows such a scenario to occur.

We note that we successfully used this method to design and implement (in
Java [58]) garbage collectors for the Web environment in Chapter 7 and Chapter 8.

Previous work on the topic proves quite limited. Shapiro et al [82] list impor-
tant elements to consider when designing a DGC, but do not detail any strategy
with respect to local collectors. In this chapter, we first review Shapiro’s paper in
order to give context to our work, and use the results to sketch an overall design
process method (Section 5.1). We then detail our strategy to create local GCs,
describing a more focused design method and its components (Section 5.2 and
Section 5.3). We show that the problem of interoperability of local collectors in
a distributed system can be naturally solved with our method (Section 5.4). We
also illustrate the work of this chapter by an imaginary but non-trivial example of
application for this design method (Section 5.5). Finally, extensions of the model
are proposed with a method to handle interoperability of DGCs in a multi-DGC

context (Section 5.6).

5.1 Designing DGCs

This section includes a review of a paper from Shapiro et al. [82] on designing
distributed garbage collectors. From this review, we extrapolate a design process
integrating all discussed components, and propose to investigate further the local
GC handling design space.

Note that this paper uses the same terminology for two concepts: a “space”
can be a design component or a node in a distributed system. In this section, we
will use “design space” to talk about a design component and “node” or “space”

for a node of a distributed system.

108



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

5.1.1 Existing work

In Chapter 1, we explained that design methods for DGCs would prove very useful
by helping designers to integrate a suitable DGC in their environment rather than
using a less-suitable-but-easy-to-integrate DGC.

Shapiro et al. [82] lists design elements (denoted as design spaces) and explains
what important aspects of distributed collectors should be taken into account at
design time. The authors of that paper hope to offer a starting point to help
designers build distributed collectors better suited to the context they are used
in.

In this section, we present an overview of this paper to lay out the basis for
a complete design process. [82] shows the GC problem as a consistency prob-
lem. Local collectors are not synchronized which may cause inconsistent local
understanding of the distributed graph of objects. The job of the DGC is to
cope with this issue. The authors created the Reference Consistency Protocol
to solve the problem in their system. Basically, this protocol records references
that have been sent and detects unreachable objects according to the local under-
standing of the graph. From their experience with building distributed collectors
(see [81] for example), the authors propose a model of the overall problem. The
distributed system is seen as a set of nodes and the distributed collector has to
handle three tasks: tracking references, detecting garbage objects, and reclaiming
garbage objects. This model is based on opaque addressing, as are most models
in distributed garbage collection.

While tracking references and detecting garbage is the responsibility of the
distributed collector algorithm, reclaiming garbage is handled at each node by
the local GC. In the paper, interactions between GC and DGC are reduced to a
simple matter: entry items (or scions) are part of the root set. Indeed, it is stated
that no specific work has been done on local GCs. This is the topic we study and

we intend to show how the Generic GC could help with the design of DGCs.

109



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We now overview the design components presented in Shapiro et al’s paper.
Using these design spaces, we propose, in Section 5.1.2, a complete design process

to create distributed collectors for a specific environment.

e Communication semantics. In this model, communication is mainly re-
lated to fault-tolerance. Systems range from completely reliable to com-
pletely unreliable. The speed of communication is also mentioned and
ranges from instantaneous messages to classical systems. It is claimed that
scale is an important aspect to design a distributed system. Indeed, large
systems should not assume reliable communications. However, as we noted
earlier, the DGC community is divided on this topic. Indeed, some sug-
gest that failures should be handled by the underlying system (see [37] for
example), leaving the collector to deal only with memory management con-

siderations.

e Space failure semantics. Nodes may feature a complex failure model
(different types of failures, detection or not). Once again, this design com-
ponent is not essential for certain algorithms which assume that once a
node fails, the whole application fails. The authors claim that objects that
are reachable only from a failed node should be considered garbage. An
essential precision is made: nodes that can fail, but can be recovered per-
fectly, are considered failure-free nodes. This means that objects considered
garbage are either really garbage or pointed to by objects on a node that

failed and can not be recovered.

e Reference Consistency Protocol. This component relates to the local
GC and the maintenance of opaque addressing. It is mentioned that this
design space includes techniques for propagating reachability by the local
GC. However, it seems that the actual topic is the distributed algorithm

rather than the local one. Basically, the algorithms are of the counting

110



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

(DRC, DRL) or tracing (GCW, Cyclic SSPC, Liskov’s DGC by Migration,
and so on) type. Local solutions to maintain and propagate information are

not addressed.

e Nature of spaces and addressing within a space. This concerns the
underlying environment: regular nodes (processes managing their own mem-
ory), subprocesses cooperating within a process, and shared memory among
processes or hierarchical organization (“nesting”) of nodes. The authors
claim that a hierarchical system is the best design for a large-scale system.
We find this statement arguable, because such a layout places considerable
stress on the top of the hierarchy, and might not be desirable for security

or fault-tolerance concerns.

e Cross-space reference scheme. This design component focuses on the
referencing mechanism used for remote objects. In particular, the authors
review one of the algorithms they used in their system [81]. It features an
interesting technique: short-cutting of long forwarding chains of stubs and
scions (i.e. exit and entry items). When objects migrate and references are
copied from one node to another, it is often more efficient to add forwarding
pointers (using opaque addressing in the form of scions and stubs) rather
than communicating with the node that exports the object. However, this
advantage can be lost if the chain of forwarding elements is too long. A
mechanism has been created to gradually cut the chains, therefore obtaining

both benefits: speed at reference creation and at reference usage.

In his thesis [7], Bhudia designs and implements the SSPC distributed collector
[81] for the Java programming language [58]. Using the study from Shapiro et al,
design spaces are detailed with a focus on the Java environment. A new design
space is added: amount of concurrency within a system. This was necessary

to handle garbage collection in presence of threads. This shows that practical

111



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

issues bring new concerns even at a design level. When multiple threads (Bhudia
mentions hundreds) are used for the mutator and collector, the interactions with

the DGC component might be differently implemented.

5.1.2 A design process

Although Shapiro’s work proves a useful starting point, it does not provide an
explicit step-by-step design strategy. In this section, we present a general method
— using Shapiro’s design spaces — to integrate DGC algorithms into distributed

systems.

What to design?

It is important to decide what is the scope of design. Issues can be different
when designing a completely general system or a very specific one. For example,
designing a DGC system for CORBA [70] (with obviously different stand-alone
garbage collectors) does not require the same work as designing a system for the
Paraldor project [43] which is a distributed application focused on dealing with

large sets of data.

System analysis

The first step is to study the underlying system, and understand its nature and
limitations. It is important to know the characteristics of the environment, which
will host the DGC and local collectors. To that effect, we use the following design
spaces from Shapiro’s paper: communication semantics, space failure semantics
and nature of spaces and addressing within a space.

The layout of the system should be detailed in this analysis to help identify
particular characteristics or behaviors. This may have an influence on the design
in that it may reveal possible constraints on parts of the memory management

strategy. For example, it may be that some nodes of the distributed system

112



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

already have their own memory management strategy. If this strategy is not
allowed to be changed, the design should be done accordingly.

At the end of this analysis, we should obtain a general model describing com-
munication protocols and their characteristics (when relevant for memory man-
agement such as “possibility to batch messages”), types of failures that memory
management should handle (none, loss of messages, space failure, and so on), and
the complete layout of the system including existing local memory management

mechanisms.

Memory management analysis

The next step is an analysis of the memory management needs with respect
to the system. We use the overall map of the distributed memory established in

the previous phase. We distinguish several scenarios:

e [Existing memory management strategy at several nodes. It is strict and
can not be changed. This can happen in a distributed environment when
certain nodes are required to perform a particular task and the chosen GC

allows for the best performance.
e Existing but flexible memory management strategy at several nodes.
e No existing memory management strategy.

Depending on targeted applications and constraints of the system, a choice
has to be made, which will likely involve compromises (especially if certain nodes
use strict memory management strategies). Different application behaviors may
require different memory management strategies at each node. If certain require-
ments or behavioral patterns are known in advance, it is important to specify
them in order to choose the strategy accordingly for the rest of the nodes and
for the distributed collector. Of course, a “generic” solution can be imposed on

the system, but it might not be optimal. We consider it outside the scope of this

113



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

thesis to provide a method of memory management needs analysis with respect
to application behavior.

We note that, in an environment such as CORBA, supported languages have a
non-negligible influence on the distributed memory management design. Indeed,
each language (e.g. C++ or Java) features its own ideas about managing its
heap. These constitute constraints on the system and should be listed to allow
proper choice of a distributed cyclic collector. Furthermore, although not essen-
tial, the design space called “Cross-space reference scheme” in Shapiro’s study
could be useful at this point. This aspect may have consequences on the process
of adaptation of various collectors, and on the integration procedure in the global
environment.

This analysis should provide a completed map of the system with memory
management constraints and requirements at each node of the distributed envi-
ronment. It should also list desired characteristics of the overall memory man-

agement mechanism.

Choosing garbage collectors

Once components, needs and constraints of the system have been listed, we can
start choosing garbage collectors for each node as well as a distributed col-
lector for the overall system. Analyses described in the previous paragraphs lead
this choice. For example, the “failure semantics” design space can be very impor-
tant in this system, leading to choose SSPC [81]. If distributed garbage cycles are
likely to be frequent, one might prefer the cyclic version of SSPC [52] or GCW
[51]. The “Reference Consistency Protocol” design space also helps define what
classes of DGC (see Section 2.5.1) can be used with respect to the needs we pre-
viously defined. This design space should be studied to understand the algorithm
of the DGC and its high-level requirements.

114



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Although we provide a tool to help with the decision process, choosing col-
lectors is difficult. It should be interleaved with a study of feasibility to adapt
stand-alone GCs to work with the DGC, as this activity is likely to be a highly
interactive one. Even within the the constraints discovered by the system analy-
sis, several scenarios might be available. Later in this chapter, we will show how
it is possible to organize negotiations between different collectors in order to help
with this aspect of the design (see Section 5.3.5).

Once stand-alone collectors are chosen and the DGC is selected, designers can
use the design method, described in the following sections, to verify the feasibility
of the chosen architecture. The purpose is to create a local GC for each (stand-
alone GC, DGC) couple. When there are several such couples, the job can be done
by several teams of designers. Once solutions have been found, possible conflicts
between the solutions should be evaluated to decide whether or not the system
is coherent. If acceptable solutions are found for each scenario and the system
is globally usable, then the finalization of the design can begin. If some conflicts
exist, negotiations can take place. The result will be either acceptable solutions or
non-acceptable solutions. In the latter case, it is necessary to identify the problem
elements and start again with the process decision for these elements. We note
that a repository of scenarios with their solutions (we denote a scenario to be
a (stand-alone GC, DGC) couple) could be created to allow reuse of solutions.
This should help reduce resources allocated to the design process.

Eventually, solutions will be selected and we can update the map of the system

by attaching created local collectors to nodes and by referring to the chosen DGC.

Integration

Once collectors have been chosen and local GCs have been created, the last step
is to finalize global integration. Simulations can be conducted using a software

tool such as the one we describe in Chapter 8. The purpose is to detect practi-

115



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

1 Analysis of
the system

Y

Analysis of memor Collection of
management needs Stand-alone GC

Mapping for | 6 Success|
: Local GCs
Choiceof | | 4 each scenarig

Collectors

DGC
— Main algorithm
- Network protocols
- Generic GC

5 Conflicts/Problems

Figure 5.1: Design process for distributed garbage collection.

cal anomalies that could not be found (or have been missed) during the design
process. If simulations are acceptable, integration into the target environment
can proceed. It is outside the scope of this work to describe such an integration

procedure.

116



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

5.1.3 Summary

Figure 5.1 summarizes the design process. Here is a description of each step:

1. Analysis of the underlying system.

2. Analysis of the memory management needs at each node and for the overall

system.
3. Choice of the collectors (or an other memory management solution).
4. For each (GC, DGC) couple, build a local adaptation.
5. If there are some conflicts, conduct negotiations and/or choose other GCs.

6. Once conflicts are resolved, local collectors are created and ready to be used.

The rest of the chapter describes in details how local collectors are built from

each (stand-alone GC, DGC) couple.

5.2 Design models

In this section, we propose templates to model stand-alone, distributed and
generic collectors. These templates are designed to support the first part of
step 4 of the design process (see Section 5.1.3). For each (stand-alone GC, DGC)
couple, we create models for each actor and define interactions between the DGC
and its local GCs using the Generic GC template.

This template is a simple extension of the model describing concretely our
generic garbage collector (see Chapter 3). This model helps identify relationships
between a garbage collection entity and a global strategy. In the present case, we
focus on GC/DGC interactions in a distributed environment, and use this point

of view to help with the design of distributed memory management solutions.

117



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

The templates defined in this section allow us to characterize and classify
GC/DGC relationships in order to organize the creation of local GCs more effi-
ciently. Templates do not constitute a solution by themselves, they are simply
place-holders for important information. Section 5.3 will show how to use these
templates in order to actually create local GCs (this is the second part of step 4 in
the design process). Note that these templates contain information that are not
essential for describing interactions and characteristics, but these may be useful
for designers to help them organize their work. Consequently, we also consider

the final users of these templates.

5.2.1 Stand-alone GC

Stand-alone GCs are collectors which are not set up to handle an external world.
It is assumed that the only existing roots are local. This type of garbage collector
includes uniprocessor and multiprocessor GCs. In a distributed environment,
local GCs are used on each site and roots are not only local, but also include
remote pointers. All distributed collectors encountered so far rely on a stand-
alone collector modified to handle interactions related to the distributed context
(remote pointers, local actions, and so on). We propose a template to model
stand-alone collectors because they are the basis of our work (i.e. to adapt stand-

alone GCs into local GCs).

Model

Identification

The name of the GC.

Algorithm class

This is the family this GC belongs to. We currently distinguish the
following families: Reference Counting, Tracing non-copying, Tracing

copying, Age-based (including generational), Incremental, Persistent.

118



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Focus class

Object-focused or Region-focused or Heap-focused.

See Section 3.1 for a detailed explanation of this class.
Concurrency class

Uniprocessor or Multiprocessor Parallel or Multiprocessor Concurrent.
From a DGC point of view, there is little difference between multipro-
cessor and uniprocessor GCs. One could think that different problems
would emerge. However, through the Generic GC, the DGC publishes
its own “API”, its interface. The underlying technique used to accom-
modate its needs is of little concern at this point. The nature of the
multiprocessor GC which can be heap-based (e.g parallel GCs) or
region-based (e. g. concurrent GCs where the GC never really stops
and there is no need/guarantee for the GC to look at all the memory
depending on the algorithm used) will determine how easy it is for this
stand-alone GC to become a local GC for this distributed collector.
In summary, this class can be useful as an indication of the difficulty
level the designers will face.

Description

This describes the main ideas and possibly a general algorithm. It is
also possible to include preferred languages of implementation.
Data structures

All data structures needed to implement this GC. In the case of a

generic GC, this lists the structures needed by the DGC.

e [dentification. To identify and refer to the data structure.

e Description. To explain the purpose of the data structure and

also possible peculiarities, usage, and so on.

o (Contents. All elements that constitute this data structure.

119



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e (Operations. Operations allowed on this Data Structure. It should
contain: input and output and effect on the structure. This

field is optional when operations are accessors only.

Data
A datum is a constant or a global variable used in some algorithms of
the GC. Listing this datum is important to get a better understanding
of how the GC works. A piece of “Data” is composed of:

e [dentification. To identify and refer to the datum.

e Description. To explain the purpose and use of the datum.

e (ontents. Show the datum itself possibly with its type and value.
Actions
This describes all actions the GC has to take in order to perform its
duties. In the case of a generic GC, this lists the local actions needed
by the DGC and, if applicable, an example of a way to do it (the
“assumptions” part will then describe what is needed for this solution
to work, e.g a tracing GC allows easy information propagation).

e [dentification. To identify and refer to the algorithm.

e Description. Basic, high-level information about the algorithm.

e [nput. Data or data structures provided to the action.

e Qutput. Results from this action.

e Side-effects. Non-direct results from the action.

e [Ds of needed data and data structures. List of variables, con-

stants and structures used and relied upon by the algorithm.

e Algorithm. This is a formal description of the steps required to

perform the action. This field is optional.

120



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We observe that this template is similar to (but not exactly the same as) the
model described for the Generic GC in Section 3.1. The reason is very simple:
a generic collector is a specific vision of a local collector, which is a modified
version of a stand-alone collector. The Generic GC model is used to describe
interactions between GCs and DGCs, while the model of this section is used to list
the characteristics of a stand-alone GC. On the one hand, we study interactions,

while, on the other hand, we design a system.

A commented example illustrating the model described in this section is avail-

able in Section B.4.

5.2.2 DGC: main algorithm and network protocols

It is not necessary to identify network protocols and the overall DGC algorithm to
understand interactions between GC and DGC. However, it may help understand
the context in which local GCs have to be designed. In this section, we discuss
the basic elements of a DGC and describe network protocols it uses. Once this
task is achieved, sufficient information should be available to create the generic
GC and start designing local collectors.

Note that this template is not intended as support for a learning tool and it
might be difficult to fully understand the DGC only from this model. What we
provide here are particular points where the designer’s attention should be drawn

in order to ease the design process.

Core of the model

Identification

This allows to refer to the DGC.

Algorithm class

We currently distinguish the following families: DRC, DRL, Aug-
mented DRC/DRL, Age-based, DTD-based.

121



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Inherits from

A DGC technique can be based on another one. It is especially true
with “Augmented” DGCs, which are a combination of DRC/DRL and
a specific technique to detect distributed garbage cycles.
Description

Natural language is used in this category to explain the main charac-
teristics of a DGC. It is also possible to list preferred implementation
environments.

Reference papers

DGC is still not a widely used technique (this is the reason for this
thesis) and close relationship with the research world is needed. That
is why listing reference papers may be of benefit.

Assumptions

An assumption contains a Type (e.g message ordering, secure, opaque
addressing or no loss of messages) and Comments about this as-
sumption (usually precision about the Type chosen).

Conditions of use

This is related to the “preferred implementation environments” of the
description. Designers should describe here situations in which to use
the DGC and the consequences. Consequences are usually in terms
of number of messages, special extra data structures, more/less book-
keeping, and so on.

Addressed issues

This is quite important because distributed garbage collection is faced
with a large number of issues and most DGCs select those questions
they will provide an answer to. We distinguish at this time: Dis-
tributed acyclic garbage, safety, completeness, scalability, fault toler-

ance, speed, ease of integration, network dynamicity. We note that all

122



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

DGCs guarantee safety, but not completeness (DRC and DRL do not
reclaim garbage objects that are part of cycles). The first “issue” is
addressed by all DGCs.

Supplies

Information supplied to the local collector. Listing those here allows
designers to think about both ends for each mapping: what is the
input (described by the field Supplies) and what is the output (de-
scribed by the Generic GC).

This category is detailed with an Entity (e.g entry) and a Descrip-
tion (e.g message to decrement counter).

External algorithms

This important category lists algorithms needed by the DGC, but
that are not specific to the technique. Such algorithms might be more
general and described in other documents. For instance, most DGCs
require a distributed termination detection algorithm.

We recommend two possible formats: either the format used to de-
scribe an action in a stand-alone GC or the following, which is less
formal: ID, Description and Purpose. The field “Description”
presents the algorithm needed and any peculiarity. “ID” can be a
general term or the name of a specific algorithm. The “purpose” field

describes the use of this algorithm in the DGC.

Main algorithm

This is a description, usually in general terms, of the actions of the DGC. This is
an important part, because it helps designers understand the “big picture”. This
description should provide designers with a grasp of the essence of the DGC,
which is essential for the creation of local GCs. We do not define any syntax,

which should be chosen with respect to usual practice in design teams.

123



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Protocols

We provide a template to list garbage collection-related network messages. “Pro-
tocols” describe the actions that trigger a message and, inversely, what actions
are invoked upon reception of given messages. As was previously specified, pro-
tocols are a vital part of the DGC. They actually drive most of the interactions
between DGC and GC, but are not part of them. An accurate identification of

those protocols allows for an easier creation of local GCs.

Identification
It will be used to refer to the protocol.
Description
This is used to explain the main characteristics of the protocol using
natural language. It should also explain context and purpose of this
protocol.
Local actions needed
List of identifiers referring to the DGC’s needs described in the Generic
GC. These are all the elements needed by the protocol to work.
Local actions triggered
List of identifiers referring to actions described in the Generic GC but
having a local effect rather than a distributed one. For example, if a
counter on an entry item is decremented, a local action is executed to
check if the counter is 0 and take appropriate actions.
Contents
The description itself. Preferably described this way:

- Number of sites involved

- Ordered list of messages

- Messages (see below for format)
A message uses the following format:(From, To, Tag, Params)

"From’ is the origin.

124



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

"To’ is the destination.
"Tag’ is the type of message.
"Params’ is a list of additional parameters.
Set of sites
S == {s1,82,...} or {A,B,C,...}.
ALL means broadcast.
GROUP means broadcast within the group — if applicable (see [51]

for example) — that the “From” site belongs to.

In Section 3.2, we have shown a Generic GC for Liskov’s Migration-based
DGC. Please refer to Section C.3 where we annotate the complementary part of
this DGC, providing a model for the main algorithm and network protocols used

by the DGC.

5.2.3 DGC’s Generic GC

In a design context, the template chosen in Chapter 3 is minimal. A more com-
fortable template should also include human-oriented information such as an iden-
tification and a description. The resulting template is the same as the template
describing a stand-alone collector (detailed in Section 5.2.1). In a design en-
vironment, such a model provides a concrete contract between the DGC and

stand-alone collectors. It is also used as a guide to build local collectors.

The next section will describe the heart of the chapter: a design method to

create local GCs.

5.3 Design method

In this section, we propose a design method to create local collectors based on

previously identified scenarios involving stand-alone GCs and a distributed col-

125



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

lector. Using the generic garbage collector defined for the DGC, we can adapt a
stand-alone GC to comply with the requirements of the DGC, thus generating a
local collector for this distributed garbage collector.

Although this method is intended to be used after the collectors have been
chosen, we expect these two activities to be interleaved in practice. Indeed, the
choice of the collectors will depend on the needs and complexity of the interac-
tions. Although our method makes it easier to design heterogeneous systems, it
is obvious that certain scenarios will be harder to solve than others. Depending

on the allocated resources, another scenario might be recommended.

5.3.1 Creating local collectors

We distinguish different components in the system: stand-alone GCs, DGC gen-
eral algorithm, DGC’s generic collector and network protocols. The method we
are going to explain leads designers step-by-step to modify stand-alone collectors
to simulate the behavior described by the generic GC. This will result in a local
collector ready to handle the algorithm of the DGC. The feasibility of such a
task varies according to the degree of freedom allowed to the system designers.
If stand-alone GCs cannot be modified, the solution will be difficult to design
because, by default, a stand-alone GC is not even aware of the special nature of
entities such as entry items and exit items for opaque addressing.

The first step in creating appropriate local collectors is to identify the differ-
ent components of the distributed GC and the stand-alone GCs. To achieve this
task, we provide models (see Section 5.2) that list categories of components to
take into account. Designers can use these models as templates to create specific
descriptions of the collectors they are working with.

We note that the following steps describe explicitly the process to analyze
the models and find a solution. Depending on those models and the system

to build, these steps might not all be necessary, because some issues are solved

126



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

immediately. For example, if the scenario is to map a Mark-and-Sweep algorithm
onto the generic GC for the cyclic version of SSPC [52], we know that this stand-
alone collector is the better suited GC, and there is no need to prepare for a
complicated adaptation process. We would just have to follow the model of the
generic GC, and create those elements. However, when a different collector such
as MOS [38] is chosen, further work is needed and the following design steps

provide some support for this task.

5.3.2 Listing needs into categories

After creating the models, it would be useful to classify the requirements found
in the generic GC model according to the categories defined here. This would
help separate the tasks into two groups: easy-to-do and complex. It is important
to keep each need minimal and precise. If the description of a need includes too
many elements, analysis will be harder and classification into categories may not

be accurate. The list of categories we identified includes:

e Design decisions. This concerns all the policies that are used by the DGC.
A very good example is shown by Liskov’s migration-based collector (see
[54]). Design decisions have to be made about when to migrate objects,
what objects should be migrated, what happens to newly created objects,

and so on.

e Process decisions. They are similar to design decisions but have to be made
at runtime because they depend on dynamic conditions. This is the case
with batching messages for example. These decisions are usually driven by
design decisions. The latter define theoretical limits, while the former make

judgment calls according to the current situation.

e Network Protocol category. All actions needed to handle DGC-related mes-

sages that are sent from one node to another.

127



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Propagation category. Many DGCs require local propagation of values. This

can be a date propagation [52] or a mark propagation [51] for example.

e Property category. It often happens that some synchronization operations
require the computation of a local property. For example, DTD algorithms
usually need to know the value of a property to detect termination (for

example, the stability property in GCW [51]).

o Information received from local GC. This is DGC-related data sent by a

node to the others.

o Information sent to local GC. This is DGC-related data received by a node

from the others.

o Utilities category. This has no real impact, we only list here extra useful
operations. For example, this can be an operation used to optimize an

implementation.

Once we established this classification, we identify complex tasks in order
to understand what resources should be allocated to producing a solution. We
observe that most DGCs we encountered require propagation of information and

property computation. These tasks will usually be the most difficult to handle.

5.3.3 Relations between requirements

Certain relations between requirements listed in the model of the generic GC
should be detailed to help designers build their strategy. For example, in the
cyclic version of SSPC (see [52]), Localmin has to be computed after local prop-
agation of the dates. In this case, an operation of the Property category is per-
formed after one of the Propagation category. We expect this particular relation
(computation of a property after local propagation of values) to be used in many

DGC algorithms. The point is that some operations are dependent on others

128



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

and it is important to know those dependencies to facilitate the creation of local
collectors.
We list here four possible relations. Of course, this list is not exhaustive. The

model is extensible and new relations can be added at a later date.

e before and after. These are timing relations. An operation must be called

before or after some other operation.

e after an event. This is different from the relation after which actually cares
only about timing relations between operations. Here, an event occurred,
which triggers the operation. An event can be a function call or the recep-

tion of a network message.

e condition. A set of conditions must be true to execute an operation. This

corresponds to a precondition statement.

Note that we don’t focus on dependencies to external or global algorithms,
we only care about local aspects. However, we have seen that we pay attention
to events such as the reception of a network message. We can argue that this is

part of the global algorithm, but it is actually a local event.

5.3.4 Listing potential problems

Listing potential problems is the heart of this process. Indeed, once we know
what the problems are, we can actually start finding solutions and creating local
collectors. Such problems are derived from the classification described in the
previous paragraphs.

We note that it is particularly important to list those DGC needs that po-
tentially “break” the essence of the stand-alone collector. Clearly identifying
those problems is the core of this method. Indeed, there is no point in using
an incremental collector when the DGC requires a tracing algorithm such as a

mark-and-sweep GC, and no effort is made to keep each local collection respect

129



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

the property of incrementality. It may be that no solution can be found, in which
case either a tracing algorithm replaces the incremental one, or the incremental
GC is kept but can not be expected to behave as such when work for the DGC is
performed. Another possibility is of course to use another distributed collector.
Once this list is established, designers can begin to work on solutions, look for
existing solutions (see Section 9.2 for more details), or try to find other DGC or
GC algorithms that fit better while still providing the appropriate features. As
we will see in Section 9.2, we hope that repositories of solutions will be created

by designers to help the community with this difficult task.

Propagation category

With most distributed collectors, the main problem is the local propagation of
information. Indeed many cyclic DGCs use this technique to spread and discover
reachability status of objects. From roots and entry items to exit items, some
data usually has to be propagated by the local GC. This is the case for such
collectors as GCW [51], Cyclic SSPC [52], Liskov’s DGC [54], and so on.
Stand-alone collectors that belong to the focus category called heap-focused
should have no problem with such propagation actions. Mark-and-Sweep and
Mark-and-Copy algorithms see all reachable objects of the heap at each collection.
It thus becomes simple to ensure completeness of information propagation.
Reference counting techniques do not benefit from this heap-focused view.
They are only concerned with one object at a time and never have a higher-level
picture of the local graph of objects. In this case, propagation becomes a real
problem. So far, the only solution we can propose is a regularly called external
function which performs the propagation. This function is a simulation of a
tracing process found in collectors such as mark-and-sweep. When to call this
function is a matter of DGC policy, depending on how often the DGC requires

such an operation to be performed. Obviously, this solution breaks the essence

130



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

of the existing memory management solution (reference counting). Except for
distributed reference counting algorithms which do not require any specific local
action, stand-alone reference counting collectors are not adapted to work with
DGCs.

We note that the solution of an external function is feasible with any stand-
alone collector. Although it does not respect the characteristics of those collectors,
it is usually the easiest solution to set up.

Region-focused stand-alone GCs also have problems ensuring completeness of
propagation. Indeed, collectors such as generational algorithms or incremental
ones will either rarely or never have a complete picture of the graph of objects.
Generational collectors usually collect the entire heap when looking at the oldest
generation, which can provide an opportunity for complete propagation. However,
the family of age-based [85] algorithms do not necessarily have a complete view
of the local graph of objects.

In the case of MOS [38], which collects only parts of the memory at each call
of the GC, we offer several possible solutions. Of course, it is always possible to
use a special function called regularly, but this does not respect the nature of this
incremental algorithm. Consequently, we need to find a more appropriate way
to handle the problem. For more details, please refer to Section 5.5 where we
describe how this algorithm can work with the Cyclic SSPC distributed collector.
A complete model of MOS can be found in Section B.7.

Property category

Many distributed collectors require certain local properties to be computed. Our
survey of DGC techniques revealed that most of them are related to termina-
tion detection. Indeed DGC algorithms usually require to be informed of the
completion of a phase of information propagation. This is done using a DTD

algorithm.

131



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

For example, GCW [51] specifies that mark propagation is completed (“the
system is globally stable”) when each node is locally stable and no message is
in-transit. This local stability property of each node — necessary to compute the
global stability — has to be computed. Another example is the cyclic version of
SSPC. It needs the computation of a value called localmin that will be used by a
time server to compute a global property called globalmin.

These properties are usually intimately linked to information propagation. A
common relation is after: properties are usually computed after local propagation.
This allows the algorithm to discover the progress of the garbage cycle detection
phase. The difficulty to compute properties is consequently dependent on the

complexity of information propagation at each node.

Miscellaneous

e Based on our review of DGC techniques, we remark that most actions of
the protocol category are simple operations, usually focused on one object

only. It is the case for increment and decrement messages, for example.

e DMOS [37] is a very special DGC in that it uses cars and trains to organize
its graph of objects. These entities are only found in the stand-alone GC
called MOS which is also known as the “train algorithm”. However, it is
possible — although difficult — to adapt other stand-alone GCs. The only
requirement is to be able to maintain a proper notion of cars and trains.
We expect this to be a non-trivial task with non-copying collectors such as

Mark-and-Sweep.

5.3.5 Possible negotiations?

After creating the models, and identifying the different components and potential

problems, a solution to the scenario (stand-alone GC, DGC) can be worked out.

132



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

At this point, no support tool can replace designers’ creativity and this process
must be carried out.

We can imagine that certain situations would benefit from modifying the DGC
algorithm rather than adapting stand-alone collectors. This strategy can prove
problematic: conflicts may occur with the mapping of other stand-alone GCs
into local collectors. Indeed, when several stand-alone collectors are used and the
mapping of one of them would benefit from a modification of the DGC, one must
be aware of the consequences for the other collectors.

This is why we propose a negotiation phase between all stand-alone GCs
and the DGC. The process is highly iterative and creative, because negotiating
for one mapping may change conditions for all others. The idea is to eventually
reach an acceptable situation where all important features have been kept and
the integration is easier to perform. The resulting system becomes specific to this
configuration and is likely to be more efficient.

We propose a simple method to solve this problem. We should point out that
this is preliminary work which should be developed further if such a negotiation

phase proves useful in practice. For each need or requirement,
1. List stand-alone GCs for which there is a potential adaptation problem.

2. For each of those collectors, list DGC elements that could be modified to

ease the adaptation.

3. For each DGC element, explain how modifying this element would affect

both the DGC general algorithm and network protocols.
4. Explain how it would affect other collectors and their mapping.
5. Select a solution.

It is interesting to note that these negotiations could occur between GCs and

the DGC, but they could also occur with the mutator. Indeed, we can imagine

133



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

some negotiation protocol to allow classes of applications to describe their needs
and behavior in terms of memory management. Using this information, better
suited collectors can be designed, and applications could profit from a clear de-
scription of the collectors they are going to work with. Although such applications
should not worry about memory management, this happens in practice. Provid-
ing clear models of the collectors functions is the minimum support we should be

able to provide as garbage collectors implementers.

5.3.6 Mapping template

To conclude, we propose a final template to complement the set of templates we
already described. It is not essential to the design process, but could prove help-
ful for reusing past solutions. This template allows one to organize the different
components of the adaptation solutions into one entity. This could benefit de-
signers to quickly find out existing solutions to a given problem. This could also
be helpful during negotiations to understand what adaptation is made in what

case, and quickly discover conflicts. Here are the components of the model:

Stand-Alone GC Identification

Collector that we want to integrate into the system.

Generic GC’s DGC ID

Generic GC to map to.

Description

General information about the context and techniques of adaptation.
Mapping/Creation of extra data structures

It is sometimes necessary to modify existing data structures to achieve
the mapping. Object-oriented systems could use inheritance, but it
is not always possible. In this model, we describe the resulting data

structure:

134



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e [dentification
This is useful to refer to the original structure in the model of the
Stand-Alone GC, unless of course, it is a new data structure, in

which case it will simply be used to refer to it in the algorithms.

e Description

Information about the modification or creation of the structure.

o Affected algorithms
List of algorithms that might be affected by a change of the

layout of the data structure.

e (ontents
To avoid any misunderstanding, it is recommended to specify the

entire structure, even if the modification is minimal.

Specialization of Algorithms

The format to describe these algorithms is left open. However, we pro-
pose the following possibilities: (i) the format used in the stand-alone
GC template, (ii) a limited version of this template, (iii) a less formal
format, describing the mapping rather than showing it. Choosing be-
tween these two formats (or even another one) depends on a number
of parameters such as context, algorithm to modify, modification to

make, designer preference, and so on.
We present here the limited version of the template:
e Algorithm Identification. Reference to the original algorithm.
e Description. Details about the specialization/modification.
e New Algorithm

— IDs of needed data and data structures. List of variables,
constants and structures used by the algorithm. We recom-

mend listing all of them, not only the new ones involved in

135



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

the modifications of the algorithm. However, data structures
involved in the modifications should be marked to preserve
a perfect understanding of the process, and to help in case
this solution is reused later.

— Contents. List of actions to perform. The algorithm itself.
As for the data structures, to avoid confusion, the complete

algorithm should be restated.

In our experience, it happens that the formats we described so far are not
appropriate to properly describe the new technique used to solve the problem.
In this case, another template can be used. We propose one here, but other

templates could chosen. The following template is used in Section 5.5.
e Notes: Introduction to the solution, placing the problem in the
context of the local GC.

e Technique: Detailed description of how this mapping is done and

how it works.

e Main algorithm: Overall algorithm which provides a high-level
understanding of the solution. This can also be an existing algo-

rithm, modified to fit the requirements.
e Additional algorithms: Helper functions for the main algorithm.

e (Comments: Concluding remarks and precisions about the algo-

rithm.

5.4 GC Interoperability in a distributed
environment

It should be obvious by now that Distributed Garbage Collection is a complex

problem leading to complex solutions. Numerous aspects have to be taken into

136



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

account: performance, scalability, reliability,... We have seen, with the definition
of our design method, how to create local GCs fitting DGC requirements. In
the literature, distributed collectors often specify that any local collector of a
certain type (usually tracing collectors) works with their algorithms and protocols.
However, distributed systems will soon expand and distributed systems are likely
to include nodes (or sites) with different needs in terms of memory management
(performance, reliability, flexibility,...).

As an example, we can imagine that a complex distributed computation has
to be performed. According to previous measurements, memory activity has
been foreseen, and a group of nodes would work more efficiently with a Mark-
and-Sweep algorithm while others may require a generational one. The problem
to solve is the following: what distributed collector can be chosen and how can
we create local collectors, complying with the same DGC, for two such different
stand-alone GCs? This is the issue of interoperability of local GCs within a
DGC environment.

To fully understand this problem, we carefully consider the nature of a DGC.
A distributed garbage collector is a composition of local garbage collectors (one
per node) and network protocols to help them communicate. At each node, a
local collector is created to handle outside pointers and new data structures such
as entry items will also be introduced and should be maintained by the local col-
lector. Network protocols are needed to handle garbage collection messages used
to synchronize and maintain knowledge about the distributed graph of objects
managed by the system.

Most distributed garbage collectors seem to rely on a particular type of local
collector. This is acceptable with our current systems, but may soon be inade-
quate at the current growth rate. Distributed applications will soon have different
memory management needs at different sites of computation. It is very likely that

a situation includes DMOS [37] as a distributed collector with 30 sites using a

137



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Mark-and-Sweep algorithm, 40 sites using MOS [38] and 35 sites using explicit
management (with malloc and free).

Real-life examples illustrating a need for interoperability are found in many
fields. For example, the world of computer algebra usually uses different memory
management techniques depending on the situations. During the FRISCO project
[69], G.Attardi created CMM [3], which is a technique to organize a heap into
subheaps to allow different memory management algorithms to live and work
together within the same heap. This was not distributed on a network but the
ideas are similar. Also the CORBA environment is an obvious example. It allows
language interoperability and, unfortunately, provides only a distributed reference
counting mechanism. It would make sense, however, to upgrade this system
to allow collectors to interoperate within a cyclic DGC environment as well as
allowing programming languages to interoperate in this distributed context.

We propose a solution to the interoperability problem by using our model
which semantically separates the concepts of stand-alone collectors and local col-
lectors. A stand-alone collector works without any concern or knowledge about a
possible distributed environment. A local collector is closely related to the DGC
chosen for the distributed environment and is aware of remote pointers. Differ-
entiating these concepts allows us to consider that a DGC does not require a
specific local GC, although certain collection algorithm might be better suited to
a particular distributed setup.

In this chapter, we created a method to precisely identify the needs and expec-
tations of a distributed garbage collector with respect to its “ideal” local collector.
We transform a chosen stand-alone GC into a local collector complying with the
needs of this DGC. It is an interesting side benefit that this design method offers
a simple solution to make different collectors interoperate within a DGC environ-
ment. The idea is simply to study distributed collectors further to identify each

one of their characteristics rather than accepting the fact that they work only

138



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

with a given local collection algorithm.
In the next section, we illustrate our design method with a complex example.
This shows that an heterogeneous context which poses the question of interoper-

ability can be solved without any extra effort, by simply applying our method.

5.5 Example: (MS,MOS,RC) with Cyclic SSPC

This section details an example illustrating the work described in this chapter.
We will use a little scenario to explain the design of a DGC using three different

types of local collectors.

5.5.1 Preliminary work

We imagine that the first steps in the design of a system have been completed,
i.e. that we have analyzed a selection of applications the system will be running,

and decided to use three types of stand-alone GCs:

e Reference Counting because some nodes will work on non-cyclic local
data structures (but it is possible for them to be part of a distributed cyclic

structure),

e Mark-and-Sweep because some nodes have many fixed size objects and

don’t have a precise knowledge of the layout of the heap, and

e Mature Object Space (the train algorithm) because some nodes need an
incremental GC, and can provide a precise knowledge of their object types

to allow copying.

We now choose a DGC. The environment we work with is a local network
with homogeneous machines. There is a small number of nodes and the speed
of the network is reasonable. An algorithm migrating potential garbage between

nodes (such as Liskov’s DGC [54]) was a good candidate, but has finally been

139



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

discarded because it was feared that too much work would be needed to adapt
the Mark-and-Sweep algorithm to allow moving objects.

The final decision was the cyclic version of SSPC [52]. It is simple enough
and has already been implemented several times (for example in [7]). We assume
that this choice is definitive, which means that there will be no negotiation or
other choice. We focus our example on the creation of local GCs, rather than
a complete design. Our work on Garbage Collecting the Web (see Chapter 6
and Chapter 7) presents a complete design and implementation work. Here, this
example aims at illustrating how chosen stand-alone GCs can be modified to work

with a chosen DGC.

The first step is to adapt our terminology to the one used in the original
description of the algorithm. The SSPC scheme uses the terms of “space” instead
of “node”, “stub” instead of “exit item” and “scion” instead of “entry item”. This

is an important task, because we often need to refer to the original description.

We have three couples (stand-alone GC, DGC) to work on:

e (Reference Counting, Cyclic SSPC)
e (Mark-and-Sweep, Cyclic SSPC)
e (MOS, Cyclic SSPC)

Note that we plan to focus on essential points rather than give all the details.
Our goal is merely to illustrate the method, not provide a complete solution for
this fictional scenario. In a real setting, however, all details should be studied.
We show an example of such a work in Chapter 7. Using the method described
in Section 5.3.1, we create models for each component. Please note that these

models could also be retrieved from a repository or a previous design.

e Reference Counting see Section B.2.

e Mark-and-Sweep see Section B.3.

140



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Mature Object Space see Section B.7.

e Cyclic SSPC (including protocols, main algorithm and generic GC) see Sec-
tion C.4.

The next step is to find out our degree of freedom to modify the stand-alone
collectors. To concentrate on the method, we allow the designers to modify any
part of the collectors as long as their essence is preserved.

In the following steps of this method, we create the mapping models, by
sorting into categories the needs expressed in the different generic GCs. Important

relations are identified as well.

5.5.2 Listing needs into categories

We list requirements of the Cyclic SSPC into categories. By studying its model
(see Section C.4), we observe that the class of algorithms is “Augmented DRL”.
For us, the designers, this means that there are basic requirements similar to Dis-
tributed Reference Listing algorithms. We also note the use of opaque addressing
in the form of stubs and scions. These data structures should thus be added to
create a local collector.

Furthermore, we note that a “time server” is required. This is a “special need”
that will be dealt with separately. The description also helps us understand the
main lines of the algorithm: constantly increasing timestamps are propagated to
reachable objects, while garbage objects keep a non-increasing timestamp. We
obtain more precision by looking at the main algorithm (see Section C.4). There
is a globalmin value computed by the time server using localmin values received
from all the spaces. This globalmin value will be used as a threshold for stubs
and scions holding non-increasing timestamps. Once globalmin is larger than
these timestamps, corresponding stubs and scions are considered as part of a

distributed garbage cycle and can be reclaimed.

141



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We now have a better understanding of the algorithm. There will be values to
compute and timestamps to propagate. We also know that there is a special space
called time server to compute a global time. By looking at the Assumptions and
External algorithms, we also see that timestamps are computed using a Lamport
Clock [50]. Finally, we know that everything is based on a DRL algorithm.

We summarize our tasks to create local GCs:
e (Creation of stubs and scions.

e Setup of network protocols to add and remove remote reference (DRL al-

gorithm).
e Integration of the localmin computation.
e Integration of the timestamps propagation.

The section entitled Protocols (see Section C.4) lists several types of messages

to handle (message identifiers are in capital letters):
e LOCALMIN to send the value to the server.

e STUBDATES to propagate timestamps to other spaces. We see however in
the description that it is also used for the DRL algorithm. This message
transmits the list of live stubs so the remote space updates its local view
of the connections between remote objects and its objects. This allows to

remove those scions that are not referenced anymore.

e THRESHOLD is used for some lower level control on the localmin value (to
control dates of arrival of messages in transit). This is not detailed in the
main algorithm to keep it simple. However, it exists and should be inte-
grated. The purpose of this message is to control timestamps on messages
and discard messages that took too much time to arrive and were deemed

lost. This is part of the fault-tolerant feature of the DGC.

142



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e ACK is an acknowledgment message used by all protocols.

We use the mapping model to categorize the different needs and evaluate the

feasibility of their integration.

e Data and Data structures simply have to be added to the GC. We have

seven data structures to integrate, no specific problem is foreseen.

e receive_STUBDATES, receive_THRESHOLD and receive_ACK belong to the
Network Protocol category. These operations can be easily added to the

collector.

e The function local_propag described in the paper belongs to the Propa-
gation category. However, a close study of this algorithm reveals that the
function both propagates timestamps and compute the localmin value. This
means that local_propag belongs both to the Propagation and the Prop-
erty categories. We should separate these activities to provide a flexible

model to build integration solutions.

e decrease to and increase to belong to the Utilities category and can be

easily integrated.

5.5.3 Relations between operations

We now identify possible relations between actions required by the algorithm.
We note that local_propag should be divided into two blocks of code: local

propagation and localmin computation. This results in a first relation:
e localmin computed after local propagation.
We also identify the following, more obvious, relations:
e receive_STUBDATES after an event: reception of STUBDATES message.

e receive_THRESHOLD after an event: reception of THRESHOLD message.

143



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e receive_ACK after an event: reception of ACK message.

The rest of this section details the techniques we used to adapt each stand-
alone GC to simulate certain actions required by the generic GC defined by the

distributed collector.

5.5.4 Adapting Mark-and-Sweep for Cyclic SSPC

We present a solution to create a local Mark-and-Sweep for the cyclic version of
the SSPC distributed collector. The paper presenting the distributed collector
specifies that it works best with tracing collectors. Consequently, the process
of adaptation is likely to be quite simple because this stand-alone GC is of the
tracing family.

For us designers, this means that data structures and algorithms described in
the generic GC model for cyclic SSPC (see Section C.4) can be integrated “as
is”. The mapping model can be seen in Section D.8. As it is mentioned in the
description of the mapping, most operations simply have to be integrated, no
modification is necessary.

We started with this stand-alone collector to show that little work is required
to design a system where the stand-alone GC is the one used by the DGC in
its description. The algorithms were created to work with this GC, so in this
case the local collector is quite similar to the generic collector. We will see with
MOS that this is not always the case. Note, however, that models are still useful
to design such a system, because it allows precise identification of all important
components of the collectors.

At this point, if our distributed application did not need other stand-alone
collectors, we would be done. However, the system includes spaces with special
behaviors requiring other memory management techniques. This means that we
should carry on with the adaptation work. Handling extra collectors allows us to

illustrate our theory about interoperability. We will see, with the other models,

144



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

that our semantic separation between stand-alone collectors and local collectors
helps us manage such a situation quite naturally. No specific task is required

because certain local GCs are different, we simply apply our design method.

5.5.5 Adapting Reference Counting for Cyclic SSPC

Reference Counting algorithms are “object-focused.” DGCs, such as the non-
cyclic version of SSPC, work well with such collectors because no heap-focused
work (e.g. timestamps propagation) is needed. However, the cyclic version of
SSPC requires such operations.

Timestamps propagation is essential for this DGC. We can also identify the
computation of localmin as being an important component. However, it de-
pends on the local propagation activity (as can be seen from Section 5.5.3 on
the relations between requirements), and the problems of their integration will
consequently be solved together.

Unfortunately, reference counting algorithms do not provide much support to
simulate other collection algorithms in their environment. The only solution we
found was to create a separate function called at the discretion of the application.

It performs an independent tracing of the heap. See Section D.9 for details.

5.5.6 Adapting Mature Object Space for Cyclic SSPC

MOS is a region-focused GC, and, as such, does not have a complete picture of
the heap at each collection. Actually, it never has such a picture, because, unlike
generational algorithms, it never collects the whole heap. Once again, we try
to solve the problem of propagating timestamps from local roots and scions to
stubs. Note that the issue of value propagation is common to many DGCs and
the solution we propose here might be reused with little additional work in other
distributed collectors (for example, it can be observed that the mapping models

are very similar to those established for the GCW distributed collector).

145



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We designed four possible mappings for this scenario. Practical experiments
are required to assess the value and feasibility of these mappings, but they show
how models can be used to create local collectors. These mappings can be found
in Section D.10, Section D.11, Section D.12, and Section D.13. Section D.3,
Section D.4, Section D.5, and Section D.6 present the same solutions adapted to

the GCW collector.

5.5.7 Conclusion

This example illustrates our technique to design local collectors for distributed
collectors. It shows three levels of difficulty: easy (M&S), extremely difficult
(RC) and difficult (MOS). These choices were arbitrary, other selections could
have been made. For example, we have also created a mapping to adapt a Mark-
and-Copy to a Migration-based DGC. Please refer to the appendix for mappings
with other DGCs as well.

It should be clear now that our method makes it easier to list all components
and understand where design efforts should be focused (in our example, we need
to focus on local propagation of data). Interoperability of garbage collectors in a
DGC environment is a natural result of the method as illustrated in this section.
Except for the extra work resulting from the additions of stand-alone GCs, no
specific task should be accomplished in order to handle different types of local
GCs in the same system.

We also observe that, although we showed a complex scenario, our method
can be used for simpler situations. If our example had only featured one stand-
alone GC (Mark-and-Sweep for example), this design technique would still be
interesting to analyze the different components of the system and to prepare for

an easier implementation. We see such an example in Chapter 7.

146



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

5.6 Extensions and DGCs interoperability

We built our method from the viewpoint of flexibility. Obviously, distributed
garbage collection is not a solved problem and new techniques are likely to ap-
pear that might have proved problematic if we used rigid models and methods.
Instead, we are aware that extensions will be needed, and our models will have to
integrate new classes of collectors, new relations between components, and so on.
Furthermore, new points of view and considerations might also find their way in
such a future design environment.

An example of a future extension would be to handle dynamically adaptive
collectors. For example CORBA could use an adaptive DGC scheme to dynam-
ically choose the DGC according to stand-alone collectors used in the system.
A specific agent could be automatically provide the proper local collector corre-
sponding to the stand-alone GC and the generic GC.

Interoperability mapping techniques can also be modified. In fact, we do hope
that new mapping solutions will be designed. We showed possible techniques to
handle certain scenarios, but many more situations have to be handled and what
we proposed is probably not optimal. Furthermore, solutions may depend on
some characteristics of the host environment, which may lead to several “best”
solutions for one scenario.

In this section, we illustrate the extension capacity of our method, by extend-

ing our environment to include the concept of interoperability between DGCs.

5.6.1 Problem definition

The problem is to allow systems to use several cooperating DGCs within the
same distributed application. The motivation to solve such a problem is based
on situations similar to the ones which led to investigating several types of stand-
alone GCs within a single DGC context. The current state of the art is to use

a cyclic DGC in a very specific implementation. Common systems such as Java

147



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

RMIs [59] still use a distributed reference counting technique. We believe that
this situation will eventually evolve and more sophisticated configurations will
be used where the behaviors of distributed applications can be measured and an
appropriate set of distributed collectors can be chosen accordingly.

Different situations might require different solutions. When distributed ap-
plications reach sizes such as the size of the World Wide Web, it will be time to
use appropriate tools such as several distributed collectors cooperating to manage

one very large distributed memory.

5.6.2 Existing work

We based this preliminary study on interoperability of DGCs on two previous
works. Philippsen [72] presents a specific DGC optimized for reliable networks
(especially clusters of workstations). One concern of the paper was also to be
able to handle different groups of nodes communicating with different protocols.
This discussion led to investigate cooperating DGCs on a network with such
different communication protocols. The idea is to consider different areas of
communication each with its own technology and to assume that certain nodes
can handle several technologies but others (“inside” the area) can not. It is
proposed to use bridge objects to handle necessary cooperations of DGCs. In
distributed computing, bridge objects already play the role of “glue” between
environments, so it is only natural to also use them for DGC purposes.

In comparison to what we propose in this section, Philippsen’s paper does not
mention different DGC techniques or propose a solution to help them cooperate.
With respect to this work, what we propose here would be an orthogonal tech-
nique. We are going to present an organizational method to deal with different
types of DGCs on the same network. If this network uses several communication
technologies, we could integrate Philippsen’s technique within our method.

Lang’s “Garbage Collecting the World” [51] collector defines groups of nodes

148



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

each using the same DGC. This work is focused on studying how local collec-
tors can handle different GCW phases at once. As mentioned earlier (see Sec-
tion 2.5.4), GCW uses hard and soft marks to reclaim distributed garbage cycles.
Marks are located on entry items and exit items and are propagated locally. When
dealing with several groups, it is possible that some of them overlap, one node can
belong to several groups at the same time. Consequently, it has to handle local
propagation of marks for all the DGC phases. This is done by having different
flavors of the same “marks”; i.e, the values HARD or SOFT are still used but the
marks are augmented with the id of the DGC phase.

In a sense, this technique corresponds to our proposal, but we try to handle
different DGCs and not only different instances of the same collector. However,
the proposed extension to our models and methods could use Philippsen’s work for
the low-level layer. Furthermore, Lang, Piquer and Queinnec’s idea of groups and
their preliminary work on cooperating DGCs will help us define a more general

method based on our models.

5.6.3 DGCs can communicate

To help DGCs cooperate, we need to precisely define our environment. We assume
a context composed of nodes and groups of nodes created according to a decision
process. For example, a group can be set up because its nodes are part of a
local network and it is more efficient to design the distributed application to have
intense activity where network communications are fast. Another group could be
created as a result of a security policy, say that we trust nodes from institution
A, B and C, but not D. A group could include A, B and C, while another group
will include D. Clearly, defining groups is both a matter of design and policy
(even sometimes politics). We assume homogeneous communication technology.
However, it would certainly be possible to adapt Philippsen’s work to handle

heterogeneous communication protocols if need be.

149



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Scenarios

We consider three possible scenarios: disjoint groups, hierarchical groups and

overlapping groups.

e Disjoint groups are groups with no common node. Two situations apply
here. In the first one, very few cooperation exist between those groups,
distributed garbage cycles are not likely to occur, and each group has its
own DGC; no encompassing collector is needed. Each group should be
considered a simple distributed system and DGCs are set up one by one
in the same way as described in this chapter. In the second case, many
pointers exist between those disjoint groups. This means that we require
a DGC federating the distributed collectors assigned to each group. This

situation is similar to “hierarchical groups” described in the next paragraph.

e Hierarchical groups provide us with a simple model; we have groups and
subgroups. If a node belongs to a group A and a group B, it means that
A€ B,Be A, or A= B. In this case, the node will participate both to
A’s distributed collection and B’s distributed collection. We distinguish two
possibilities. The first is a strictly hierarchical organization which looks like
a tree where internal nodes (there is a terminology conflict here: we mean
nodes of a tree) are groups and leafs are nodes (in the sense of network
node). The second possibility is an environment where a network node
can be the sibling of a group. Those possibilities might not make a real

difference, but further studies would be needed to prove it.

e Overlapping groups define a model where one or several nodes can be part
of several groups. Clearly, hierarchical groups are a subset of this category.
There is no real difference between overlapping groups and hierarchical ones
in terms of work required from the local GC. Indeed, in both cases, the

GC will have to cope with several different DGC algorithms. It might,

150



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

however, be useful to understand what is the situation when distributing
the computation. Nodes used by several groups might considered important.
For example, it could provide more computational power that other nodes.
Identifying those nodes could help for certain collection algorithms. For

example, they could be used as servers for several DGCs to cooperate.

A solution
Now the central question becomes: how can one local GC serve several DGCs?

We note that, at a design level, a DGC is composed of a main algorithm,
network protocols and, last but not least, a generic GC. We also remark that a
DGC is a set of local GCs communicating via network protocols. This means
that if we want a local GC to work for several DGCs, we need to make local
GCs comply with all generic GCs involved. Instead of one generic GC, we use
several of them. The local GC has to comply with all of them which means that
its construction will be more complicated.

A simple solution would be to organize sequential actions to accommodate

the DGCs:

1. Run the GC.
2. Run actions required by DGC 1.
3. Run actions required by DGC 2.

n. Run actions required by DGC n-1.

This is easy to implement but not very efficient. We can obviously find a better
solution by remembering that the Generic GC describes all actions required by the
DGC. A generic collector is a contract provided by the distributed collector. The
local GC has to fulfill this contract in order to make everything work smoothly.
In the present case, we would obtain a more efficient result if, whenever possible,

Generic GCs could be combined.

151



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Most cyclic distributed collectors use operations belonging to the Propagation
class (they usually are hybrid DGCs). In our context, we imagine that several
values can be propagated at once, e.g. timestamps for the cyclic version of SSPC
and marks for GCW.

We make a similar remark for property class actions. However, the order
in which properties are computed is often important (this is the category of
“Relations” between local actions). When generic GCs are combined, property
class actions will define relational constraints. Furthermore, conflicts may occur,
in which case negotiations are necessary. Such negotiations are not studied in
this thesis.

We note that there already are DGCs that do not propagate values (usually
non-hybrid DGCs). For example, DMOS [37] requires specific data structures
rather than specific operations. In this case, for which the modeling process stays
the same, the local GC may have to emulate the features of the generic GC,
i.e. cars and trains organization, as well as propagation of value for some other
DGC. This obviously requires creativity from the designers. Switching from a
propagation-based local GC to a DMOS-like-based one and back again may prove
difficult and has not be been studied here.

This section illustrated the flexibility of our models and methods with a non-
trivial example of extension. We hope that this preliminary study of interoper-
ability of distributed collectors offers an interesting starting point for research on

this topic.

152



Chapter 6

W3GC: Garbage Collecting the
Web

The World Wide Web can be considered as a very large distributed memory. In
this chapter, we explore advantages and challenges of using distributed garbage
collection to maintain web link integrity. We show that garbage collection uses
a different point of view than other tools, focusing on the link rather than the
object. Instead of trying to handle inconsistent situations (where a web document
disappeared, for example), we advocate the use of garbage collection to avoid
such a situation. This requires a slightly different model of web authoring, where
authors have to rely on a software tool to create and modify web pages. However,
this should be acceptable in many professional contexts where such software tools
are already used.

In this chapter, we establish a precise correspondence between models of the
Web and primary memory. The purpose of this work is to achieve the design
and implementation (described in Chapter 7) of a distributed garbage collection
mechanism for the Web. We believe that web management tools could integrate
this as a feature to preserve link integrity on well-defined sets of websites. Au-

thors regularly create, modify and manage a very large number of documents.

153



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Users armed with browsers visit these pages and millions of connections are made
to web servers. In such an environment, problems are bound to occur. In par-
ticular, everyone is familiar with the HT'TP “Error 404” which characterizes a
connection attempt to a page which no longer exists, or which is unavailable due
to a temporary failure on the server side. If this situation happens too often,
visitors might not return to the website, which is obviously undesirable. It is also
likely that active websites, where many pages are frequently created and modi-
fied, contain many documents (images, pdf files, and so on) that are no longer
referenced. After a while, many garbage files exist on the filesystem hosting the
website, which may prove costly to manage.

If we look at the problem from an abstract perspective, we observe that this
question can be reduced to the management of objects connected using a refer-
encing mechanism. We would like to avoid leaks and dangling references. This
model is similar to a well-known problem in primary memory, where automatic
mechanisms are used to handle references to objects. In this context, we are par-
ticularly interested in garbage collection. As we can establish a semantic mapping
between notions of memory management and the Web, we can also benefit from
using garbage collectors, an area of memory management which profits from more
that forty years of experience. We call this web management tool W3GC.

Furthermore, garbage collection for the WWW appears to be a natural step in
the evolution of memory management. Since 1960, we saw garbage collectors for
uniprocessor, multiprocessor, persistent and, finally, distributed systems. Current
distributed collectors aim at handling memory management in well-connected,
cluster-like environments. However, we believe that applications are likely to
evolve towards widely distributed, loosely coupled platforms such as the Web.
This projection into the future led us to study the application of garbage collection

paradigms for object management in the WWW.

154



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

The current situation in this environment is similar to the situation garbage
collection designers faced until quite recently. People handle their “own” memory
management (although we should say “website management” in this instance, we
will see that, conceptually, there is little difference between both worlds). As
sites become more complex, so will their management, leading to a growing need
for automatic solutions. We already see emerging tools such as automatic link
checkers which help make sure websites are safely interconnected. We believe
garbage collection is the next logical step for web management /authoring tools.

Currently based on the HyperText Markup Language [23], the World Wide
Web starts evolving towards the use of the eXtensible Markup Language [22] with,
for example, XHTML [24]. The work we describe in this chapter can be easily
extended to take XML-type languages into account. As we will see, there are
already studies (e.g. see [56]), which propose techniques to manage XLinks [25]
in a more automatic manner. We observe that garbage collection is not mentioned
in such studies and we believe this research topic has interesting potential.

The rest of this chapter is organized as follows. Section 6.1 presents possible
application areas to explain our motivations for this work. Section 6.2 reviews
previous work on maintaining link integrity on the web. Section 6.3 establishes
a semantic correspondence between basic concepts found in Web and Memory
environments. Section 6.4 discusses general problems brought by the particulari-
ties of the Web environment. Section 6.6 details three experiments we performed

with W3GC. Finally, Section 6.7 concludes this chapter.

6.1 Motivation

Although the Web environment is usually not considered as a distributed memory
environment, there exist similarities as explained in Section 6.3. Web pages are
similar to objects in primary memory and URIs (a new version of URLSs) can be

thought of as pointers. This leads to explore potential benefits memory manage-

155



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

ment techniques could bring to the Web. In this section, we propose scenarios

where a GC for the Web could be used to help with website maintenance.

6.1.1 A tool for web maintenance

When a web site is minimal, sophisticated management tools are not necessary.
However, if the structure of a site is complex, maintenance and development
become hard tasks without appropriate support. Web authoring products provide
help in the creation of documents, but are usually limited to this activity.

We propose to use a garbage collector — a technique created to maintain links
within primary memory environments — to handle problems such as bad links,
non-referenced web documents and lack of statistics about web references. Of
course, we can find other solutions than garbage collection to handle some of those
problems (automatic redirection, Unix’s grep, link checkers). Unfortunately, they
suffer from lack of flexibility and are not always powerful or even reliable.

Automatic redirection allows to install the equivalent of a forwarding pointer
to a new location for a Web document. Unfortunately, this is simply a convenient
way to avoid updating referents. It is not an automatic solution to avoid dangling
references. Tools such as Unix’s grep can be also used to check the consistency of a
personal website. A problem with this solution is that it does not handle garbage
cycles nor scale very well to distributed environments. We found, on websites such
as http://www.softwareqatest.com/qatwebl.html (valid on 2002/05/31), a
list of web management tools sorted by categories. Among those categories, we
find some “Load and Performance Test Tools”, “Java Test Tools”, security test
tools and so on. An interesting one is “Link Checkers”. A link checker follows
all the links on a website and reports the bad ones (i.e what are the “dangling
pointers” of the site). This tool is very useful, but there is no guarantee about
its reliability. Furthermore, it can not be used to discover non-referenced web

documents.

156



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Those tools, which may use non-reliable algorithms, could be replaced by well-
known GC/DGC algorithms, which have been proved correct and used for many
years. Garbage collectors also offer more flexibility. For example, a DGC could be
used to find out broken complex structures such as WebRings (see Section 6.4.7).
Instead of collecting dead garbage cycles, it would verify the integrity of cyclic
structures. Furthermore, we observe that, except for automatic redirection, these
tools are not sufficient to avoid dangling URIs, only to detect them. Integrating
a GC to a web authoring tool would take care of the situation where dangling

links would be erroneously inserted in a web page.

6.1.2 Managing stand-alone websites

A garbage collector for the Web would prove useful to check and maintain the
consistency and integrity of a stand-alone website. As mentioned earlier, if the
site does not contain a lot of material, using a GC might not be beneficial, a simple
solution like grep would be sufficient. However, it often happens that pages are
created and then forgotten, documents are linked and then unlinked, files not
published officially were made available to a specific person and left lying around,
and so on. In these cases, regularly running a stand-alone garbage collector on
the website could be useful to keep it clean. Unlike in a memory environment, a
GC for the Web does not have to run often, every month for example. Bad links
and other statistics can be reported by this tool. Also, non-referenced pages may

be listed, moved or erased (see Section 6.4.6 on design issues).

6.1.3 A company or cooperating organizations

Large companies, such as IBM, or consortiums, such the W3C, have several offices
of affiliates around the world. Each site develops its own projects but they usually
are related to activities pursued in those other places. Consequently, web sites

describing those projects must have many links between them. If each site is

157



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

managed by its own GC, it is possible to choose a distributed collector to handle
this distributed “memory” and provide a valuable service by ensuring the link
integrity of these related websites.

An example of cooperating institutions can be found at L.O.S.T. (see [67]).
This is an international group of librarians cooperating via discussion and infor-
mation sharing. They also seem to work on different projects to maintain and
access information. These different projects such as distance education are likely
to rely on the web and use a large number of interconnected documents. A web
management tool to help maintain link integrity and detect unused documents is

essential in such a context.

6.1.4 News sites

News sites such as www.slashdot.org or www.freshmeat.com are interesting
because news are usually displayed in the main page of the site and later moved
to an “old” section sorted by date, categories or some other criterion. This specific
behavior could be taken into account when designing a collector.

Cycles occur quite often with news websites although they are quite simple.
Indeed, those sites usually reference each other by providing links to the latest
news appearing on the other sites. Also, we observe that websites referenced by
news sites usually provide a link to the article mentioning their URI thus creating

a cycle.

6.1.5 Documentation tools

We can also use web-based garbage collector for very specific applications. Garbage
collection algorithms do not have to limit their activity to simple memory man-
agement — as proved by this work. Many applications require a tool to figure out

the relative structure of components and take appropriate actions.

158



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Package [HEE Tree Deprecated Index Help
PREV CLASS HEXT CLASS Package [MEER Tree Deprecated Index Help

SUMMARY. MESTED | FIELD | COMSTR | METHOD PREV CLASS MEXT CLASS
SUMMARY. NESTED | FIELD | CONSTR | METHOD

weh
Class WebOhject

webgc
Class HTMLObject
java. Lang. Object
waech.Webl]bject ja“la.lang hiect
; +—-webge, Wehohj
Direct Known Subclasses: s eblbject
HTML Object, NonScannableQbiect +--webge .HIMLObj ect

public class HTMLObject

public abstract class WebObjeet extends WebObiect

extends java lang, Object

Figure 6.1: Snapshots of javadoc-generated webpages for WebObject and
HTMLObject classes.

For example, an application for a Web-focused garbage collector would be
to support a documentation tool, such as javadoc [57] or aldordoc [19]. These
can generate documentation referencing several packages distributed on several
machines. This is not exactly the World Wide Web but it is a set of web pages
referencing each other. In Figure 6.1, two webpages describing two classes are
displayed. We observe that there are many pointers and also cycles (HTMLObject
inherits from Web0Object, and the webpage for WebObject lists its known sub-
classes therefore creating a cycle). If these objects are not used anymore, a GC
such as a Mark-and-Sweep can detect and report them. This might trigger a
decision process about these classes: update or removal. As a development tool,
a web-based GC, can thus give pretty good indications about the usage of diverse
packages. For example in large size companies, classes are usually developed and
shared for internal programming and can be used or not by many programmers.
If not, identifying such classes would help to keep high quality components at all
time by showing those classes that might need update. For this application, we
can use either a stand-alone GC because the sources are all in one place or a DGC

because we are in presence of a large project with multiple sites of development.

159



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

6.2 Related work

Maintaining links on the Web is a problem that has been the topic of many studies.
As we will see, our research is the first to use distributed garbage collection
instead of new, non-tested algorithms. This allows applications to maintain links
by avoiding inconsistencies rather than repairing them. Furthermore, garbage
collectors also detect unused web documents, a feature which is rarely proposed
by web management tools. Our novel approach to the problem allows for mutual
benefits: evolutions in DGC research help web links maintenance and the Web
presents a challenging experimentation platform for DGCs where many issues
have to be overcome.

In [45], Kappe presents a scalable solution to maintain link integrity in hy-
pertext systems. A link database is used to record all links (local and remote)
coming into and going out of a given server. The approach taken here is to try
and handle remote inconsistencies. The technique described in this article allows
notification to authors when a link to a remote server has been found broken. It
is assumed that maintaining link integrity locally is a trivial (or at least simple)
matter. When an object disappears, breaking a link, this information should be
propagated to all referents. We observe that this environment uses bidirectional
links and object meta-information replicas. Such an organization makes it easier
to understand locally the consequences of modifications to a given object. Conse-
quently, a first approach is to engage in “multi-server transaction” where all link
databases are updated, but this does not scale well. Instead, this solution allows
temporary inconsistencies and uses a flooding algorithm called p-flood (based
on the flood-d algorithm described in [27]) to propagate information. The envi-
ronment described here is certainly different from the Web (bidirectional links,
links database, and so on). Our solution uses DGCs and thus creates a sort of
links database but only for remote links. This database is the set of entry and

exit items used for opaque addressing. We note that our point of view is differ-

160



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

ent as well. While Kappe’s technique handles inconsistent states of the graph of
objects, the use of garbage collection prevents this from happening (as long as
certain rules about authoring are respected).

In [2], Anderson and Lennon present a document management system used
in many contexts. A focus of this system is to maintain link integrity to external
servers. The motivation for this work is a set of cooperating websites aimed at
providing a distributed learning environment (course and lecture notes, slides, and
so on). This system uses proxy objects for all remote documents and transpar-
ently intercepts requests. This effectively creates a system similar to distributed
systems using opaque addressing. Direct access as currently used on the Web no
longer exists. When a document is moved, the link is updated in the proxies, but
documents themselves do not need to be modified. As we explain in this chapter,
our model using a garbage collector does not rely on any such modification of the
Web space. However, should this become widespread, our DGC mechanism would
certainly benefit from it, as certain operations would be simplified. A problem
addressed by this work is the actions to take when a document disappears and
the link is effectively broken. A periodic check has been chosen with a frequency
parameter. Both issues addressed here (moved document and deleted document)
show a focus on objects rather than references. W3GC takes the opposite ap-
proach and strives to avoid broken links by not allowing linked documents to
disappear. In this chapter, we describe one exception with expiry dates, where
such a situation might occur but in a well-controlled and foreseeable fashion.

The paper [56] describes a technique to detect and repair broken links in an
XML environment. XLinks are an extended version of URLs, designed to be used
in XML documents for sophisticated linking (e.g. use of attributes, possibility
to reference any part of a document, and so on). This work addresses the issue
of broken links, and the authors note that XLinks, although sophisticated, are

more fragile than simple URLs. XLinks can be easily broken when a document

161



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

is modified (by structural reorganization). An XLink can be composed of several
links (as explained in [25]). To reduce the number of visited links, a dependency
between links is established. A “containing link” is not broken if none of the
contained links is broken. This solution allows to skip a large number of traces,
and improves tracing speed. Although this solution is attractive, we can not rely
on such a structure for websites, and distributed garbage collection proposes a
solution for the general problem. However, if XLinks replace traditional hrefs,
we can imagine integrating this optimization to a web-specific garbage collector
in W3GC and activate it when the context allows it. Finally, we point out that
this work focuses on the nature of the links and documents and does not address
the problem of maintaining links in distributed environments. We believe this
paper to be of value in our discussion because it explores an environment which
is likely to be a future application context for W3GC.

Garbage collecting the Web has been studied in a preliminary report by
Moreau and Gray [64]. However, the focus is on agents rather than garbage
collection, which provides low-level support (in the form of a distributed refer-
ence listing). The overall architecture uses agents and intercept messages between
web browsers and web servers. Three types of agents are used: user, author and
administrator. User agents check link integrity and help manage bookmarks.
Author agents handle document publishing and inform authors of the usage of
the pages. Finally, administrator agents are used for server statistics as well as
helping administrators to reorganize web sites while maintaining link integrity.
Furthermore, a publication contract is set up to specify the lifetime of a page:
forever, no guarantee, alive for a period of time and no known period of time but
notification of removal. This concept of life expectancy has also been used by the
Java RMI’s DGC in the form of Leases. Finally, the authors make the interesting
claim that weak pointers can be used for specific references such as references

taken from search engines.

162



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

In comparison, our work concentrates on an abstract view of the Web based
purely on garbage collection concepts. We precisely map memory and Web to
offer a solution which does not intercept any message and is thus less intrusive. As
a result, this approach allowed us to create a tool to study, debug and experiment
with garbage collectors (described in Chapter 8). The tool described by Moreau
and Gray is certainly more ambitious than ours and handles many elements (such
as users’ bookmarks). However, we believe that in time our solution could also
propose the same functionalities (or at least integrate with their product).

The PerDis system [77] proposes a complete solution to share information
over TCP/IP. It uses a distributed persistent object store and provides several
tools for application programmers. In [79], Richer and Shapiro use the Web as
an experimentation tool to test several allocation strategies in the context of
the PerDis system. Using a simulator developed within PerDis, they study the
behavior of the Web in different allocation scenarios for two websites.

The PerDis technology embeds objects in the Web, and provides memory
management for them. Our work is much more general in that it proposes a
solution to handle all web documents as though they were objects in primary

memory.

6.3 Web vs Memory: semantic correspondence

In this section, we present a mapping of memory management concepts to notions
in the World Wide Web. Understanding the basic concepts is necessary to help us

properly design a GC for the Web. Figure 6.1 summarizes this correspondence.

6.3.1 Object

The basic notion we explain is the object. We consider a web page to be equiva-

lent to a memory object. In primary memory, objects contain data and pointers,

163



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Memory WWWwW

Object Web object (web page usually)
Pointer URI

Internal pointer URI with anchor

Mutator Author or daemon

Garbage Non-referenced Web object
Allocation Web object creation (on disk)

Node Web site

Reference duplication | Insertion of a URI in a Web object
Forwarding pointers | URI redirection (explicit or implicit)
Roots site entry point and any other “main public file”
Dangling pointers URIs generating an “Error 404”

Table 6.1: Summary of semantic correspondence between Memory and Web.

and can also be associated to methods — code that can be executed. A web page,
or document, is no different (see Figure 6.2). There is data (usually text) and
pointers to reference images or other pages. We can also find code in the form of

Javascript, for example.

6.3.2 Pointer

In primary memory, the “pointer” is a central notion. A URI corresponds to this

concept in the Web. We distinguish three types of pointers:

e An internal pointer, in a C environment for example, typically references
an element inside an object. In the Web, such references to elements
inside web documents are denoted by a URI using a “label” with the fol-
lowing syntax: path#label. A label is declared within an HTML file by

<a name=label>.

e A local pointer is a pointer within the same node and to another object.
URIs express this concept with "path" or "path[#label]". This is an

address to another document with possibly a reference within the page (i.e

164



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

ﬁ The UNIVERSITY OF WESTERN ONTARIO | H?_‘”&

department 0f

B News B

to the University of ¥estern Ontario, Computer Science
department. Western offers many options to obtain a degree in
camputer Science ar in combination with another area.

about CSD
people

research 3 3
Informaton for Prospectve Smdents

graduate

undargradyats Final Exarn Schedule for Winter 2002

prospective students

facilities Computer Science Summer 2002 Courses

industry internship

Figure 6.2: Snapshot of part of the main CSD webpage on 2002/04/26. This page
contains text, links, and images.

an internal pointer). Note that the same local reference syntax may be
used for URIs relative to a base URI in remote documents. These should
be considered as remote pointers for the purposes of the DGC algorithms.
The protocol file can be used to guarantee that objects are referenced

outside any networked context.

e A remote pointer is denoted using a more complicated syntax. In primary
memory, we use a node ID and an address which is valid on the remote
node. There is an equivalence in the WWW | but it adds the notion of com-
munication protocol. Indeed, within the same page, we can offer access to
other pages (or objects) via several different communication protocols. The
syntax of a URI is exemplified by "protocol://server/file[#label]".
The protocol is usually http but could be ftp, https, and so on. The
server corresponds to the remote node and file[#label] has already been

described.

165



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We note that references can be encoded in different ways in an HTML file or
XML document. For example, references to an image can be made using the key-

word <img src=...> not only the standard reference syntax: <a href=...>nor-

mally used to link documents. Although the semantics is not the same (<img src=...

is used to specify a link to an image to display in the browser, not to give a link
to this file), we need to be aware of this syntax to identify live objects.

The mapping we show here assumes a simplified version of the world of HTML
referencing. No complex addressing, such as dynamic creation of addresses, is
handled. This is analogous to primary memory GCs which assume no computed
pointer values (e.g. offset or XOR-ed). However, the techniques and models
that we propose can be adapted to many scenarios. Also note that no reference
indirection such as opaque addressing can be used. URIs allow direct access
to pages. Proxies can be set up but only to avoid remote network messages.
Although it would initially seem to be a good thing, we will see that the lack
of opaque addressing forces us to find alternative solutions to implement certain
DGCs.

Finally, it is important to observe that HT'ML provides a precise knowledge
of the types of objects. Furthermore, URIs are easily identifiable in HTML files
and the access protocol is clearly specified. However, as we will see in Section 6.4,

components such as Javascript can make it hard to obtain certain references.

6.3.3 Mutation

A natural idea would be to map the notion of mutator to the web server. How-
ever, unlike a regular mutator, a web server does not normally modify pages, but
only accesses them for reading. A better correspondence would be to associate
the notion of mutator with the website author and administrator. This mutator
is either a human using an editor or authoring tool, or a script automatically

generating and possibly modifying pages.

166



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

6.3.4 Allocation

In primary memory, when an object is allocated, different actions are taken: find
a suitable free memory cell, invoke a GC if nothing is found, remove the cell from
the free store, integrate it with the live objects, update bookkeeping information
for the collector, and finally return a pointer to the object. The process is simpler
on the Web: a file is created in the appropriate directory.

In practice, disk space is cheap and wasted space does not have to be recovered
immediately. Often, new disks are physically added when available space in a
file system is low. Furthermore, a person or monitoring process could choose to
remove live data to recycle disk areas. One might then ask why garbage collecting
web sites can be of benefit. The answer lies in the fact that garbage collectors
not only free up memory space, they are also tools on which we can rely to avoid
and detect dangling pointers thus maintaining a consistent state of the graph of

objects.

6.3.5 Roots

In primary memory, roots are pointers stored in reliable locations such as stack,
static area and registers. It is assumed that objects referenced by those pointers
are used and thus alive. The Web equivalent to the root set would be the web
site entry point (e.g. index.html). However, any other file can play this role.
Indeed, a company could advertise a specific URI for people to visit. In this case,

this URI should be considered a root.

6.3.6 Dangling pointers

In a memory environment, a dangling pointer is a reference which points to a
memory location which does not contain any object anymore or, worse, which

contains an object different from the one the pointer was supposed to reference.

167



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

44404 Not Found - hMozilla {Build ID: 2002031008}
grgEiIe Edit Miew Search Go Bookmarks Tasks Help Debug Q&

=

i - ‘@r \3 %g I\& hitpzdfensnw csd uwo.cas~chichadvital _info.html

Back Reload

i _/.“'Hnme| Wk Bookmarks [JDGC/GC Benchmarks [JDGC experiments [ fMisc [ Statswe

Not Found

The requested UEL /~chichasvital_info.html wras not found on this server,

Figure 6.3: Error 404 example.

The main purpose of garbage collection is to avoid these dangling pointers. In a
Web environment, dangling pointers are very common. Manifestations of those
are known as the HT'TP “Error 404” which we encounter quite often in practice.
Figure 6.3 illustrates what happens when we wish to access important data using
a wrong address. This can be the result from a mistake in typing the address or
the manifestation of an object which no longer exists, even though its reference

was known by another party.

6.3.7 Garbage

An object usually becomes garbage when the mutator no longer has access to it.
As mentioned in [64], as soon as a web document is in the appropriate directory, it
becomes accessible. However, in practice, this document becomes accessible only
when its address is published. Otherwise, we can also consider that an object is
reachable as soon as it is allocated in the heap, we just have to “guess” its address
in memory.

We deem a web document to be garbage when it is not referenced anymore.
However, as we will see in Section 6.4, the actions, taken once a document is

found to be garbage, can be quite different from those in a memory environment.

168



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

6.3.8 Forwarding pointers

Forwarding pointers are used in memory management to handle relocations of
objects. Certain GC algorithms move objects in the heap to isolate the garbage.
During the relocation, it is necessary to leave forwarding pointers to the new
location to help updating objects referring to the moved objects.

The Web counterpart (URI redirection) is used to inform users that a web
page has moved. This can be done manually, by replacing the old page by a page
containing a hyperlink to the new location, with the assistance of the server,
which uses a special instruction in its configuration file to act as a read-barrier
automatically redirecting the HT'TP request to new location of the web page, or

this can be done with meta-tags in the web document itself. For example:
<meta http-equiv="refresh" content="2; URL=newpage.html">

Figure 6.4 illustrates this setting up an old webpage called myinteroppage . html
to refer to the new version called interop.html. The name of the file was deemed
too long and the author decided to change it. In case visitors had a bookmark
on this page, a message and a redirection are left to indicate the new location
of the page. This is more elegant than simply removing the page and letting
the web server return an “error 404” message. We note the use of “Update your
bookmarks” which we find quite often on the Web. This is the explicit manner

to inform “clients” that an object has moved.

6.3.9 Garbage collectors

Collectors show certain differences when used in a Web environment. However,
we will see that DGCs can be reused almost “as is” in both environments, due to

the fact that a DGC relies on its local GCs to make the necessary adaptations.

169



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

“r-H Redirection: a Web example of forwardina pointers — Mozilla {Build 1D: 20020311
;Eile Edit  Miews Search Go  Bookmarks  Tasks Help Debug &4

—

B?c-k - Foﬁ:ﬁ\rd - R;%‘\d %% I\& httpesfweenw csduwo. cal~chichasmyinteroppage. himl

i _/.'}Home| WkBookmarks [§DGC/GC Benchmarks [JDGC experiments [fMisc [4Statsweb 3

This page is no longer accessible here.

You will be redirected to the following new location
http://www.csd.uwo.ca/~chicha/interop.html
in 5 seconds.

Update your bookmarks.

Figure 6.4: Automatic redirection to the new location of a webpage.

Uniprocessor GCs

One of the characteristics of uniprocessor GCs is that they stop the mutator when
collecting garbage. No further mutation is done until the end of a collection.
Obviously, it is not desirable to stop web servers just to figure out what pages are
not referenced anymore, although this does occur in practice (we often see that
a website has been taken offline for maintenance).

A garbage collector for the web does not have to stop the web server to
identify garbage web documents. Indeed, conflicts are not likely to occur because
a web server does not mutate web files, it simply reads them. There are several
exceptions: CGI scripts, servlets, cookies, and so on. However, we observe that
these programs or tools are usually designed to modify very specific parts of a
website; local actions created by such entities can be controlled using equivalents
of write- or read-barriers.

Note that synchronization between the collector and authoring tools (i.e. the
actual mutator) is necessary because both entities might modify the same web
documents simultaneously. This allows the semantics of stopping the mutation

to be preserved while respecting the constraint of availability for the web server.

170



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Multiprocessor GCs

We distinguish two cases: parallel and concurrent. Parallel collectors are sim-
ilar to uniprocessor ones in that they also stop the mutation. On the other hand,
a concurrent GC works while mutation is performed. In a Web environment, this
means that the GC and authoring tools are working concurrently and access to
a file must be synchronized.

We observe that, when websites are maintained manually, any type of collector
should be considered concurrent, because mutation can occur at the same time
as collection. This shows that web authors should rely on software tools rather
than manual modification to avoid complex synchronization mechanisms as well

as incorrect maintenance of websites.

DGCs

In both memory and Web environments, DGCs rely on local collectors and net-
work messages. Whereas local garbage collectors have to be adapted to work with
the Web, DGCs do not require any modification. This is because a distributed
collector does not exist as a separate process but as a collection of local collectors
communicating using network protocols defined by the DGC algorithm.

This means that the semantic mapping already exists and is direct because

the design (and possibly implementation) can be reused directly.

Properties of DGCs

We describe our understanding of main DGC characteristics when ported to the

Web.

e Safety and completeness. This corresponds to avoiding “error 404” as
much as possible. Ensuring complete safety proves extremely difficult in
this environment (see Section 6.4). Completeness is ensured when all non-

referenced web documents can eventually be found.

171



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Fault tolerance. This notion is similar in both environments. Specific
actions have to be taken to help the GC cope with failures (one can use the
SSPC distributed collector [81] for example). A minimal alternative is to

assume that failure handling is the responsibility of the underlying system.

e Scalability. This is a major concern here because the WWW is a very
large distributed system, growing every day. Furthermore, algorithms of the
distributed reference counting family are no longer suitable because cycles
are frequent on the Web, as observed in [64]. Note that hybrid collectors —
which use a special layer, such as a distributed mark-and-sweep (see [51]),
on top of a DGC of the DRC algorithm — are acceptable because they can

reclaim cycles.

6.4 Issues

In this section, we explore questions about using a garbage collector to maintain

link integrity on the Web.

6.4.1 Cycles on the Web

In Figure 6.5, we show how cycles might be created in the Web environment. The
existence of cycles confirms the need for sophisticated techniques possibly based
on distributed garbage collection. Section 6.6 provides experimental results about
the number of cycles found in various contexts.

As can be seen in our example here, the situation is similar to a situation
we would have in a regular memory environment. To create distributed garbage
cycles, we can imagine that John, Patrick and Malcolm do not want to have
pages on bikes anymore. Each will remove the link from their “index.html” file.

However, John’s page will stay alive because Malcolm’s site has a reference to

172



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

John’swebsite Patrick’swebsite
) index.html

@ vikehtml

— URI
— = URI to beremoved

/

@
O\@/

Malcolm'’s website

Figure 6.5: Example of cycle on the Web.

it and Patrick’s web page on bikes was referencing Malcolm’s. Finally John had

references on Patrick’s page.

6.4.2 Scale

The Web contains a very large number of sites, documents and links. Although
this constitutes an interesting conceptualization for a large distributed garbage
collection problem, distributed collectors are known to work best with tightly
coupled distributed systems. We claim that current algorithms for distributed
garbage collection can still be used to manage the Web, but within selected con-
texts.

Currently, garbage collectors can handle local websites and distributed GCs
are suitable for intranet configurations such as websites in a university (we found
45 different web servers at the University of Western Ontario). In [2], it is men-
tioned that their virtual learning center — a set of websites gathering course ma-

terial and lecture notes — would benefit from a tool to maintain link integrity on

173



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

the web. They estimate the number of files to handle at 600,000 files. Compared
to the billions of documents we can find on the Web, this may seem small, but
this is a practical and perfectly valid application. Although this virtual learning
center is handled by a custom tool to maintain link integrity, a DGC-based tool
could be used.

Of course, as DGC algorithms evolve, it will be possible to handle larger Web
contexts. We believe that the essential ideas of this work will still be valid then.
We also note that the Web, formulated as a garbage collection problem, would be

able to drive and motivate sophisticated research about various DGC problems.

6.4.3 Failures

As well as being large, the Web is failure-prone. Many servers can go on- and
off-line. This is obviously a problem for web maintenance. Our modeling is not
invalidated by this issue. We simply rely on DGCs’ capacity to handle such
problems. Currently, a collector such as SSPC [81] could be chosen to handle
failures. However, it is not clear whether this DGC is tolerant enough to support
numerous sites that can go temporarily offline.

In our own experiments (see Section 6.6), we chose a simple DGC, without
failure handling, in order to illustrate this work. We must point out that this
choice was made based solely on the criterion of simplicity. An empirical study
would be useful to understand what collector is actually the most suitable in the
Web environment.

A specific problem related to scale and failure is how to handle termination
on such a large and unreliable network. Indeed, many DGCs rely on distributed
termination algorithms to complete a phase of distributed garbage cycle detection.
This problem shows that the Web can be an interesting platform for distributed
garbage collection research, which usually lacks real-world applications. It is

outside the scope of this work to provide an answer for the termination problem

174



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

in such a large and unreliable environment. However, the DGC called GCW [51],
which we chose as an implementation example (see Chapter 7), provide an entity
called “groups” (although we did not implement it). These groups are used to
limit the scope of action of a DGC by defining sets of nodes to work with. Groups
of websites could be defined to reclaim garbage cycles local to a group. Also, when
a failure is detected within a group, the corresponding node is excluded from the
group. Experiments would be required to understand the exact topology of one
particular set of sites and how to divide it into groups according to criteria of
performance, reliability, security and so on, but this technique could certainly

help in terms of scalability.

6.4.4 Security, trust and permissions

An interesting question about long-run environments such as the Web is that of
security and trust among different sites. One might argue that web administrators
are not likely to let anyone access their web servers to do garbage collection and
discover links to remote objects. We observe that DGCs are composed of local
GCs and network protocols for them to communicate. In our context, a local
GC is completely controlled by web server administrators. The actual process of
document deletion — if any (see Section 6.4.6 below) — is done by the local GC,
not by an external actor over which we have no control.

The only external influence applied by the DGC on any of its local GCs is
series of coordinating messages for garbage detection, and messages to specify
that certain web documents are not accessed anymore from remote documents.
We define a DGC server at each node which acts as a “firewall” and protects local
documents from being accessed by remote entities (whether they are evil or not).
The final decision to delete a document remains with the local administrator.

Questions about external security also trigger the issue of permissions. In an

environment with many users (a university department for example), it is likely

175



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

that the web administrator does not have the same rights as the overall system
administrator. In this case, garbage collecting web files might be cumbersome
depending on the permissions allowed to the web administrator. Furthermore,
users would not be happy to see “secret” files disappear because they were not
linked. This is why, in this case, we recommend that each user runs his/her own
local GC, participating or not to the DGC for the website. In Section 7.1.1, we
describe other scenarios where a choice should be made between stand-alone GC

and DGC according to permissions, topology, and so on.

6.4.5 Ensuring safety and finding references

In the Web environment, safety is very difficult to guarantee when we observe
the usual behavior of users. Authors are allowed to directly delete files from
their websites’ directories, and thus explicitly create a dangling pointer. This is
much easier to do than deleting an object in memory. This is why user education
might be the main obstacle to this tool. In this environment, people are used to
handle things manually and explicitly. It will be hard to convince them to rely
on an external tool. In a sense, history is repeating itself: programmers have long
hesitated to rely on garbage collectors to manage the memory of their programs.
Safety is also difficult to ensure due to the large number of object types:
javascript, java, image files, sound files and so on. Many of those objects can
actually hide references in some way and it is hard to find them. In the Web
context, many different objects exist, which may or may not contain references.
For example, an image file does not usually hold references to other documents,
but a text file can contain an address that people can copy&paste into a browser.
Unfortunately, as observed in [79], it is hard to find all references to a Web object.
The design choice here is to decide what types of references will be supported.
We note that the widely used assumption made in the community of garbage

collection that a pointer has to be explicit and never “built” is not true in this

176



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

suffix = new Array(’100’, ’200’, ’300’, ’4007);

img = new Image();
for (var i = 0; i < suffix.length; i++)
img.src = ’images/picture_’ + suffix[i] + ’.jpg’;

Figure 6.6: Javascript example for pointer construction.

environment. Indeed, it is common — in Javascript code for example — to compose
references from different elements. For example, the following piece of code allows
to easily pre-load many different pictures:

This shows how we can easily make a reference from several components. For
example, the reference
images/picture_300. jpg can be built from this code. In a regular context, this
reference will not be found.

Many of the constructed references follow simple patterns, often building paths
by string concatenation. It may be desirable to handle a well defined class of these
but this does not add to the essential ideas of this work. Ensuring complete safety
is not feasible at any given moment in time because new types of objects appear
every day. A reasonable solution would be for the development of W3GC to closely
follow the development of web browsers and creation of new types of web objects.
If a new type of object is created to be accessible on the Web, browsers have to be
able to handle it. This is done through continuous development of these software
tools. Also, we note that many new types are accessed with current browsers
via the use of plug-ins. This would be a solution for W3GC, and is certainly a

direction to investigate in the future of this thesis.

A (partial) solution

In order to find references created by program (such as Javascript) and to avoid
intercepting HT'TP messages, we plan to use web server log analysis. These logs

record the names of the files that are visited and downloaded. If an HTML file

177



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

contains javascript code to display images (for example, the code shown earlier),
a web server simply records the list of files that have been downloaded. Analyzing
web logs could therefore help us identify such files and deduce their liveness. This
solution would help us increase the number of files we recognize as live. However,
it is not enough to guarantee safety. A complementary solution would be to use
browser (such as Mozilla [71]) and associated plug-in (such as Java [58]) code —
which usually handle most MIME types — to examine web documents and “run”
code included in those documents. A first approximation for Java applets could
be that any file within the same directory as a class file known as live (i.e. called
from an HTML page) is considered as live. Both solutions — web logs and browser
code — would be added to a production version of the garbage collector to carry

out a systematic visit of all files and to obtain completeness of type handling.

6.4.6 Dealing with garbage objects

Primary memory garbage collectors aim at finding and recycling garbage objects
in order to free space for new objects. In the Web environment, we can not be that
strict. Although removing files that are no longer referenced can be acceptable
in certain situations, this is not always the case. Authors of websites may want
to keep those files to copy contents, re-link them to certain pages, and so on.
Depending on the purpose of the garbage collector, an acceptable action can be
to remowve pages that are not referenced, but also list them, move them to a special
directory or simply output statistics.

In the latter configuration, we note that W3GC would then become a link
checker and non-referenced object detector. These are useful features, but we
would like to point out that W3GC can accomplish more than that. When coupled
with a web authoring tool, W3GC can be used to avoid situations where dangling
pointers occur. This results in a more reliable structure than one where the site

is checked for bad links regularly.

178



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

6.4.7 Practical questions

We discuss specific questions related to the use of a garbage collector to maintain

link integrity and discover non-referenced web documents.

Secret files and directories

Many authors have “secret files and directories”, i.e. directories that are not
linked from their homepages but which are used to communicate files to specific
friends and colleagues. These files are live because their addresses have been
published or rather sent to a specific person. The purpose is to allow someone
to download or view information that is not supposed to be downloaded or seen
by anybody else. Although this seems a rather primitive procedure to enforce

security of data, this practice is widespread and illustrates two facts:

e A web document can be considered live only if its address has been pub-

lished, or if it is linked to a document that is known as live.

e The level of security offered by choosing an obscure filename in an opaque

directory is sufficient for many purposes.

In order for the garbage collector to recognize them as live, these files should
be listed in the GC configuration file. Although this might be thought of as a
security hole (exact paths saved in one specific location), this issue is easily solved
by protecting the file against read accesses. We distinguish several possibilities

in this context, that the GC should be able to handle:
e List all the files to protect.
e List a root for these files if they are supposed to be linked together.

e List directories to protect indicating that this protection is recursive. This
would mean that the GC should not bother looking in this directory or any

element it contains.

179



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Publication contracts and versions

Currently, it is not realistic to try and maintain link integrity on the whole Web.
Certain tools (as seen in Section 6.2) offer solutions to handle certain inconsistent
states, but they might require complex solutions, involving databases of references
for example. Moreau [64] proposes to use publication contracts. The idea is to
maintain an expiry date for each published web document. This date would be
integrated to the link itself in order for the client to manage its own updates.
When a link has expired or is close to expiry, the client side is aware of it im-
mediately and can take appropriate action. This is an efficient way to deal with
loosely coupled websites. This technique is also known in Java RMI in the form
of leases.

As mentioned in several works about maintaining link integrity on the web,
versions of web documents could be important. They allow a client of a web
document to know if a link that was set up on a specific document is still valid
according to the referencing context. It is possible that the contents of a web
document become unrelated to what it was previously. A simple URL has no
way to know about this fact, and a web management tool should at least warn
the author of a page that certain links now refer to changed pages. The author
can then agree to keep the link or remove it. In a GC context, this problem is
orthogonal, because it relates to web contents and semantics of web documents
and not their relative structures. However, this feature can easily be integrated

into a GC for the Web.

Preserving too many files

A danger of garbage collection on the web and in primary memory is that the
definition of garbage object is intimately linked to the notion of reachability (as
observed, for example, in [65]). On the Web, this might be a problem because

many pages contain links to web documents that are likely to be outdated. Un-

180



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

fortunately, because there is a link, the corresponding web document is supposed
to live. This is why publication contracts could help balance this situation. Ex-

periments would be required to determine exactly how serious this problem is.

Search engines

Search engines and Web portals such as Google [33] or Yahoo! [93] have a special
status among websites. The purpose of their existence is to store the largest
possible number of links to web documents (for example, on March 27, 2002,
Google had stored 2,073,418,204 references). In this context, many links are
broken, and it would not be realistic for websites to take references from such
websites into account for the liveness of web documents. Preserving too many
documents as explained above is one of the dangers of garbage collection. Search
engines are certainly one source for this danger.

Moreau [64] proposed that weak pointers would correspond to references orig-
inating from such websites. As we have seen, search engines list a very large
number of references to webpages. It would not be reasonable for a garbage col-
lector to use these references as real links. The reason is that once a link is listed,
it will live almost forever. After search engines reference the entire Web, no web
page would die because there would always be a link to it. It is more practical to
consider that these nodes of the distributed system are “special” and should not
be considered as holding real references to other sites.

We note that publication contracts would certainly be useful in this context.
If all web documents are capable of announcing their own expiry date, search
engines would be able to use a much more precise database of references, and
caching documents would only be necessary for documents that are susceptible
to disappear. It is likely that resources required to run a site such as Google

would be much smaller.

181



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

WebRings

WebRings are not specific websites but specific structures for a set of websites.
A webring organizes related websites in a ring. This organization originates at
a particular point in the web space, but this origin has no actual influence on
websites belonging to the ring. When the author of a site wants to be part of a
webring, he/she has to contact the manager of the ring who will check out the
site and return two URIs: one for the predecessor in the ring and one for the
successor. The author is asked to add these links to the main page of his/her
site. This results in maintaining a cycle of websites. However, this structure is
straightforward and, usually, only URLs to the root of websites are inserted on
the main page. Consequently, the nature of WebRings should not influence the
use of a collector to maintain link integrity, because this ring is likely to never be

garbage.

Symbolic links

Symbolic links usually constitute a problem for online link checkers. They can
“trick” a link checker into considering documents as new whereas they have al-
ready been visited. This happens because link checkers use HI'TP requests to
visit websites and this protocol does not recognize symbolic links. Certain web
servers, such as Apache [31], can disable them, making it easier for a manage-
ment tool to visit pages. However, there is no guarantee that this is the case and
termination is hard to ensure in these conditions. Link checkers usually handle
this problem by limiting the depth of the path to a given web document.

An advantage of using a distributed collector which is composed of local col-
lectors is that these local GCs have direct access to the underlying file system (in
order to list non-referenced documents). Tracing objects can be done using files
instead of HT'TP requests and symbolic links can thus be recognized. This allows

for computation and analysis of paths on the file system to decide whether to

182



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

follow the link of not. Links should be dereferenced, and only real paths should

be used.

6.5 Counting cycles

This section proposes a measurement of cycles in a graph. It will be used in Sec-
tion 6.6 which reports on various experiments we made and statistics we obtained
in a Web environment using garbage collectors. Counting live and garbage ob-
jects, live and dangling links, and evaluating the time spent doing a GC, proves
quite simple as long as we have access to appropriate logs (see Section 7.5.4).
Unfortunately, finding the number of cycles in a given context is quite difficult.
Such statistics are important because most of the work achieved in the field of
automatic memory management relates to the ability to reclaim garbage cycles,
distributed or not. Thus, this algorithm allows us to provide a study about the
cyclic structure of websites, and a way to measure the effectiveness of W3GC.
The usual measure of elementary cycles, such as the one we can find in [86],
is not particularly useful as a property of heap storage as the number may be
exponential in the number of objects. What would be more useful is a measure
of what proportion of objects are involved in any cycle. We created an algorithm
called Rooted Depth First Partial Cycle Count (RDFPCC). It relies on the
notion of “back pointer” that we define in this section. Evaluating the number of

back pointers in the graph of objects gives a lower bound on its number of cycles.

6.5.1 Definition

We consider a single rooted directed graph G = (V, E). We call R the root node
of G. We consider an ordering of the nodes defined by the edges of G. This
ordering corresponds to the layout of G resulting from a depth-first visit (with no

revisit). We define a back pointer as an edge between two nodes N; — the origin

183



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

root
l.
N1 O

N2

Figure 6.7: Example of a back pointer. Here, the edge BP is a back pointer from
N2 to N1.

—and N, — the destination — such that N, is an ancestor of N; in a path leading
from R to N;. Figure 6.7 gives an example of back pointers. In our definition,
we also trivially accept as back pointers those edges whose origin and destination

are the same node.

6.5.2 Algorithm

The following function counts back pointers from a given node. It relies on the

root node of the graph (declared a global variable).

global root: Node

countBackPointers(n: Node): integer {

nbptrs := 0
n.marked := true
k := number of n’s outgoing edges
for i in 1..k
a := edge i inn
if (a.dest = root) nbptrs++
else

if (a.dest.marked = false)
nbptrs += countBackPointers(a.dest)

184



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

else
if (a.dest is ancestor of n)
nbptrs++
return nbptrs

}

RDFPCC() : integer {
return countBackPointers(root)

}

We note that countBackPointers relies on a function to find out if a given
node is an ancestor of the node currently examined. The algorithm is not shown
here, but it is quite simple. With each node, we associate a marker which indicates
what branch is being visited and we retrace this path from the root. Another

solution could use a stack of visited objects.

6.5.3 Properties
Property 1: maximum number of back pointers

We assume that G = (V, E) (with |V| = n) does not contain multiple edges with
the same origin and destination:
—de; € E,es € E, e # e and e;.origin = es.origin and ej.dest = eg.dest

This assumption implies that only one loop edge is allowed per node and we
therefore have a maximum number of n such edges. Back pointers are defined as
edges towards ancestors. We obtain the maximum number of back pointers in G if
it is linear and each node is the origin for the maximum number of edges towards
ancestors. At each node, such a number is the number of ancestors + 1 (for the
self-referencing edge). Consequently, the maximum number of back pointers in a
graph depends on the number n of nodes and is evaluated as follows: 14+24...+n.

This gives us a maximum number of n(n + 1)/2.

185



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Property 2: maximum number of back pointers to the root

In the Web environment, it is interesting to count the number of back pointers
to the root file. The root file is never going to disappear unless the whole site
disappears. Consequently, such cycles can be safely assumed to be live. We
suspect that the number of such pointers is often close to the maximum, which

is the number of nodes: n.

Property 3: lower bound on the number of cycles

Counting the number of back pointers allows us to provide a lower bound on the
number of cycles in G. Indeed, each such pointer is part of at least one cycle,
because it links a node (N;) to one of its known ancestors (Ny): there is a path
from N, to N; and an edge from N; to Ny. We note that back pointers can be
part of several cycles. Because each back pointer is part of at least one cycle, the

number of back pointers in G indicates the minimum number of cycles we can

find in G.

Property 4: the order of visit of the graph is important

One drawback of counting cycles using back pointers is that the result might
be different depending on the order of visit of the graph. However, Property 3
guarantees that, whatever the visiting order, the result we obtain is a lower bound
on the total number of cycles.

Figure 6.8 illustrates this situation. From the root, we have two possible ways
to visit the graph, using edge A; or edge A, first. If we use A;, we find one
back pointer and report at least one cycle. If we start from A, we find two back
pointers and report at least two cycles. Note that this happens because from
node A, we have two ways to reach B and B points to A. So if B’s pointers are

going up instead of down, we have two back pointers instead of one.

186



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Root Root Root

Original graph

Visit starting with Al

Visit starting with A2

Figure 6.8: The order of visit is important.

Property 5: all cycles defined by back pointers are elementary cycles

In [86], Tarjan proposes an algorithm to find and output all elementary cycles
(i.e. any vertex in such a cycle is present only once) in a directed graph (see also
[40]). We decided not to use this method, because the complexity depends on the
number of cycles and, in certain situations, this number might be exponential in
the number of vertices. We are concerned with identifying how many objects are
part of a garbage cycle, not how many garbage cycles they reside in.

We observe that all cycles found by our algorithm are elementary. This is
useful to know because information we gather on the connectivity of a website
should not be redundant. In particular, in our experimental results, we discuss
the number of objects involved in cycles.

We can prove that all cycles we find using the RDFPCC algorithm are ele-
mentary. Objects that we visit are marked, when we find an edge between two

vertices (A and B) and the destination vertex (B) has already been marked, there

187



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

are two possible cases:

1. This edge is not a back pointer. In this case, there is no cycle and we keep

searching.

2. Bisan ancestor. In this case, the cycle we count includes a path from Bto A
and an edge from A to B. Note that even if there are several paths from B to
A and some are not elementary, we still count only one cycle. Consequently,

only the elementary path is effectively considered and counted.

6.6 Experiments

We made four experimentations with our GC implementations (see Chapter 7):

e a statistical analysis of 40 websites hosted at the University of Western

Ontario (Section 6.6.1).
e stand-alone garbage collection of several user websites (Section 6.6.2).

e garbage collection of a local copy of the Java API documentation directory

(Section 6.6.3).

e DGC for a network of user websites in the Computer Science department

at the University of Western Ontario (Section 6.6.4).

Obviously, while interesting, these tests are only a first analysis of the value
of our distributed garbage collector implementation. Future work on this topic
would be to integrate our garbage collection mechanism to a web-authoring tool
and let it be used for a year. Two scenarios can be prepared: authors at dif-
ferent web domains (for example, www.csd.uwo.ca and www.apmaths.uwo.ca) or
authors within a same web domain. The latter is also useful to test a distributed
collector, because we can disregard the fact that all files are likely to be accessible

on a single filesystem.

188



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

6.6.1 UWO websites

We studied 44 websites hosted at the University of Western Ontario. The statis-
tics we obtained show the context in which a garbage collector would work. It
is not an actual experiment of the garbage collectors we have written. We be-
lieve this data to be relevant in the sense that it provides information about
the scale we can expect in an actual environment. Other studies can be found
in the literature such as the ones reviewed in [18]. Besides [18], we found that
most statistical studies about the Web focus on the dynamic nature of a website
(frequency of changes, for example) as well as usage patterns by visitors (what
link do they activate first, what pages are most visited, and so on). Few studies
concentrate on the structure of a website, and we believe that the experiments
described in this chapter are a useful contribution to the area of empirical studies
of websites. Also, to our knowledge, the experiments described in the next sec-
tions (stand-alone GC, Java, and DGC) are the first studies to report information
about “garbage pages”.

This statistical experiment was done from a user’s point of view. We did not
have access to the underlying filesystems hosting the websites. Consequently,
we do not provide any statistics about garbage objects. However, we provide
information about the number of live objects we encountered as well as dangling
links. In [79], the authors provided information about allocation patterns using
the structure of two websites holding about 3000 and 9000 objects. We believe
that our tests show a broader, and thus more interesting, context with statistical
data on websites using between 2 and 40456 web objects.

We first describe the extent of our implementation. We could handle:
e .html, .htm and .cfm files. .cfm files are similar to HTML.

e https using Java 1.4’s URL library.

e Redirections using META tags.

189



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Diverse details such as the syntax of a URL like http:www.uwo.ca (the
usual // after http: are omitted), case-insensitive protocol part of a URL

(Http is the same as hTtP).
e href in any tag, in <a ...> of course but also in <area ...> and others.
e errors such as non-closed strings.

We also had to skip complicated elements. This statistics-gathering program
is still a prototype and we could not spend too many resources implementing a

complete piece of software. We skip:

e URLs using network protocols other than http or https (for example, ftp,

telnet, gopher, and so on).

e stand-alone anchors denoted by # should be skipped because they indicate

internal pointers. There is no use for these in our program.

e URLs containing cgi-bin or a question mark. This latter is problematic
because this does not allow us to call PhP code, but this was necessary
to avoid infinite recursions with specific URLs (in particular, when we en-

counter directory listings).

e Simple infinite recursion (e.g. /foo/foo/foo/foo/...). This happens be-
cause we manipulate URLs as character strings and such recursive paths

are not recognized, we thus set up a simple pattern recognition routine.

e References found in comments. This is a good thing because a comment

should not be considered at all.

Finally, there are elements that we could not handle because their complex-
ity required more time to treat than the resulting data would merit for a first

investigation.

190



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Complex recursive patterns in URLs (e.g. /foo/bar/fool/foo/bar/fool/...).
Our solution is similar to those of most link checkers. We limit the depth
of paths. This can be dealt with differently (as we did in the previous ex-
periments) if we have access to the underlying filesystem and can recognize

symbolic links for example.

e Languages such as PhP, CGI, Perl, Javascript. See Section 6.4.5 for more

explanation.

Observations and results

We first remark that our results are indicative but cannot be 100% accurate.
Indeed, the HyperText Transfer Protocol [35] does not recognize symbolic links
in the underlying filesystem. This results in possible problems such as infinite
loops or duplicated paths. Using a garbage collector will not result in the same
problem because it works on files and not webpages. Consequently, symbolic links
can be recognized.

Depending on the location from which we ran our statistics program, we could
obtain different results. This is because certain pages are accessible only under
specific conditions (e. g. only accessible from clients located in UWO, accessible
with a password, and so on).

These two observations are important because they show that online link
checkers are not sufficient to handle websites. Local programs such as garbage
collectors are more appropriate to the task of checking the consistency of a web-
site.

We encountered three websites that were exclusively using PhP. We had to
skip those sites, because we skip URLs containing a question mark (as explained
above). We also skipped one website using Perl and one website using CGI scripts.
One other website was using many CGI scripts, but we could get information from

the rest of its objects. Two sites could not be studied because we encountered

191



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

complex recursive patterns in their URLs (probably due to symbolic links in their
filesystems). Finally, one website was completely empty. Consequently, we have
results for 36 websites (this includes the one website which used many CGI scripts

but has other files as well).

Statistics

The following statistics have been established on March 19th, 2002.
Number of objects

We found the following distribution of sites compared to the number of objects:

Number of objects (z) | Number of sites | Average trace time

z < 100 11 1mn20s
100 < x < 500 12 5mn20s
500 < z < 1000 4 18mn49s
1000 < =z < 5000 6 51lmn3s
5000 < z < 10000 1 2h7mn26s
10000 < z < 50000 2 3hb54mn24s

The two largest websites hold 37528 and 40456 objects. However, we observe
that most sites use a small number of webpages. Reasons for these results may be
that this domain has very few users or that users’ websites are not referenced from
the main website. This shows that a garbage collection of such a website would
take a small amount of time, making it possible to disable mutation completely
(note that the web server never has to stop) during garbage collection. This
is useful to allow the use of simple, uniprocessor collectors. We also observe
that this is not practical for large websites (an average of almost four hours
to examine a website). Please note that these statistics were gathered from a
machine of our laboratory and HTTP requests (supported by Java’s URL class)
were made remotely to the servers for each link found. A local garbage collection

phase typically spends less time tracing objects by accessing objects locally (we

192



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

obtained a timing of about 1 hour versus 3 hours for the site containing 37528
objects). This is interesting because it shows that online link checkers are not
sufficient to handle complete websites. Local treatment is required and this thesis
shows what additional benefits can be gained (in particular, discover unreferenced
objects and observe the Web as a possible computational platform).

Number of links

We found the following distribution of sites compared to the number of links:

Number of links () | Number of sites | Average trace time
x <500 9 Imn31s

500 < z < 1000 5 46s

1000 < z < 5000 10 6mns7s

5000 < = < 10000 3 22mn19s

10000 < & < 50000 | 6 1hO8mn

50000 < z < 300000 | 2 1h52mn

1115775 1 4h25mn

We note that one site holds a very large number of links (more than one
million); this is the same site that holds the maximum of 40456 objects. In such
a context, local collection is necessary, because more than one million HTTP
connections proves very costly. Even in an intranet environment and with a
responsive site, such a study is bound to require a lot of time. This illustrates the
need for a DGC mechanism which has the advantage to localize activities, but
still obtains complete and guaranteed results via a limited number of network
messages. We also note that a close observation of this site shows that many
objects have been visited twice due to the use of symbolic links. This confirms
that local manipulation of objects is likely to lead to more precise results.

We also observe that the general tendency is that tracing time is actually
dependent on the number of links.

However, when we look more closely we

remark that it took less time — on average — to trace sites holding 500 to 1000

193



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

links than those holding less than 500 links.

Number of external links () | Number of sites | Average trace time
z < 100 16 1mn19s

100 <z < 500 9 Tmn33s

500 < x <1000 2 10mn23s

1000 < =z < 5000 6 1h32mn6s

5000 < z < 20000 3 2h11mn18s

In the results shown above, we found a correlation between the number of
external dangling pointers (i.e. not including links to sites in the group of websites
we examine) and the average trace time. Indeed, certain external sites take a long
time to answer HTTP requests and that may explain the unexpected result we
just observed. If the GC also has to verify the integrity of external links, only
a large upper bound can be hypothesized. This bound is created by a limit we
place on link integrity checking (in our tests 30 seconds per link), and can be
customized. Obviously, in an intranet setting, non-responsive sites are less likely
to happen, leading to much better timings.

Dangling links

Number of dangling links (x) | Number of sites

r <10 11
10< 2z <20

20 <z <50

90 <z <100
100 <z <500
900 <z <1000
1000 < = < 2000

N O O O Ot O

A large number of websites have a limited number of dangling links (11 out

of 36 sites have less than 10 dangling links). This is an interesting and somewhat

194



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

unexpected result. We also found that these dangling links always represent less
that 10% of the total number of links with a vast majority (with exactly half
of the sites featuring less than 1% of dangling links). However, this does not
change the fact that automatic management of links and objects is required (the
maximum number of dangling links we recorded was 1722, which is quite large).

The percentages of internal dangling links with respect to the number of dan-
gling links reveal a full range of possibilities. Five sites have no dangling links
and do not participate in the results described in the rest of this section. The
31 remaining sites display internal dangling links from 0% to 100% of the total
number of dangling links. We remark however that only 8 sites out of 31 have
more than 50% of internal dangling links. We believe this is explained by the
fact that internal links are usually easier to control and check than external links.
A possible psychological explanation is that authors may not consider that link
integrity to remote sites is really their responsibility. If the site has a dangling
remote link, it is the fault of the remote site. These results show however that
an automatic mechanism is required in most cases (if there are internal dangling

links, they represent at least 10% of the total number of dangling links).

Percentage of internal dangling links | Number of sites
0% 7

0% to 9.99% 0

10% to 19.99% o

20% to 49.99% 11

50% to 99.99% 7

100% 1

Group links
We define group links as external links towards a site in the list of sites we
examine (i.e. on campus). This is a useful indication of the need for simple

garbage collectors versus a distributed GC. We found 35 websites with less than

195



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

6% of group links (with respect to the total number of links). Five sites have
no group links at all. One site has around 30%, but absolute numbers for this
website are 8 group links for 27 links, which is quite limited. The highest number

of group links we recorded in one site was 1316. Here is the distribution:

Number of group links (z) | Number of sites
r <50 24

o0 <z <100 2

100 < z < 200 7

200 < z < 500 1

500 < z <1000 1

1000 < x 1

We also report the percentage of group links that have been found dangling.
We note that the websites we examined were always available. This means that a
dangling link is actually to an object which no longer exists. As can be observed,

we only report information on 31 sites, because five sites have no group link.

Percentage dangling group links (z) | Number of sites
0% 10

less than 5% 1

less than 10% 12

less than 20% 6

less than 30% 2

50% 1

We have a majority of dangling group links between 5% and 10%. This is
sufficient to confirm that a DGC is needed. Furthermore, we see that 9 websites
out of 36 have more than 10% of dangling group links. This is unfortunately a
large number, which may drive visitors to other groups of websites. If this occurs
in a company or consortium, many visitors might lose interest, which is obviously

undesirable.

196



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Cycles
In the context of the 36 websites we study, we found internal and distributed
cycles.
Number of internal cycles (z) | Number of sites
r=0 2
0<z<10 2
10 < x <100 8
100 < =z < 1000 15
1000 < < 5000 6
5000 < z < 10000 1
x > 10000 2

It is useful to know the average number of objects involved in a cycle in order
to evaluate the need for a cyclic garbage collector. The following table summarizes

our findings:

Average number of objects | Number of sites
per internal cycle (z)

z=0 2

0<z<5b 17

b <z <10 9

10 <z <20 7

x =125 1

We also observe, from the data we gathered, that the maximum number of
objects in a cycle is 2,764, which is quite large. If such a cycle were to become
garbage, it is vital to detect it. Note that 33 out of 36 sites feature cycles with a
maximum of 100 objects.

In terms of distributed live cycles, we found 6501 such cycles over the 36

websites we studied. The minimum number of objects involved in a cycle is 2

197



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

(typically two sites referencing each others’ root files), whereas the maximum
reaches 508 objects in one single elementary cycle. On average, we find the sig-
nificant number of 320 objects. We can easily conclude that manual management
will never allow web authors to find out those cycles once they become garbage.
A cyclic DGC is clearly necessary.

We also recorded the span distribution over network nodes of these distributed

cycles:
Number of nodes () Number of distributed cycles
T =2 973
2<x<5H 91
o<z <10 2415
10<z 22

The maximum number of websites involved in a single cycle was 14. We re-
mark that an overwhelming majority of cycles involve between 5 and 10 websites.
We find this to be an interesting result because this can not be expected from
simply looking at the websites and visiting them. What we can conclude here is
that a DGC working on a large number of sites can work with groups of about
10 websites in order to have a chance to reclaim many garbage cycles. Of course,
we base this number on the assumption that the number of websites involved in
distributed garbage cycles is similar to that of live cycles. This might not be the

case.

6.6.2 Simple user’s website

We tested our stand-alone Mark-and-Sweep implementation on several user web-
sites in the domain http://www.scl.csd.uwo.ca on April, 29th 2002. The col-
lector was configured to only report garbage objects and not delete or move them.
It also checked the links (both internal and external). Again, this is only one way

to use a garbage collector for a website: running it regularly to discover garbage

198



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

pages and dangling links, and report them to the owner of the site. In primary
memory, garbage collectors are used in a more automatic manner because pro-
grammers accept certain rules. For example, they do not manually “place” new
objects in memory at an address chosen by them: allocation is also controlled by
the underlying system. Here, this is not the case, new web pages can be created
and added manually by an author. In the context of web authoring, a garbage
collector should be integrated to a software which would control the structure of
a website, allowing a GC to avoid dangling links rather than just to detect them.

Our test examined 13 user websites. We remark that the number of users
in the system is 121. In this case, we see that only 10% of users actually have
a website. This experiment starts from either index.html or index.htm and
traces all objects linked from this “root”. We recognize the following extensions:
html, htm, .cfm, .jpg, .gif, .mpg, .pdf, .ps, .gz, .tgz, .zip, .Z, .png, .tex. Only the
first three extensions correspond to HTML code and such objects will be parsed
for references. The following tags are recognized: HREF (in any tag such as A),
META URL), IMG SRC, and FRAME SRC. We also checked for external dangling links
using Java’s facility to access URLs. Certain URLs are difficult to check because
certain addresses do not answer before a very long time. We set a timeout at
30 seconds in order to obtain results in a reasonable timeframe. Finally, we note
that objects that are not readable are not considered garbage because they are

intentionally private. However, links to these objects are considered dangling.

Objects
Number of objects (z) | Number of sites
z <3 4
3 <z <100 1
100 < = < 1000 5
1000 < z 2

This result shows that a majority of users’ websites typically have less than

199



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

a thousand files. We also note that 4 websites (about one third of the sites we
considered) have very few objects (maximum three). In fact, these are mainly
used to publish a document or two, and no other information. We note, how-
ever, that 5 sites have between 100 and 1000 files, which shows a typical size
for a user’s website. We will see that these sites contain a significant amount of

garbage/unreferenced objects, which is also typical of most websites:

Number of traced objects (z) | Number of sites

z=1 7
1<z<10 3
10 < 2z <200 3

Percentage of garbage objects | Number of sites

0% 3
less than 30% 0
less than 50% 1

less than 80%

S W

more than 80%

The number of traced objects is far smaller than the total number of objects.
The consequence is that the amount of garbage is quite large. The three sites
with 0% of garbage are special in that they hold only two or three objects. We
also found 9 sites which have more than 50% of garbage objects with a maximum
of 99% (and a large number above 95%). This state of affairs might be explained

with three reasons:

1. This is the first time a garbage collector is run on those sites. Once a user
decides to rely on a GC, subsequent runs will probably find less garbage

(depending on the frequencies of site modification and call to the GC).

200



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

2. Safety was not guaranteed by our implementation of a garbage collector in
this environment. Objects might have been deemed garbage whereas they

are reachable through Javascript code for example.
3. Some of these files might be “secretly published” as described in Section 6.4.7.

GC Time

We recorded the time necessary to identify garbage objects and dangling links
in each site. The longest time required is 3mn40s with 9 sites requiring less than
1 minute to complete a collection. This means that, in such configurations, it is
acceptable to lock users’ web directory for a garbage collection in order to identify
potential problems. Typically, an author would set a “cron job” or equivalent at
a specific time to run the GC. This time should be chosen with respect to the
author’s usual schedule to reduce possible conflicts. For example, most cron jobs
are set to be run at 4am, which is usually a time where users are not working.
Links

The number of links in live objects is generally fairly low, but can be quite
high — with one instance observed with 3575 links. We count an average of up to
60 links per traced object (i.e live HTML files) and a general average of 14. Note

that we did not record internal links inside traceable garbage objects.

Number of links on one site (z) | Number of sites
r<3 5)
3 <z <100 4
100 < z < 1000 3
x = 3575 1

201



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We also recorded the percentage of dangling links (both internal and external)

with respect to traceable objects:

Percentage of dangling links (z) | Number of sites
z = 0% 5
0% <z < 20% 1
20% < x < 50% 2
50% < x < 100% 1
100% < z 4

We remark that 4 sites have 100% or more dangling links w.r.t. number of
objects. These sites hold only one traceable object each, which explains this
result. However, we remark that it is not impossible for a site to have a number
of dangling links larger than its number of objects. In the current test, this does
not appear to be the usual case, however. We note that 4 sites have dangling
links, which is, of course, undesirable. As soon as only one link is likely to refer
to a non-existing page, a checking mechanism should be used.

Cycles

We gathered data about cycles and garbage cycles on each site. We report
the following information: number of cycles (live and garbage), average number
of objects per cycle, number of cycles per link. We note that these are internal
cycles (i.e. on one site only); statistical experiments about distributed cycles can

be found in Section 6.6.4.

Number of live cycles (z) | Number of sites
z=0 8
0<z<20 3
T = 68 1
r =233 1

202



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Number of garbage cycles (z) | Number of sites
x=0 7
0<z<20 3
100 < z < 200 2
x = 458 1

We observe that the number of garbage cycles can be very significant: 3 out
of 13 sites have more than 100 garbage cycles. However, we also note that a large
majority of sites have no garbage cycle at all. Among these 7 sites, only one site
had 68 live cycles and no garbage cycles. Other sites without garbage cycles had

originally no cycle and featured a small number of objects.

We also recorded the average number of objects per cycle among the 5 sites

featuring live cycles and the 6 sites with garbage cycles:

Average number of objects | Maximum  number  of
per live cycle objects per live cycle

4 22

2 3

2 4

2 5

1 1

Average number of objects | Maximum  number  of
per garbage cycle objects per garbage cycle

2 15

1 2

1 2

2 2

2 9

10 29

As we can see, certain cycles can be quite large (up to 29 objects), but in
general, cycles are quite small. In comparison with official websites, cycles in

user sites have a limited size because the total number of objects is generally

203



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

different by one or more orders of magnitude. Obviously, the more objects, the
more likely it is to observe large cycles.

We note that among live cycles, very few cycles actually contain the main
root file (typically index.html). This emphasizes the need for a garbage collector

because there exists many cycles that could potentially become garbage.

Conclusion

Although the low number of sites studied here does not allow us to make
strong claims (see the DGC experiment in Section 6.6.4), it appears that refer-
ence counting mechanisms are not sufficient to handle most single user websites.
Indeed, we can observe from our results that many of these websites contain cy-
cles, which are typically not detected by RC algorithms. We also found a large
number — with respect to the total number of sites we examined — of very small
websites. Clearly, when a site has only one or two files, it might not be useful to
use a garbage collector. However, we can argue that, if the files contain links to
outside resources, a checking mechanism would help ensure the correctness of the
site. Also, in a distributed context, a local collector for such small sites would
help strengthen the interconnection of documents through the use of a DGC. Fi-
nally, a simple argument is that a Mark-and-Sweep garbage collection for a small
site (with one to five files) typically takes one or two seconds, which is negligible.

If good habits are taken early, the site can grow and still stay well-connected.

6.6.3 Java documentation

We used our garbage collector program to gather data about the Java API docu-
mentation. This shows that we can use such a piece of software to manage any set
of hyperlinked documents. In the Java API documentation for the JDK1.4.0, we
found 6,915 files and directories, including 6572 HTML files. We counted 547,618
links, including 540,506 internal links and 7112 external links. This amounts to
83 links per traceable file.

204



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Time

It took about 31mn to complete the collection of the directory. This can be
explained by the large number of external links to check. Without checking
external links, the GC takes 24mn. We also tested the same collection process
without logging events. This seems strange, but the log file amounts to about
90MB on the local disk. Updating this file is thus costly and removing this
operation results in a collection time of 13mn instead of 24mn. This shows that
a better log mechanism is required. However, in a normal setting only the list of
garbage should be reported, and this activity is not time-consuming.

Dangling links

We found 1 internal dangling link. It appears to be a simple mistake (the name of
a sub-directory is missing in the path to a webpage), but it exists, showing that a
tool such as W3GC is needed. We also found 13 dangling external links (leading to
an error 404) to three different websites. Those websites exist, but objects were
moved or removed. Also, 1 link was declared dangling after a timeout period.
Finally, 1 link was wrongfully identified as dangling due to a syntax problem.
After fixing the problem, the link was correctly identified as valid.

Garbage objects

Apart from reporting dangling links, our garbage collector also reports unrefer-
enced objects (!). Quite interestingly, we found five GIF files that were not linked.
This shows that garbage objects exist even in environments created for official
distribution.

Cycles

We recorded 86359 cycles. It should be obvious that there is no garbage cycle
(total number of garbage objects is 5 GIF files). The number of cycles include
6420 back-pointers to the root of the site, which is close to the maximum of 6572
(see Section 6.5.3 for further details).

205



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Conclusion

Although the results show a very small number of garbage objects and dangling
pointers, we can still conclude that, even in commercial products, such a tool as
a GC for the Web is necessary. Dangling links to remote sites are hard to control,
but expiry dates (as described in Section 6.2 and Section 6.4) would certainly
help ensure the safety of the links. An evolution of HTML reference mechanism
towards more flexible and powerful technologies (Xlinks [25] for example) would

allow a fine-grained management of object references.

6.6.4 DGC for user websites

We consider the site http://www.csd.uwo.ca, where we found 75 user websites
(faculty, staff, graduate students, alumni). Even though, these are located on the
same filesystem, we can easily organize them into a “logical” network of websites.
We use a local collector (Mark-and-Sweep) for each node and a distributed col-
lector (GCW) to study the structure of the websites and possibly find distributed
garbage pages. Apart from testing our DGC implementation, this scenario can be
used as a real configuration for web management, because it has the interesting
advantage to allow asynchronous collections of logical websites. This results in a
responsive and non-intrusive solution.

A first interesting result is that we had to “prepare” a distributed structure of
the sites to comply with the structure required by our DGC. Normally, the Web
environment does not use opaque addressing. Consequently, we made a small
program which scanned all accessible files in each directory of users’ websites
and created entry and exit items (note that we also scanned garbage files). In
a practical exploitation of the tool, items should only be created once and the
mutator (ideally a compliant web authoring tool) would correctly create and

maintain entry and exit items.

206



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

An application of such a garbage collection mechanism could be several users
working together and cooperating via their websites. To make sure each site is
coherent, a local collector is used and a DGC can be set up to ensure global
consistency. Each local collection can be run once or twice a week for example.

In the following, we present the results of our experiments and corresponding
conclusions. We used the GCW collector (see Section 2.5.4 for a presentation and
Section 7.4 for details about its design and implementation in the Web environ-

ment) and a local Mark-and-Sweep collector (see Section 7.2).

Number of objects

The total number of files and directories we attempted to examine using our
distributed garbage collector is 24792. Note that we did not experiment with
all the sites available in the www.csd.uwo.ca domain, only users’ websites. We
also exclude objects that we could not handle (i. e. not all types were recognized).
Although this gives us an average of 330 files per site, we note that the population
of web documents is very diverse and goes from almost no object (1 or 2) to a

very unique maximum of 13,159. Here is the distribution:

Number of objects (z) | Number of sites
x <10 14

10 <z <100 34

100 < z < 500 21

500 < z < 1000 4

x = 1839 1

x = 13159 1

We can observe that most of the sites (34) have between 10 and 100 files. In the
study of the sites at SCL, the majority was between 100 and 1000. This shows that
different environments lead to different distributions, although we can conclude

that most users maintain websites with less than 1000 files. This is important

207



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

when a collector is used to check local integrity, because the time required to do
so will be very low and it would be acceptable to lock the directory during this
time effectively removing the need for complicated synchronization mechanisms.
Note that live pages would still be available for reading and webpage servicing is
never impaired.

Our experiments showed a large number of live objects (17,612). However, we
remark that among them, we found one site with 13131 live objects. If we exclude
this “special” site, we obtain 4481 live files and directories for 11627 objects in
total. We note that we found a total of 745 live directories (including 6 directories

for the largest site).

Number of live objects () | Number of sites
x <10 38

10 < 2z <100 26

100 < z < 500 9

500 < z < 1000 0

1000 < z 2

Compared to our results from the experiments with the SCL users’ websites
(see Section 6.6.2), we observe a shift from a majority of sites having between
10 and 500 objects to a majority having less than 100 live objects. This is
quite interesting, because it illustrates the evolving aspect of websites: many
web documents are created and possibly linked at some point, but they are later
discarded and forgotten. This seems to be a rather frequent event.

We also recorded 12008 traceable live objects (a traceable object is an object
we can parse for URLs like HTML files and unlike JPEG files) including 10088

such objects for the large site.

208



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Garbage objects are also important to study; we recorded 221 garbage direc-

tories and found 6959 garbage files with the following distribution:

Number of garbage files () | Number of sites
z <10 22

10 <z <100 35

100 <z < 500 15

200 < z <1000 3

The number of objects remotely referenced by another site of the group is
quite small. We found 43 public objects (live or garbage) on 20 different sites
with a maximum of 10 public objects for one single site. This result can be
explained by the usual organization of web sites in research environments. Few
users provide references to other users’ pages because a single website, typically
associated to a laboratory, is the central point to gather information. Most users

will reference the laboratory’s website rather than members’ websites.

Number of links

The total number of links we found is 129,055 links in live objects including a
maximum of 68,118 links for a single site (the one featuring 13,159 objects). This
gives an average of 7 links per live object if we include this site and an average
of 13 links if we exclude it.

An interesting result is the number of links per traceable object. We found
an average of 10 such links when the largest site is taken into account and 31
otherwise. This shows that websites have strong interconnections.

In terms of destination of the links, we found a very large majority of internal
links (125,044), which is similar to primary memory environment: internal point-
ers are usually a lot more numerous than external pointers. We also recorded
3972 links to remote websites and only 97 links between websites of the group we

studied.

209



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Finally, we found 518 internal dangling links and 2 dangling links to a remote
site within the group. No data was collected about dangling links to external
remote sites, but interesting information on this topic can be found in the previous

experiments of this chapter.

Cycles and Distributed garbage

We present here our results concerning cycles: internal live and garbage cycles
as well as distributed live and garbage cycles. We also discuss the distributed
garbage we found on these sites. The results we exposed above were taken from
the logs of the first local GC on each site. This implies that most distributed
garbage had not been discovered yet because of the need to decrement entry
items.

A large majority of sites has a no cycles at all; this can be explained either by
the use of frames (no need to refer to parent files) and by the fact that a majority
of sites have a small number of objects. Yet, over 75 sites, there is an average of

18 cycles per site with the following distribution:

Number of live cycles (z) | Number of sites
z=0 46

0<z<H 14

o<z <10 >

10 <z <100 9

x = 1080 1

We note that the site with the largest number of live cycles (1080) is not the
site with the largest number of objects. We also recorded that, on average, live
cycles have less than 5 objects involved in any given cycle. Only one site has an
average of 12 objects per live cycle. The maximum number of objects for a live

cycle is 51, which is quite high for a user website.

210



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

As for our experiment studying stand-alone websites, garbage cycles are nu-
merous than live cycles. The average is 24 such cycles per site, a maximum of

647, and the following distribution:

Number of live cycles (z) | Number of sites
z=0 25

0<z<H 4

o<z <10 2

10 < z <100 10

100 < z 4

We also recorded that, on average, 16 sites have less than 5 objects involved
in any given garbage cycle and 4 sites have between 5 and 10. The maximum
number of objects for a garbage cycle is 43.

Distributed garbage

In the initial configuration, we found 55 exit items which gives an average of
less than 2 links per exit item. This means that few objects are referenced more
than once.

During the execution of the DGC, 31 exit items on 10 websites were removed
(leaving 24 live exit items on 13 websites) because they were not reachable or
rather that local objects referencing certain remote objects were actually garbage.

Finally, we found 8 distributed garbage objects (i.e. objects referenced from
garbage objects on other sites and not referenced locally). 1 of these objects was
referenced twice by garbage objects on two different sites.

Distributed cycles

We found only 20 distributed live cycles and no distributed garbage cycle.
This small number can be explained by the small number of public objects. As
observed in our experiments on the websites of our university, the number of
distributed cycles can be quite high. A conclusion we can draw from this result

is that, in our department, work cooperation is not organized via user websites.

211



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Manual examination of laboratories’ websites shows that work is organized at this
level and users usually refer to their laboratory’s website (most of the time, only
the main URL).

We note that the cycles we found hold between 4 and 19 objects for an average
of 9 objects per cycle. It is also important to note that all cycles hold at least one
root file, which means that these cycles will remain alive until they are broken.
In this environment, a cyclic distributed collector does not have a lot of work
to do. In our experiment, the process stabilized and completed without finding
any distributed garbage cycle. This result (no garbage cycle) is explained by the
small number of cycles (only 20). We note, however, that it is possible that few
distributed garbage cycles exist in certain environments. Indeed, in our environ-
ment, most pages contain the names of laboratory members and participants to
a given project or joint work. Usually, names are associated with the URL of

homepages, which makes the cycle live.

Timings

We recorded the time spent doing a GC for each site and results are quite different
from what we showed in our experiments with single user websites. The reason is
that, in the present test, we did not activate the routine normally used to check
remote link integrity. This allowed faster tests, because HTTP requests to certain
remote websites take a long time, even though we had set a timeout at 30 seconds
in the previous experiment. We found an average of 6 seconds to perform a GC
on a user website. This is clearly very acceptable and this average goes down to 4
seconds if we exclude the site holding the largest number of files. The maximum
time taken by one single local GC is 9mn30s (for the largest site). We also note
the interesting result that the only first local GC handled about 13000 files on
this site, but most of the files were only referenced by a garbage object on another

site. This resulted in subsequent GCs of this site to take into account very few

212



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

files and timings were around 1 or 2 seconds.

Furthermore, each site used four local collections and we note that the last GC
was actually used to detect termination because all the garbage had been detected
before. Finally, the entire DGC process took 31mn to complete, which appears
quite reasonable to handle 75 sites with almost 25000 files heavily connected to

each other (we have seen that there is an average of 10 links per object).

Conclusion

This experiment was interesting on several accounts. First, it reports on an
actual environment with a non-trivial number of websites (75) and it allowed
us to test our implementation of a distributed collector. We observed interesting
results. We had to create opaque addressing items to support the DGC, effectively
formatting websites into appropriate distributed application nodes.

Most user websites have a low number of objects (less than 1000 with less
than 100 live ones) and garbage collecting these sites takes very little time. We
also found a high pointer density in objects of these sites. Finally, an important
result is that the number of distributed cycles is very different from the number
found by the study of UWO websites: almost no cycle exists and all of them go
through at least a root file.

Finally, we note that the DGC required at most three rounds of local GCs
before global stability. The first round propagates all marks and reclaim garbage,
the second round stabilizes the system, and the third round forwards stable in-

formation to all nodes, which then breaks distributed garbage cycle.

6.7 Conclusion

In this chapter, we have presented a new way to use distributed garbage collection
algorithms: garbage collecting the Web. We have formulated web maintenance

as a memory management problem by establishing a precise semantic correspon-

213



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

dence between concepts in primary memory and in the Web.

Our experiments were led in four different environments: all sites of the uni-
versity, users’ websites in a single lab, Java documentation, and networked users’
websites in the department. This allowed us to gather data on website struc-
tures (number of objects, links, dangling links, ...) and find unreferenced objects
even in the Java documentation. From these results, we can claim that garbage
collection is needed in the world of Web management.

This project also shows that it is now possible to think of the Web as a
legitimate computing platform, which manipulates documents instead of binary
data. Many components are already available (objects, pointers, write barriers in
the form of web authoring tools, ...), we have now added the possibility to use a
garbage collector.

Chapter 7 details our design and implementation of the collectors we used
in our experiments. In Chapter 8, we propose to reuse this design for the cre-
ation of a software development kit to easily implement local and distributed
collectors. This is the foundation of a Web-based experimentation platform for
garbage collection research. We will also propose a list of tools which would give
this platform complete support for studying and experimenting with stand-alone
and distributed garbage collectors.

Finally, we believe this work shows that DGC algorithms can not only be
used to collect garbage memory and detect leaks, but can also be used in many
areas where specific algorithms are needed to discover the relationships between
different entities. As well as managing documents on the Web, this work can be
used to manage documents in many types of information systems, based on XML

for example.

214



Chapter 7

Designing and Implementing

W3GC

This chapter details the design and implementation of one possible architecture
of a garbage collector for the Web. This is an instance of W3GC that we describe
in Chapter 6.

In order to implement W3GC, we rely on the design method based on a
semantic separation between stand-alone GC and local collectors for DGCs (this
method is described in Chapter 5). At the same time, this application is meant
to be a direct test of the design method. This chapter describes the design and
implementation of a M&S garbage collector, a Distributed Reference Counting
scheme, and a distributed collector called “Garbage Collecting the World” (see
[51] for details).

Section 7.1 presents a general view of the design. Section 7.2, Section 7.3,
and Section 7.4 show the actual design of a garbage collector for a single web site
as well as a distributed garbage collector for a set of sites. Section 7.5 presents

several practical issues we encountered while implementing the tool.

215



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

7.1 Designing garbage collectors for the Web

The design of a garbage collector for the Web differs from that of a garbage col-
lector for primary memory. Properties such as timing and lifetime are usually
separated by several orders of magnitude. Whereas objects in memory are mu-
tated several times per second, objects in a Web environment can be mutated
several times per week or at best days. In order to design a garbage collector for
the Web, we rely on the study of semantic correspondence between WWW and
memory presented in Section 6.3. Models and methods described in Chapter 5
also support this activity.

On more practical matters, we use object-oriented programming (Java) to
implement this garbage collection tool. Object-oriented design allows us to re-
produce in actual design the algorithmic models we presented in Chapter 5. In-
heritance is of particular interest as it emphasizes the special nature of certain
collectors such as hybrid DGCs which rely on distributed reference counting or
listing collectors. A practical design should rely on the class for such a collector
to inherit from the class describing a DRC algorithm. Composition can also be
used to model such collectors as generational, CMM, and so on. This observa-
tion proves useful in practice because it directs the attention of a designer to the
essence of an algorithm, and could lead to a design with a better structure.

In this section, we describe important challenges we faced while designing and
implementing a garbage collector and a distributed garbage collector to man-
age web sites. We chose a Mark-and-Sweep algorithm and the DGC known as
“Garbage Collecting the Web” by Lang, Piquer and Queinnec [51] (although we
do not handle groups: there is just one group). These choices were made based
on two criteria: dead cycle reclamation and simplicity. We do not claim that
these choices were the only ones we could possibly make, we simply had to choose

collectors in order to illustrate this work.

216



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

As detailed in Chapter 2, the GCW collector is a cyclic distributed GC which
uses a distributed mark-and-sweep mechanism on top of a distributed reference
counting algorithm. It relies on mark propagation, both locally and between
nodes, to discover distributed garbage cycles. HARD marks are propagated from
local roots, while SOFT marks indicate either a garbage cycle or an object that
has not been marked HARD yet. A phase of detection is over when all marks

have been propagated. A DTD algorithm is used to assess the end of the phase.

7.1.1 Stand-alone GC or DGC?

The choice between a stand-alone GC and a DGC depends on the application.
Personal websites can be managed by a stand-alone GC. Several websites located
at different places in the world obviously require a distributed collector. One
might observe that webcrawlers (see [46] for a presentation of webcrawlers and
web robots in general), which recursively visit web documents to gather data, are
not really distributed but transport themselves from website to website. We could
use the same idea to verify and reclaim dead garbage. However, this triggers the
question of security: what is a webcrawler allowed to do? Furthermore, local
permissions might become too complicated to handle. A local GC, completely
controlled by the local author, is likely to prove much safer.

We now investigate two special situations. In the first one, the website is part
of a set of websites but its maintainer chooses not to participate in the DGC. In
this case, a stand-alone collector will still function properly. It has to be clear,
though, that any garbage cycle containing at least one web object located on this
site will never be reclaimed.

The second situation is more subtle. We consider different web servers in the
same corporate intranet environment, or on the same computer using a multi-
hosting feature of the web server. At a low level, the same file system can be used,

by means of NFS for example. In this case, choosing a stand-alone algorithm

217



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

with a correspondence table between the base URIs and the actual directories
might prove more efficient because it avoids unnecessary network messages. As
mentioned in Section 6.4.4, an environment with users might still require a DGC

to allow users to manage their own sites.

7.1.2 DGC server

A DGC “server” is needed to handle GC messages sent by remote nodes. While
local GCs are not running continuously, a process still has to be resident and con-
stantly available to handle DGC messages. Indeed, local GCs run asynchronously
and can send requests to remote nodes (to decrement a counter for example). An-
other solution would be to write requests to a remote website known by all local
GCs. Requests would be then be read by these collectors when they start up.
This solution has the disadvantage of relying on a central element (the “repository
of requests”) and is thus not a good solution for reliability and scalability.

We can implement this resident process with an independent daemon or with a
module to the web server. While the former solution allows for simplicity and flex-
ibility, the latter brings performance by making it natural to piggy-back garbage
collection messages onto HTTP messages. However, this latter case brings up
issues such as permission problems. Indeed, the HTTP server accesses websites
only for reading. A DGC module requires write access to certain directories. It
would be natural to think that local GCs information should be stored within
each website’s directory. However, it might make more sense to maintain this

information in a separate directory writable by the HTTP server.

7.1.3 Choosing a collection technique

Garbage collection algorithms have peculiarities that can be mapped to notions
in the WWW. It is important to understand those differences in order to choose

an appropriate technique. In this context, we believe that a Mark-and-Sweep

218



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

GC is the best choice as a stand-alone collector. Indeed, it is the least intrusive
of collectors and is quite simple to implement. Furthermore, performance or
real-time considerations are not an issue here. This means that sophisticated
solutions such as generational algorithms or even copying collectors would require
a complicated implementation strategy for very little benefits.

Choosing a DGC proves more complicated and depends heavily on the specifics
of the system. Furthermore, it is not clear yet whether one distributed collector is
better suited than others for a specific situation. We can easily rule out non-cyclic
collectors because the Web environment does have many cycles (as explained in
[64]). Hybrid collectors are, as usual, the safest choice. Experiments would be

needed to decide what hybrid algorithm is best suited.

7.1.4 Our implementation

We present the choices we made for two implementations:
e stand-alone garbage collector for personal websites.
e DGC for a set of websites.

First, we decided to use Java as a language and Java RMI for network com-
munications. Java offers a rich library of classes to assist us with many of the
tasks we have to perform. Of course, any language could have been chosen.

We focus on a Web DGC for an intranet environment. For example, we used
our code to obtain statistics on a set of websites managed at our university. We
also imagine that our DGC can be used between several users. Without any
support from the system administrators, they could form a group of websites to
be managed by the collector. This can be done by regularly invoking (via a cron
job for example) a local garbage collector, which also participates in the DGC.
Even if the files are part of the same filesystem, it would make sense to use a DGC

rather than a GC to be able to cope with permission problems. Local GCs are

219



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

run with specific user’s permissions and are thus allowed to potentially modify
the site (depending on the collection algorithm). A non-intranet environment
might require a different approach because of its need for scalable and dynamic
features. However, this would not change the main ideas exposed in this work.

Along the lines of the design choices described above, W3GC can currently
only find references in HTML files, not in Javascript code for example. However,
our approach is extensible, because we used an object-oriented style of design, and
we will see in the next sections that adding more types is not a problem. When
we detect garbage, we decide to list them (in a file or in an email). This is because
we want to see if certain web pages should be re-attached or not. As mentioned
before, we propose two implementations: a stand-alone GC and a DGC, so the
choice at this level is a matter of what implementation to apply to a particular
case. Of course, we offer both possibilities to illustrate our work. Our DGC server
will be implemented as an independent daemon for simplicity reasons.

We now describe our choice of garbage collection techniques. For the stand-
alone collector, we choose a Mark-and-Sweep algorithm because of its flexibility
and transparency. It has the advantage not to move objects, which is a useful
feature in a Web context to ensure availability at all time, while still detecting
all garbage documents.

To manage several sites, we use a distributed garbage collector. Most DGCs
have been designed to function with a local Mark-and-Sweep algorithm. We thus
have a large panel of possibilities. Our choice was made according to one criterion:
ability to reclaim cycles. Our goals are to illustrate our work on a DGC for the
Web as well as provide observations and experience about a non-trivial DGC
implementation. In the following, we explain the decision process involved in our

choice of a DGC:

e DRC or DRL collectors are simple collectors but they can not reclaim cycles.

This is the reason why we could not use those techniques.

220



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e DMOS is an interesting algorithm but quite complex.

e Hybrid algorithms are usually chosen for their simplicity and ability to
handle cycles. Among all choices, we preferred “Garbage Collecting the
World” [51] because of its flexibility and simple concepts. GCW is based on
a DRC algorithm and uses a sort of distributed Mark-and-Sweep algorithm
to handle distributed garbage cycles.

In the following sections, we describe the design of each component of our
collectors: mark-and-sweep (Section 7.2), DRC (Section 7.3) which is the basis
for GCW (Section 7.4).

7.2 Stand-alone collector

Our stand-alone collector is of type Mark-and-Sweep. Its model — using the spec-
ifications we explained in Chapter 5 — is detailed in Section B.3. This shows
concepts that we need and proposes algorithms to implement. In the Web envi-

ronment, we have to specify two of those concepts:

e A Reference (an Address in the SAMS model) is represented by a lo-
cal URI (without http keyword otherwise it is a remote pointer), an IMG

reference, an APPLET reference, and so on.

e An Object is an HTML file, an image file, an applet directory and so on.
Obviously, the method listRefs which finds out what are the references
included in an object will be of particular importance because web pages

are not regular memory objects.

221



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

7.2.1 listRefs

Let us study this operation more closely. A first observation is that we have a
precise knowledge of the types of values included in an object. Each value is
tagged with its type using the HyperText Markup Language [23]. Consequently,
we don’t need to be conservative as in C or C++. When we encounter a tag such
as <IMG ...>or <A HREF=...> we know what we are dealing with.

A second observation is the property of scannability. This property ex-
plains the nature of a particular web object. For example, an HTML file is
scannable, i.e we can parse it and find references to other web objects, while a
GIF file is usually not scannable. This property is essential for 1istRefs. To find
out the type of a web object, we rely on two elements: the tag and the MIME
type. Indeed, a tag IMG tells us that an image is referenced, but a tag A HREF
simply gives us a reference to a web object (text, image, html, binary, etc.). Con-
sequently, we need to rely on the extension of the name of the file like any web
browser does to find out what type this object really is. Once we know the type,
we simply check if it is scannable or not. In the current implementation, we han-
dle html files as well as various non-scannable types such jpg or gif. We remark
that pdf documents (see Figure 7.1) may contain references to web pages. In this
case, they could be considered scannable if a suitable 1istRefs function can be
provided. This is important because it shows the flexibility of our mechanism: a
non-scannable object can become scannable if appropriate support is provided.

It is also interesting to note that, due to the particular nature of the environ-
ment, 1istRefs and the GC are implemented differently than in primary memory
with respect to references. In primary memory, an object is traced and as soon
as a pointer is found, tracing continues recursively on a new object. Remaining
pointers in the object that was being scanned are treated later (when the recur-
sive trace returns). In a Web environment, this can be problematic because it

would mean leaving files open. The trace would open the file, find a URL, trace

222



Practical Aspects of Interacting Garbage Collectors

Yannis Chicha

references. Tools such as Unix's grep can be also used to check the consistency

of a personal website. A problem with this solution is that it does not handle

garbage cycles nor scale very well to distributed environments. We found, on

wehsites such as pttp:

WWW.goitwaregatest.com/gatwebl. html) a list of weh

management tools sorted by categories. Among those categories, we find some

“Load and Performance Test Tools”, “Java Test Tools", securnty test tools and

so on. An interesting one is “Link Checkers”. A hnk checker follows all the links

on a website and reports the bad ones (i.e what are the “dangling pointers” of

the site). This tool is very useful, but there is no guarantee about its reliability.

i Garbage Collecting the Wel] 154
0 R 78 T 156
BI1 A tool for web mainfenaned . . . . . ... ... ... 15T
F.I1.2  Managing stand-alone websited . . . . . . ... .00 158
p.l.3 A company or cooperating organizations| . . . .. ... L. 158
........................... 159
BELEF Documentafionfool. . . . . . ... ... oo 159

B Relatedworld . ... .................. ... ... 161
p.d  Web vs Memory: semanficcormrespondence . . . . . . .. 0L 164
BEL _OBTect - - - - - . 164
B2Z Poinfer. . . .. ... ..o oo 165
BT Hufafion . . . ... ..ol 167
BEZT Allocalion] . . . . .. ..o 168

Figure 7.1: Snapshots of a pdf file.

(a) extract of the current chapter, which

contains a URL. (b) PDF references inside the same document (this thesis).

223



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

recursively the corresponding web object. This is a potential risk because the
allowed number of open files is limited, and there is no guarantee that the depth
of recursion will not lead to a situation where the maximum number of open files
has been reached. We solve the problem by opening the file, finding all references,

closing the file, and, only then, tracing recursively.

7.2.2 UML models

We decided to use a class-based object-oriented design and we selected UML to
model the base classes we created to simulate a primary memory environment (i.e.
references, objects, garbage collector). Of course, such a design is not unique, and
we merely describe our view. Also, we would like to point out that the design
methodology does not have to be UML, and the design style does not have to
be object-oriented. We made this choice because we believe that Java is offering
a good library of features to handle the present problem. This naturally led to

using objects and classes to create the collector.

Web Objects and HTTPObject

In the Web environment, Objects from the stand-alone mark-and-sweep model
are actually called WebObjects. We have to handle many types of web objects.
Some are scannable, some are not. We decided to create an abstract WebObject
class and to use virtuality of methods so that the GC handles only WebObjects.
The class WebObject contains a table of types and we use the Prototype design
pattern (for more information about design patterns, see [32]) to create an object

of the appropriate subclass.

224



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

WebObject
HTTPODbject {Abstract}
- protocol: S_tring - types: Hashtable = initTypes()
_ ;Z?rllerStfltrzg]g has prototype: WebObject
’ address: String
+ String getProtocol() + List listRefs() {abstract}
: gtr!”g Qegetri‘]/e"() + boolean isScannable() {abstract}
ring getPath() + WebObject getinstance() {abstract}
- void initTypes()
HTMLObject TXTODbject

- extToType: Hashtable = initTable() + List listRefs()

+ boolean isScannable()
+ WebObject getInstance()

+ List listRefs()

+ boolean isScannable()

+ WebObject getlInstance()
- void initTable()

BINODbject APPLETObject IM GObject
+ List listRefs() + List listRefs() + List listRefs()
+ boolean isScannable() + boolean isScannable() + boolean isScannable()
+ WebObject getlnstance() + WebObject getInstance() + WebObject getinstance()

Figure 7.2: WebObjects and HTTP Object.

Subclasses each represent a particular type of web object and will have a
method 1listRefs to scan themselves for references, which leads to the creation
of new web objects. The simple class HTTPObject is used by WebObjects to
store their own addresses (URIs). It represents the References of the model. In
the Web environment, we distinguish three components: Protocol (e.g http, ftp,

file, ...), Server and Path. Figure 7.2 shows both WebObject and HTTPObject.

Miscellaneous

Apart from the HTTPObject and WebObject ADTs in the model, we find MS
(Mark-and-Sweep) and MarkSheet (to store marks used by MS), described in Fig-

ure 7.3 with their relationships to other classes. Note that MS has been renamed

225




Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Par seT ools <<interface>>
Tl - - - WebGC
List scanl ineForRefs(line: String)
{Abstract}
il . s
+ LISLS_CB.DLLDE_EO_[AEELEIU_[D_&_SIHDQ) List runGC() {abstract}
il . s
i . line: Stri
WebMS
Mark Sheet
- - ms: MarkSheet = new MarkSheet()
- reachablePages: List
] ] + List runGC() —0O
+ void mark(wo: WebObject) - void mark() WebGC
+ boolean isReachable(wo: WebObject) - List sweep()
+ Listlterator getlterator()

Figure 7.3: MarkSheet and MS.

Settings GCWWW
- Listroots + void main(String [] args)

- List permanent
- List extra

+ List getRoots()

+ List getPermanent()

+ List getExtra()

- List parse(br: BufferedReader, tag: String)

Figure 7.4: Extra classes.

into WebMS. Figure 7.4 show classes specific to our application. They are used
for tasks such as parsing the configuration file, creating the WebGC object, run-
ning the GC, and so on. Finally, Figure 7.5 summarizes the relations between

the classes.

7.2.3 Conclusion

The application uses the classes defined above to create a GC for the Web. The
“sweep” part of the algorithm has been truncated to simply return a list of “ref-

erences” of garbage web pages. This application can be used for personal web

226



Practical Aspects of Interacting Garbage Collectors

Yannis Chicha

Par seT ools MarkSheet
l -
contains
Uses
WebObject Scan and Mark WebMS O WebGC
0.* L WebGC
1.*
Create roots as 1 Convert String roots as Create Invoke
1
) Reads
Settings GCWWW

Figure 7.5: Classes relations.

sites without any communication with other web sites (although we can report
external dangling pointers). This is why it is called a stand-alone collector.
In the next section, we design a DRC scheme to serve as a basis for GCW.

This intermediate step was convenient to debug our implementation and test our

mapping model (see Chapter 5) with DRC and WebMS.

7.3 DRC

The model for this DGC (Section C.1) describes a simple organization. We make

several observations:

e The Generic GC shows that entry items and exit items should be im-
plemented. Entry items are used to hold the counters and exit items make

it easier to handle remote pointers.

e Those items are likely to have a very long lifetime (maybe several years)

because we are in a Web context.

e Web pages - unlike regular objects in traditional environments such as

227



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

CORBA - contain references to remote pages directly. There exists no

indirection in the sense of opaque addressing in the web environment.

Potential lifetimes of the items imply two scenarios: either entry and exit
items are made persistent (in order to avoid losses if/when host machines crash
or get turned off), or there exists an underlying mechanism to save and restore
information when crashes occur thus taking care of entry and exit items. Fur-
thermore, when the local GC works with web pages, it has to map addresses
to exit items in order to know what entry item is concerned by the mutation.
Consequently, items should be scanned at each run of the collector in order to

guarantee a correct view of local items.

At a lower level, a resident piece of software needs to be present for each
web site to handle protocols required by the DRC. This is the DGC server (see
Section 7.1.2), which handles decrement requests from remote nodes. Unlike local
GCs, the server should always be available. This means that, if an underlying
fault-tolerant mechanism exists, entry and exit items can live in memory inside
this server. The other solution is to use files to represent these items, which
is what we chose in our implementation, because our experimentations did not
require such a sophisticated mechanism. However, we propose to integrate, as a
future work (see Section 9.2), a distributed garbage collector in a web authoring
tool. It is conceivable, at this time, to use such a technique.

We also note that our server is a separate process on the host machine. This
has the implication that the HT'TP server and the Web DGC server are not
the same piece of software, and a mapping between them is required. More
precisely, we have to maintain two types of address, an RMI one and an HTTP
one. Both are equivalent, but need to be identified depending on the situation.
The GC parses web files to find references, which are HT'TP-formatted. In order
to understand whether they are part of the group of nodes managed by the

DGC, a translation is operated using a mapping table. If the reference has a

228



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

correspondence to an RMI address, it is used to communicate with the remote
DGC server.

We observe that a more transparent solution would be to create “httpg”
servers (http servers handling “g”arbage collection), which would integrate a
DGC server. However, the architecture we use in our implementation allows the
garbage collector to function without requiring any modification on the HTTP
server or the web browser. It can be activated and deactivated whenever desired
and, except for the item files, no difference can be perceived. This makes a more

transparent solution.

7.3.1 Creating the local GC

We used the mapping model to create a local GC from our stand-alone WebMS and
the DRC’s generic GC. We call the resulting local GC LocalMSDRC. The model

in Section D.16 shows what elements have to be added and/or modified:

e EntryItems will be used by the local GC as extra roots.

e ExitItems will also be handle by the local GC, but only to send reachability

information to remote nodes.
e Network primitives (such as “sending a message”).

e Network protocols (“decrement a remote counter”).

We also chose to use the DGC server as a intermediate between the local GC
and the rest of the world. Any remote message is first sent to the local server,
before being forwarded to the actual remote node recipient. This is a precaution
which allows us to control what is being sent in order to keep track of these actions
in case it is needed (we will see in the next section that this is required for the

GCW distributed collector). Consequently, our architecture looks like Figure 7.6.

229



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

m@
Reads/Modifies

Y 44—
5 Reguests Local GC
11;-5 Server
Z —P

Reference Import Ref

Request

Figure 7.6: DRC architecture.

7.3.2 Classes

The classes required by DRC are shown in Figure 7.7 (opaque addressing), Fig-
ure 7.8 (server), and Figure 7.9 (local GC).

7.3.3 Reference Import

This external application can be used with any DGC and allows authors to request
the authorization to include a remote URI in their pages. When the request is
received, the DGC server checks the validity of the request and updates its vector
of entry items (creation or increment). The answer to this request is a reference
to the entry item. The class used to handle this action is shown in Figure 7.10.
In our architecture, this is accessible as an external program that is normally
called explicitly. While this may be sufficient for simple websites, this is obviously
not a good solution in general, because it requires a human intervention, which
is error-prone. This can be solved by using a “daemon” that scans the local
website regularly to find unregistered remote pointers and call the appropriate
operation. Unfortunately, the delay in timing (between the moment the reference

is published and the moment the reference is actually requested to the remote

230



Practical Aspects of Interacting Garbage Collectors

Yannis Chicha

ItemDRC
{Abstract}

filename: String

+ String getFilename()
+ WebObject getURI() {abstract}

EntryDRC

ExitDRC

+ WebObject getURI()
+ Integer getCounter()
+ String getStringURI()

+ void incrCounter()

+ void setURI(uri: String, cnt: Integer)
+ void setCounter(cnt: Integer)

+ WebObject getURI()

+ String getLowLevel Addr()

+ String getStringURI()

+ void setURI(uri: String)

+ void setLowLevel Addr(String addr)

Figure 7.7: Opaque addressing.

DRCServer

- baseURI: String

- basePath: String

- baseEntryPath: String
- baseExitPath: String

<<interface>>
DRClnterface
{Abstract}

—O

+ void decrementCounter(EntryDRC entry)
+ String requestRef(String uri)
+ void startServer(port: Integer)

+ void mai 0

DRClnterface

void decrementCounter(EntryDRC entry) {abstract}
String requestRef(String uri) {abstract}

Figure 7.8: DRC Server.

231



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

WebMS

T

L ocalWebM SDRC
MarkSheet msExits
+ List runGC()

List getListltems(extension: String, subdir: String)
void scanMark(List refs)

void sendDecrMsg(String server, EntryDRC entry)
List sweep()

void mark()

Figure 7.9: DRC Local GC.

Reflmport

Figure 7.10: Import references.

232



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

server) might be problematic. It might happen that the reference is published,
but the remote page is removed because no known remote reference to it was
detected. Then, when the daemon notifies the remote server, the answer is that
the page does not exist anymore. The author is warned by the daemon that a
reference, which was recently added, became dangling.

A better solution would be to integrate the reference import software to a
web authoring tool and rely only on this tool to take care of the links. The
consequence is that a reference is requested when the author is trying to add it

to the file, not at some random future time.

7.3.4 Specialization/Notes on algorithm implementation

In such an environment, keeping exit items costs disk space. This is not much,
but it would be possible to avoid this by having exit items only when a local
GC is run. To achieve that, we need to replace the decrement message upon
discovery of the state of garbage for an exit item by a message similar to LIVE
messages in the SSPC distributed collector [81]. For each remote site, we send
the list of exit items that are still alive and counters are decremented on entry
items corresponding to exit items that are not in the list received. With the DGC
we describe next (GCW), it is not such a good solution, because marks on exit
items are important and, from one local GC to another, they have to be kept
around for stability detection.

An orthogonal solution would simply be to compress the files representing
the items. However, in practice, we find that the cost is reasonable, because, in
terms of timing and memory space, the scale of the Web is quite different from
primary memory. Secondary storage is usually several times larger than main
memory, and is not usually the limiting factor. The space cost of maintaining files
for items is probably negligible. Time complexity is also likely to be somewhat

negligible because web sites are manipulated by humans, which do not expect

233



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

speeds equivalent to primary memory. Furthermore, it would be reasonable for a
local GC to be run once a week at a time when few people are likely to use the
website (although the GC never requires the HTTP daemon to stop, ensuring
availability of the website).

Finally, we observe that using opaque addressing is quite necessary to avoid
many messages. If one node had 20 pointers to one remote object, 20 messages

instead of just one would be necessary to specify decrements.

7.4 GCW

Based on a DRC algorithm, the GCW collector allows the reclamation of dis-
tributed garbage cycles. The DRC algorithm we designed in Section 7.3 can not
handle cycles. We thus chose the GCW collector to work on top of this DRC.
GCW uses protocols and algorithms that could be called an “asynchronous dis-
tributed Mark-and-Sweep” to identify and break distributed garbage cycles.

We first study the model of the GCW collector and identify the elements that
should be specifically adapted to the Web environment. This model is a subset
of the collector’s features: groups and failure handling are not treated here. This
is specified in the general description of the model. It is important to understand
that these features are not modeled, in case the designer refers to the original
paper [51]. However, if needed, it is fairly straightforward to derive a new model
from the existing one.

We also observe that entry and exit items are reused from the DRC model.
The GCW model simply specifies extra data, this allows us to reuse the classes
we defined previously for those ADTs. An important element is the Distributed
Termination Detection algorithm. The model specifies its purpose but no specific
technique is given, leaving this choice to the designer. The remaining task is to
adapt the local M&S already created for the DRC to the GCW collector’s generic
GC.

234



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

EntryDRC ExitDRC

EntryGCW ExitGCW
+ Integer getMark() + Integer getMark()
+ void setURI(uri: String) + Integer getOldMark()
+ void setCounter(cnt: Integer) + void setURI(uri: String)
+ void setHard() + void setLowLevelAddr(addr: String)
+ void setSoft() + void setMark(mark: Integer)

+ void setOldMark(oldmark: Integer)

Marks

+ NONE: Integer ==0
+ SOFT: Integer == 1
+ HARD: Integer == 2

Figure 7.11: Opaque Addressing for GCW.

To achieve this, we study more specifically the following elements:
e Integration of local mark propagation to the local GC
e Computation of local stability
e Network protocols handling

We also use the mapping model described in Section D.1.

7.4.1 Classes

The classes required by GCW are shown in Figure 7.11 (opaque addressing),
Figure 7.12 (server), and Figure 7.13 (local GC). We also update RefImport
created for DRC to use GCW'’s items instead of DRC’s items (Figure 7.14).

7.4.2 The Distributed Termination Detection algorithm

We chose to use the algorithm that is used by the DMOS distributed collector

(see [37] and [8]). It uses a ring of nodes with a token passing mechanism. We see

235



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

<<interface>>
DRClnterface

<<interface>>
GCWInterface
{Abstract}

boolean hardenMark(entry: EntryGCW) {abstract}

void receiveToken(token: Token) {abstract}

void globallyStable(origin: String) {abstract}

void initDGC(origin: String) {abstract}

void LGCsendHarden(remoteServer: String, entry: EntryGCW) {abstract}
void LGCstability(stable: boolean) {abstract}

void LGCsendDecr(remoteServer: String, entry: EntryDRC) {abstract}

DRCServer

/\
GCW Server
- worker: Worker - stableLGC: boolean
- serverString: String - token: Token
- serverHost: String - nextServer: String
- serverPort: String - prevServer: String
- serverName: String - masterNode: boolean
- stableSentMsg: boolean - DGCOn: boolean
- stableRcvMsg: boolean - nbLGCs: Integer
+ boolean hardenMark(entry: EntryGCW) + void handleStability()
+ String requestRef(uri: String) + Token getToken()
+void receiveToken(token: Token) + void setToken(token: Token) GCWinterface
+ void globallyStable(origin: String) + String getNextServer()
+ void initDGC(origin: String) + void locallnitDGC(origin: String)
+ void LGCstability(stable: boolean) + void sendToken()
void breakCycles() + void startServer()
void resetEntryltems() + void main(String [] args)
+ void LGCsendHarden(remoteServer: String, entry: EntryGCW)
+ void LGCsendDecr(remoteServer: String, entry: EntryDRC)

Figure 7.12: GCW Server.

236



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

L ocalWebM SDRC

7

L ocalWebM SGCW

- currentMark: Integer
- ownServer: GCWiInterface

+ List runGC()

void readExits()

List getListltems(extension: String, subdir: String)
void scanMark(refs: List)

void sendStabilityInfo(stable: boolean)

void sendDecrMsg(String server, EntryDRC entry)
void sendHardenMsg(String server, EntryGCW entry)
List sweep()

void mark()

Figure 7.13: Local GC for GCW.

ReflmportGCW

+ Eile lastltem(path: String)
+ boolean findExit(path: String, uri: String)
+ void main(String [] args)

Figure 7.14: Import references for GCW.

237



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Stable Stable

Non-stable
Non-stable

Step 1 Step 2

Stable
Non-stable _
Non-stable Non-stable

J®

Step 3 Step 4

Stable Non-stable Stable Stable

Stable Step 5 Stable Step 6

Figure 7.15: Distributed Termination Detection algorithm example.

from the GCW model that the purpose of this DTD is to find out global stability
of marking, and that the criterion to pass on the token is local stability.
Example

In this example, we use four nodes and discover global stability of the GCW
algorithm using a token passing DTD algorithm. The token is initialized at

node A (this is an arbitrary choice).

238



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

The following describes each step in Figure 7.15:

1. A becomes stable and sends the token with value A. Node B is not stable

when the token is received.
2. At node B, the token takes the value B, because the node is not stable.

3. Once B becomes stable, the token is sent towards C, which is stable at that
time. At the same time, node D sends a message to B which will destabilize

it. That is why D is noted as non-stable.

4. B becomes unstable, D is still unstable because it has not been visited by
the token yet. Node C passes the token right away — without changing its

value — because it is stable.

5. At node D, the token takes the value D, because the node was unstable.
Node D is marked stable and the token is sent to node A which is stable and

forwards it to B. Node B is non-stable and thus keeps the token for a while.

6. Once B is stable, it sends the token — with value B — to C, which forwards
it to D, which forwards it to A, which forwards it back to B. Once the token
comes back to B, distributed termination, and thus global stability, has been

detected.

DTD for W3GC

We need to adapt the local collector to this algorithm. Here is the list of elements

we add:
e DTD initialization.

e Token protocol.

239



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

SendToken
- server: GCWServer O

void runProcess() Action

PropagateGloballyStable <<interface>>
Action
{abstract}

- nextServer: String
- serverString: String 70

. Action
void runProcess() void runProcess()

InitDGC

- nextServer: String
- serverString: String 70

. Action
void runProcess()

Figure 7.16: Action abstract class.

e Stability discovery computed on three criteria: stability after local GC,
stability based on what messages are received, and on what messages are

sent.

e New reference import. Marks on new entry items should be HARD to ensure

safe termination.
e Global stability protocol.
The model in Section C.2 describes the details of the collector’s conditions of

termination for the DTD.

Classes

Classes shown in Figure 7.16 and Figure 7.17 are used to support the DTD algo-

rithm. An Action is run asynchronously from the process. SendToken is such an

action.

240



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Token
- server: String

+ String getValue()
+ void setValue(server: String)

Figure 7.17: Token class.

7.5 Implementation issues

We present here some of the practical issues we encountered while implementing

and debugging the collectors described in the previous sections.

7.5.1 Marking objects

A mark-and-sweep algorithm requires a mechanism to mark objects as live when
they are visited. For example, in a primary memory collector, it is possible to
set a bit in the header part of an object or a bitmap could be updated. In our

environment, we can imagine modifying the file representing the object:

<!-- Marked --—>
<HTML>

;}ﬁTML>

Of course, the problem is that this mark has to be cleared at some point
(after the sweep phase or just before a new mark phase). This means that two
disk accesses are required (one for marking, one for clearing the mark). This
solution is problematic in that it changes file access and modification times of the
file, and places greater reliance on file system robustness e.g. in case of power
failure. Furthermore, it has the problems of modifying user data and changing
file system modification dates.

Our solution uses only primary memory. Indeed, although objects might stay

alive for years, a GC is short-lived. There is no need to keep any M&S information

241



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

in a file. We create an object called MarkSheet (as specified in the algorithmic
model) which contains the list of addresses of live objects as we visit them. To

“clear the bits”, we simply get rid of the list.

7.5.2 Entry and exit items

Unlike mark bits, entry and exit items (see Section 2.5.1 for details) are likely
to live for several years. Therefore, they need to be recorded in persistent store.
We use a special directory located in the main directory of each website called
.dgcwww with subdirectories Entries and Exits. Each item will have a unique
name created using a counter (entryl.ent, entry2.ent, ...).

We note that, unlike in primary memory, these items are used only for garbage
collection purposes. They are not required to access objects during mutation
and visitors of the websites are still using direct access. We do not make any
modification to the existing web objects, nor do we catch HT'TP messages on-
the-fly to treat them in a different way. Our solution is completely independent of
the existing structure of web pages. Consequently, whenever an object is visited
and a remote address is found, we must look for the corresponding exit item to
mark it as live. Because this item is on disk, it is more efficient to import exit
items in memory before a garbage collection starts.

We work with a model which stops local mutation to execute a local collection,
so no exit item can be created while the GC is running. However, we can imagine
that, if this was not the case, they could be imported on demand when a remote
address is found but the exit item does not exist in memory yet (note that it is

an error when a remote address exists without the corresponding exit item).

7.5.3 GCW-specific issues

A first problem comes from the fact that GCW is based on a distributed reference
counting algorithm. When global stability for GCW occurs, we break distributed

242



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

garbage cycles by setting the counter of garbage entry items to zero. This is safe,
because we know it is garbage. The subsequent local GC will reclaim zeroed entry
items and will not trace from these items. It will consequently not trace the cor-
responding exit item(s) in the dead cycle, thus reclaiming them. Unfortunately,
local GCs are not synchronized, and exit items on a node could be reclaimed
after corresponding entry items are deleted on another node. When an exit item
is reclaimed, a decrement message is sent. In the present case, it is sent to decre-
ment the counter of an entry which may no longer exist. In this situation, the
decrement message was as legitimate as reclaiming entry items. The only prob-
lem is that reporting errors becomes a difficult task, distinguishing between this
situation and a genuine wrong DGC request.

A simple solution is to assume that errors at this level will never occur and
ignore any decrement message sent to a non-existing entry item. Possibly, a
response would be sent announcing the problem, but this should not be a high
priority error message. Another solution might be to use a special mark for exit
items that are SOFT when global stability has been detected and treat them
differently when they are reclaimed by the next local GC. This is safe, because if
an exit item was not supposed to be SOFT, it means that either it is pointed to
by a local root-reachable object or by a HARD entry item. In these cases, global

stability would not have been reached.

Another GCW issue is initialization. In our implementation, we do not set
up any sophisticated negotiation structure to start a distributed garbage cycle
detection phase. Instead, we declare one node to be the “master” node, whose
only task — as a master node — is to start a detection phase. This solution is
usually sufficient in environments where failures are fatal (i.e. the whole system
stops once a node fails), and is thus adapted to intranet contexts. On the internet,

a true distributed negotiation algorithm should be selected.

243



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

<W3GC_logs>

<date>2002/4/29(15:50:32)</date>

<runGC>

<mark>
<lk_int>/scl/people/chicha/public_html/index.html</1k_int>
<examine>
<file>/scl/people/chicha/public_html/index.html</file>
<trace>

<links>

<ext_lk>http://www.csd.uwo.ca</ext_lk>
<ext_lk>http://www.uwo.ca</ext_lk>
<int_1k>/scl/people/chicha/public_html/fun.html</int_lk>
<int_1k>/scl/people/chicha/public_html/yan2. jpg</int_1lk>
<int_lk>/scl/people/chicha/public_html/me.html</int_lk>
<int_lk>/scl/people/chicha/public_html/fun.html</int_lk>
<int_1k>/scl/people/chicha/public_html/aa.html</int_1k>
<int_lk>/scl/people/chicha/public_html/interop.html</int_1k>
<int_1k>/scl/people/chicha/public_html/dangling_link.html</int_1k>
<int_lk>/scl/people/chicha/public_html/mail.gif</int_lk>
</links>

Figure 7.18: Ezxtract of a log file. We record dates, file examined, links found in
the file, and so on.

7.5.4 Debugging

Debugging our implementation was sometimes complicated. This motivated us
to instrument our code, and generate event logs (see Figure 7.18 for an example).
We also recorded regular snapshots of the test websites in a special subdirectory
and used those files to follow each event from one snapshot to another to identify
incorrect behavior.

Not having any tool at our disposal resulted in many tedious manual verifica-

tions. We checked snapshot consistency by verifying the following list of elements:
e Uniqueness of exit items with respect to a given remote pointer.

e One-to-one connection between entry and exit items.

244



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Correct counters on entry items.
e Only garbage cycles are identified as such (safety property) and broken.

e Correct reclamation of garbage files and exit items after garbage cycles are

broken.

e Dead cycles created during a DGC phase should be alive at the end of
this phase. Indeed, to ensure safety, entry and exit items should always be

created with a HARD mark.

Certain design and implementation issues described in this chapter came to
light while we were debugging our implementation. Although it might not be
obvious at first, debugging such an application can be quite tedious without
proper tools. This is the reason why we created the experimentation platform we

describe in Chapter 8.

7.6 Conclusion

In this chapter, we have reported on our experience with implementing two
garbage collectors for the Web. A Mark-and-Sweep algorithm has been imple-
mented to handle single websites, and a hybrid distributed collector has been
implemented for an intranet distributed context.

We also highlighted several issues and observations such as the need for a log
mechanism, that we believe will be useful for future implementers of W3GC and

distributed garbage collectors in general.

245



Chapter 8

A Platform for Experiments on

DGCs

Tools to support research in garbage collection are quite rare. Experimentation
environments can not be found easily, and it is even a challenge to find appro-
priate benchmarks for certain contexts (as we have discovered in Chapter 4). In
recent years, a few tools appeared (see [61], [20] or [77]) to help with studies
of garbage collectors. However, the set remains quite sparse, especially for dis-
tributed garbage collection. For years, garbage collection algorithms have been
used to create software development tools (leak detectors, for example). Unfor-
tunately, the favor was never returned, and GC research severely lacks tools such
as appropriate debuggers, benchmarks, visual tools, and so on.

In this chapter, we propose to use the Web as an experimentation platform for
both uniprocessor and distributed garbage collection research. The Web possesses
interesting characteristics for experiments on these topics. We explain these in
Section 8.1. Although we do not present a complete experimentation platform in-
cluding software tools such as debuggers, profilers, and so on, we studied several
fundamental elements. First, we derive a software development kit (see Sec-

tion 8.2) from classes we presented in Chapter 7. In this section, we discuss

246



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

mutators and investigate logs and snapshots to keep track of important events
during allocation, mutation and garbage collection. In order to illustrate the use
of the experimentation platform, we report on a practical experiment (Section 8.4)
about interoperability of garbage collectors in a distributed environment. This

concept was explained in Section 5.4 in a previous chapter.

8.1 DGC research experiment platform

In this section, we discuss the need for a software platform targeted to Distributed
Garbage Collection research. We explain how the Web environment is particularly
well suited for this task and discuss tools that would be useful to add to this

experimentation platform.

8.1.1 DGC research

Since 1960, garbage collection research has produced many efficient algorithms
and interesting studies. Unfortunately, it lacks many tools usually provided to
other areas of software development. Debuggers, profilers, standard benchmarks
would be welcome in this essential area. There are efforts in this direction (Zorn’s
allocation benchmarks [36], Boehm’s GCBench [9], GCSpy from Jones et al [76]),
but these remain in limited number. Fortunately, empirical studies have been
conducted to give researchers certain information about GC and mutator be-
haviors. We suspect, however, that programs tested do not reflect the complete
spectrum of allocation and mutation behaviors one can find in a computational
environment (as seen in Chapter 4).

After twenty years of algorithmic studies, distributed garbage collection only
starts emerging in mainstream systems (such as Java RMIs [59] or PerDis [77]).
This domain of memory management clearly lacks appropriate testing environ-

ments. It is difficult to find programs to test a collector with. Of course, one

247



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

reason is that distributed computing is still young and interesting applications
only begin to appear. We would like to propose support tools for distributed
garbage collection right away in order to avoid having to wait more than forty
years like we did for uniprocessor garbage collection.

In this chapter, we describe a preliminary study of the problem. We propose
current results and future directions for the development of an experiment plat-
form for DGC research. Such an environment should be easy to customize as well
as flexible, because the main activity — experimenting with garbage collectors — is
a complicated task and should not be “polluted” by the details of manipulating
the environment. While implementing a GC algorithm could be considered as a
useful research work (especially for distributed collectors), the underlying envi-

ronment should not constitute an obstacle but rather provide necessary support.

8.1.2 Web-based experimentation platform

Our work on a distributed garbage collection mechanism for the Web had an inter-
esting outcome. We observed that, once we provided appropriate basic classes to
model a primary memory context, we had access to a convenient platform to im-
plement collectors. Objects and references on the Web can be manipulated in the
simplest way. Furthermore, in a primary memory environment, many difficult-
to-control parameters such as stack, cache behavior, virtual memory behavior,
and so on, have to be taken into account. In a Web context, every single aspect
of the memory simulation can be configured, created, or deleted as necessary .
For example, the Web environment does not have any concept of “stack”, but we
could simulate one if our research requires it (e.g. by using a special directory to
include “local” objects and an HTML file to maintain a stack order).

One challenge coming from the use of the Web is that real-life GCs usually
deal with thousands or millions of objects. Our environment is unfortunately

limited by the capacity of the file system. Timing/Performance studies would be

248



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

needed to assert the usefulness of the environment to a certain scale. However, it
can certainly handle a thousand or a million network nodes. To lead experiments
on DGCs, this is useful because performance of DGCs is often evaluated with the
number of network messages involved by the algorithm. This is still valid whether
the heap is represented as a set of files or as a block of memory (if we consider
primary-memory programs largely using virtual memory, the difference becomes
almost insignificant).

We also note that the Web offers several interesting features such as large
scale, complexity and flexibility. These characteristics are very useful for research
in distributed garbage collection. This is why we believe that such an artificial
environment may be of benefit to perform certain experiments in both uniproces-
sor and distributed garbage collection contexts. To summarize, this platform has

several advantages:
e Ease of implementation.

e Complete control over the graph of objects (no interference from a compiler

or an interpreter).

e Human timings rather than computer timings, which allows for a better

fine-grained understanding of certain behaviors.
This results in numerous possible applications:
e Testing and debugging collectors at an algorithmic level.

e Investigating high-level programming issues. This is especially useful with
DGCs as they rarely focus on low-level problems, relying on local collectors

for such tasks.

e Easy creation of tools such as testing tools, algorithm animation tools and
so on (the Web already benefits from certain statistics tools that could be

modified to be integrated in our environment).

249



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Teaching about memory management becomes more interesting with a plat-
form that is both useful as an independent product and useful as an exper-

iment environment.

8.1.3 Application contexts

We distinguish three axes of study using the Web environment for GC and DGC
experimentation: one website, a controlled set of websites, and the WWW.

On a single website, one can test uniprocessor garbage collection strategies.
It is also possible to experiment with different solutions to adapt uniprocessor
code to a DGC’s generic GC. Such high-level experimentation would help to
quickly decide on what solution to choose for a final implementation in an actual
environment.

Experimenting with DGCs on a collection of websites controlled by a single
organism is likely to be the target application of the architecture we describe in
this chapter. Indeed, such an environment would be close to an actual distributed
application. With the advances related to the Semantic Web [6], it makes sense
to foresee that a collection of websites interacting with each other would be a
distributed application. In this case, experimenting with techniques to maintain
link integrity is essential and we would benefit from an immediate testbed.

The WWW is very large and experimenting in such a chaotic environment is
obviously complicated, if not impossible. However, as DGC techniques increase
their scalability potential, larger and larger testbeds will be necessary. We envi-
sion that, at each step of the way, the WWW can provide sufficient support for
experimentation. Experimenting in this context becomes a question of limiting

the testbed rather than creating one.

250



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

8.1.4 Support tools

To support research about DGC in the Web, we propose three tools:

e a Software Development Kit to help implement collectors on the Web.

e Mutators. As we will see, these are needed because we can not rely on

regular web mutation.

e Logs to keep track of various heap and network events.

This last tool is an important feature we have to provide for this experimenta-
tion platform. Preliminary experiments with W3GC convinced us that debugging
and studying the behavior of a DGC by hand is not efficient (although feasible
for small problems such as garbage collecting one user’s website). Even though
the log mechanism we used was quite precise, it was nevertheless made for human
reading (using full sentences). We need a format that can be easily process by
a computer. Chilimbi, Jones and Zorn [20] propose a trace format to keep track
of heap-allocation events. We believe this interesting work could be reused and
extended to keep track of GC and network events in a DGC context. The actual
syntax for this format does not really matter — as outlined in Chilimbi, Jones
and Zorn’s work [20]. However, the success of XML makes this language a good
candidate.

We can imagine many programs that could exploit a computer-formatted
trace. Most of them are already in use in some other areas of computer program-
ming. We simply propose a new dimension for those tools: memory management.

Among them, we believe the following ones are of particular interest:

e Verifier of coherence between two snapshots of the heap by “running” the
trace. Because we focus only on specific events (allocation, mutation and
garbage collection), this activity should prove useful in pinpointing errors.
Furthermore, this program does not have to use a sophisticated algorithm,;

a simple and correct technique can do the job.

251



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e A converter between Trace and human-readable representation would be
useful for debugging. We did not study the format and grammar of this

“human readable” representation yet. This is future work.

e A debugger which can be used to follow the code as well as results between

snapshots.

e Algorithm animation. It is important to be able to show the behavior of
GC algorithms in class or during conferences. We can also imagine a tool
that replays part of the events on a snapshot, to help us study consequences
of different parameters of an algorithm. GCSpy [76] is the first example of

such a tool for garbage collection.

e A statistics extractor could use traces of DGC runs to gather data in
order to study behaviors and certain aspects of performance (number of

messages for example).

Most of these tools can be used to achieve fair comparisons between two
algorithms. Because distributed collectors usually rely on distributed termination
detection algorithms, our environment could certainly help with empirical studies
by providing a simple, yet powerful, mechanism to observe executions of such

algorithms.

8.2 Software Development Kit

We lay the foundations of our experimentation platform by providing a Software
Development Kit that abstracts Web elements. Using the semantic correspon-
dence established in Section 6.3, we created three categories of classes: memory,
GC, DGC. The first category is essential as it provides the basic blocks to manip-
ulate Web documents as memory objects. The two other categories build upon

the first one to provide automatic management of these documents.

252



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

An example of usage of this SDK can be found in Chapter 6 and Chapter 7
which describe a garbage collection mechanism to maintain web sites. We also
note that this SDK is destined to work together with the design method we present
in Chapter 5 to ease the implementation of distributed garbage collectors.

Finally, we provide — as part of this SDK — an implementation of a family of

mutators that can be used to test and debug DGC implementations.

8.2.1 Memory elements

Most of the classes defining the SDK have been described in detail in Chapter 7.
We simply list them here as a reminder to support our discussion about the
experimentation platform. We effectively define an API that could help in the
implementation of GCs for the Web and, thus, for our experimentation platform.
We use an object-oriented approach to allow extension and easy implementation
with languages such as Java which provide a rich library for file and network

manipulation.

e WebObject represents an object on the Web. It is an abstract class, because
we can potentially handle several types of objects. This is similar to lan-
guages where types are associated to values. On the Web, we can usually

associate a web document to a particular type.

e HTMLObject handles HTML objects. It derives from WebObject. This class
is particular in that an HTMLObject is able to scan itself to find what ref-
erences are available. This type of Web object thus has the property of
scannability. This is likely to be the only class that we will use with this
platform, because we focus on GC research rather than W3GC research.
However, adding objects with special characteristics could prove interesting

and this flexibility is thus provided.

253



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e ParseTools is a utility class, which exports functions to parse HT'ML files

and find references they contain.

e HTTPObject represents references on the Web. It is similar to pointers in
primary memory environment. An HTTPObject is basically a URL, and

contains access protocol, server name, and path to a Web object.

These classes define an abstraction that can be used to implement various ap-
plications as well as memory management tools (region-based, reference counting,
garbage collection). We observe that this SDK can be extended to include more

memory elements such as stack, regions, and so on.

8.2.2 Garbage collection elements

For the purpose of experimentations, we implemented a Mark-and-Sweep, a Gen-
erational, a DRC, and the GCW garbage collectors. Please refer to Chapter 7
for a detailed description of their design. Of course, we integrated them into the
SDK, as they can at least offer interesting examples of techniques to implement
GCs for the Web. We distinguish several features that have to be handled in such
GCs.

Basic functions

These functions are common to all GCs, and are fundamental functional compo-

nents:

e Handle a type of link. Although the type of link is useful to know in
a Web environment, the experimentation platform only deals with HTML

files initially. This should be sufficient for many experiments with DGCs.

e Scan an object for links. In a scannable object, we try to find references
to other objects, which may be scannable or not. Initially, this property of

Web objects is not exploited on the experimentation platform.

254



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Follow link. From an HTTPObject, the referenced object is found.

e Action on garbage. It is a matter of policy to know what to do with
garbage objects. As we have seen before, in primary memory, garbage is
either reclaimed (added to a free list or given back to the OS) or marked
for “lazy reclamation” (see, for example, [39]). On the Web, we have many
choices; however, our experimentation platform is used for GC research,

and we will remove all garbage objects, as in primary memory.

Specific functions

Collectors have specific needs, which can be expressed using our design models
described in Chapter 5. We describe essential elements for several stand-alone

collectors in the following list:

o A mark-and-sweep algorithm needs to store its marks. In a traditional en-
vironment, marks can be stored in the header of an object or in an external
bitmap. On our platform, this is also an implementation choice. For exam-
ple, we can reuse the class MarkSheet, developed for the tool described in

Chapter 7.

e A mark-and-copy algorithm requires a move operation and a way to store

or leave behind “forwarding pointers”.

e A reference counting scheme is based on the ability to maintain a counter

per page.

e A generational scheme needs an organization of the space into generations.
Depending on the variant, it also needs remembered sets or cards data struc-
tures. In our two-generation design, we used specific files to manage young
generation and remembered sets (remsets). This allows us to avoid moving

objects and reuse our mark-and-sweep collector for each generation.

255



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Other specific operations can be determined by the policy chosen to handle
garbage objects: remove, move, list in a file, email the list, and so on. These
specific functions should be handled by the implementation of the collector. We
do not provide support for these, but, once implemented, it is possible to integrate

them in the SDK (for example, MarkSheet has been added).

8.2.3 DGC elements

Distributed garbage collectors (such as [81], [37], [51]) often use opaque address-
ing. We thus need to provide supporting classes for this concept. The classes
listed here are very basic, and needs to be derived into appropriate types de-
pending on the DGC chosen. For example, we implemented GCW and had to
derive these items to include a counter and a mark. Furthermore, if the mutator
is configured to use these entities, local collectors and network communication
will be easier to implement. However, the platform does not require it and this

choice is left open.

e EntryItem only contains a reference to the object it represents. Inherited

classes may add data such as a counter.

e ExitItem contains a reference to the remote entry item it represents.

Distributed Termination Detection algorithms are important to DGCs and we
implemented one to support the “Garbage Collecting the World” [51] distributed
collector. This is based on a token-passing mechanism and requires several classes.
Token that is a singleton (one object only), Worker that launches a thread to asyn-
chronously send the token using the interface Action and the class SendToken.
DTDs are complex and diverse, we consider it outside the scope of this thesis to
provide a standard API to implement DTDs in a DGC environment. A general
model for DTD has been studied in [15] and [8] studies DTDs for distributed

garbage collection.

256



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

In order to build DGCs, we can rely on the models and method described in
Chapter 5. The basic idea is to use stand-alone collectors and transform them to
simulate a DGC’s generic GC. Extra operations may be added to handle a DTD
and network protocols. In our implementation, we used Java RMIs [59] to handle
network protocols. We also created a DGC “server” class for incoming network
messages. The specifics of the server depend on the chosen DGC algorithm.
However, object-oriented design can also used at this level, a DRC server can be
a base class for many other DGC servers (such as GCW for example), because

they handle decrement messages, which is a very common operation.

8.2.4 Mutator

One advantage of our experimentation platform is to have a “human scale”. It
becomes very easy to examine any part of the heap and the structure of any
object. However, one drawback of the Web environment is that mutations are
very slow. Usual web mutators are a person or a program. However, modifications
and creations are made infrequently compared to mutators in primary memory.
Experiments and tests of collectors might not prove very useful or representative
in these conditions.

An artificial mutator created specifically for this platform could provide nec-
essary support for useful research and testing. We thus propose a customizable
mutator to create and modify objects at a more comfortable rate for real DGC
research (comparable to mutation in primary memory environment). It already
proved very useful to test and debug our initial implementation of W3GC to
manage website by simulating authors of websites. We note that, although it has
been implemented to work with our collectors, it is not a necessary component
of the platform. This mutator could be replaced by any other mutation process
(even manual). Our collectors would still be able to function adequately.

In [92], it is shown that synthetic allocation is rarely representative of actual

257



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

allocation behaviors. We need to take this fact into account and create a realistic
mutator which would rely on recording actual program behaviors and simulating
them in this environment. For example, Richer [79] recorded the structure of
two websites at particular dates and used an allocation simulator in the PerDis
system [77] to study allocation behavior of the Web. Until we obtain sufficient
data about allocation and mutation patterns of distributed applications, we can
rely on synthetic mutators to work with DGC implementations.

In this thesis, we created a customizable, artificial mutator which allows to
observe the behavior of garbage collectors in the context of different flavors of
mutation. The mutator we propose here is a preliminary work, which can be
used for debugging and simple experimentation. More sophisticated mutation
algorithms should be implemented to help perform more interesting tests. In
particular, distributed mutation patterns or actual distributed applications could
be selected. Our goal here is to show an example of what can be done.

We choose a mutator which would simulate a web author. In order to create
web documents automatically, we define “units of text”. These elements are the
bricks — added, removed or modified — used to create or change web documents.
A wunit of text contains a number of lines of text and a number of references. We
note that, in order to simplify parsing, each reference is located on a single line
and nothing else is on such lines.

The mutator is parameterized by the following aspects:
e a number of lines per unit.
e a number of references (local or remote) per unit.

e the number of lines at the beginning of the file that should never be modified
or deleted. This is to guarantee a certain number of lines in a given file. This
allowed us to test websites containing files with possibly no contents and

others with guaranteed contents. In practice, this is of little consequence.

258



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e a percentage of chance to choose a local reference versus a remote reference

when mutation requires a new unit of text.

e a percentage of chance to delete or add a new unit in an object when

modifying an object.

e a percentage of chance to create artificial distributed garbage cycles. Pre-
liminary tests showed that simple random modifications were not sufficient
to create distributed cycles, we thus added a module to explicitly “allocate”

web objects in an already distributed garbage cyclic structure.

We have three flavors of our mutator: “user”, “news” and “project”. Of
course, any number of such mutators can be created. These mutation models use

the following values:

Style Lines References Protected LocalRef Add/Delete
/unit /unit lines ratio ratio

News 2 1 2 10% 10%

Project 4 1 0 70% 20%

User 3 1 4 50% 5%

These values are arbitrary and try to reflect one possible behavior pattern in
each style. This is not meant to be anything more than an example. Empirical
studies would be useful to choose more realistic values. The percentages are
explained like this: a news website is much more likely to reference remote pages
than local pages, thus 10% of chance to choose a local reference, and we consider
it usually has little chance to delete a unit from an article. Project pages usually
refer to other pages in the project and rarely delete information. User pages
usually contain as many references to remote pages as to local ones, and units
are rarely removed.

We observe that these random modifications do not allow fair comparisons

between collectors if used directly. An acceptable course of action is to run the

259



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

mutator using the ratio and record all events (using our log format for example).
These recorded events and associated snapshots can then be used to replay the
mutation while a new GC is invoked.

We also provide an abstract class called Mutation which takes care of common
functions such as the general mutation loop. We parameterize general mutation

with three values:
e THRESHOLD_GC: call frequency for the GC.
e THRES_GARBAGE_CYCLE: frequency of artificial cycle creation.
e THRES_CREAT: frequency for new object/page creation.

Modifications are done at every loop because we would like the mutator to show a
lot of activity. As observed, this mutation loop contains code to call the garbage
collector. Choosing when to call the collector is a matter of policy (or is possibly
dependent on the DGC used, if any). Disk space comes cheap these days and it is
impractical to try to fill up disk space before calling the GC. So, unlike memory
environment, the GC can not be called when “memory” runs out. Instead, we

call it after a certain number of mutation loops (chosen with THRESHOLD_GC):

// Main mutator loop
cntLoops = 0;

while (allowedToRun) {
cntLoops++;

// Run GC

if ((cntLoops % THRESHOLD_GC) == 0) {
makeSnapshot () ;
List garbage = gc.runGCQ);
continue;

260



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

// Mutation: artificial cycle

if ((cntLoops % THRES_GARBAGE_CYCLE) == 0) {
createNewCycle();
continue;

}

// Mutation: webpage creation
if ((cntLoops % THRES_CREAT) == 0) createNewPage();
modifyPage() ;

} // end while

Another important feature of our mutator is the artificial creation of dis-
tributed garbage cycles. We implemented a simple mechanism to create two-
object cycles. However, any type of cycle can be created depending on the be-
havior we want to debug or study. That is a future direction for this tool.

Finally, when modifying a page and adding a reference, we need to choose
this page and reference. A preliminary version of the mutator was randomly
selecting files from the directory. This is obviously a problem if the file is no
longer reachable. For example, making garbage objects reachable again could
break the opaque addressing mechanism by making live again a remote reference
that disappeared several local collections ago (along with the corresponding exit
item). The solution is a function which randomly selects references only from

reachable objects.

8.3 Logs and snapshots

Logging information about the behaviors of the collectors and the mutator allows
us to debug, understand and observe. In this section, we report important events
to log for debugging implementations and study behaviors. We observe that logs
are dependent on the type of operations. For example, we want to know when
a mark phase starts for a mark-and-sweep algorithm, but we need to know if we

collect a young generation area if we work with a generational scheme.

261



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

We also remark that the level of details of logs can be different depending on
the purpose of the logs (debugging, algorithm animation, and so on). However, a
better solution would be to record events with maximum details and let the tool
using the logs decide what to display. A more serious question is obviously what
to report. For each event, a lot of data exists; choosing what to report can be a
complex task. We did not address the question in this thesis, although we report
the choices we made when we debugged our W3GC implementation.

Our experience reports on a stand-alone mark-and-sweep and generational
algorithm as well as on DRC and GCW distributed collectors. We also present

the snapshot mechanism we used to record intermediate states of the heaps.

Mutation

We consider the mutator as a tool which helps outline and emphasize the behavior
of collectors. Although the purpose of our platform is not the study of mutation
behavior, certain mutation events should be recorded in order to understand
garbage collection behaviors. We record the following events (we specify elements

that are reported with the event within brackets):
e Create a new object (filename, List of references)
e Remove a reference (filename, position in the file)
e Add a reference (filename, reference)
e Get a local reference ()

In order to simulate a mutator which also manipulates remote objects, we use

a server for the mutation, for which we record the following events:
e Export a reference (remote server, reference, entry_item)

e Get a remote reference (remote server)

262



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Create new erit (exit name, reference to entry)

o Artificial cycle creation (server_origin, server_destination,

(exit_origin, exit_destination), (entry_origin, entry_destination))

Garbage Collectors

Few common characteristics exist among stand-alone collectors. We record the
initial root set and the list of garbage objects found and dealt with at each
collection.
Mark-and-Sweep

We found several events useful to record in order to debug and observe the

order of visit of objects during the collection. We record:

Marking start and end

Element is already marked

Element is found and marked

List of references found in Web objects

Path of the object visited by the collector

Object can not be visited (image for example)

Sweep starts and ends

M&S-based Generational GC
This generational collector is based on a mark-and-sweep algorithm (each gen-

eration uses such a GC). Consequently, we log the same events plus the following:

What generation is collected

Objects marked from the remset

Links not followed because they point to the old generation

Objects promoted at the end of collection

263



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Allocation and mutation are different in a generational environment, so we

also need to log such events as:

Newly allocated objects

Reference added to a remset

Distributed collectors

We record the following elements common to distributed collectors relying on
opaque addressing: list of entry items used as roots by the local GC and
list of garbage exit items. The order in which entry items are visited might
be important and thus must be specified in the logs as well.

DRC

A distributed reference counting scheme generates very few events. We record:
Counter increment, Counter decrement and Counter decrement for abu-
sive increment.

The latter event might be needed depending on the way references are ex-
ported. Normally, a mutator should scan its exit items to find out if a particular
reference on a remote object is already available. If this is the case, the event we
listed will not occur. Another solution can be used if the mutator does not know
the reference it desires but asks a remote node for a type of objects. This hap-
pens with CORBA where clients can request an object with a specific ability. In
this case, the remote node exports a reference to this object and thus increments
the counter of the corresponding entry item (for safety). Once the reference is
received, an exit item is set up at the recipient node. However, if such an item
was already present, it means that the counter on the entry item was “abusively”
incremented and needs to be set to the proper value, hence this event resulting

from a DECREMENT message.

264



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

GCW

This DGC is more complex than a distributed reference counting scheme. Being
based on this technique, it records the same events and adds new ones.

Details about the root set. Order in which local roots, soft entry items and
hard entry items are visited.

Local propagation. We need to know what mark is propagated from roots and
entry items to exit items (SOFT or HARD).

Finalize an exit item. With respect to its mark, three actions are possible:
(NONE) remove exit and send a decrement message, (HARD) propagate the
hard mark to the corresponding entry item, (SOFT) do nothing.

Local stability information. We record the status of a node after a local GC
(stable or not).

Global stability. We simply record this situation as soon as it is discovered.
DTD. When we need a termination detection algorithm (which is the case for
most DGCs), we record the events of the detection process. For the GCW collec-
tor, we log the following elements: initialization (when, what is done locally, ...),

local stability information, propagation of stability information.

Snapshot

Snapshots of the heap are very useful for debugging and algorithm animation,
because they record the history of data structure evolution. Pointers are added
and deleted several times between collections, and recording the state of the heap
allows us to trace more easily specific sections of an execution.

A snapshot of the heap records all web documents and extra information such
as entry items and exit items. It also records GC-specific structures such as
remset files for a generational GC (see Section 8.4). Depending on the size of the
site, snapshots might represent an important job to do. In practice, we do not

believe it to be a problem, because a test platform for garbage collection research

265



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

should only use HTML files, which are usually pretty small.

Recording the time of a snapshot indicates the checkpoints of the execution.
This helps for debugging as well as observing behaviors. We remark that the
contents of the snapshots can be quite different depending on the collectors and
behavior of the mutator. This is because different techniques may require differ-
ent structures of the heap. For example, a generational collector needs to save
different generations. Also, collectors usually use specific “maintenance files” (re-
membered sets for example). Consequently, each local GC should provide its own
format for the snapshot (what to save, what are the names of the files, and so on).
We note, however, that interconnection of data structures are preserved because

this is not dependent on the collection algorithm, but on mutation.

8.4 Interoperability experiments

One of the products of this thesis is the definition of interoperability of garbage
collectors in a distributed garbage collection environment. We consider complex
distributed computations where measurements have been done and memory ac-
tivity is known. For each node, we choose the best local memory management
according to foreseen activity. This may result in an heterogeneous system, using
different stand-alone collectors. With respect to this topic, our work in this thesis
was to define methods and tools making it possible to choose a DGC and create
a cooperation framework between these chosen collectors.

In this section, we present our preliminary study on possible software exper-
iments on the topic of GC interoperability. We believe the W3GC-based exper-
imentation platform can help provide interesting statistical observations as well
as implementation experience reports. This work is only a preliminary study and
actual experiments have not been performed. We report on our practical expe-
rience with the implementation of actual collectors. We remark that debugging

tests, using the mutators described in Section 8.2.4, were made that helped us

266



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

refine our implementation, which is one of the rare heterogeneous implementa-
tions of a distributed collector that we are aware of. Consequently, we believe
this practical experience report to be of value. Furthermore, as we will see in
Section 9.2, experimentation with DGCs are quite awkward because mutation
patterns for distributed applications do not exist yet.

In this implementation experiment, we reuse our implementation of Mark-
and-Sweep, DRC and GCW (see Chapter 7) and add a generational stand-alone
collector. We also provide an adaptation of this GC to work as a local GC in the
“Garbage Collecting the World” environment. The following paragraphs present
our experience with implementing a generational GC in a Web environment, and
adapting it to work with GCW, and experiments about heterogeneous configura-

tions within a GCW context using mark-and-sweep and generational collectors.

Stand-alone Web-based generational GC

Our implementation of a stand-alone generational GC for the Web makes use of
the SDK defined in Section 8.2. We note that, even though we tried to provide
a flexible environment to easily choose the garbage collector to experiment with,
generational GCs are somewhat invasive due to their need to allocate objects in
a special area called the nursery. This requires changes to the mutator code and
involved creating mutators using a “generation-aware allocator”. We also would
like to point out that we reused our Mark-and-Sweep collector to handle each of
the generations. We use only two generations in our example: a young generation
and an old one. For the young generation, the mark-and-sweep collector was made
aware of generations and remembered sets. However, because a collection of the
old generation looks at the whole heap, we could reuse directly our mark-and-
sweep collector — without modification — in this context.

A traditional distributed memory setting uses opaque addressing, which means

that when an object is moved, its entry item is updated and nothing has to be

267



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

done for remote objects referencing this now moved object. Unfortunately, we do
not have this luxury in the Web environment, where pages are referenced directly.
Indeed, a natural idea would have been to use a young object directory and an old
object directory and move files from one directory to another. To avoid moving
objects, we decided to list them in a file. The filename of any young object will
be added to the “young generation” file.

This has also the advantage of allowing very fast object promotion. In our
case, we simply empty the file. Indeed, any file whose path is not recorded in the
youngGen file is considered old. To promote objects from young to old, we just
need to empty the file. This assumes that an object has to survive only one GC
to be considered old. If several GCs are required, some kind of counter or several
generations are needed to solve the problem.

Similarly, we use a remembered set and save it in a file. When a reference is
added to a file, we check if the file is old and if the reference is to a young file. If
this is the case, we add the name of the referenced young file to the remset file.
This file is emptied once young objects are promoted. It is interesting to note
that we can simplify the code for newly created objects. We initialize objects
with text and references to “simulate” a real environment. In this case, there
is no risk of old-to-young reference, because the object is the youngest one so
far. This means that we do not need to call the routine verifying that references
inserted in the object are to young objects.

Another observation is that once a reference to an object has been added to
the remembered set, we do not remove it before the next complete GC. Preci-
sion would require the entry of a remembered set be removed as soon as the
corresponding old-to-young reference is deleted, allowing the next collection in
the young generation to possibly collect more objects. However, handling this
problem would involve, for example, a counter of references in the remembered

set. This would result in a more precise, less conservative solution but it would be

268



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

less optimal as well. Indeed, instead of using a barrier on the module which adds
references, we also would have to set one up to control references removal. This
would involve extra information to maintain for each entry in the remembered

set, which can be costly.

Local Generational GC for GCW

Like for the Mark-and-Sweep GC we implemented for the Web, we need to adapt
our stand-alone generational GC to the needs of the DGC. Using the design
method we developed in Chapter 5, we list the different elements that we have
to modify or create to allow our WebGen to become a LocalGenGCW (see Sec-
tion D.2 for a model of the mapping). The first remark we make is that a collection
of the old generation is actually a collection of the entire heap. This allows us to
reuse our LocalMSGCW without any modification.

Adapting a generational algorithm to work with a DGC which normally re-
quires a full visit of the heap necessarily calls for compromises. Two points have
to be treated: reclamation of exit items and mark propagation. In our simple
solution, we decided to let each collection of the old generation do all the work.
However, we use young generation collections to help. Indeed, even if we can
not reclaim exit items after an young generation collection (an exit item can
be pointed to by an old object), we can still reclaim dead entry items (whose
counter is zero) and propagate marks. A possible solution to be able to reclaim
exit items after young generation collections would involve managing a remem-
bered set for those items. The design and implementation we describe is a simple
experiment to understand what practical problems we have with GC interoper-
ability. Consequently, we did not implement any improvement such as the one
we just described.

To propagate marks, young generations are useful. Indeed, HARD marks

can be propagated to remote nodes right away (once an item is HARD, it can

269



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

not become SOFT again) thus speeding up global propagation. Of course, local
stability can only be decided after a full GC of the heap, because all exit items
are not seen by a young collection. We need to be careful not to let the young
collection interfere in the process of stability evaluation. Particularly, marks
on the exit items should be handled carefully. The design we propose skips
initialization of such marks at each run of the young GC, thus preserving the
“oldmark” field. This means that from one old GC to the other, “oldmark”s are
the same. Also, the only modification we make on exit items is to possibly harden
a mark. A special marker should be updated to inform the old GC that messages
have been sent by the young GC. The next old GC may find an apparent stability,
but should take appropriate action (here, change the value of the token) to take
the young GC actions into account.

We note that we do not evaluate the reachability of exit item objects because
they also depend on the old generation. We could optimize this aspect by im-
plementing a remembered set for each exit item to find if an object in the old
generation points to the item, if not, the young collection can safely evaluate
reachability.

Furthermore, propagating marks poses a question: what mark can we propa-
gate from a remembered set? For young generations, remembered sets are part
of the root set, consequently a natural approach would be to propagate a HARD
mark. This is conservative but safe. However, we might want to propagate a
SOFT mark to avoid slowing down the dead cycle detection. We still ensure
safety because reachable objects will not be reclaimed and stability detection is
done only by an old generation collection so stability will not be detected when an
item is marked SOFT whereas it should be marked HARD. It would be useful to
run some tests and obtain statistics about what situation is the most interesting
for a given application: propagating HARD marks to speed up stability or SOFT

marks to increase the number of cycle detections.

270



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Possible software experiments

Although we did not perform software experiments beyond designing and imple-
menting our W3GC, we describe here an experiment that we might wish to make
in the near future. The purpose is to study the behavior of an heterogeneous
distributed garbage collection system in an intranet environment. An interesting
test configuration would be to use 100 network nodes, dispatched on 20 machines.
In our department, we can use computers based on Intel Pentium III with 256MB
of RAM and Sparc workstations. It would also be possible to run the experiment
on a cluster of machines.

We believe the following garbage collection configurations would allow for

useful results:

e 100% of the nodes are using a Mark-and-Sweep algorithm.

e 100% of the nodes are using a Generational algorithm.
e 50% — 50%
o 25% — 75%
o 75% — 25%

Using various distributed application patterns, we could study the differences
in terms of performance with these scenarios. This would help system design-
ers understand what would be the best strategy with respect to the types of

applications they wish to run.

8.5 Conclusion

This chapter describes a possible extension of our Web-based garbage collection
mechanism. Relying on the simplicity of this platform, we propose to use a set

of practical tools to create an experimentation platform for garbage collection

271



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

research. Although this work is still in progress, we provide observations about
different components of this platform: a software development kit to help imple-
ment garbage collectors, a mutation mechanism, and a list of important events
to record to observe the behavior of garbage collectors. We used this platform,
in conjunction with the design method described in Chapter 5 to implement a
generational local GC for GCW, for which we had already implemented a lo-
cal Mark-and-Sweep collector. This work illustrates, in practice, the notion of

interoperability we described in this thesis.

272



Chapter 9

Conclusion

9.1 Summary

Garbage collection has reached a certain maturity and has gained acceptance in
widely used environments. Automatic memory management becomes vital for
complex applications, because it is difficult to track down object usage. In new
contexts such as distributed systems, garbage collection should prove even more
useful, because objects can now be referenced from other processes. Manually
keeping a record of all references becomes overly complicated, and resources al-
located to design, implement and debug applications include a large part for
memory management. Creating distributed applications can be complex with-
out the extra burden of managing memory; adding such an important task could
actually slow down the development of these systems.

We believe distributed garbage collection should play a central role in the dis-
tributed world. Currently, only distributed reference counting is implemented in
certain systems. As networks become faster, applications will export more objects
and manipulate them on several nodes without taking any special action about
performance. Cycles of objects will then become frequent and DRC algorithms

will no longer be appropriate. For several years, DGC research has provided

273



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

interesting algorithms handling cycles. Unfortunately, they have not gained ac-
ceptance in the real world yet. We believe that one reason is the difficulty to
understand and evaluate these collectors.

In this thesis, we propose to study interactions between garbage collection
entities and the overall strategy as a mean to better understand the nature of dis-
tributed garbage collectors. The study we provide explores uniprocessor collectors
and multiprocessor techniques before addressing distributed GCs. We conclude
that these interactions appear in the form of requirements expressed by the DGC
that local collectors have to fulfill. A DGC is a collection of local GCs that com-
municate in some way, usually with network messages. These requirements are
listed with more or less success in the literature because there exists no standard
mechanism to record them. For that purpose, we introduced the Generic Garbage
Collector, which acts as a template describing the “perfect local collector” from
a DGC point of view.

Our work on interactions in garbage collectors led us to consider an optimiza-
tion technique for the tracing process we find in GCs such as mark-and-sweep and
mark-and-copy. While these collectors are not composed of several processes, we
organize the heap into regions and create logical entities to take care of the trac-
ing process. We call this technique Localized Tracing Scheme. When appropriate
parameters are chosen, it is possible to improve either caching or paging behavior
with the same algorithm. The heap is divided into regions. The core of this
technique is to traverse as many objects as possible in a single region, discarding
pointers to far objects. Pointers to far objects are saved in a special structure
called trace queue. There is one trace queue per region. This technique effectively
preserves the working set for a longer time than usual, and thus reduces the num-
ber of cache misses and page faults. Experiments showed up to 75% improvement

when the LTS is optimized for paging behavior.

274



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Our observations on GC/DGC interactions also led us to a design method
for DGCs. We propose the sketch of a design process in which this method
could be integrated. The purpose of this method is to help designers create
a memory management solution that is the most adapted to their needs and
resources. Instead of relying on distributed collection algorithms that dictate
seemingly inflexible rules, we propose to list characteristics of all actors of the
system, in order to study the best compromise. We created templates to help list
these characteristics (for stand-alone and distributed collectors) and extended
the template of the Generic GC to integrate it to the design method. Models
created from these templates are useful to understand how local collectors can be
created according to this context. Furthermore, most distributed systems use a
homogeneous memory management model. However, we have seen, with projects
such as CMM [3], that different parts of an application may require different
memory management techniques. In this case, distributed collectors have to
handle several different types of local collectors. Our method allows to naturally
solve this problem using the notion of Generic GC as a contract for each type of
collector to fulfill to help the distributed collector in its task.

In this thesis, we also explored the possibility of using a distributed garbage
collection mechanism to manage web pages. This project had two aspects: (1) it
is an interesting and non-trivial environment to test our design method, (2) the
Web environment is currently the largest distributed system available. One of the
problems in distributed garbage collection today is the lack of implementations.
We believe that more implementation experiences are necessary to record various
challenges people can face in a practical context. The Web is an environment
containing documents and links between those documents. Garbage collection
can be used to detect unlinked documents and avoid dangling links (known as
the HTTP “Error 404”). In this context, history is repeating itself. Authors

are reluctant to use automatic tools to manage their documents, although they

275



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

agree to use development environments to create web pages and URLs between
them. We hope that our research on the different aspects of the problem will help

garbage collection gain acceptance in this widely used distributed environment.

In the course of this thesis we have made a number of implementations and

experiments, including:

e The LTS in C for the Aldor language. Experiments were led in the context

of virtual memory intensive applications.

e Using Java, a uniprocessor Mark-and-Sweep collector, a Distributed Refer-
ence Counting DGC, and the “Garbage Collecting the World” algorithm.
These implementations allowed the following experiments in the context of
the World Wide Web: UWO websites, single websites in our laboratory,

network of users websites in the department, Java API documentation.

e A Generational GC for the distributed collectors described above. This work
is a preliminary test of our results on GC interoperability in a distributed
context. This also confirms that W3GC as a platform for erperiments is

useful for GC research.

Through the work described in this thesis, we discovered several important
properties in the world of distributed garbage collection.

First, local garbage collectors are intimately linked to specific stand-alone GCs
and distributed GCs. More precisely, any given local collector is linked to one
stand-alone GC and one DGC. Although this property seemed to have been im-
plicitly known in the literature, it has never been explicitly studied. Through the
introduction of the “Generic GC”, which represents a DGC’s needs and provides a
template to adapt a stand-alone GC, this thesis proposes an explicit link between

these three entities (local, stand-alone and distributed GCs).

276



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

An important property of future computer applications is heterogeneity of
memory management needs. This thesis proposes a possible solution through the
study of interactions between garbage collection entities and the definition of the
generic GC.

Finally, we emphasize and study a property of the World Wide Web which
is its similarity to a traditional distributed memory environment. This thesis
establishes a semantic correspondence of notions in both worlds and creates a
mechanism to implement and use distributed garbage collectors in this context

to help with link integrity management in hypertext environments.

9.2 Future directions

We now present future research directions related to the topics we discuss in this
thesis. Two of these directions have already been detailed in the report because

we made preliminary studies of them.

Future direction: a tool for the design

This future direction is oriented toward software development rather than re-
search. Our design method uses templates to list characteristics of collectors and
thus create their models. We believe that these models could be reused in many
cases, allowing, in particular, the reuse of mapping solutions to create local col-
lectors. A future useful development would be the creation of a tool based on
these templates to record design models. We can imagine that such a tool would
store mapping solutions in a database and would allow searches based on spe-
cific keywords. For example, we could look for “handling local propagation for
a migration-based DGC”. The answer would retrieve all such mappings found in
the associated database. If this tool were to be integrated to a design tool, for

UML or OMT for example, a well-known syntax could be used to formalize fur-

277



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

ther the templates and allow designers to create their DGC solutions in a familiar

environment.

Future direction: correctness proof model

Little work has been done on a formal model for garbage collection, supporting
correctness proof of GC and DGC algorithms.

In [8], Moss presents a method to transform uniprocessor garbage collectors
into distributed GCs by using distributed termination detection algorithms. One
advantage of this technique is that correctness proofs are made easier, because
they rely on existing proofs for the chosen DTD algorithms. Our technique —
based on the notion of Generic GC — can provide similar leverage because it
divides the task of proving correctness into different sections and relies upon
assumptions that non-proved parts are correct. This allows reusability of proofs
and formal models.

As explained in Section 2.5.5, the work published by Ungureanu [89] is an in-
teresting approach to the problem of proving DGC correctness. It defines building
blocks to express algorithms and prove their correctness. However, the resulting
calculus may not be flexible enough to efficiently handle heterogeneous systems
(i.e. different local collection techniques participating to a single DGC), gathering
low-level and high-level elements in the same model.

We believe that the Generic Garbage Collector could help simplify the process
of correctness proofs. The GGC was designed to separate concerns in a DGC en-
vironment. In the same way, the GGC can be used to organize correctness proofs
of distributed collectors into two independent steps: (i) proving the correctness
of a DGC algorithm assuming its local collectors correctly behave like the generic
collector, (ii) for each local collector, prove that the emulation of the generic GC
is correct. This architecture also allows to add a new type of collector to the

system with very little cost. Proving the correctness of the new DGC system

278



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

(which would now be an heterogeneous DGC) would simply be a proof that the
newly integrated collection properly emulates the generic GC.

Finally, we observe that, in the literature, it is generally understood that
correctness of collectors means completeness (all garbage is reclaimed) and safety
(only garbage is reclaimed). While the latter is ensured in all GCs encountered
in this thesis, the former (completeness) is obviously not guaranteed by reference
counting mechanisms. However, stand-alone and distributed reference counting
(and listing) algorithms are generally accepted as correct. This inconsistency is
easily fixed by integrating, in the description or model of each DGC, a list of
properties it claims to support. Consequently, this DGC would be correct if and
only if each of the listed properties is proved correct. This distinction would help

clarify the characteristics of DGCs, and improve acceptance by non-experts.

Future direction: experimentation platform

Chapter 8 reports on our preliminary work on a Web-based experimentation plat-
form for garbage collection research. While we implemented a distributed collec-
tor for the Web, we observed that this platform had interesting potential for many
experiments. Its architecture allows both small and large scale experimentation,
and, with proper support, GC and DGC implementation proves quite simple
(there is no compiler interference).

In our preliminary work, we described a software development kit to imple-
ment collectors, a customizable mutation mechanism to observe garbage collection
behavior with respect to different allocation and mutation patterns, a list of events
we found important to record during our first experiments with the collectors.
We implemented the following collectors: uniprocessor mark-and-sweep, unipro-
cessor generational GC, distributed reference counting, and the DGC known as
“Garbage Collecting the World”. With this experimentation platform, we could
test our theory about interoperability being facilitated by our design method. The

279



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

M&S and Generational methods were adapted into local collectors for “Garbage
Collecting the World”. What remains to be done for this platform is: other im-
plementations, tools to exploit the logs, and a comprehensive study on mutation
patterns in distributed environments.

This study will be essential to our platform because understanding DGC be-
haviors can only be done if appropriate mutators are available. On this topic,
the current state of the art is very limited (and we believe this thesis brought a

non-negligible piece by identifying the Web as a suitable environment).

Future direction: experiments

During this thesis, we have led experiments about the LTS using Aldor (see
Chapter 4) and about the structure of websites using W3GC (see Chapter 6).
While we obtained interesting results, we had envisioned several other tests.

For the LTS, we obtained results at virtual memory level. We plan on pursuing

these experiments on four axes:

1. We defined a family of tracing algorithms in Section 4.2.2. Experiments
are required to explore the different possibilities. These would allow us to
deduct recommendations about the optimal tracing scheme with respect to

given allocation and mutation patterns.

2. Although results for cache level tests were not very encouraging, we believe
that the LTS can be used for a certain range of applications. A future work
would be to define these mutation and allocation patterns and perform

experiments on those.

3. The LTS appears to help at different levels of the memory hierarchy. A
future work would be to experiment with large applications on hand-held
computers. Although memory is becoming larger, common sizes are still

quite small (32MB or 64MB of RAM) compared to desktop machines. We

280



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

can imagine an application using a remote server for its virtual memory.
Pages could be swapped over the network. This obviously requires new
strategies on the mutator side, but the LTS already proposes a solution on

the collector side.

4. Finally, testing the LTS on real-life contexts would help us assess the prac-

tical value of this tracing optimization.

Our experiments with W3GC have been oriented towards empirical results. It
would be interesting to place the collector in a context of real use, by integrating it
to a piece of web authoring software, for example. We could observe the behavior
of users and report their critiques. This would certainly be valuable to the tool
by itself, but we can imagine that certain aspects of the environment might also
trigger new ideas in the field of primary memory distributed garbage collection.

Furthermore, website mutations should be recorded over a long period of time
to allow more realistic experiments. Using a logging technology, such as the one
described in Section 8.3, we can replay these mutations faster and study the
behaviors of various garbage collection mechanisms.

Finally, emerging technologies such as the Semantic Web [6] would certainly
benefit from the results of this thesis, as it is likely that such environments re-
quire sophisticated object reference management. The Web environment is used
more and more as a platform to support many types of applications. Automatic
(i.e. non-human) users can set up URLs to various documents; such links should
be managed efficiently. Distributed garbage collection is likely to be a solution to

this vital problem.

Future directions in Garbage Collection

While this thesis focused on certain areas of garbage collection, we have still been

able to observe certain aspects of the topic in general. We believe that future

281



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

research and development work in the field of GCs will/should include the three
following topics.

Standard benchmarks are difficult to find for uniprocessor GCs and simply
do not exist for distributed collectors. We had to develop a synthetic test suite for
the LTS, because we did not find any benchmark that could display appropriate
features. In particular, GCs are usually tested with applications that entirely
fit in RAM. While most applications do, this may not be the case in all areas.
Applications in certain fields involve important computations, which require very
large heaps. Little work has been done in this area and appropriate benchmarks
are missing. Furthermore, distributed computing is a young application field, and
it is difficult to find distributed applications to test a DGC. We believe that the
Web-based experimentation platform, described in this thesis, is a step in the
right direction. However, there is still a lot of work to do in this area.

One observation we made while testing the LTS and W3GC is that little
research has been done on allocation and mutation patterns. Even if benchmarks
exist for uniprocessor GC, it is a complex task to understand the behaviors of these
programs with respect to allocation and mutation. In [17], an interesting study
was led, but it misses an important component which is the evolution of the heap
structure, showing how objects are mutated. We believe that measurements of
various applications both at allocation and at mutation level would be beneficial.
This survey should include distributed applications. Algorithm animation tools
such as GCSpy [76] would certainly help with this study.

Finally, implementations of DGCs are rare. We hope that the results of this
thesis will motivate further work in the area. The next step is to implement vari-
ous collectors in environments such as Java RMIs or .NET, and report problems,
solutions, and observations. In summary, we need a survey of DGC implementa-
tions in real-life environments. We believe that this work is one of the necessary

conditions to a popular development of distributed garbage collection.

282



Bibliography

1]

Saleh E. Abdullahi, Eliot E. Miranda, and Graem A. Ringwood. Collection
schemes for distributed garbage. In Proceedings of International Workshop
on Memory Management, University of London, UK, 1992.

C. Anderson and J. Lennon. Maintaining link integrity to external web sites
in a Hyperwave-based learning environment.
http://ddi.cs.uni-potsdam.de/HyFISCH /Ziele Werkzeug/.
HyperwaveDokumentation /LinkIntegrityLennon.htm

Valid on 2002/07/19.

Giuseppe Attardi and Tito Flagella. A customisable memory management
framework. Technical Report TR-94-010, International Computer Science
Institute, Berkeley, 1994. Also Proceedings of the USENIX C++4 Conference,
Cambridge, MA, 1994.

Henry Baker. Henry Baker’s garbage collection page.
ftp://ftp.netcom.com/pub/hb/hbaker/home.html
Valid on 2002/04,/12.

Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Tech-
nical Report 88/2, DEC Western Research Laboratory, Palo Alto, CA, Febru-
ary 1988. Also in Lisp Pointers 1, 6 (April-June 1988), 2-12.

Tim Berners-Lee. Weaving the Web. Harper, San Francisco, 1999.

Sanjay Bhudia. Implementing a cyclic distributed garbage collector for a
heterogeneous system with space failures.

http://www.doc.ic.ac.uk/ ajf/ Teaching/Projects/
Distinguished99/SanjayBhudia.pdf

Valid on 2002/07/19.

Steve Blackburn, Rick Hudson, Ron Morrison, J. Eliot B. Moss, David
Munro, and John Zigman. Starting with termination: A methodology for
building distributed garbage collection algorithms. In 24th Australasian
Computer Science Conference (ACSC 2001), 2001.

283



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

[9]

[10]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Hans-Juergen Boehm. GCBench.
http:/ /www.hpl.hp.com/personal/Hans_Boehm/qgc/gc_bench
Valid on 2002/07/19.

Hans-Juergen Boehm. Mark-and-sweep vs. copying collection and asymptotic
complexity.

http://www.hpl.hp.com/personal/Hans_Boehm /gc/complezity.html

Valid on 2002/07/19.

Hans-Juergen Boehm. Reducing garbage collector cache misses. In ISMM
2000 Proceedings of the Second International Symposium on Memory Man-
agement, 2000.

Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel
garbage collection. ACM SIGPLAN Notices, 26(6):157-164, 1991.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooper-
ative environment. Software Practice and Experience, 18(9):807-820, 1988.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1998.

Jerzy Brzezinski, Jean-Michel Helary, and Michel Raynal. Distributed termi-
nation detection : General model and algorithms. Technical Report RR-1964,
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN
AUTOMATIQUE, 1993.

F. Warren Burton and M. Ronan Sleep. FExecuting functional programs
on a virtual tree of processors. In Proceedings of the 1981 Conference on
Functional Programming Languages and Computer Architecture, pages 187—
194, 1981.

Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying behavioral
differences between C and C++ programs. Journal of Programming Lan-
guages, 2(4):313-351, 1994.

Michelle Cartwright. Empirical perspectives on maintaining web systems:
A short review. In 6th IEEE Workshop on Empirical Studies of Software
Maintenance (WESS 2000), 2000.

Yannis Chicha. Aldor documentation generation tool.
http://www.aldor.org/projects/aldordoc
Valid on 2002/07/19.

Trishul Chilimbi, Richard E. Jones, and Benjamin Zorn. Designing a trace
format for heap allocation events. In ISMM 2000 Proceedings of the Second
International Symposium on Memory Management, 2000.

284



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

[21]

[22]

23]

[25]

[26]

[27]

28]

[29]

[30]

[31]

William D. Clinger. Source code for selected GC benchmarks .
http://www.ccs.neu.edu/home/will/GC/sourcecode.html
Valid on 2002/07/19.

World Wide Web Consortium. Extensible markup language (XML).
http://www.w3.org/ XML
Valid on 2002/07/19.

World Wide Web Consortium. Hypertext markup language.
http://www.w3.org/MarkUp
Valid on 2002/07/19.

World Wide Web Consortium. Xhtml 1.0: The extensible hypertext markup
language.

http://www.w3.orq/ TR /rhtml1

Valid on 2002/07/19.

World Wide Web Consortium. Xml linking language (xlink) version 1.0.
http://www.w3.orq/ TR /zlink
Valid on 2002/07/19.

Intel Corporation. Itanium architecture.
http://www.intel.com/ebusiness/pdf/prod/itanium/ds010401.pdf
Valid on 2002/07/19.

P. Danzig, D. DeLucia, and K. Obraczka. Massively replicating services in
autonomously managed wide-area internetworks. Technical Report 93-541,
Computer-Science Department, University of Southern California, 1994.

Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise in coopera-
tion. Communications of the ACM, 21(11):965-975, November 1978.

Bruce Eckel. Thinking in Java.
http:/ /www.mindview.net/Books/T1J
Valid on 2002/07/19.

Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-sweep
garbage collector on large-scale shared-memory machines. In Proceedings of
High Performance Computing and Networking (SC’97), 1997.

The Apache Software Foundation. The Apache software foundation.
http://www.apache.org
Valid on 2002/07/19.

285



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

[32]

[36]

[37]

[39]

[40]

[41]

[42]

[43]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements od Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley Publishing Company, New
York, NY, 1995.

Google, Inc. Google.
http:/ /www.google.com
Valid on 2002/07/19.

MIT Programming Methodology Group. MIT Thor system.
http://www.pmg.lcs.mit.edu/Thor.html
Valid on 2002/07/19.

Network Working Group. HyperText Transfer Protocol - HTTP/1.1.
RFC n.2616.

http://www.ietf.org/rfc/rfc2616.txt

Valid on 2002/07/19.

Dirk Grunwald and Benjamin Zorn. Malloc benchmarks.
ftp://ftp.cs.colorado.edu/pub/cs/misc/MallocStudy
Valid on 2002/07/19.

Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro.
Garbage collecting the world: One car at a time. In OOPSLA 97 Proceedings,
1997.

Richard L. Hudson and J. Eliot B. Moss. Incremental garbage collection for
mature objects. In IWMM’92 Proceedings, 1992.

R. John M. Hughes. A semi-incremental garbage collection algorithm. Soft-
ware Practice and Ezperience, 12(11):1081-1084, November 1982.

Donald B. Johnson. Finding all the elementary circuits of a directed graph.
SIAM Journal on Computing, 4(1):77-84, March 1975.

Richard Jones. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley and Sons, July 1996. With a chapter
on Distributed Garbage Collection by Rafael Lins. Reprinted 1997 (twice),
1999, 2000.

Richard E. Jones. Richard Jones’s garbage collection page.
http://www.cs.uke. ac.uk/people/staff/rej/gc.html
Valid on 2002/07/19.

Balint Jod. Yet another Paraldor web page.
http://www.ph.ed.ac.uk/ bj/paraldor/WWW
Valid on 2002/07/19.

286



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

[44]

[45]

[46]

[47]

[50]

[51]

[52]

[53]

[54]

[55]

Michael Kanellos. Intel offers details on future Itanium chips.
http://news.com.com/2100-1001-272320.html
Valid on 2002/07/19.

F. Kappe. Maintaining link consistency in distributed Hyperwebs. In Pro-
ceedings INET ’95, pages 15-24, 1995.

Martijn Koster. The web robots pages.
http://www.robotstxt.org/we/robots. html
Valid on 2002/07/19.

UWO Symbolic Computation Lab. Aldor documentation.
http://www.aldor.orq/documentation.html
Valid on 2002/07/19.

UWO Symbolic Computation Lab. Aldor homepage.
http://www.aldor.org
Valid on 2002/07/19.

UWO Symbolic Computation Lab. Aldor user guide.
http://www.aldor.org/Aldor User Guide
Valid on 2002/07/19.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978.

Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting the
world. In POPL’92 Proceedings, pages 39-50, 1992.

Fabrice LeFessant, lan Piumarta, and Marc Shapiro. An implementation for
complete asynchronous distributed garbage collection. In PLDI’98 Proceed-
ngs, 1998.

Henry Lieberman and Carl E. Hewitt. A real-time garbage collector based on
the lifetimes of objects. Communications of the ACM, 26(6):419-429, 1983.
Also report TM-184, Laboratory for Computer Science, MIT, Cambridge,
MA, July 1980 and AI Lab Memo 569, 1981.

Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed
garbage by controlled migration. In Proceedings of PODC’95 Principles of
Distributed Computing, 1995. Later appeared in Distributed Computing,
Springer Verlag, 1996.

John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine. Communications of the ACM, 3:184-195, 1960.

287



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

[56]

[57]

[58]

[63]

[64]

[65]

[66]

Ryan L. McFall and Matt W. Mutka. Automatically finding and repairing
broken links between XML documents. Technical Report MSU-CPS-98-38,
Department of Computer Science, Michigan State University, East Lansing,
Michigan, December 1998.

Sun Microsystems. Javadoc tool home page.
http://java.sun.com/j2se/javadoc
Valid on 2002/07/19.

Sun Microsystems. The Java(tm) programming language.
http://java.sun.com
Valid on 2002/07/19.

Sun Microsystems. Java(tm) remote method invocation.
http://java.sun.com/products/jdk/rmi
Valid on 2002/07/19.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

MMnet. The UK memory management network.
http://www.mm-net.org.uk
Valid on 2002/07/19.

David A. Moon. Garbage collection in a large LISP system. In Conference
Record of the 1984 ACM Symposium on Lisp and Functional Programming,
pages 235245, 1984.

Luc Moreau. Hierarchical distributed reference counting. In Proceedings of
International Workshop on Memory Management, pages 57-67, 1998.

Luc Moreau and Nicholas Gray. A Community of Agents Maintaining Links
in the World Wide Web (Preliminary Report). In The Third International
Conference and Exhibition on The Practical Application of Intelligent Agents
and Multi-Agents, pages 221-235, London, UK, March 1998.

J. Gregory Morrisett, Mattias Felleisen, and Robert Harper. Abstract models
of memory management. In Record of the 1995 Conference on Functional
Programming and Computer Architecture, 1995.

J. Gregory Morrisett, Mattias Felleisen, and Robert Harper. Abstract mod-
els of memory management. Technical Report CMU-CS-95-110, Carnegie
Mellon University, January 1995. Also published as Fox memorandum CMU-
CS-FOX-95-01.

Cynthia J. Morton. L.O.S.T. in cyberspace.
http://gnacademy.tzo.org/ lost
Valid on 2002/07/19.

288



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

[68]

[69]

[70]

73]

[74]

[75]

[76]

[77]

78]

[79]

Basem A. Nayfeh and Kunle Olukotun. Exploring the design space for a
shared-cache multiprocessor. In Proceedings of the 21st International Sym-
posium on Computer Architecture (ISCA-21), 1994.

Numerical Algorithms Group, Inc. The FRISCO project.
http://www.nag.co.uk/projects/FRISCO.html
Valid on 2002/07/19.

Object Management Group, Inc. OMG’s CORBA website.
http://www.corba.org/
Valid on 2002/07/19.

The Mozilla Organization. mozilla.org.
http://www.mozilla.org
Valid on 2002/07/19.

Michael Philippsen. Cooperating distributed garbage collectors for clusters
and beyond. Concurrency: Practice and Experience, 12(7):595-610, May
2000. Also published in 8th Int. Workshop on Compilers for Parallel Com-
puters CPC’2000, Aussois, France.

José M. Piquer. Indirect reference counting: A distributed garbage collection
algorithm. In PARLE’91 Parallel Architectures and Languages Furope, 1991.

José M. Piquer. Indirect mark and sweep: A distributed GC. In IWMM’95
Proceedings, 1995.

David Plainfossé and Marc Shapiro. A survey of distributed garbage col-
lection techniques. In Proceedings of International Workshop on Memory
Management, ILOG, Gentilly, France, and INRIA, Le Chesnay, France, 1995.

T. Printezis and R.E. Jones. GCspy.
http://www.dcs.gla.ac.uk/ tony/gespy. www
Valid on 2002/07/19.

The PerDis project. Perdis: Persistent distributed store.
http:/ /www-sor.inria.fr/projects /perdis
Valid on 2002/07/19.

Ravenbrook. The memory management reference.

http:/ /www.memorymanagement.org
Valid on 2002/07/19.

Nicolas Richer and Marc Shapiro. The memory behavior of the WWW,
or: The WWW considered as a persistent store. In Graham Kirby, editor,
Int. W. on Persistent Obj. Sys., volume 2135 of Lecture Notes in Computer

289



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

38

[89]

Science, pages 169184, Lillehammer (Norway), September 2000. Springer-
Verlag. http://www-sor.inria.fr/publi/ TMBotWoT W CaaPS_pos2000.html
Valid on 2002/07/19.

J. Rumbaugh, M. Blaha, W. Lorensen, F. Eddy, and W. Premerlani. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Robust,
distributed references supporting acyclic garbage collection. Rapports de
Recherche 1799, INRIA, November 1992. Also available as Broadcast Tech-
nical Report 1.

Marc Shapiro, David Plainfossé, Paulo Ferreira, and Laurent Amsaleg. Some
key issues in the design of distributed garbage collection and references. In
Unifying Theory and Practice in Distributed Systems, Dagstuhl (Germany),
September 1994.

Patrick Sobalvarro. A lifetime-based garbage collector for Lisp systems on
general-purpose computers. Technical Report AITR-1417, MIT AI Lab,
February 1988. Bachelor of Science thesis.

Guy L. Steele. Multiprocessing compactifying garbage collection. Commu-
nications of the ACM, 18(9):495-508, September 1975.

Darko Stefanovi¢, J. Eliot B. Moss, and Kathryn S. McKinley. Age-based
garbage collection. Technical report, University of Massachussets, April 1999.
preliminary version of a paper to appear in OOPSLA’99.

Robert Tarjan. Enumeration of the elementary circuits of a directed graph.
SIAM Journal on Computing, 2(3):211-216, Sept 1973.

Kenjiro Taura and Akinori Yonezawa. An effective garbage collection strat-
egy for parallel programming languages on large scale distributed-memory
machines. In ACM Symposium on Principles and Practice of Parallel Pro-
gramming, pages 264-275, 1997.

David M. Ungar. Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm. ACM SIGPLAN Notices, 19(5):157—
167, April 1984. Also published as ACM Software Engineering Notes 9,
3 (May 1984) — Proceedings of the ACM/SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments,
157-167, April 1984.

Christian Ungureanu and Benjamin Goldberg. Formal models of distributed
memory management. In ICFP’97 Proceedings, pages 280-291, 1997.

290



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

[90]

[91]

[92]

[93]

[94]

Paul Watson and lan Watson. An efficient garbage collection scheme for
parallel computer architectures. In PARLE’87 Parallel Architectures and
Languages Europe, pages 432-443, 1987.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings
of International Workshop on Memory Management, University of Texas,

USA, 1992.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dy-
namic storage allocation: A survey and critical review. In 1995 International

Workshop on Memory Management, Kinross, Scotland, UK, 1995. Springer
Verlag LNCS.

Yahoo!, Inc. Yahoo!
http:/ /www.yahoo.com
Valid on 2002/07/19.

Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage col-
lection. In Conference Record of the 1990 ACM Symposium on Lisp and
Functional Programming, 1990.

291



Appendices

The following appendices describe uniprocessor and distributed garbage collec-
tors according to the models presented in Chapter 5. We also illustrate our de-
sign method with mapping models between uniprocessor and distributed garbage
collectors. In some cases, we propose several solutions for a single scenario
(GC,DGC).

In this part of the report, Appendix B lists models for many well-known
uniprocessor techniques, Appendix C describes four distributed garbage collec-

tors, and Appendix D concludes with various scenarios.

292



Appendix A

Glossary

In this appendix, we explain the terminology and acronyms used in this thesis.

Terms are presented in alphabetical order.

e Allocation: action to reserve memory space in the heap. It is usually

performed by the mutator.
e Collector: the garbage collection part of the process.

e Deallocation: action to declare previously reserved memory space as “un-
used” and ready for a new allocation. In some cases, this memory space

can be returned to the operating system.

e Explicit memory management: Technique of memory management which
relies on programmers to take appropriate actions from their own initiative.

In particular, a deallocation (e.g. free) primitive is provided.

e Free list: list of memory blocks available for allocation. This is an internal

free list managed by the process. It is not managed by the OS.

e Garbage object: object that is not reachable from the roots and, thus,

can be deallocated.

293



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Heap: area of memory used by the program to dynamically allocate objects.
This space is where live and garbage objects are found. Objects in this area

are accessed by direct addressing (pointers).

e Lamport clock: Well-known algorithm for synchronizing and ordering

events in a distributed system. See [50] for details.

e Live object: object that can still be used by the process. It is reachable

from the roots.

e Memory management: Activity which defines how to handle the creation

and destruction of objects manipulated by the program.

e Mutator: part of the process which does actual work, as opposed to mem-

ory management.

e Reachability: an object is reachable if there exists at least one path of
pointers from the roots to this object (see Section 2.3.2 for a detailed ex-

planation).

e Read barrier: extra code added to the primitives used to read the values

of objects.

e Registers: Processor registers. These elements are very close to the proces-
sor itself to allow extremely fast access but are not part of normal memory.

Values that are frequently used are usually placed in the registers.

e Roots: Set of pointers found in the stack, the registers and the static area.
In a distributed setting (see Section 2.5), it also includes entry and exit items
(see Section 2.5 for a definition of this terminology). Roots are known to

refer to live objects. They are the starting point for the collection process.

294



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Scalability: Property of distributed systems which defines the ability to
increase the size of the network (in the number of nodes) while still providing

acceptable features and performance.

e Stack: special memory area used to handle function calls. Local variables

and returned values are placed in this area in a LIFO manner.

e Static area: the memory area used to allocate global variables prior to

program execution.

e Weak pointer: Special type of pointer that does not prevent the garbage

collector from reclaiming an object.

e Write barrier: extra code added to the primitives used to modify the

values of objects.

e XLink: An XLink is an extended version of a URL, designed to be used in
XML documents for sophisticated linking (e.g. use of attributes, possibility

to reference any part of a document, and so on). See [25] for more details.

295



Appendix B

Models for common Memory

Management techniques

This appendix describes models for common memory management techniques in
a uniprocessor environment. These models have been created by following the

templates described in Section 5.2.1.

B.1 Explicit Memory Management

We do not detail any high-level model for this technique. The primitives are
functions to allocate and deallocate memory spaces. In C, we use the well-known
malloc and free. At our level, we focus on how generic GCs can be mapped
to the different techniques. For explicit management, we believe that the only
solution is a special layer representing the generic GC. This is why we do not

provide any model.

296



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

B.2

Reference Counting

Basics

Data

Data

ID: Reference Counting.

Algorithm class: Reference Counting.
Focus class: Object-focused.
Concurrency class: Uniprocessor.

Description: A counter of references is associated with each object. When
a reference to the object is created the counter is incremented, when a
reference disappear, it is decremented. If the counter reaches zero, the

object is reclaimed. This technique does not handle garbage cycles.

structures

e ID: ObjectHeader
e Description: Information associated with each object. It is a counter.

e Contents: { int counter }

e ID: POPULAR

e Description: value used to flag a popular object. When an object is
popular, its counter never increases and never decreases. This object

becomes eternal.

e Contents: MAX_INTEGER

297



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Algorithms

1. e /D: DecrCnt

e Description: Decrement object reference counter, possibly triggering

more decrements.

e Input: object o, Output: none, Side-effects: counter for o is decre-
mented and, it reaches zero, the object is reclaimed. In this case,

DecrCnt is called recursively on children objects.
e Data and Data Structures IDs: ObjectHeader, POPULAR

e (Contents:

DecrCnt o
if (o.0ObjectHeader.counter == POPULAR) return
o.0ObjectHeader.counter—-
if (o.0bjectHeader.counter == 0)
for each reference r in o
DecrCnt r

2. e ID:IncrCnt
e Description: Increment object reference counter.

e Input: object o, Output: none, Side-effects: counter for o is incre-

mented.
e Data and Data Structures IDs: ObjectHeader, POPULAR

o Contents:

IncrCnt o
if (o.0bjectHeader.counter == POPULAR) return
o.0bjectHeader.counter++
if (o.0bjectHeader.counter == MAX_INTEGER)
o.0bjectHeader.counter = POPULAR

298



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

B.3 Mark-and-Sweep

Basics

e ID: Mark & Sweep.

e Algorithm class: Tracing non-copying.
e Focus class: Heap-focused.

e Concurrency class: Uniprocessor.

e Description: The first phase is to mark all objects reachable from the
roots (stack, registers, global variables). The second phase is to “sweep”
(i.e remove) all non marked objects. It is important to note that this M&S
algorithm uses two kinds of objects: fixed-size and mixed-size. Fixed-size
objects are small and gathered contiguously on pages. Mixed-size objects

are bigger objects and can span several pages.
Data structures

1. e ID: Page

e Description: A page can be of any size. It is usually recommended

to use a size corresponding to the system page size.

e Contents: { PAGETAG tag }

2. e ID: FixedArea

e Description: Array listing the different available sizes of fixed-size

objects. This is mainly useful for allocation.

e Contents: Array[#FixedSizes] of { FixedPage firstPage }

299



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

3. e ID: FixedPage

e Description: page of fixed-size objects. The number of objects stored
depends on the size of one object. Everything (data structure + ob-

jects) has to fit on one page.

e Contents:

{ PAGETAG tag = FIXED, // can’t be anything else

size_t size, // size of one object

FixedPage nextPage, // next page of objects of this size
Bitmap bits, // bits for marking

Pointer freeList, // local free list

Pointer objects // Area where objects are stored

4. e ID: PageMap

e Description: to keep track of large objects (which can span several
pages)

e Contents:

{ PAGETAG tag = PAGEMAP, // this is the page map!
PAGETAG tags[] // the map itself
}

5. e ID: MixedObject
e Description: information for a mixed object

e Contents:

{ Pointer begin, // nil if the beginning is not on the same page
Pointer end, // nil if the end is not on the same page
Byte mark // for the GC mark phase

}

300



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

6. °
[ ]
[ )
Data
1. °
[ ]
[ )
2. °
[ )
[ )
Actions
1. °
[ )
[ )
[ )

ID: MixedObjectArea
Description: header for a mixed objects page

Contents:

{ PAGETAG tag = MIXED, // can’t be anything else
MixedObject info[]l // table of mixed objects information
}

ID: PAGETAG

Description: type of a page

Contents: { FREE, MIXED, FIXED, PAGEMAP, FOLLOW, FIRST }
ID: FixedSizes

Description: List of sizes for small objects

Contents:

{ sizeof (Pointer), 2*sizeof(Pointer), 4*sizeof(Pointer),
8*sizeof (Pointer), 16*sizeof (Pointer), 32*sizeof (Pointer) }
// this can be changed to whatever is needed and it is possible

// to add more values (e.g 64*sizeof (Pointer))

ID: MarkSweep
Description: Main algorithm.

Input: none, Output: none, Side-effects: garbage objects are removed

from the heap.

Data Structures IDs: List (for the roots).

301



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e (Contents:

MarkSweep ()
r = getRoots()
// assumed to return a list of ranges of addresses
mark(r)
sweep ()

2. e JD: mark

e Description: Scan the addresses in the given list and mark each en-
countered object. It is a conservative scheme in that there is no way

to be 100% sure that a sequence of bytes is actually a pointer.

e [nput: List of address ranges, Qutput: none, Side-effects: live objects

are marked.
e Data Structures IDs: Page, FixedArea, FixedPage, MixedObject

e (Contents:

mark(r: List (addr_beg, addr_end))
for each range in r
for (tmp := range.addr_beg; tmp < range.addr_end;
tmp += sizeof (Pointer))

ptr := *tmp
if (not looksValid(ptr)) then continue
page := getPageFromPtr(ptr) // simple arithmetic
pageno := getPageNumber (page)

takeLastObj := false
type := pagemap[pageno].tag
// first (either page of fixed size objects
// or first page of a large object) or follow?
while (type = FOLLOW) // get to the first page
takeLastObj := true // ptr is on a large object
// beginning at the end of
// the first page
pageno := pageno - 1
type := pagemap [pageno] .tag

302



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

page := getPageFromNumber (pageno)
tag := page.tag

if (tag = FIXED) then
obj_begin := (ptr - page.objects) / page.size
if (not isMarked(obj_begin,page)) then
markSmall0Obj (obj_begin, page)
// simple arithmetic to set the right
// bit in page.bitmap
new_range := (obj_begin,obj_begin+page.size)
mark (new List(new_range))
// recursive call with only one range
// in the list
else // tag = MIXED
if (takeLastObj) then
if (page.info[LAST].mark = false) then
page.info[LAST] .mark := true
ptr_end := getEndObject(page,
page.info[LAST] .begin) ;
// follow the page until the end of
// the object is found
new_range := (page.info[LAST].begin,ptr_end);
mark (new List(new_range))
// recursive call with only one range
// in the list
else // takelLastObj = false
index := getBeginObject(page, ptr)
// object contained within the page
if (page.infolindex].mark = false) then
page.infol[index] .mark := true
new_range := (page.infol[index].begin,
page.info[index] .end)
mark (new List(new_range))
// recursive call with only one range
// in the list

©w
°

ID: sweep

Description: reclaim all non marked objects

Input: none, Output: none, Side-effects: non-marked objects are re-

claimed.

Data Structures IDs: MixedObject, FixedSize

303



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e (Contents:

sweep ()
step_pages := 1
for (p := first_page; p <= last_page; p := p + step_pages)
if (p.tag = FIXED) then
atLeastOneMarked := false;
for each obj in p.objects
if (isMarked(obj,p)) then
unsetMark(obj,p) // uses p.bits
atLeastOneMarked := true
else
insert (obj,p.freelist)
if (not atLeastOneMarked) then
unlink from FixedPage set
reclaim(p) // i.e add p to global free list
else // p.tag = MIXED
pageno := getPageNumber (p)

B.4 Localised Mark-and-Sweep

Basics

e ID: Localized Mark&Sweep.

e Algorithm class: Tracing non-copying. Inherit from Mark-and-Sweep.
e Focus class: Heap-focused.

e Concurrency class: Uniprocessor.

e Description: This is a variant of a Mark&Sweep algorithm. It tries to
improve marking performance by improving caching and paging behavior.
The heap is divided into regions and each region is completely marked before
marking another one. Mark queues are used to handle “out-of-the-region”
pointers.

Important: the purpose of the algorithm is to improve caching and paging

304



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

behavior by deciding which objects should be seen in what order. This
is what makes this algorithm special. Any adaptation has to respect the
organization in regions and the order of visit of the heap objects.

Note: in this model we describe only specific elements that are different

from the traditional Mark&Sweep model.

The elements detailed here are used to present the GC rather than give a
complete in-depth description (this is done below with data structures, data, and
actions). This is intended to be a sort of “identity card”. We see here that LMS
is a tracing non-copying, heap-focused, uniprocessor GC. The statement Inherit
from Mark-and-Sweep brings a precision about the algorithm class of the collector.
We also observe that the description can be used to provide an important clue
about the usage of this GC: its “essence” relies on a specific heap organization

that should be respected by all adaptations.

Data structures

1. e ID: TraceQueue

e Description: Stores pointers to the corresponding region. This acts

like a DGC environment entry item.

e Contents:

Pointer queue[MAX_SIZE_QUEUE]
int head

int count

int region

e Operations:

— enqueue. Input: Pointer, Output: none, Effect: new element in

the queue or, if the queue is full, context switch to a new region.

305



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

— dequeue. Input: none, Output: Pointer, Effect: one element re-

moved from the queue.
— isEmpty. Input: none, Output: Boolean, Effect: none.
— igFull. Input: none, Output: Boolean, Effect: none.

— whatRegion. Input: none, Output: region the queue is linked to,

Effect: none.

The TraceQueue data structure is the first component we detail here. LMS
is based on a regional organization of the heap. Trace queues are the basis of
the collector as they enable the delay of object marking. We give here all the
details about them. Other data structures such as the header of objects, memory
maps and so on, should be shown as well for a complete description of the GC.
However, we show only TraceQueue as it is what makes the scheme different from
Mark-and-Sweep, we can use an inheritance mechanism where LMS inherits all
from MS and describe only what is different. This “O0O-ish” organization would

allow for simple reuse of models (using UML, for example).

Data

1. e ID: queues

e Description: All queues gathered in a contiguous area. This organi-

zation is not needed (could be a list), but is likely to be more efficient.

e Contents: TraceQueue queues[Nb_Regions]

2. e ID: MAX_QUEUE_SIZE

e Description: Queues have a limited size. This is used for the size of
the array representing a trace queue at low-level. MAX_QUEUE_SIZE can
change overtime if we include a mechanism to allow dynamic evolution

of trace queues.

306



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Contents: MAX_QUEUE_SIZE == a value

We note that one variable and one constant are shown here. As we can see the
“Contents” parts are quite small, because these are usually simple entities. We
attach more importance on the description which explains the purpose of each

piece of data.

Actions

1. e [D: rootsDispatch

e Description: Initial work. Take all roots and place them into the

proper queue.

e Input: stack, static area, registers, Qutput: none, Side effect: queues

is filled with the roots.
e Data Structures IDs: TraceQueue

e (Contents:

rootsDispatch(stack, static area, registers)
roots := all pointers from stack, static area and registers.
for each r in roots
reg := regionOf (r)
if (isFull(queues[regl))
dealWithQ(queues [reg])
scanMark (r,reg)
else
enqueue (r,queues [reg])

2. e ID:dealWithQ
e Description: Visit all references in a given queue.

e Input: a trace queue g, Output: none, Side effects: recursively mark

and visit all objects pointed to by pointers in gq.

e Data and Data Structures IDs: TraceQueue.

307



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

o Algorithm:

dealWithQ(q)
while (not q.isEmpty())
p = q.dequeue();
if (not marked(*p)) scanMark(p,q.whatRegion());

3. e [D: scanMark
e Description: Mark an object and scan it for more pointers.

e [nput: Pointer p and a region currentRegion, QOutput: none, Side
effects: recursively mark objects or enqueue them if not in region

currentRegion.
e Data and Data Structures IDs: TraceQueue, Pointer, queues

o Algorithm:

scanMark (Pointer p, int currentRegion)
if (p is not valid) return
if (marked(*p)) return
mark *p
for each p’ in *p
reg := regionO0f(p’)

if (reg == currentRegion)
scanMark(p’ ,reg)
else

if (isFull(queues[regl))
dealWithQ(queues[reg])
scanMark(p’ ,reg)

else
enqueue(p’,queues[regl)

4. e ID: LMS
e Description: Main GC function.

e Input: none, Output: none, Side effects: Enqueue roots. Mark objects.

Sweep garbage thus filling free list.

308



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Data and Data Structures IDs: TraceQueue, queues, free list.

o Algorithm:

LMS )
rootsDispatch()
while (queues are not empty)
for each q in queues
dealWithQ q

Sweep() // regular sweep phase

We can see in this example that the main function (called LMS) calls other
functions such as dealWith(Q also described in this model. The syntax of the algo-
rithm description is left open. When the template is used, it might be necessary
to decide about some rules, but it can be based on conventions already used by
the group of designers.

The tracing part of the algorithm is very useful to describe (even when it is
not the main feature of the GC). Most of today’s DGCs rely on local propagation
of information and understanding the tracing model of a stand-alone DGC will

help creating an appropriate local GC.

B.5 Mark-and-Copy

Basics

e ID: Mark-and-Copy.

Algorithm class: Tracing copying.

Focus class: Heap-focused.

e Concurrency class: Uniprocessor.

309



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Description: Starting from the roots, the algorithm follows all possible
paths of pointers. Each object found is copied to another part of the mem-
ory. The algorithm modeled here uses semi-space organization. The "From’
space contains all the objects. The "To’ space is where they are copied. A
forwarding mechanism is used to take care of objects referenced by several

objects.

Data structures

1. e ID: ObjectHeader

e Description: Information about each object.

e Contents: { boolean forwarded, size_t size }

Data

1. e ID: indexTo

e Description: pointer for free space in the "To’ area

e Contents: Pointer indexTo

Actions

1. e ID: CopyObject
e Description: copy one object over to the "To’ part

e [nput: pointer p to an object, Qutput: none, Side-effects: o is moved

to the To space.

e Data & Data Structures IDs: ObjectHeader, indexTo

310



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e (Contents:

CopyObject p
newaddr := indexTo
copy(p, newaddr, header(p) .size)
header(p) .forwarded := true
*p := newaddr // saved in the first bytes of o
indexTo := indexTo + size

2. e ID: MarkCopy

e Description: most important function. Trace all objects and copy

them over to the "To’ part.

e Input: (low address, high address). This is the range of addresses to
examine, Qutput: none, Side-effects: live objects are moved to the "To’

area.
e Data & Data Structures IDs: ObjectHeader

o Contents:

MarkCopy(al,a2)
For each valid pointer p in [al,a2]

if (header (*p).forwarded)
update(p,*p)
// here, *p contains the new address of the object

else
CopyObject (p)
MarkCopy (p,p+header (*p) .size)

3. e ID: MarkCopyGC
e Description: main function

e [nput: none, Qutput: none, Side-effects: live objects are moved to the
"To’” area. garbage objects are left in the 'From’ area. Roles of the area

are reversed.

o Data & Data Structures IDs: indexTo.

311



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e (Contents:

MarkCopyGC ()
[r1,r2] getRoots ()
indexTo := pointer to the beginning of the ’To’ area.
MarkCopy(rl,r2)
reverseToFrom()

B.6 Generational GC

Basics

e ID: Generational Copying GC.

e Algorithm class: Generational.

e Focus class: Region-focused.

e Concurrency class: Uniprocessor.

e Description: This collector relies on the observation that objects tend to
die young. Therefore, the heap is divided into a young and an old gen-
eration. Objects are allocated in the young generation which is collected
very often. The old one is rarely collected. Because the young generation
is small, collection pauses will be short. We describe the particular case of

two generations: a young one and an old one.
Data structures

1. e ID: RemSet

e Description: Remembered set. List of referents to objects in a given

generation.

e Contents: List (RemSetEntry) entries

312



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Operations:

— isEmpty. Input: none, Output: boolean (entries.isEmpty()), Effect:

nomne.

2. e ID: RemSetEntry

e Description: This structure contains a reference to an object, and

the address of its referent.

e Contents: { Pointer obj, Pointer origObj }

3. e ID: Generation
e Description: Area of memory holding objects of a given age.
e Contents: { int rank, int age, Pointer begin, Pointer end }
e Operations:

— fillRatio. Input: Generation g, Output: Fill ratio for g, Effect: none.

Data

1. e ID: YGRemSet
e Description: Young Generation Remembered Set.
e Contents: RemSet YGRemSet
2. e ID: youngGen
e Description: Young generation
e Contents: Generation youngGen
3. e ID: oldGen

e Description: Old generation

e Contents: Generation oldGen

313



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4. °
Actions
1. °
2. °

ID: FILL.THRESHOLD
Description: Value that determines if a collection is needed.

Contents: FILL_THRESHOLD == a value

ID: collectYoung

Description: Collection of the young generation.

Input: none, Qutput: none, Side-effects: young garbage is reclaimed.
Data € Data Structures IDs: Generation, youngGen, YGRemSet.

Contents:

collectYoung()
for each r in root
if ((youngGen.begin <= r) and (r < youngGen.end))
scan_and_promote(r) // Mark&Sweep or Mark&Copy
for each p in YGRemSet
if ((youngGen.begin <= p) and (p < youngGen.end))
scan_and_promote(p) // Mark&Sweep or Mark&Copy

ID: collectOld

Description: Collection of the old generation. It is actually a collection

of the whole heap.

Input: none, Output: none, Side-effects: all garbage is reclaimed.
youngGen becomes automatically empty.

Data € Data Structures IDs: YGRemSet.

Contents:

collect01d()
call normal collector (Mark-and-Sweep or Mark-and-Copy)
promote all live young objects
empty YGRemSet

314



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

3. e /D: GenGC

e Description: Main garbage collection function. It calls either collectYoung
or collect0ld. It is called when memory in the young generation is
running out. We add a verification to call the old collection if neces-

sary.

e [nput: none, Qutput: none, Side-effects: part of all garbage is re-

claimed.
e Data & Data Structures IDs: none.

e (Contents:

GenGC()
if (fillRatio(oldGen) > FILL_THRESHOLD)
collect01d()
else
collectYoung()

B.7 Mature Object Space

Basics

e ID: Mature Object Space (MOS).

e Algorithm class: Age-based and Incremental.
e Focus class: Region-focused.

e Concurrency class: Uniprocessor.

e Description: Old generations in a generational scheme are usually big.
Collecting them leads to a disruptive process. MOS proposes a way to
place a bound on collection time by limiting the size of space treated at

each collection of the old generation. It will no longer be collected at once.

315



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Instead, small portions will be collected, thus providing an incremental

scheme.

Data structures

1. e ID: Car
e Description: Basic block holding objects in the old generation.

e Contents:

{
int rank, Pointer begin,
RemSet remset, Train owner,
Car next, Car prev

}

2. e ID: Train

e Description: Gather cars to reclaim cycles, created to hold related

data structures.
e Contents: { List(Car) cars, RemSet remset }
e Operations:

— % ID: updateRemSet

* Input: none, Output: none, Side-effects: the field remset is com-

puted from the remsets of all the train’s cars.
— % ID: reclaimTrain

*x Input: a train t, Output: none, Side-effects: Reclamation of a train

as a whole.

3. e ID: RemSet
e Description: Remembered set. List of referents to objects of this car.

e Contents: List (RemSetEntry) entries

316



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Data

Operations:
— ID: isEmpty
— Input: none, Output: boolean (entries.isEmpty()), Side-effects: none.

ID: RemSetEntry

Description: This structure contains a reference to an object, the

address of its referent, and the address of the car of the referent.

Contents: { Pointer obj, Pointer origObj, Pointer origCar }

ID: Generation

Description: Area of memory holding objects of a given age.

Contents: { int rank, int age, Pointer begin, Pointer end }

ID: nextCar

Description: Designate the next car to deal with.

Contents: Car nextCar

ID: SIZECAR

Description: Size of a car, each car has the same size.

Contents: SIZECAR == a value

ID: YGRemSet

Description: Young Generation Remembered Set.

Contents: RemSet YGRemSet

ID: youngGen

Description: Young generation

Contents: Generation youngGen

317



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Actions

1. e /D: collectCar

e Description: Collection of a car. This function is called each time a

collection of the old generation is needed.

e Input: none, Qutput: none, Side-effects: All live objects are moved
from the car to others. The chosen car is reclaimed at the end. The

train owning the car may be reclaimed too.
e Data Structures IDs: Car, Train.

e (Contents:

collectCar()
// get car to collect. Cars are usually ordered from
// the oldest to the youngest.
¢ := nextCar
nextCar := nextCar.next

// Collect!

if (checkTrainToReclaim(c.owner))
reclaimTrain(c.owner)

else
collectFromRoots(c)
collectFromOtherTrains(c)
collectFromOtherCars(c)
reclaimCar(c)

2. e JD: checkTrainToReclaim

e Description: If the remset for the train is empty, there is no external
pointer to objects in this train. This means these objects are not

reachable, the train can thus be safely reclaimed.
e Input: a train t, Qutput: boolean, Side-effects: none.

e Data Structures IDs: Train, RemSet.

318



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Contents:

checkTrainToReclaim(Train t)
return t.remset.isEmpty(Q);

ID: collectYoung

Description: Collection of the young generation. With MOS, there is

only two generations.
Input: none, Output: none, Side-effects: young garbage is reclaimed.
Data & Data Structures IDs: Generation, youngGen, YGRemSet.

Contents:

collectYoung()
for each r in root
if ((youngGen.begin <= r) and (r < youngGen.end))
scan_and_promote (r)
for each p in YGRemSet
if ((youngGen.begin <= p) and (p < youngGen.end))
scan_and_promote (p)

ID: collectFromRoots

Description: Scan roots pointing to a given car and move objects to
a younger train. The following operations are assumed: rootsToCar,
which gives the list of roots pointer to a car, moveToTrain, which
moves an object to a given train, and getYoungerTrain, which finds

a younger train.

Input: a car ¢, Qutput: none, Side-effects: Root-reachable objects are

moved to another train.

Data Structures IDs: Car, Train.

319



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Contents:

collectFromRoots(c)
for each r in rootsToCar(c)
moveToTrain(r, getYoungerTrain(c.owner))

ID: collectFromOtherTrains

Description: Find references coming to a given car from trains oth-
ers than the car’s owner. Move objects accordingly. The following
functions are assumed: TrainsToCar, which obtains, from the remset
associated to a given car c, all pointers from other trains to an object

in ¢, and moveToTrain, which moves an object to a given train.

Input: a car c, Qutput: none, Side-effects: Objects reachable from

other trains are moved to those trains.
Data Structures IDs: Train, Car.

Contents:

collectFromOtherTrains(c)
for each (p,t) in TrainsToCar(c)
moveToTrain(p,t)

ID: collectFromOtherCars

Description: Find references coming to a given car from trains oth-
ers than the car’s owner. Move objects accordingly. The following
functions are assumed: CarsToCar, which obtains, from the remset
associated to a given car c, all pointers from other cars to an object
in ¢, and moveToCar, which moves an object to an arbitrary car in the

same train.

Input: a car ¢, Output: none, Side-effects: Objects reachable from

other cars in the same trains are moved to any car in the train.

320



Practical Aspects of Interacting Garbage Collectors

Yannis Chicha

e Data Structures IDs: Car.

e (Contents:

collectFromOtherCars(c)
for each p in CarsToCar(c)
moveToCar (p)

321



Appendix C

Models for common Distributed

Garbage Collectors

C.1 Distributed Reference Counting

Basics

e ID: DRC.
e Algorithm class: Distributed Reference Counting.
e Inherits from: none.

e Description: This is a standard, simple distributed reference counting

algorithm. There is no optimization.
e Reference paper: none.
e Assumptions:

1. — Type: Opaque addressing.
— Comments: this implies that the mutator takes care of increment-

ing counters on entry items when an object is exported.

322



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Conditions of use: This algorithm can be used in all environments.
e Addressed issues: Distributed acyclic garbage, safety.
e Supplies:

1. — Entity: Entry.
— Description: Message to decrement opaque addressing items.
Note that there is no increment message (more details in the main

algorithm).

e External Algorithms: none.

Main algorithm

This algorithm is completely localized. Decrement messages allow to maintain
counters on entry items. Identification and reclamation of garbage is the re-
sponsibility of each local collector. Counters are incremented when the mutator
exports an object to a remote node. It is up to the local collector to implement
the appropriate procedure to invoke when the counter of an entry item reaches

Zero.

Protocols

1. e ID DECREMENT

e Description Message to decrement the counter of a specific entry

1tem.
e Local actions needed reclamation of an exit item.

e Local actions triggered decrement of a counter.

323



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Contents

— Number of sites 2

— Ordered list of messages: (A,B,DECREMENT, [entry_item])

e Set of sites {A B}

Generic GC for DRC

Basics

e ID: Generic GC for DRC

Algorithm class: None specific.

Focus class: None specific.

e Concurrency class: None specific.

Description: This generic GC expresses very few requirements, which

explains why DRC algorithms are widespread in practical environments.

Data structures

1. e ID: Entryltem

e Description: Proxy to handle incoming pointers.

Contents: { int counter, Pointer object }

o
.

ID: Exitltem

Description: For outgoing pointers. It is a proxy for a remote object.

Contents: { RemoteNode node, Pointer remoteEntry }

324



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Actions

1. e /D: Increment

e Description: Called by the mutator when exporting a reference to an

object.

e Input: Pointer p, Output: Entryltem, Side-effects: entry item e corre-
sponding to p is found and its counter is incremented. If there is no

such e, a new item is created with a counter of 1.
e Data Structures IDs: Entryltem.

e (Contents:

Increment (Pointer p) {
e := findEntryItem(p);

if (e !'= nil) e.incrCounter();
else e := createNewEntryItem(p);
return e;

2. e JD: Decrement

e Description: When an exit item is reclaimed on one node, the counter
of its corresponding entry item on a remote node should be decre-
mented. This function is called when the DECREMENT message is
received. A local GC specific action is possibly taken if the counter

reaches 0.

e Input: Entryltem e, Output: none, Side-effects: e€’s counter is decre-

mented.

e Data Structures IDs: Entryltem.

325



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e (Contents:

Decrement (Entry item e) {
e.decrCounter();
if (e.counter = 0) local_gc_specific_action();

C.2 GCW

Basics

e ID: GCW (Garbage Collecting the World)
e Algorithm class: Augmented DRC/DRL
e Inherits from: DRC

e Description: GCW is a distributed reference counting algorithm using
mark propagation to reclaim dead distributed cycles. It relies on a DTD
algorithm to discover global stability. Although it is not treated in this
model, GCW also proposes an organization of the nodes in groups. This

allows for scalability and failure handling.

e Reference paper: Garbage Collecting the World, B.Lang, C.Queinnec,
J.Piquer, POPL’92 Proceedings.

e Assumptions: none. A complete model of GCW should assume neat

failures.
e Conditions of use: This technique works best with local tracing GCs.

e Addressed issues: failure handling, distributed cycles

326



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Supplies

1. — Entity: Entry item decrement.
— Description: message allowing to maintain the counter of point-
ers on an entry item.
2. — Entity: Hard marking propagation.

— Description: this acknowledges an entry item to be part of a

root-reachable distributed chain of pointers.
e External Algorithms

1. — ID DTD.
— Description Any DTD algorithm is allowed.

— Purpose Find out global stability according to local stability rule:
after a local GC, no exit item has been marked HARDer than

during previous GC.

Main algorithm

Basic algorithm is a DRC algorithm:

EraseRemotePointer => send decrement message

To reclaim garbage cycles:

Uses opaque addressing: entry items and exit items
Initialization: All entry items are marked SOFT
Local propagation: by each GC

Global propagation:

- HARD marks are sent as soon as possible

327



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Global stability detection:
e rely on a DTD algorithm.
e once discovered, garbage cycles contain only SOFT items.

e Asynchronously, each node sets the counters of SOFT entry items to zero.

This allows to break garbage distributed cycles.

Protocols

1. e ID Decrement entry item

e Description When an exit item has to be reclaimed, a decrement

message is sent to the corresponding remote node.
e Local actions needed dead exit item detection.

e Local actions triggered decrement the counter of an entry item.
There is a possible reclamation of an entry item if the counter reaches
zero (local reference counting collectors), otherwise reclamation is done

at a later date when a local collection occurs.
e Contents

— Number of sites 2

— Ordered list of messages: (A,B,DECR, [entry addr])

e Set of sites { A = origin, B = destination }

2. e ID Harden entry item

e Description An exit item has been marked HARD, the corresponding
entry item needs to be informed. This is the global propagation step.

It can be batched.
e Local actions needed hard mark assigned to an exit item.

e Local actions triggered entry item marked hard.

328



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Contents

— Number of sites 2

— Ordered list of messages: (A,B,HARD, [entry addr])

e Set of sites { A = origin, B = destination }

Generic GC for GCW

Basics

e ID: Generic GC for GCW

Algorithm class: Tracing.

Focus class: Heap-focused.

e Concurrency class: Uniprocessor.

Description: The tracing characteristic of this GC is necessary for local

mark propagation.

Data structures

1. e ID: Entryltem

e Description: Proxy to handle incoming pointers. It inherits from

DRC’s entry item. We only show the new field: mark.
e Contents: EntryItem: DRC.EntryItem { Marks mark }

2. e ID: Exitltem

e Description: For outgoing pointers. It is a proxy for a remote object.

It inherits from DRC’s exit item.

e Contents: ExitItem: DRC.ExitItem { Marks mark, Marks oldmark }

329



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Data
1. °
Actions
1. °
2. °

ID: Marks

Description: Used by items. NONE is used to initialize exit items

before a local propagation.

Contents: { NONE, SOFT, HARD }

ID: LocalPropagation - Solution 1

Description: Assign a mark to exit items according to reachability

from entry items and/or roots.

Input: none, Qutput: none, Side-effects: Marks on exit items are pos-

sibly changed.
Data Structures IDs: Entryltem, Exitltem, Roots
Contents:

(a) V ex € Exitltems, oldmark(ex) := mark(ex), mark(ex) := NONE

(b) V en € Entryltems s.t. mark(en) = SOFT, V ex € ExitsReach-
ableFrom(en), mark(ex) := SOFT

(c) V en € Entryltems s.t. mark(en) = HARD, V ex € ExitsReach-
ableFrom(en), mark(ex) := HARD

(d) ¥ r € Roots, V ex € ExitsReachableFrom(r), mark(ex) := HARD

ID: LocalPropagation - Solution 2

Description: Assign a mark to exit items according to reachability

from entry items and/or roots.

Input: none, Qutput: none, Side-effects: Marks on exit items are pos-

sibly changed.

330



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Data Structures IDs: Entryltem, Exitltem, Roots
o (Contents:

(a) V ex € Exitltems, oldmark(ex) := mark(ex), mark(ex) := NONE
(b) ¥ r € Roots, V ex € ExitsReachableFrom(r),

mark(ex) := HARD
(c) V en € Entryltems s.t. mark(en) = HARD,

V ex € ExitsReachableFrom(en), mark(ex) := HARD

(d) V en € Entryltems s.t. mark(en) = SOFT,
V ex € ExitsReachableFrom(en),
if (mark(ex) = NONE) then mark(ex) := SOFT

3. e ID: Stability detection

e Description: Detects local stability of a node to support termination
detection. A node reaches stability when local propagation does not
change the marks on exit items. To achieve this, old marks on exit
items are necessary (this is an implementation of the properties ¢1 and
t2 used below). Global stability is detecting via the DTD algorithm,

which relies on local stability detection.
e Input: exit items, Output: boolean (stable or not), Side-effects: none.
e Data Structures IDs: Entryltem, ExitItem, Roots
e (Contents:

— MarksExits(t1) = MarksExits(t2) where t1 = time begin Propaga-

tion and t2 = time end Propagation

— and (3 no rev_msg m, s.t. m € HARD_MSG
A mark(entry(m)) # HARD)

— and (d no sent_msg m’, s.t. m’ € HARD_MSG)

331



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

C.3 Migration-based

Basics

e ID: Controlled Migration.
e Algorithm class: Augmented Distributed Reference Listing.
e Inherits from: DRL.

e Description: This DGC has been created for databases and persistent
systems, but can be adapted to other systems. The idea is to migrate all
objects that are likely to be part of a distributed garbage cycle to a single
node, where the local GC can reclaim it. Heuristics, based on estimated

distances to a root object, are used to determine if an object is in this case.

e Reference paper: Collecting Cyclic Distributed Garbage by Controlled
Migration, U.Maheshwari, B.Liskov, Proceedings of PODC’95 Principles of
Distributed Computing.

e Assumptions:

1. — Type: Underlying system requirement: no unnecessary migration.

— Comments: Only garbage objects should be migrated. It is im-

portant to maintain good performance in some database systems.

e Conditions of use: Migration should be possible (no local conservative

systems).

e Addressed issues: scalability, distributed cycles, speed.

332



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Supplies

1. — Entity: Distance
— Description: Value used to determine if a remotely reachable
object is still reachable. If the distance is above a certain thresh-
old, then the object becomes a candidate for migration. The final
Destination is then estimated to reduce the number of migrations

of the same object.

2.  — Entity: Destination

— Description: Value used to determine where an object shall be
migrated. The idea is to estimate the node where objects should
be evacuated first to minimize the number of migrations of the
same object. For example, if the node Z is the final destination
node and the object o on node D has to be migrated, it would be
more efficient to send o directly to Z rather than sending it to E,
where other objects part of the cycle are located, then F then G,
and finally Z.

e External Algorithms: none.

Notes: We can see two important assumptions. “No unnecessary migration”
constitutes a basic requirement that we need to keep in mind while designing the
system. It is part of the essence of the algorithm, and, without it, the algorithm
does not have the same meaning. “Migration should be possible” is of a more
practical nature. If there is no system support for migration, the DGC can not
perform properly.

The “Supplies” fields described here are both essential notions used by this
DGC algorithm. Distance and Destination allow the collector to discover garbage

cycles and know where to migrate its components. We can see that information

333



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

supplied to the local GC is very important in this distributed collector. Designers

of the local GC should be aware of these values.

Main algorithm

e DRL is the basic system used to reclaim non-cyclic garbage and provide
some kind of fault-tolerance (but it is not detailed here). inlists correspond

to entry items and outlists to exit items.

e Local propagation. Usually performed using the local GC. Distances are
computed and propagated from roots and inlists to outlists. Destinations

are also computed and propagated by this mechanism.

e Global propagation. After a local GC, outlists are sent to their corre-

sponding nodes along with the distances and destinations.

e Migration. When the distance value of certain objects is reached, and the

destination has been computed, objects are migrated.

Notes: The main algorithm is an overview of the global strategy. Its purpose is
to explain the essence of the DGC. We find three elements here. First, the basic
strategy is a Distributed Reference Listing, which means that we can use any
DRL strategy that will complies with the rest of the algorithm. For example, we
could use Moreau’s HDRC [63] or Shapiro’s SSPC [81]. The second element is the
distance that is computed by propagation. The third one is the destination also
computed by propagation of information. We need to keep these three important

elements in mind to really understand this DGC.

334



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Protocols

1. e ID OUTLIST

Description This is a message used to send an outlist to a node, which

will use it to update its inlist.

Local actions needed local propag

Local actions triggered receive OUTLIST

Contents

— Number of sites 2

— Ordered list of messages: (A,B,0UTLIST, [outlist])

Set of sites A, B

Notes: This DGC features very simple protocols. Local GCs send their “out-
list”s (which would correspond to sending exit items) to corresponding nodes.
This message is essential to the whole process, because it informs remote nodes
about remote reachability of their objects. We see that local_propagation (see
Generic GC in Section C.3) is the action that will trigger this message and, of
course, receive_QUTLIST will replace the old “inlist” by the received “outlist”.
The message itself (see Contents above) is straightforward. No acknowledg-
ment message is specified in the strategy although it could be implicit. This
usually depends on the environment. If messages do not need acknowledgment,
this means that the environment is safe. This allows assumptions about failures,

thus helping to choose the DRL algorithm needed as a basis here.

335



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Generic GC for Migration-based
Basics

e ID: Generic GC for Controlled Migration DGC.

Algorithm class: Tracing.

Focus class: Heap-focused.

e Concurrency class: Uniprocessor.

Description: This GC essentially propagates and computes distances and

destinations. It triggers migration of objects when necessary.

Notes: The Generic GC is using the model described for Stand-alone collectors.
This DGC requires a tracing collector, which is reflected by the algorithm class
of this generic collector. Beyond this model, more details about requirements
for the local collector can be found in the literature indicated in the “Reference
paper” section of the DGC model. Remember that this model does not intend to
teach about a collector, but to organize its characteristics in a standard way for
design and implementation.

Data structures

1. e ID: inlist

e Description: List of references to public objects. This corresponds

to entry items in other DGC schemes.

e Contents:

{ Pointer object,
List of struct {
Node node, // where the pointer comes from
Distance distance,
Destination destination }

336



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

2. e ID: outlist

e Description: Records pointers to remote objects. This is known as

exit items in other DGC schemes.

e Contents:

List of struct {
Node node, Pointer object,
Distance distance, Destination destination }

Note: There is nothing surprising here. We already mentioned that most DGCs
require local proxies, this is the case here. inlists hold “entry items” and
outlists hold “exit items”. These data structures have to be added to the
stand-alone GC in order to form the local GC.
Data

We first describe two important notions of this DGC algorithm: Distance
and Destination. Although their types are not complex, they are listed here to

describe their purpose in detail.

1. e ID: Distance

e Description: The notion of distance is used to find out what objects
are part of garbage cycles. The distance is based on the knowledge of
the location of root objects. When an object is pointed to by a rooted
object in the same node, the distance between them is 0, when this
object is on a node A, the distance is 1. If a rooted object 0; on node
A points to 02 on node B and 0y points to 03 on node C, the distance
for o3 is 2. Distances are propagated from one node to another, and
the distance value assigned to an object is the smallest distance to
that object. Garbage cycles will hold objects with potentially infinite
distances as there will be no root to keep the value from increasing as

this goes from one node to another.

337



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Contents: typedef int Distance;

2. e ID: Destination

e Description: Destinations are evaluated according to heuristics about
the cycle being detected. Information about the possible final desti-
nation for a suspected garbage cycle is propagated from node to node,
using the destination files in inlist and outlist. When Threshold?2 (see
below) is reached during propagation, it means that the final destina-

tion is likely to have been discovered. Migration can occur.

e Contents: typedef NodeID Destination;

3. e ID: Threshold

e Description: Chosen value that will serve as a threshold to decide
whether or not objects are to be migrated because they might belong

to a garbage cycle.

e Contents: Threshold = A_CHOSEN_THRESHOLD

4. e ID: Threshold2

e Description: Chosen value that will serve as a threshold to decide
when the final estimated destination for the objects of this garbage cy-
cle has been determined and propagated. Once this is done, migration

can be done. This value is thus very important.

e Contents: Threshold2 = A_CHOSEN_THRESHOLD

D. e ID: Inlist
e Description: Vector of inlists.

e Contents: Inlist = Vector inlist;

338



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Actions

ID: Outlist

Description: Vector of outlists.

Contents: Qutlist = Vector outlist;

ID: batch_migration

Description: Vector of objects used to record all objects that should

be migrated at once (see reference paper for details).

Contents: batch_migration = Vector Object

ID: receive_ OUTLIST

Description: Function called when an OUTLIST message is received.
Its purpose is to update the corresponding inlist using the list that
has been received. We assume that the list given as a parameter is
sorted by distance. The operation convert_0UTLIST_TO_INLIST is not

complex, it simply updates the corresponding inlist with new values.

Input: newly received outlist, Output: none, Side-effects: inlist was

updated.
Data € Data Structures IDs: inlist, outlist

Contents:

receive_0OUTLIST(outlist new_list)
inlist := getInlist(new_list.object);
convert_QUTLIST_TO_INLIST(new_list,inlist)

ID: local_propagation

Description: Main function. Local propagation can be easily inte-

grated with a tracing collector like Mark-and-Sweep. Its purpose is

339



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

to propagate and update distance and destination values from local
roots and inlists to outlists. The outlist is recomputed at each call
of this function. We assume the existence of the low-level operation
migrate(o,A,B), which migrates object o from node A to node B. It

takes care of all the details of pointer forwarding and copy of data.

e [nput: none, Output: none, Side-effects: the outlist is possibly updated

with new distances and destinations.
e Data & Data Structures IDs: outlist, inlist, Distance, Destination.

o Contents:

local_propagation()
// init
for each node in Nodes { Outlist[node] := empty }
// Local roots
propagate_local_roots()
// inlist
batch_migration := propagate_inlists()
// Global propagation
for each node in Nodes
if (batch_migration[node] != empty)
migrateALL (batch_migration[node], current_node, node)
// This will migrate all objects in the list
// batch_migration[node], this operation calls
// ’migrate(o,A,B)’
send (node, OUTLIST, Outlist[node])

3. e [D: propagate_local roots

e Description: helper function for local_propagation. Purpose: trace ob-
jects from local roots and propagate distance values to the outlist.
Local objects have a (non-recorded) distance value of 0 and outlists

will be updated with a distance value of 1.

e Input: none, Qutput: none, Side-effects: root-reachable outlist ele-
ments are updated with a distance of 1 and an estimation of the des-

tination.

340



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Data Structures IDs: outlist

e (Contents:

propagate_local_roots()
For each local root r
visit all reachable and not already visited objects o
from r recursively
If o has a reference REF to a remote object:
add (Outlist[node(REF)],
[REF, // reference
1, // distance
max (rank (node (REF)), rank(current_node))]
// estimation of destination
// add maintains Outlist[node] sorted in increasing
// order of distances

4. e ID: propagate_inlists

e Description: helper function for local_propagation. Purpose: trace ob-
jects and propagate distance values to the outlist. Distance values are

given by the inlists entries.

e Input: none, Output: none, Side-effects: outlist elements reachable
from inlist elements are updated w.r.t their distances and an estimation

of the destination.
e Data Structures IDs: inlist, outlist.

o Contents:

propagate_inlists()
for each node
batch_migration[node] := empty

// inlist is sorted in increasing order of distances
For each node
For each Inlist[node] entry ei

propagated_distance := ei.distance

341



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

if (ei.destination != -1)
propagated_destination := ei.destination
else propagated_destination := rank(current_node)

// Migration mode?

// -- migration mode level 1: objects are likely garbage,
// -- destination has to be determined

migration_mode := (ei.distance >= Threshold)

// -- migration mode level 2: destination is probably

// —-- determined by now

actual_migration_mode := (ei.distance >= Threshold2)

// Tracing

visit all reachable and not already visited objects o
from ei.object recursively
if (actual_migration_mode)
add(batch_migration[propagated_destination], o)
// ready to be migrated
else if (migration_mode) {
if (o has a reference REF to a remote object)
and (REF is not already in Outlist[node(REF)]) {
add (Outlist[node(REF)],
[REF, propagated_distance + 1,
max (rank (node (REF)) ,propagated_destination)])
// add maintains Outlist[node] sorted in increasing
// order of distances
}
} else {
if (o has a reference REF to a remote object)
and (REF is not already in Outlist[node(REF)]) {
add (Outlist [node(REF)],
[REF, propagated_distance + 1, -1])
// we don’t care about destination at this point
// add maintains Outlist[node] sorted in increasing
// order of distances

return batch_migration;

We have shown here most of the required operations, which should be enough

to illustrate the “Actions” part of a Generic GC. We often found that algorithms

342



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

are well-detailed in the paper presenting the collector. If this is not the case, de-
signers have to do the work and interpret what has not been explicitly detailed.
The templates we created make it easier to list the different elements appropri-
ately. Descriptions are important because they explain how each action can be
used and in what context. For example, we can see that the operation called

migrate should be available in order for local_propagation to work properly.

C.4 Cyeclic version of SSPC

Basics
e ID: Cyclic SSPC
e Algorithm class: Augmented DRL
e Inherits from: SSPC.

e Description: SSPC (Stub-Scion Pair Chain) is a distributed reference list-
ing garbage collector. It uses timestamps and timing thresholds to han-
dle late messages and detect crashed spaces (known as nodes in other
DGCs). This cyclic extension uses timestamps to reclaim distributed cycles
by propagating constantly increasing time marks to reachable objects, while
garbage objects are marked with constant timestamps. A “time server” is

used to compute a global threshold to reclaim the garbage.
e Reference papers:

— “An implementation for complete asynchronous distributed garbage

collection”, Fabrice LeFessant, lan Piumarta and Marc Shapiro, PLDI’98.

— “SSP Chains: Robust, Distributed References Supporting Acyclic Garbage
Collection.” , Marc Shapiro, Peter Dickman and David Plainfossé, Rap-
port de Recherche INRIA, 1992.

343



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Assumptions:

1. — Type: Global timing mechanism.

— Comments: Use of a Lamport clock. See External algorithms for

details.

Conditions of use: This scheme is not really scalable for two reasons: 1.
it uses a DRL and 2. it relies on a server. For these reasons, this DGC is
better suited for local distributed systems. It is important to note that this

DGC allows and handles failures.

Addressed issues: fault tolerance, distributed cycles.

Supplies:

1. — Entity: scion.
— Description: A timestamp is provided for garbage cycle detec-
tion.
2. — Entity: all scions.
— Description: A list of remote live stubs is provided to help update
remote reachability information.
3. — Entity: space.
— Description: A global minimum timestamp (called globalmin)

is provided to each space for comparison with timestamps on scions

and stubs.
e External Algorithms

1. — ID: Globalmin update.

— Description: A dedicated space, called detection server, computes

the global threshold use to reclaim garbage cycles. This value is

344



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

set using ’localmin’ values sent by all spaces participating to the
detection of distributed garbage cycles. This operation is called
each time a new localmin value is received from a space via a

LOCALMIN message (see Protocols).

— Input: space and value of received localmin, Qutput: none, Side-

effects: possible new value for globalmin.
— Data Structures IDs: localminl]: array to store localmin values

— Contents:

GlobalminUpdate(space, localmin_val)

localmin[space] := localmin_val
globalmin := min(localmin[])
2. — ID: Lamport clock.

— Description: Distributed clock to establish consistent times among

all nodes of a network.
— Purpose: A common global timing system is needed to reclaim
garbage cycle. A Lamport clock is used on each relevant message
(i.e the ones corresponding to date propagation) to provide this
global time.
3. — ID: Negotiation.
— Description: distributed algorithm to establish a global consen-

sus.

— Purpose: Find out what spaces agree to participate to distributed

garbage cycles detection.

Main algorithm

The algorithm is based on a traditional reference listing technique, where opaque

addressing is used to list the identifiers of the spaces referring to a given object. In

345



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

this DGC, a specific terminology is used for opaque addressing entities: a scion
corresponds to an entry item and a stub corresponds to an exit item.

Initialization
e Set up detection server

e Negotiation to obtain the list of participating spaces (see Ezternal Algo-

rithms).
Local propagation

e Dates are propagated from scions to stubs and the current date is propa-

gated from local roots to stubs.

e The localmin value is computed according to these newly propagated dates

after each local propagation.
Remote propagation
e After a local GC, dates assigned to stubs are sent to corresponding scions.
e The localmin value is sent to the “detection server”.
Globalmin
e Computed by the detection server.
e Minimum of all localmin values sent to the server.
e It represents the threshold used to reclaim garbage cycles.
Localmin

e This value is a threshold computed locally. It represents the minimum date

that has to be protected on a given space.

e Computed after each local propagation and sent to the detection server.

346



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Protocols

1. e ID LOCALMIN

e Description Message sending the localmin value of a space to the

Detection Server.
e Local actions needed compute_localmin
e Local actions triggered receive localmin
e Contents

— Number of sites 2

— Ordered list of messages:
(A,DetectionServer,LOCALMIN, [gc_date,localmin])

(DetectionServer,A,ACK, [gc_date,globalmin])

e Set of sites {A,DetectionServer}

2. e ID STUBDATES

e Description This message propagates timestamps between participat-
ing spaces. This message is also used by the original SSPC algorithm,
because it allows to specify what stubs are still reachable after a local

collection on the sender space. This is used to update scions.
e Local actions needed local gc
e Local actions triggered receive_stubdates
e Contents

— Number of sites 2

— Ordered list of messages:

(A,B,STUBDATES, [date, List({stub_id, stubdatel})])

e Set of sites A, B

347



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

3. e ID THRESHOLD

e Description Date of the last STUBDATES message received. This is

used to update the cyclicthreshold value.
e Local actions needed Receive ACK for LOCALMIN
e Local actions triggered receive_threshold
e Contents

— Number of sites 2

— Ordered list of messages: (A,B,THRESHOLD, [date])

e Set of sites A, B

4. e ID ACK
e Description regular acknowledgment message.
e Local actions needed none
e Local actions triggered none specific
e Contents

— Number of sites 2

— Ordered list of messages:(A,B,ACK, [message_id])

e Set of sites A, B

348



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Generic GC for the Cyclic version of SSPC

Basics

e ID: Generic GC for Cyclic SSPC.

Algorithm class: Tracing.

Focus class: Heap-focused.

e Concurrency class: Uniprocessor.

Description: This is a tracing GC, because local GCs are required to

propagate dates from scions to stubs.

Data structures

1. e ID: Scion

e Description: This is the equivalent of an entry item. We can use
two types of structures: either a scion contains a list of referents with
corresponding timestamps or there exists one scion per referent to this

object. The second solution seem to have been chosen in the reference
paper.

e Contents:

{ Pointer obj, SpacelD referent,
Date scionstamp, Date scion_date, Date olddate }

2. e ID: Stub

e Description: This is the equivalent of an exit item.

e Contents:

{ SpaceID spacelD, Scion scion, Date stub_date, Date olddate }

349



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

3. e ID: CyclicThresholdToSend

e Description: Stores cyclicthreshold for each space at different dates.
Each date is the date of a GC. Indeed, cyclicthresholds are saved in
cyclicthresholdtosend before each local GC. A particular entry is re-
moved when an ACK message is received either for this date or for
a more recent one. The values of the most recent removed entry are
sent to the corresponding spaces in THRESHOLD messages. This set

is ordered in increasing dates (oldest date first).

e Contents: Map(Space, [Date date, Date cyclicthreshold]);

4. e ID: CyclicThreshold

e Description: Last GC date received from each space in a STUB-
DATES message. It is used in a msg THRESHOLD that triggers a

“purge” operation of the protected set.

e Contents: Date CyclicThreshold[Spacel

D. e ID: Space
e Description: Data Structure representing a “Space”.

e Contents: { SpaceID id, List Stub stubs, List Scion scions }

6. e ID: ProtectNow

e Description: It is a vector, indexed on spaces, that record the mini-
mum of stub olddates. Only stubs for which stubdate is different from
olddate are used in the computation. Furthermore, only stubs refer-
encing objects on a given space can be used. For example, to compute

ProtectNow[spacel], only stubs linked to scions on spacel are used.

e Contents: Date ProtectNow[Spaces]

350



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Data

ID: ProtectedSet

Description: Array, indexed on spaces, which records a list of differ-
ent “protect_now” values that need to be protected. This structure is
used to compute ’localmin’. It stores, per space, a list of protect_now
dates at different times. Values are kept until we are told (via a
THRESHOLD message) that a protect_ now value at a certain date
has been taken into account (i.e propagated). On the corresponding
space, local propagation must have occurred and localmin must have
been computed and sent. It protects all dates, per space, that have

not been treated.

Contents:

Stack([Date protect_now, Date gc_date]) ProtectedSet[Spaces]

ID: stubs

Description: stubs for the current space

Contents: List (Stub) stubs

ID: scions

Description: scions for the current space

Contents: List(Scion) scions

ID: spaces

Description: Set of spaces known at a particular space. It contains

various information about protected timestamps.

Contents: List(Space) spaces

351



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

10.

ID: globalmin

Description: Threshold value used by each local GC to know whether
or not a stub should be scanned according to its stubdate. It is com-

puted by the “detection server”

Contents: Date globalmin

ID: localmin

Description: Threshold value computed by each local GC and sent

to the “detection server” to compute globalmin.

Contents: Date localmin

ID: local_roots

Description: List usually composed of pointers found on the stack,

in the registers, and static area.

Contents: List (Pointer) local_roots

ID: current_date

Description: date managed by a Lamport clock.

Contents: Date current_date

ID: cyclicThresholdToSend

Description: set of cyclic thresholds.

Contents: CyclicThresholdToSend cyclicThresholdToSend

ID: cyclic_threshold

Description: current cyclic threshold for this space

Contents: CyclicThreshold cyclic_threshold

ID: protected_set

Description: protected set for this space

352



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

11. °

Contents: ProtectedSet protected_set

ID: protect_now
Description: protect_now set for this space

Contents: ProtectNow protect_now

ID: receive STUBDATES

Description: This operation updates the vector of scions on a given
space using a list of reachable stubs. The algorithm was taken directly
from the paper.
Input:

— space, ID of the current space.

— gc_date, date of last local GC, used to update the threshold.

stub_set, vector of stubdates to update scions.
— threshold, value used to reclaim garbage scions.
Output: none.

Side-effects: scions are updated with more current dates. Scions that
are no longer referenced by any stubs are removed (by not being added

to the new set of scions).
Data € Data Structures IDs: space, scion, cyclic_threshold, SpacelD.

Contents:

receive_STUBDATES(space, gc_date, stub_set, threshold)
// space is a SpaceID
increase cyclic_threshold[space] to gc_date
old_scion_set := space.scions
space.scions := {}

353



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

for all scion in old_scion_set
(found, stub_date) := find(scion, stub_set)
if found or scion.scionstamp > threshold
if scion.scionstamp < threshold
increase scion.scion_date to stub_date
space.scions.add(scion)

2. e ID:receive THRESHOLD
e Description: Update of the threshold used to detect garbage cycles.
o Input:

— space, ID of the current space.

— cylic_threshold, new date.
e Qutput: none.

o Side-effects: old protected dates are removed, thus allowing corre-
sponding scions and stubs to be removed if they have not been updated

with a new timestamp.
e Data & Data Structures IDs: protected_set, protect_now, space.

e (Contents:

receive_THRESHOLD(space, cyclic_threshold)
(protect_now, gc_date) := protected_set[space].top()
while (gc_date <= cyclic_threshold)
(protect_now, gc_date) := protected_set[space].pop()
(protect_now, gc_date) := protected_set[space].top()
// at this point, all ‘‘too o0ld’’ protect_now values
// have been removed

3. e ID:local propag

e Description: Local propagation of timestamps and computation of lo-
calmin. We assume the existence of the operation mark_from_root

used to mark objects and propagate dates from a given pointer.

354



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e [nput: none, Qutput: none, Side-effects: Timestamps are propagated
from roots and scions to stubs. Localmin is computed after propaga-

tion.

e Data & Data Structures IDs: cyclic_threshold, cyclicthresholdtosend set,
cyclicthresholdtosend, protected set, protect_now, localmin, stub, scion,

local _roots, spaces, current_date.

e (Contents:

local_propag()
// timestamp propagation
increment current_date
cyclicThresholdToSend.push(current_date,cyclic_threshold[])

for all r in local_roots
mark_from_root(r, current_date)
for all scion in sorted_scions(scions)
if (scion.scion_date < globalmin)
scion.pointer := nil
else
if scion.scion_date = NOW
mark_from_root(scion.obj,current_date)
else
mark_from_root(scion.obj,scion.scion_date)

// localmin computation
for all space in spaces
for all stub in space.stubs
if stub.stub_date > stub.olddate
decrease protect_now[space]l to stub.olddate
stub.olddate := stub.stub_date
protected_set [space] .push(protect_now[space] ,current_date)
protect_now[space]l := current_date
send (space, STUBDATES, current_date,
{ for all stub in space.stubs,
(stub.stub_id, stub.stub_date) })

localmin := min(protected_set[])
send(server, LOCALMIN, current_date, localmin)

359



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

4. e [D: decrease to
e Description: arithmetic operation.

e [nput: two values (dates or int) A and B, Output: none, Side-effects:
A updated with B’s value, if B is smaller than A.

e Data Structures IDs: none

o Contents:

decrease A to B
if (A > B) then A := B

D. e [D: increase to
e Description: arithmetic operation.

e Input: two values (dates or int) A and B, Output: none, Side-effects:
A updated with B’s value, if B is greater than A.

e Data Structures IDs: none

e (Contents:

increase A to B
if (A < B) then A := B

356



Appendix D

Some mappings between Generic

GC and stand-alone GCs

D.1 GCW and Mark-and-Sweep

Basics

e Stand-alone GC ID: Mark-and-Sweep
e Generic GC’s DGC ID: GCW

e Description: Mark-and-Sweep is particularly suited to serve as a local GC
for GCW because this distributed collector has been designed with a local
tracing GC in mind (as can be observed in Section C.2 describing its generic

GQ).

Mapping/Creation of extra data structures

1. e ID: EntryltemsVector
e Description: set of entry items.

o Affected algorithms: mark, sweep.

357



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Contents: Vector (EntryItem)

ID: ExitltemsVector

o
.

Description: set of exit items.

Affected algorithms: mark, sweep.

Contents: Vector (ExitItem)

Specialization of algorithms

1. e Algorithm ID: MarkAndSweep

e Description: We add code to propagate marks from local roots and
entry items to exit items. We also add a few instructions for stability
detection. Solution 2 of the Generic model has been arbitrarily chosen
here. We assume an operation reclaimExit for exit items which also

sends a decrement message.

e Data Structures IDs: EntryltemsVector, ExitltemsVector, Entryltem,
Exitltem, Marks.

o (ontents:
MarkAndSweep ()
// — Init exit items
For all ex in ExitItemsVector
ex.oldmark := ex.mark
ex.mark := Marks.NONE
stableNode := true; // by default the node is stable
/] ——————— Mark phase

CurrentMark := Marks.HARD
For all r in roots { MarkScan(r) }
For all en in EntryItemsVector
if (en.counter = 0) continue
if (en.mark = Marks.HARD) MarkScan(en.object)
CurrentMark := Marks.SOFT
For all en in EntryItemsVector

358



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

if (en.counter = 0) continue
if (en.mark = Marks.SOFT) MarkScan(en.object)

/] ——————— Check node stability
/] ——=—=—== and sweep exit items
For all ex in ExitItemsVector
if (ex = Marks.NONE) {
// we get rid of the exit item and
// thus do not need to check it
reclaimExit (ex)
continue
}
if (ex.oldmark != ex.mark)
{ stableNode := false; break; }

/] —==—=—== Sweep objects
sweep() // regular sweep phase for normal objects

/] —======= Sweep EntryItemsVector
// Because network messages are asynchronous, counters
// can be decremented at any time during the GC. Sweeping
// entry items as late as possible increases the chance of
// reclaiming a larger number of garbage at this collection.
for all en in EntryItemsVector

if (en.counter = 0) reclaim(en)

2. e ID: MarkScan
e Description: Mark an object and scan it for pointers. Specific action is
taken when reaching exit items. We assume hardenMark which sends
a message to “harden” marks on remote entry items.
e Data Structures IDs: Fixed size area, Bitmap, Mixed size area, Exi-
tItemsVector, CurrentMark
e (Contents:

MarkScan(Pointer p)

/] ——=—=—=- check
if (not valid(p)) return
/] —=—————= Exit item

359



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

if (isExitItem(p)) {

if (p->mark = HARD) return;
// if the mark is already HARD, there is
// nothing more we can do.

p—>mark := CurrentMark;

if ((p->mark = HARD) and (p->oldmark != HARD))
hardenMark (p->remoteEntry, p->node);
stableNode := false; // because message sent

return;

}

/] ——————== Regular M&S

if (isFixed(p)) setMark(bitmap(FixedArea(p)))
else setMark(mixedSizeHeader (p))

for all p’ in *p { MarkScan(p) }

D.2 GCW and Generational

Basics

e Stand-alone GC ID: M&S-based generational GC
e Generic GC’s DGC ID: GCW

e Description: This mapping relies on the young generation collection to
globally propagate hard marks in a timely manner. Concretely, it assists
the old GC by handling certain hard marks and not interfering with the
rest of the process which is handled by the old GC.

Mapping/Creation of extra data structures

1. e ID: EntryltemsVector
e Description: set of entry items.
o Affected algorithms: mark, sweep.

e Contents: Vector (EntryItem)

360



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

o
.

ID: ExitltemsVector

Description: set of exit items.

Affected algorithms: mark, sweep.

Contents: Vector (ExitItem)

Specialization of algorithms

1. e Algorithm ID: collectYoung

e Description: Collection of the young generation. From the remset, we
propagate HARD marks. scan_mark_and_propagate is assumed, it
traces objects and if it encounters an exit item, it possibly updates
the mark to HARD and globally propagate it. If this is the case, a
flag is set to let the old collection know in order to properly compute

stability.

e Data Structures IDs: EntryltemsVector, Entryltem, Marks, YGRem-
Set.

e (Contents:

collectYoung()
for each r in root
if ((youngGen.begin <= r) and (r < youngGen.end))
scan_mark_and_propagate (r,Marks.HARD)
for each p in YGRemSet
if ((youngGen.begin <= p) and (p < youngGen.end))
scan_mark_and_propagate (p,Marks.HARD)
for each e in EntryItemsVector
if ((youngGen.begin <= e.object)
and (e.object < youngGen.end))
if (e.mark == Marks.HARD)
scan_mark_and_propagate(e.object ,Marks.HARD)
for each e in EntrylItemsVector
if ((youngGen.begin <= e.object)
and (e.object < youngGen.end))

361



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

if (e.mark == Marks.SOFT)
scan_mark_and_propagate(e.object,Marks.SOFT)

2. e Algorithm ID: collectOld

e Description: Collection of the entire heap. Stability is also computed

using young collection information.

e Data Structures IDs: EntryltemsVector, ExitltemsVector, Entryltem,
Exitltem, Marks.

o Contents:

collect01d ()
call normal collector (Mark-and-Sweep or Mark-and-Copy)
propagating marks from roots and entry items.
promote all live young objects
empty YGRemSet
Compute stability using young generation information
(a young GC may have destabilized the node).

D.3 GCW and MOS: Solution 1

Basics
e Stand-Alone GC ID: MOS

e Generic GC’s DGC ID: GCW

e Description: As specified in its model, MOS is a region-focused GC. It
never visits the entire heap, which makes a direct use of the generic GC
solution impossible. A true work of adaptation is required in this case.

This mapping shows the simplest and least optimal solution.

362



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Specialization of algorithms

As we have seen in the Generic GC description, there are two important aspects
that the local GC has to deal with: mark propagation and local stability detec-
tion. To do this, the Generic GC relies on a single full collection of the heap.
Unfortunately, MOS never looks at the heap entirely at once. As it is an in-
cremental collector based on a generational technique, each collection will work
either on the young generation or on the young generation and a car.

This solution directly uses the algorithms described in the Generic GC. No
adaptation is required, and a function is regularly called to discover node stability
and propagate marks by scanning all the objects. There are two solutions to call
this function: explicit call or timing thread regularly waking up, blocking all
other activities, and running the function. It is important to note that, most
of the time, it will be possible to adapt the stand-alone GC to the Generic GC
by using this technique (a special function to be called when a job has to be
done). This allows to integrate the mapping into existing schemes quickly and
easily. Unfortunately, this might not lead to an efficient result and may break the

essence of the stand-alone collector.

D.4 GCW and MOS: Solution 2

Basics

e Stand-Alone GC ID: MOS
e Generic GC’s DGC ID: GCW

e Description: As specified in its model, MOS is a region-focused GC. It
never visits the entire heap, which makes a direct use of the generic GC
solution impossible. A true work of adaptation is required in this case.

This mapping stores marks on each remembered set.

363



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Mapping/Creation of extra data structures

1. e ID: RemSetEntry

e Description: Extension of MOS’s RemSetEntry data structure to add

marks.
o Affected algorithms: collectCar.

e Contents:

{ Pointer obj, Pointer origObj, Pointer origCar, Marks mark }

Specialization of algorithms

Marks are maintained on remembered sets. Each collection of a car should propa-
gate marks from the car’s remset to other cars’ remsets. This can be seen as if the
heap were distributed with a car representing a node and marks are propagated
from car to car. A “phase” needs to be defined in order to help evaluate the
stability of the entire heap. At the beginning of this phase, all cars are tagged
and new cars will be considered “permanent” and will not be involved in the
evaluation of local stability. The final marks on exit items depend on the local
marking phase. This solution could be rather conservative, and could slow down

the entire DGC process, but it has the advantage to respect MOS’ spirit.

D.5 GCW and MOS: Solution 3

Basics

e Stand-Alone GC ID: MOS

e Generic GC’s DGC ID: GCW

364



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Description: As specified in its model, MOS is a region-focused GC. It
never visits the entire heap, which makes a direct use of the generic GC
solution impossible. A true work of adaptation is required in this case.
This mapping uses a remset for each exit item and traces objects back to
the origin of the paths. In the worst case, it is as disruptive as Solution 1,

but could be cheap depending on the local graph of objects.

Mapping/Creation of extra data structures

1. e ID: Exitltem
e Description: For outgoing pointers. It inherits from GCW’s exit item
and add a remset.

e Contents: ExitItem: GCW.ExitItem { MOS.RemSet remset }

Specialization of algorithms

e Technique: Fach exit item is backtraced to either a root, an entry item, or
nothing (if unreachable). In the best cases, a HARD mark is found quickly
and the mark is assigned and propagated globally. In the worst case, the
mark is SOFT. This backtracing is regularly called (by scheduling the call

within the round-robin mechanism used to choose cars to collect).

o Main Algorithm:

for each exit item e
rs := e.remset
e.mark := backtrace(rs.allReferrents())

369



Practical Aspects of Interacting Garbage Collectors

Yannis Chicha

o Additional algorithms:

backtrace(List (Pointer) refs) {
if (there is a root in refs) return HARD

if (there is a HARD entry in refs) return HARD

mark := NONE
for all r in refs
if (r is an entry item) {
if (r.mark > mark) mark := r.mark
continue

car(r)

listref(r,c)

if (1 = nil) continue

m := backtrace(l)

if (m = HARD) return HARD
if (m > mark) mark :=m

H o W
I

return mark

}

listref (Pointer r, car c) {
1 := nil
for each p in c.remset.allObjects()
if (r reachable from p) 1 := cons(p,l)
return 1

}

e Comments: As can be seen, this solution attempts to backtrace exit items

in order to find out what marks to associate with them. In the worst case,

the graph of objects is linear and all cars must be visited before finding the

mark. Another worst case can be seen when the final mark of the exit item

is SOFT, in this case all possible paths are visited. It may be advisable

to use a technique similar to the one described in Chapter 4 and discover

all marks per car rather than backtracing objects up to a root or an entry

item thus possibly losing opportunity for locality of treatment. We observe

that when a HARD mark is found, the backtrace stops, thus making the

366



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

process more efficient. We note that MOS moves objects from car to car or
car to train with the effect of gathering related objects. Performance will
thus likely improve over time, as paths are likely to span a smaller number

of cars.

D.6 GCW and MOS: Solution 4

Basics

e Stand-Alone GC ID: MOS
e Generic GC’s DGC ID: GCW

e Description: As specified in its model, MOS is a region-focused GC. It
never visits the entire heap, which makes a direct use of the generic GC
solution impossible. A true work of adaptation is required in this case. This
mapping associates a mark with each car and a regularly called function
propagates these marks conservatively to exit items. This is the fastest

solution because it does not visit objects, only remembered sets.

Mapping/Creation of extra data structures

1. e ID: Car
e Description: This extension of a car adds a mark.

e Contents: Car: M0S.Car { GCW.Marks mark }

Specialization of algorithms

A local propagation function is regularly called (by scheduling it within the round-
robin mechanism used to choose cars to collect) to propagate marks. Starting

from roots and entry items, a mark is associated with each car by looking at its

367



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

remembered set. If objects of this car are referenced either by a root, a HARD
entry, or an object in a HARD car, the car becomes HARD. If an exit item is
referenced by a HARD car, it is marked HARD.

We note one problem with this solution: cycles. Objects in several cars can
form a cycle. In this case, it is not possible to assign a definitive mark to a given
car, except if at least one HARD car references it (which will happen often). If
no HARD car is known to reference the car and its mark depends on the mark
of another car — not visited yet —, then this car is listed in an “incomplete” list.
Once all cars have been seen once, we treat cars in the list with a complexity of
O(n?) if n is the number of cars in the list. Finally, cars remaining in the list are
part of a cycle. In this case, for each car, we examine the marks assigned from
cars not in the list, and the highest mark (SOFT or NONE) is assigned to all
cars part of the cycle. We note that a HARD can not be assigned at this point,
because it would have been detected earlier.

This solution may be too conservative, practical experiments would be re-
quired to assess it. We note that MOS moves objects from car to car or car
to train with the effect of gathering related objects. As for solution 3 (see Sec-
tion D.5), this is likely to improve efficiency, not in terms of performance this
time, but in terms of precision. Independent objects have less chance to be in the

same car, increasing the chance for the car to obtain a more precise mark.

D.7 GCW and RC

Basics

e Stand-alone GC ID: Reference Counting
e Generic GC’s DGC ID: GCW

e Description: Local RC needs to show a solution to map a tracing-like

368



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

local GC. A specific “GCW” function will be used to propagate marks and

compute stability.

Mapping/Creation of extra data structures

1. e ID Exitltem

e Description For outgoing pointers. It is a proxy for a remote object.
We have to specify this data structure, because we add a counter of

references to it.
e Affected algorithms: none.

e Contents

{ int counter, Marks mark, Marks oldmark,
RemoteNode node, Pointer remoteEntry }

Specialization of algorithms

Algorithms described in the Generic GC will be used as such. No adaptation
is required. Operations from the model is integrated in a specific function that
should be called regularly. It propagates marks and computes local stability (see

DGC’s model in Section C.2). There are three solutions to call this function:
e Explicit call at the discretion of the programmer.

e Timing thread regularly woken up, which blocks all other activities and

executes the function.

e Callbacks associated to specific objects. When they are reclaimed, the func-

tion is called. This solution is application-dependent.

369



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

D.8 Cyclic SSPC and Mark-and-Sweep

Basics

e Stand-alone GC ID: Mark-and-Sweep
e Generic GC’s DGC ID: Cyclic SSPC

e Description: This version of SSPC works well with a tracing algorithm,
and is actually designed to work with such a local GC. The mapping in this
case is obvious because this DGC was created to work with this particular
stand-alone collector. There is only a work of integration and not a work

of algorithm mapping.

Specialization of algorithms

We do not present a mapping model for this scenario. A similar work was done
with M&S and GCW in Section D.1, please refer to it for an example of integra-
tion. We see here that mapping or integration solutions can be reused from one
model to another. This case is particularly simple, but we also provide a more

complex example with Section D.5 and Section D.12 for instance.

D.9 Cyclic SSPC and RC

Basics

e Stand-alone GC ID: RC
e Generic GC’s DGC ID: CyclicSSPC

e Description: Local RC needs to show a solution to map a tracing-like

local GC. A specific “SSPC” function will be used to propagate timestamps

370



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

and compute the localmin value. See an example of adaptation of data

structures in Section D.7.

Specialization of algorithms

Algorithms described in the Generic GC will be used as such. No adaptation
is required. Operations from the model is integrated in a specific function that
should be called regularly. It propagates timestamps and computes localmin
values (see DGC’s model in Section C.4). There are three solutions to call this

function:
e Explicit call at the discretion of the programmer.

e Timing thread regularly woken up, which blocks all other activities and

executes the function.

e Callbacks associated to specific objects. When they are reclaimed, the func-

tion is called. This solution is application-dependent.

D.10 CSSPC and MOS: Solution 1

Basics

e Stand-Alone GC ID: MOS
e Generic GC’s DGC ID: CSSPC

e Description: As specified in its model, MOS is a region-focused GC. It
never visits the entire heap, which makes a direct use of the generic GC
solution impossible. A true work of adaptation is required in this case.

This mapping shows the simplest and least optimal solution.

371



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Specialization of algorithms

As we have seen in the Generic GC description, there are two important aspects
that the local GC has to deal with: timestamps propagation and localmin com-
putation. To do this, the Generic GC relies on a single full collection of the
heap. Unfortunately, MOS never looks at the heap entirely at once. As it is an
incremental collector based on a generational technique, each collection will work
either on the young generation or on the young generation and a car.

This solution directly uses the algorithms described in the Generic GC. No
adaptation is required, and a function is regularly called to propagate timestamps
and compute localmin by scanning all the objects. There are two solutions to call
this function: explicit call or timing thread regularly waking up, blocking all
other activities, and running the function. It is important to note that, most
of the time, it will be possible to adapt the stand-alone GC to the Generic GC
by using this technique (a special function to be called when a job has to be
done). This allows to integrate the mapping into existing schemes quickly and
easily. Unfortunately, this might not lead to an efficient result and may break the

essence of the stand-alone collector.

D.11 CSSPC and MOS: Solution 2

Basics

e Stand-Alone GC ID: MOS
e Generic GC’s DGC ID: CSSPC

e Description: As specified in its model, MOS is a region-focused GC. It
never visits the entire heap, which makes a direct use of the generic GC
solution impossible. A true work of adaptation is required in this case.

This mapping stores timestamps on each remembered set.

372



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Mapping/Creation of extra data structures

1. e ID: RemSetEntry

e Description: Extension of MOS’s RemSetEntry data structure to add

timestamps.
o Affected algorithms: collectCar.

e Contents:

{ Pointer obj, Pointer origObj, Pointer origCar, Timestamp ts }

Specialization of algorithms

Timestamps are maintained on remembered sets. Each collection of a car should
propagate timestamps from the car’s remset to other cars’ remsets. This can be
seen as if the heap were distributed with a car representing a node and timestamps
are propagated from car to car. A “phase” needs to be defined in order to help
evaluate the stability of the entire heap. At the beginning of this phase, all cars
are tagged and new cars will be considered “permanent” and will not be involved
in the evaluation of localmin. The final timestamps on stubs depend on this local
marking phase. The solution is likely to be too conservative, and could slow down

the entire DGC process, but it has the advantage to respect MOS’ spirit.

D.12 CSSPC and MOS: Solution 3

Basics

e Stand-Alone GC ID: MOS

e Generic GC’s DGC ID: CSSPC

373



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

e Description: As specified in its model, MOS is a region-focused GC. It
never visits the entire heap, which makes a direct use of the generic GC
solution impossible. A true work of adaptation is required in this case.
This mapping uses a remset for each stub and traces objects back to the
origin of the paths. In the worst case, it is as disruptive as Solution 1, but

could be cheap depending on the local graph of objects.

Mapping/Creation of extra data structures

1. e ID: Stub

e Description: For outgoing pointers. It inherits from CSSPC’s stub

and add a remset.

e Contents: Stub: CSSPC.Stub { M0OS.RemSet remset }

2. e ID: CurrentDate

e Description: This global variable holds the most recent time cur-

rently found in backtracing a particular stub.

e Contents: Date CurrentDate

Specialization of algorithms

o Technique: Each stub is backtraced to either a root, a scion, or nothing (if
unreachable). In the best cases, a root is encountered and the timestamp
NOW is directly assigned to the stub. In the worst case, no root is quickly
found and timestamps are taken from scions. This backtracing is regularly
called (by scheduling the call within the round-robin mechanism used to

choose cars to collect).

374



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

o Main Algorithm:

for each stub s
rs := s.remset
CurrentDate := 0O
backtrace(rs.allReferrents())
s.stubdate := CurrentDate

o Additional algorithms:

backtrace(List(Pointer) refs) {
if (there is a root in refs)
CurrentDate := Date.NOW
return

for all r in refs
if (r is a scion) {
if (r.sciondate > CurrentDate) CurrentDate := r.sciondate
continue

car(r)

listref(r,c)

if (1 = nil) continue

backtrace (1)

if (CurrentDate = Date.NOW) return

H o W
I

listref (Pointer r, car c) {
1 := nil
for each p in c.remset.allObjects()
if (r reachable from p) 1 := cons(p,l)
return 1

e Comments: As can be seen, this solution attempts to backtrace stubs in or-
der to find out what timestamps to associate with them. In the worst case,
the graph of objects is linear and all cars must be visited before finding a

timestamp. Another worst case can be seen when the final timestamp of

375



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

the stub is not NOW, in this case all possible paths are visited. It may be
advisable to use a technique similar to the one described in Chapter 4 and
discover all timestamps per car rather than backtracing objects up to a root
or a scion thus possibly losing opportunity for locality of treatment. We
observe that when a root is encountered, the backtrace stops, thus making
the process more efficient. Unlike the mapping GCW-MOS;, the fact that
MOS moves objects from car to car or car to train with the effect of gath-
ering related objects has little impact on performance, because timestamps

are all different and we can not stop until we found all of them.

D.13 CSSPC and MOS: Solution 4

Basics

e Stand-Alone GC ID: MOS

e Generic GC’s DGC ID: CSSPC

e Description: As specified in its model, MOS is a region-focused GC. It

never visits the entire heap, which makes a direct use of the generic GC
solution impossible. A true work of adaptation is required in this case.
This mapping associates a timestamp with each car and a regularly called
function propagates these timestamps conservatively to stubs. This is the

fastest solution because it does not visit objects, only remembered sets.

Mapping/Creation of extra data structures

1.

e ID: Car
e Description: This extension of a car adds a mark.

e Contents: Car: M0S.Car { Date timestamp }

376



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

Specialization of algorithms

A local propagation function is regularly called (by scheduling it within the round-
robin mechanism used to choose cars to collect) to propagate timestamps. Start-
ing from roots and scions, a mark is associated with each car by looking at its
remembered set. The most recent timestamp of the referents (car or root) is
chosen for the car. Stubs are assigned the maximum timestamp among their
referents. This solution may be too conservative, practical experiments would be
required to assess it.

We note one problem with this solution: cycles. Objects in several cars can
form a cycle. In this case, it is not possible to assign a definitive timestamp to
a given car, except if at least one car with a NOW timestamp references it. If
no such car is known to reference this car and its timestamp may depend on
the timestamp of another car — not visited yet —, then this car is listed in an
“incomplete” list. Omnce all cars have been seen once, we treat cars in the list
with a complexity of O(n?) if n is the number of cars in the list. Finally, cars
remaining in the list are part of a cycle. In this case, for each car, we examine the
timestamps assigned from cars not in the list, and the more recent timestamp is
assigned to all cars part of the cycle. We note that a NOW timestamp can not

be assigned at this point, because it would have been detected earlier.

D.14 Controlled Migration and MC

Basics
e Stand-alone GC ID: MC

e Generic GC’s DGC ID: Controlled Migration

e Description: The Mark-And-Copy algorithm is a tracing collector. Adap-
tation is not tricky. Indeed, the reference paper of the DGC specifies that

377



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

“a copying collector can be used as long as one root is traced completely

before the next untraced root is copied”.

Mapping/Creation of extra data structures

1. e ID: CurrentDistance

e Description: Extra data to keep the current distance in memory

rather than propagating it as an extra parameter to each function.

o Affected algorithms: MarkCopyGC.

e Contents: Distance CurrentDistance

2. e ID: CurrentDestination

e Description: Extra data to keep the current destination in memory

rather than propagating it as an extra parameter to each function.
e Affected algorithms: MarkCopyGC.

e Contents: Destination CurrentDestination

Specialization of algorithms

1. e ID: MarkCopyGC
e Description: main function. Modified.
e Data Structures IDs: CurrentDistance, CurrentDestination, Object,
inlist.

o Contents:

MarkCopyGC
// From roots
[r1,r2] := getRoots()
indexTo := beginToArea
MarkCopy(rl,r2)

378



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

// deal with inlist. Reminder: inlist is sorted.
for each entry in inlist
CurrentDistance := entry.distance
CurrentDestination := entry.destination
P := entry.object
if (header(*p).forwarded) update(entry,p)
else

Copy p
MarkCopy (p,p+header (*p) .size)

// At the end ...
reverseToFrom()

2. e ID: MarkCopy
e Description: Most important function. Trace all objects and copy
them over to the "To’ part.
e Data Structures IDs: Object, outlist.
e (Contents:

MarkCopy(al,a2)
For each valid pointer p in [al,a2]
// valid means that it is actually a pointer and it
// points in the From area or to a stub

if (header(*p).forwarded) update(p,*p)
else {
// ***x Extra code **x*
for each remote pointer REF in (*p)
if (REF not in outlist)
add (Outlist [node(REF)],
[REF, CurrentDistance+1,
max (CurrentDestination, rank(node(REF)),
rank (current_node))
// estimation of destination
]

// ***x End extra code **x

Copy p
MarkCopy (p,pt+header (*p) .size)

379



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

D.15 Controlled Migration and Explicit

Basics

e Stand-alone GC ID: Explicit management
e Generic GC’s DGC ID: Controlled Migration

e Description: This mapping is special in the sense that local memory man-
agement is not using a garbage collector. Traditional memory primitives
such as malloc and free are used by the programmer, who is then respon-

sible for allocation and deallocation.

Specialization of algorithms

Algorithms described in the Generic GC will be used as such. No adaptation is
required. This will be part of a function that should be called regularly. This
function computes and propagates estimations of distances and destinations (see

DGC’s model in Section C.3). There are two solutions to call this function:
e Explicit call at the discretion of the programmer, or

e Timing thread regularly woken up, which blocks all other activities and

executes the function.

380



Practical Aspects of Interacting Garbage Collectors Yannis Chicha

D.16 DRC and Mark-and-Sweep

Basics

e Stand-alone GC ID: Mark-and-Sweep.
e Generic GC’s DGC ID: DRC.

e Description: This adaptation proves quite simple. Opaque addressing
entities are added to the heap and the Mark-and-Sweep algorithm should
be modified to handle them.

Specialization of algorithms

The mark phase should use all the entry items as roots. However, when an
entry item has a counter of zero, it should not be considered as root, because it is
garbage. The sweep phase reclaims zero-ed entry items and non-traced exit items.
When an exit item is reclaimed, a DECREMENT message (see DRC model in
Section C.1) should be sent.

381



Practical Aspects of Interacting Garbage Collectors

Yannis Chicha

Name:

Place of birth:
Year of birth:
Post-secondary

Education and
Degrees:

Related work ex-
perience:

VITA

Yannis Chicha
Blois, France

1973

IUT Informatique (college-like)
Orléans, France
1991-1993 DUT

Ecole Supérieure en Sciences Informatiques

(ESSI)
Sophia-Antipolis, France

1993-1996 DEA (MSc-like) and Engineering

degree in software development.

The University of Western Ontario
London, Canada
1997-2002 PhD

Course instructor
The University of Western Ontario
1999

Teaching assistant
The University of Western Ontario
1997-2000

Research assistant
The University of Western Ontario
1997-2002

382



