
On the Recognition of Handwritten Mathematical Symbols

by

Xiaofang Xie

Graduate Program

in

Computer Science

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies

The University of Western Ontario

London, Ontario

Dec 2007

c© Xiaofang Xie 2007

THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Chief Advisor Examining Board

Stephen M. Watt Masakazu Suzuki

Greg Reid

Advisory Committe

Mark Perry

Marc Mareno Maza

The thesis by

Xiaofang Xie

entitled

On the Recognition of Handwritten Mathematical Symbols

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Dec. 14, 2007 Xing Jiang

Date Chairman of Examining Board

ii

ABSTRACT

We have examined the problem of machine recognition of handwritten mathematical

symbols. We focus on the case where ink-stroke information is available, as it would be

collected from a digital pen. We have examined a number of problems: handwriting

variant analysis, feature extraction, grouping sets of characters, encoding handwritten

mathematical symbols and building recognizers.

One of the difficulties of handwritten mathematical symbol recognition lies in the

variability of the symbols. We have performed handwriting variance analysis and

identified the factors contributing to the variants. Based on the analysis of 800M

data in a format that includes symbol names, start time, end time, x and y coordi-

nates and pressure, we developed an allomorph set for each mathematical symbol.

We then used them to build models. We have examined and selected different fea-

tures of handwritten mathematical symbols and proposed new algorithms for feature

extraction are proposed. For well-known features such as loops, our algorithms can

perform better than the algorithms in the literature. We group the large set of math-

ematical symbols according to different features. The prototypes for comparison are

pruned by comparing within each group instead of on the whole symbol set. The im-

plementation of prototype pruning in the elastic recognizer has resulted in improved

recognition speed.

We have designed two encoding schemes: encoding the handwritten symbols based

on the curvature or encoding the handwritten symbols with equal length. The en-

coded segments are associated with the states of a hidden Markov model (HMM).

Separately, we have designed a multi-path and multi-model HMM topology and in-

tegrated inter-stroke and space information into HMM. Our HMM topology achieves

better recognition rate than earlier HMM.

iii

We have designed and implemented a handwritten mathematical symbol recogni-

tion system that includes two recognizers: an elastic matching-based recognizer and

a hidden Markov model-based recognizer. The architecture includes data preprocess-

ing, data analysis, symbol representation and recognition.

Key words: Handwriting Recognition, Feature Extraction, Symbol Encod-

ing/Decomposition, Variance Analysis, Elastic Matching, Hidden Markov

Model, Vector Quantization, Subspace .

iv

To my parents and my husband . . .

v

ACKNOWLEDGEMENTS

I would like to express my appreciation to my supervisor, Dr. Stephen Watt for

providing me with the opportunity to work on this topic and for his guidance and en-

couragement throughout years of my studies. I feel especially indebted to the friendly

people of the Symbolic Computation Laboratory (SCL) for the spirit of collaboration

being instrumental in the completion my thesis. Special thanks go to Jack Polihronov

for reading my thesis. I would like to acknowledge the help of the departmental sec-

retaries during the years of my study in the Computer Science department. Words

could not express my thankfulness to my dear husband Long for his love, support and

encouragement.

vi

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION ii

ABSTRACT iii

DEDICATION v

ACKNOWLEDGEMENTS vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xiii

Chapter 1 Background and Motivation 1

1.1 Motivation . 1

1.2 Statement of the Problem . 3

1.3 Review of Handwritten Character Recognition 4

1.4 Review of Handwritten Mathematics Recognition 5

1.5 Main Innovative Elements of the Present Work 6

1.6 Outline of the Thesis . 7

Chapter 2 Overview of Handwritten Mathematics Recognition 9

2.1 Difficulties . 9

2.2 Recognition Process . 10

vii

2.3 Segmentation of Symbols . 10

2.4 Recognition of Segmented Symbols 11

2.5 Structural Analysis . 13

Chapter 3 Handwriting Recognition Components of the Current Work 15

3.1 Architecture of the Handwriting Recognition System 15

3.2 Other Approaches for Handwriting Recognition 16

Chapter 4 Experimental Data for Mathematical Handwriting Recognition 19

4.1 Data Collected at the ORCCA Lab 19

4.1.1 Data Collected with an IBM CrossPad 19

4.1.2 Data from Tablet PC . 20

4.1.3 The ORCCA Data Sample . 21

4.1.4 Data from Unipen . 21

4.2 Different Digital Ink Format Conversion 22

Chapter 5 Preprocessing 24

5.1 Dehooking . 24

5.2 Smoothing . 26

5.3 Re-sampling . 28

5.4 Stroke Re-direction . 29

5.5 Stroke Re-ordering . 30

5.6 Size Normalization . 31

Chapter 6 Mathematical Handwriting Variant Analysis 33

6.1 Introduction . 33

6.2 Variant Analysis . 33

6.2.1 Number of Strokes . 34

6.2.2 Beginning and Ending Hooks 34

viii

6.2.3 Cursively Connecting Segments 35

6.2.4 Cusps Changing to Small Loops 35

6.2.5 Angles Changing to Loops . 36

6.2.6 Omitting Character Tails . 36

6.2.7 Wavy Lines . 37

6.2.8 Quick and Cursive Handwriting 37

6.3 Factors Which Are Not Considered 38

6.4 Allomorph Variation Among Characters 38

6.5 Using of Variance Analysis in Handwriting Recognition 38

Chapter 7 Feature Extraction 40

7.1 Introduction . 40

7.2 Published Studies on Features of Written Symbols 40

7.3 Feature Families . 41

7.3.1 Geometric Features . 42

7.3.2 Ink-Related Features . 47

7.3.3 Directional Features . 48

7.3.4 Global Features . 49

Chapter 8 Prototype Pruning in Elastic Recognition 50

8.1 Prototype Pruning by Feature Extraction 50

8.2 Elastic Matching . 51

8.3 Experimental Results . 53

8.4 Conclusions . 57

Chapter 9 Hidden Markov Model Based Recognition 58

9.1 Introduction . 58

9.2 Elements of a Hidden Markov Model 60

9.2.1 Discrete Markov Process . 60

ix

9.2.2 Hidden Markov Models . 61

9.2.3 The Three Basic Problems of HMM 62

9.2.4 Solutions to the Three Basic Problems of HMM 63

Chapter 10 A HMM for Mathematical Characters 67

10.1 The Architecture of Our Hidden Markov Model Recognizer 67

10.2 Modeling of Handwritten Mathematical Symbols 69

10.2.1 Decomposing Mathematical Symbols 69

10.2.2 Representing Handwritten Symbols by Using Features 76

10.3 Calculating Observation Symbols . 82

10.4 HMM Topology . 85

10.4.1 Number of States . 85

10.4.2 Initial Observation Distribution 86

Chapter 11 Implementation, Experiments and Results 89

11.1 Implementation of the HMM Based Recognizer 89

11.1.1 Ink Processing . 89

11.1.2 Ink Representation . 91

11.1.3 Model Parameter Selection and Implementation 92

11.1.4 Scaling . 93

11.1.5 Training . 94

11.1.6 Recognition . 94

11.2 The Mathematical Symbol Database Used in the Present Work 95

11.3 Experiments and Results . 97

Chapter 12 Other Recognition Methodologies 102

12.1 Introduction . 102

12.2 Subspace Classification . 102

12.3 Implementation of a Subspace Recognizer 104

x

12.3.1 How to Build the Subspace 104

12.3.2 Recognition . 104

12.4 Discussion . 105

Chapter 13 Combining Recognizers and Applying Context Rules 107

13.1 Combination of Recognizers . 107

13.2 Individual Classifier Generation . 107

13.3 Combination Schemes . 109

13.4 Combining Dictionary-Based Prediction with Recognition 111

13.4.1 Building Database of Mathematical Context 112

13.4.2 Predicting Characters from the Mathematical Context 113

13.4.3 Combining Prediction and Recognition 114

Chapter 14 Conclusion and Future Work 115

14.1 Conclusion . 115

14.2 Future Work . 116

Appendix A Samples of Allomorph of Handwritten Symbols 118

Appendix B Dynamic Programming for Elastic Matching 124

REFERENCES 128

VITA 136

xi

LIST OF TABLES

8.1 Results in the case when features are not used 56

8.2 Results in the case when features are used 56

8.3 Comparison with Kurtzberg’s Results 56

11.1 ORCCA Mathematical Symbol Data Set 96

11.2 Dynamic States vs. Constant States: The Case of Positional Feature 99

11.3 Dynamic States vs. Constant States: The Case of Chain-Code Based

Features . 99

11.4 Combining Feature Sets . 100

11.5 Different Code Book Sizes: The Case of positional features 100

11.6 Different Code Book Sizes: The Case of Chain Code Based Feature . 100

11.7 Gaussian Distribution vs. Random Distribution: The Case of Chain

Code Based Feature . 100

11.8 Number of States: The Case of 7 States, 5 States and 3 States 101

13.1 Subscripts of
∑

, from [54] . 114

xii

LIST OF FIGURES

2.1 Similarity of Mathematical Symbols 10

2.2 Ambiguity of Mathematical Expression (from [75]) 10

2.3 X-Y Projection Cut, from Ha [24] . 11

2.4 Elastic Matching . 12

2.5 Markov Model . 13

2.6 Structural Analysis . 13

2.7 Indistinguishable Characters by the Projection Profile Cutting method 14

3.1 Architecture of the Handwriting Recognition System 18

4.1 Tablet PC Data Sample . 22

5.1 Examples of Hooks . 25

5.2 Definition of theta in the case of hooks 25

5.3 (a) before dehooking (b) after dehooking 26

5.4 (a) the symbol “slash” before dehooking (b) after dehooking 26

5.5 (a) before dehooking (b) after dehooking 27

5.6 (a) the symbol “plus” before dehooking (b) after dehooking 27

5.7 (a) before smoothing . 27

5.8 (b) after average smoothing (c) after Gaussian smoothing 28

5.9 Stroke Re-ordering, from Nicholas [44] 31

xiii

6.1 Different Number of Strokes . 34

6.2 Hooks . 35

6.3 Connected Strokes . 35

6.4 Cusps becoming Loops . 36

6.5 Angles becoming Loops . 36

6.6 Omitting Little Tails . 37

6.7 Straight Line Variance . 37

6.8 Simplified Symbols . 37

6.9 Loop to Cusp Example . 38

6.10 Writing Style Examples . 39

7.1 (a) Cusps in “h” (b) Cusps . 44

7.2 (a) Example 1 for Loop Detection (b) Example 2 for Loop Detection 45

7.3 Modified Sweepline Algorithm . 45

7.4 Point Density . 47

7.5 Chain Code . 48

7.6 Initial-End Direction . 48

7.7 Writing Angle . 49

7.8 Initial-End Position . 49

8.1 Elastic Matching (from [66]) . 53

8.2 Symbols for Experiments . 54

9.1 Markov Chain with Four States . 60

9.2 Three State HMM . 62

10.1 HMM Recognition Diagram . 68

10.2 Chinese Strokes (from [77]) . 69

10.3 Curve-based Elements . 70

xiv

10.4 Curve-based Decomposed “3” . 73

10.5 Curve-based Decomposed “β” . 73

10.6 Encoding Elements . 74

10.7 Equal Length Decoding of the Symbol “3” 75

10.8 Equal Length Decoding of the Symbol “β” 75

10.9 Pendown Features . 76

10.10 Penup Features . 76

10.11 Spatial Relation . 78

10.12 HMM and Initial Distribution for Symbol “α” 80

10.13 Combined HMM . 81

10.14 Combined Features . 81

10.15 2D Vector Quantization . 85

10.16 HMM States and Segments . 86

10.17 Combined HMM . 88

11.1 Diagram of the Major Classes of the Recognizer (1) 90

11.2 Diagram of the Major Classes of the Recognizer (2) 91

12.1 Projection into Subspace . 104

12.2 Build Subspace . 105

12.3 Subspace Recognition . 105

13.1 Context - Ambiguity in Mathematics(1) 112

13.2 Context - Ambiguity in Mathematics(2) 112

13.3 Context - Ambiguity in Natural Language, from [54] 113

13.4 Trie for Symbol “i”, from [54] . 113

xv

1

Chapter 1

Background and Motivation

1.1 Motivation

Handwriting recognition has been studied for about fifty years [31] [63] and has been

used in hand-held devices [66], post office scanners etc [38]. With the recent de-

velopment of electronic tablets, pen-tip movement can be captured more accurately,

making possible the capture of not only x, y coordinates, but pen pressure as well.

Pen-based computing combined with handwriting recognition has become an impor-

tant research topic and has attracted significant attention in the last few decades,

being considered as a key development needed for the next generation of PDAs and

tablet PCs.

Handwritten mathematics recognition is an important and largely unaddressed

branch of handwriting recognition due to the following considerations:

• Mathematics inputting and editing have posed problems due to their two di-

mensional structure and large sets of symbols. These typically consist of special

symbols and Greek letters in addition to English letters and digits. The com-

monly used keyboard input is thus insufficient for the input of such a large set

of symbols, which has led to the desire for other input methods. The most

widely used such system is LATEX. A set of keywords is defined in LATEX for

the representation of special symbols and characters. However, using LATEX may

be considered unattractive as it requires the memorization of a number of com-

2

mands. On the other hand, using pen-based computing technologies, one could

simply write mathematical expressions on a tablet and use recognition software

to typeset them. Suzuki et al. [19] have already designed and implemented such

mathematics editors with handwriting interface. Fateman and Zhang [78] have

proposed a design involving pen and voice.

• Most scientific and engineering publications contain mathematical symbols and

expressions. Recognition of handwritten mathematics would not only require

less effort in writing technical documents but could also be used to transfer

existing handwritten documents into electronic format and between machines

when needed. Therefore handwritten mathematics recognition is one of the key

forces that drive the information transformation between human and machine

and among machines.

• Recognition of mathematical symbols could provide a friendly user interface for

computer algebra systems. For example, Maple has a handwriting interface.

• Recognition of mathematical symbols can be expanded towards the fields of

electronics circuitry, chemistry, etc.

The Ontario Research Center for Computer Algebra (ORCCA) lab has initiated a

research project on mathematics editing, rendering and recognition in 1999 under the

leadership by Stephen Watt. The related work includes organizing pen-based envi-

ronments for processing handwriting [56], communicating mathematics via pen-based

computer interfaces [53], building context for pen-based computing [52] etc. Various

modules were completed by their respective authors within ORCCA framework:

• Arthur Louie [41] has completed the mathematical handwriting analysis for

MathML generation.

• Bo Wan [66] has implemented a handwriting recognizer for Pocket PCs.

• Clare So [58] has calculated the frequencies of symbols in large sets of mathe-

matical expressions. This has been used by Smirnova and Watt for prediction in

mathematical handwriting recognition [59].

• Kevin Durdle [16] has completed an analysis of digital ink framework to support

handwriting recognition.

3

• Xiaojie Wu [73] studied various digital ink formats and transformation between

them.

Other work has included contributions to InkML [29] [71], representing handwritten

mathematical symbols through mathematical functions [11], mathematical symbol

recognition using support vector machine [28] and mathematical expression analysis

for Arabic handwriting [55].

The goal of the present thesis is to analyze different aspects of handwriting recog-

nition and build tools that can operate with large sets of handwritten mathematical

symbols.

1.2 Statement of the Problem

We examined the problem of machine recognition of handwritten mathematical sym-

bols. We concentrated on the following areas: reducing the amount of computation,

identifying discriminative features between symbols and building recognition models.

Existing recognizers for, e.g., English, Chinese, Japanese and numbers have achieved

reasonable processing rates based on small sets of symbols. In Asian languages there

are many “characters”, but only small sets of strokes. When the lexicon increases, it

is challenging to achieve high accuracy and speed. One goal should be to reduce the

amount of computation for recognition when a large number of symbols is used. One

way to do this would be to group handwritten mathematical symbols into classes,

once proper criteria for such grouping have been found. Unknown symbols would

first be placed into a group, followed by recognition within the group instead of com-

paring with the whole set of symbols. One goal of the present work is to identify

those characteristics that may be used to separate characters into classes effectively.

Feature extraction can be an important step for recognition, since features distin-

guish the individual characters. So far, researchers have used a wide range of different

features, such as geometry features, global features and so on [27] [47]. One goal of

the present work is to analyze and discover features that can best represent hand-

written characters. We have decomposed each individual symbol into basic elements.

4

Raw recognition may then be performed on the basic elements.

The design of hidden Markov models is another key for the success of recognition

systems. For this purpose, one needs to determine the proper number of states, the

number of observation symbols and the meaning associated with the states. More

importantly, the structure of a hidden Markov model is an issue that should also be

taken into consideration. We shall give details of these problems and their solutions

in later chapters of this thesis.

1.3 Review of Handwritten Character Recognition

Handwriting recognition inherited a number of technologies from optical character

recognition (OCR). The main difference between handwritten and typewritten char-

acters is in the variations that come with handwriting. It is also worth noticing that

OCR deals with off-line recognition while handwriting recognition may be required

for both on-line and off-line signals. (On-line means that data is captured as it is

written. For off-line, all the data is collected before processing starts.) Off-line pro-

cessing is able to use only snapshots of the handwriting without time information.

From off-line data, we do not have information on the order of strokes the user has

used to write the character. Normally, the input of on-line handwriting consists of

traces while the off-line handwriting recognition deals with images. We focus on the

on-line problem. While the input of OCR is usually entire documents, the input of

handwriting recognizers can be entire handwritten documents or small snippets of

digital ink.

Work in this area began as early as the 1950s [62]. In 1950, David Shepard, worked

on transferring printed messages into machine language for computer processing in the

United States National Security Agency. In 1951, he founded Intelligent Machines

Research Corporation (IMR), which delivered the world’s first several commercial

OCR systems. Since late 1950’s, OCR software has been used widely in post offices,

banks etc. Nowadays, there are a number of publications and software products that

claim high OCR recognition rates. Yet the failure of certain real applications shows

5

that the performance problems subsist on composite and degraded documents and

there is still room for progress.

The challenge in OCR research is to develop robust methods that remove as much

as possible the noise restriction while maintaining high recognition rate [10] [25] [63].

The research activity in handwriting recognition was intense in late 1950’s and

1960’s, ebbed in the 1970’s, and renewed in the 1980’s. With the hardware devel-

opment and better algorithms, it has attracted more attention recently. The first

handwriting recognizers successfully used for PDAs were Calligrapher (ParaGraph

Inc.) and Graffiti (Palm Inc.). Calligrapher lost market soon after its introduction

due to low recognition rate and high price. Graffiti used one stroke to form each char-

acter, so users had to be trained to know how to write on the device. The Graffiti

alphabet is similar to the earlier Unistroke alphabet of Xerox (and indeed this has led

to contention between the companies). Today better recognizers are used by PDAs.

For example, the transcriber of Microsoft does not require segmented letters so that

users can write naturally. Most commercial recognizers achieve high recognition rate

because they use a small set of characters. The achievement of real-time recognition

rates while using large sets of symbols is still a challenging research topic [63].

1.4 Review of Handwritten Mathematics Recognition

Handwritten mathematics recognition has been studied for over 30 years [10]. As

mathematical expressions appear in large number of scientific documents, without

doubt transferring such documents into electronic format requires utilities for recog-

nition of mathematical content. Handwriting input provides natural and convenient

way of inputting mathematical text into computer for storage or sharing with others,

once again underlining the necessity of an effective mathematical recognition software.

The research in handwritten mathematics recognition is driven by a desire to combine

the natural advantages of handwritten input with the data processing capabilities of

computers [44].

The problem of recognizing handwritten mathematics is significantly different from

6

natural language recognition. There is no pre-defined context which gives constraints

to possible symbols. Mathematical symbols are more complicate than Chinese in

terms of variation of stroke directions and retraces. Two dimensional structure to-

gether with implicit operators makes mathematical expression recognition a challeng-

ing problem.

Handwritten mathematics recognition typically consists of symbols recognition and

structure analysis. These two stages can go either together or separately. Some re-

searchers, for example, Koschinski et al. [33] focus only on the symbol recognition,

while other researchers, e.g. Blostein et al. have been worked on mathematical ex-

pression recognition. Symbol recognition methods include template matching [9],

statistical approaches [57], neural networks [45], Markov models [37], etc. Structural

analysis methods have two main directions: syntactic parsing [4] and graph rewrit-

ing [20]. In syntactic parsing, a set of syntactic rules is built to parse the expressions.

Graph rewriting method treats mathematical expressions as graphs and certain graph

reductions are applied to the expressions.

1.5 Main Innovative Elements of the Present Work

The present thesis describes the design and implementation of a handwritten math-

ematical symbol recognition system. It includes two recognizers: elastic matching

based recognizer and hidden Markov model-based recognizer. Our main results are:

• Allomorphs for 270 mathematical symbols have been presented. Allomorphs

are the representatives of variations in handwritten symbols. The allomorphs

are used in the models for the elastic matching based recognizer. The hidden

Markov model also uses the allomorphs for training purposes.

• A set of 12 features which represent the handwritten mathematical symbols has

been defined and analyzed. The features are: number of loops, number of self-

and intra-stroke intersections, number of cusps, number of strokes, point density,

pen-down/pen-up, initial direction, end direction, initial-end direction, writing

angle, initial/end position and width-height ratio.

7

• New algorithms for finding loops and intersections in handwritten symbols have

been presented.

• By grouping the large set of symbols according to different features, we have

pruned the prototypes by 88.5% and the recognition speed has been improved.

• Two efficient encoding/decomposing schemes have been presented and have been

utilized in a hidden Markov model.

• We have designed a multi-path, multi-model HMM topology. The hidden Markov

model for each character has multi-path according to its variation. Except for

tempo information, inter-stroke information is integrated into HMM. Individual

models have been built according to different features, then the models have

been combined to form a final model. Better recognition rate has been achieved

from this topology.

• A mapping between the states of HMM and the decomposed segments has been

created. A Gaussian distribution for the observation sequences in each state

has been built based on the mapping, which achieves better recognition result

compared to the cases when random and uniform distribution are used.

1.6 Outline of the Thesis

In Chapter 1 and Chapter 2, we describe the motivation of our research and reviewed

the completed work in the area of handwritten mathematical recognition. Chapter 3

describes the architecture of our recognition system. Chapter 4 provides a descrip-

tion of the data collection work performed in ORCCA lab including data collection

procedures across different tablets such as IBM cross pad and Microsoft tablet PC.

Details on the data converters between different digital ink formats are also pre-

sented. Chapter 5 outlines the pre-processing performed in the proposed recognition

system, while Chapter 6 describes the handwriting variance analysis, literature re-

view as well as an explanation of our approach and a presentation of allograph for

mathematical symbols. Chapter 7 defines some features in handwriting recognition

including geometric features, ink related features, directional features and global fea-

8

tures. The corresponding feature extraction algorithms are described in this chapter

as well. Chapter 8 presents the results of prototype pruning using some features

given in Chapter 7. Chapter 9 is a review of the theory of hidden Markov Model.

Chapter 10 introduces hidden Markov model for mathematical characters. Chapter

11 describes the implementation of a HMM recognizer, also provides experimental

results. Chapter 12 introduces recognition methodology based on subspace analysis

and presents the implementation of an subspace recognizer together with discussion

of this recognition methodology. Chapter 13 provides an overview of combination

of recognizers as well as a description of dictionary based handwritten mathematical

symbol prediction. Chapter 14 summarizes the thesis results and points to future

research directions.

9

Chapter 2

Overview of Handwritten Mathematics Recognition

In this chapter, we examine the difficulties and processes in handwritten mathematics

recognition and review the research in this area.

2.1 Difficulties

Mathematical handwriting differs significantly from other forms of handwriting [33] [55].

First, the set of possible input symbols is extensive, coming from several different al-

phabets and sources. A full recognizer would have to distinguish about 2000 symbols.

Unlike Asian languages with large symbol sets, these symbols are typically composed

of a few strokes, with no specific stroke order, and with many symbols being quite

similar. For example, ϕ, g, L, 2, ∂, α, ∝,∞ shown in Figure 2.1. Similar symbols also

make expression analysis more difficult. For example, the expression in Figure 2.2

(from [75])can be (x+3)(y+3) or (x+3xy+3). Second, the spatial relation among

symbols can use complex context-sensitive two-dimensional rules [11]. Mathematical

symbols can be written beside, above, below and inside one another in different sizes.

Third, mathematical handwriting can involve large variable operators such as matrix

brackets, fraction bars or square roots. This layout and grouping makes mathematical

handwriting akin to a blend of drawing and writing. Last, mathematical notation is

not formally defined. There are many different communities, each with their own con-

vention. With the evolution of mathematics, new variations and styles are adopted

for the notation from time to time.

10

Figure 2.1: Similarity of Mathematical Symbols

Figure 2.2: Ambiguity of Mathematical Expression (from [75])

2.2 Recognition Process

From the difficulties listed above, we can see that in order to recognize handwritten

mathematics well, we need to perform two major tasks: we need to recognize large sets

of mathematical symbols and to analyze the two-dimensional mathematical formula

structure [9] [76]. We shall focus on the first problem.

2.3 Segmentation of Symbols

The large sets of symbols in mathematical expressions come from different domains

and contain different numbers of strokes. For example, “
√

” contains other symbols

inside its form. The following is a brief overview of the literature on segmentation

technologies: Ha et al. [24] used bounding boxes as primitive objects to separate

symbols using a “recursive X-Y cut”, i.e. horizontal projection cut and vertical

projection cut, refer to Figure 2.3. This approach must merge or split expressions

according to syntax using top down and bottom up cuts.

Okamoto et al. [48] used similar segmentation, but used isolated symbol as primitive

object.

Smithies et al. [57] developed a stroke grouping algorithm to perform segmentation.

The system first generated all possible stroke groupings, then examined the confidence

level given by a symbol recognizer and selected the best one. This approach is fast

but they assumed that any strokes that cross are associated with the same character.

11

This assumption could introduce errors for overlap strokes from adjacent characters.

This requires manual correction.

Faure and Wang presented a modular system for segmenting handwritten mathe-

matical expressions [68]. Their system has two segmentation modules: a data-driven

module builds a relation tree for the given expression. Then knowledge-driven seg-

mentation is used for correcting the relation tree.

Figure 2.3: X-Y Projection Cut, from Ha [24]

2.4 Recognition of Segmented Symbols

The most common methods used in recognition of handwritten symbols can be clas-

sified as follows:

1. Elastic Matching. This method compares the input symbol with symbols in the

model. Then the closest distance is computed and the recognition result is the

best matched one [26]. (See Figure 2.4)

2. Structural Approaches. Chan [9] et al. used this method in their handwritten

alphanumeric characters recognition. In this approach, structure information is

extracted from the symbols, thereby reducing the number of comparisons.

12

Figure 2.4: Elastic Matching

3. Statistical Approaches. In most of the recognizers, we need to combine certain

components in order to get correct results. To recognize segmented characters,

we need combine the components that make up a single character. For example,

the characters “i, j,=, !” each have two strokes. If we have segmented “i” to

two strokes, then we would need to combine them for recognition. Smithies et

al. [57] have used statistical approaches to achieve this.

4. Neural networks. Neural networks have been used successfully in speech recog-

nition. They have been used in handwriting recognition as well. For example

Murthy et al. [45] applied this method in their handwriting recognition research.

5. Hidden Markov models. This approach does not require the symbols to be

segmented before recognition and has been proved to be very effective in the area

13

of speech recognition. Lee et al. [37], Koerich and his colleagues [32], Winker [72]

attempted to apply this approach to mathematical expression recognition.

Figure 2.5: Markov Model

2.5 Structural Analysis

The goal of structural analysis is to build a hierarchical relation tree for mathematical

expressions. Existing approaches are listed below:

1. Syntactic Methods. Anderson, one of the earliest researchers in this field, used

syntactic method [4]. It initiates one ultimate syntactic goal and sub-divides the

goal into sub-goals using top-down parsing scheme, followed by the application

of certain grammar rules for the division of the goal. A drawback of the method

is its low speed due to parsing and poor error handling.

Figure 2.6: Structural Analysis

2. Structure Specification Scheme. This scheme is a restricted version of the syn-

tactic approach. A pattern is divided into several sub-patterns based on the

existence of certain operators [76], where each operator has one rule. A disad-

vantage of this approach is that it can only be applied to the patterns whose

14

structures are based upon a number of operators. The advantage is that it is

more efficient than Anderson’s method.

3. Projection Profile Cutting [10]. Vertical cutting is performed first followed by

horizontal cutting. The structure analysis is performed prior to symbol recog-

nition. Superscripts, subscripts and square roots require dedicated analysis. A

drawback of the method is that it cannot distinguish the expressions as shown

in Figure 2.7.

Figure 2.7: Indistinguishable Characters by the Projection Profile Cutting method

4. Graph Rewriting. Blostein et al. [20] developed this method for mathematical

structural analysis. The information in a mathematical expression is repre-

sented by a graph. Then the graph is updated by sets of graph-rewriting rules.

The symbols are represented by nodes with attributes representing the location.

At the beginning, we only have nodes. Later, we add edges by potential spa-

tial relationship. Recursively, we replace the graph with a new graph by graph

rewriting rules. At the end, we only have one node that represents the mathe-

matical expression to be recognized. The advantages of this approach are that

there is no backtracking and it has flexible formalism and strong theoretical

foundation.

5. Decomposition, based on hierarchy. Chan and Yeung used this method [9],

however it needs backtracking. Therefore, it is less efficient comparing with

graph rewriting.

In this chapter, we given an overview of handwritten mathematics recognition. We

pointed out the difficulties coming from large set of symbols, the similarity between

symbols and the complex spatial relations between symbols. We went through the

recognition process, i.e. segmentation, recognition and structural analysis. Each

stage of the process can be performed one after another or simultaneously.

15

Chapter 3

Handwriting Recognition Components of the Current Work

In this chapter we will give an overview of the components in our handwriting recog-

nition system. The details will be presented in the followed chapters.

3.1 Architecture of the Handwriting Recognition System

This work is part of a larger project for pen-based math, involving expression analysis,

dictionary-based methods, and portability layers. In this thesis, we focus on issues

related to symbol recognition. Figure 3.1 represents the top-level architecture of our

symbol recognition system.

The overall organization includes data collection, preprocessing, feature extraction,

prototype pruning, elastic matching recognizer and hidden Markov model recognizer.

In data collection module, a representative set of stroke data for mathematical

symbols was collected as traces of (x, y) points, rather than as images. The data

collection was performed with the tablet PC and Microsoft tablet SDK. Our database

includes mathematical symbols and expressions as well as Unipen data. We include

part of Unipen data since thousands of handwritten samples are needed to train our

models. A data converter was implemented for the translation of ORCCA data format

to Unipen and vice versa.

After collecting the data, various preprocessing methods were applied, such as

smoothing, re-sampling, size normalization, etc. The preprocessing operations can

remove noise caused by ink collection devices or writers. This data was used off-line

to develop classification categories for the different mathematical symbols. When

we wish to recognize a symbol on-line, given raw stroke data, we perform similar

16

preprocessing, and then send the strokes to a feature extraction coordinator to detect

the symbol’s features.

A set of discriminative features were used to select the appropriate mathematical

symbol class, after which the results of feature extraction were sent to grouping stage,

from where the symbols were classified. Grouping reduced computations since the

prototypes are pruned.

After grouping, we performed hidden Markov model based recognition as well as

elastic matching based recognition. Vector quantization was used to discretize fea-

ture vectors and map handwriting input to a sequence of observation symbols. The

observation sequence was inputted into a hidden Markov model recognizer. We also

tried other recognition method such as subspace method. More details are given in

later chapters.

3.2 Other Approaches for Handwriting Recognition

In addition to the above work, we also attempted other approaches in the field of

mathematical symbol recognition, which include subspace method, ensembling mul-

tiple classifiers and context rules.

There are many methods for pattern recognition. However, not all of them can

be used for mathematical symbol recognition due to the difficulties we pointed in

Chapter 2. Except for elastic matching and hidden Markov Models, we also explored

the subspace method. In subspace method, a pattern is represented by a linear

combination from its feature space, which is called the subspace. Similar to the

hidden Markov model approach, feature vectors have to be extracted from model

symbols and unknown symbols. The subspace is built based on the feature vectors so

that it represents the pattern and its variations. To recognize an unknown symbol,

the distances from unknown feature vector to models’ subspaces are calculated, the

minimum one is the recognition results.

We built a prototype recognizer using the subspace method. The recognition rate

is limited by the choice of method to build the subspace, i.e. the linear combination

17

of feature vectors. Further investigation into finding proper subspaces can improve

the recognition rate.

Combining multiple classifiers is also an attractive approach. After generating a set

of classifiers, various combination schemes can be used for recognition. The widely

used combination schemes includes Bayesian combination, score combination, voting,

weight voting and Borda count[22]. We studied different ensemble methods including

Bagging, AdaBoost, random subspace and architecture variation methods [22].

Ambiguity is one of the difficulties in handwriting recognition. We can rely on

context to distinguish the similar symbols. Smirnova and Watt [54] have investigated

this area. For completeness, we also summarized their work in this thesis in Section

4, Chapter 13.

18

Hidden Markov Model Recognizer

strokes

 Resampling Size Normalization

Elastic Matching Recognizer

Data Collection

Preprocessing

Smoothing

Chopping head and tail

Feature Extraction

end direction, width−height ratio, number of

initial position, end position, initial direction,

Intersection, Loops, Cusps, Point density,

 (Preclassify)
Prototype Pruning

Figure 3.1: Architecture of the Handwriting Recognition System

19

Chapter 4

Experimental Data for Mathematical Handwriting Recognition

4.1 Data Collected at the ORCCA Lab

Collection of sufficient handwriting data from different writers is an important part

of the recognition process. Many recognition methods such as hidden Markov model

based method need substantial amounts of training data. Since standard handwritten

mathematics database is not available, we had built our own database.

4.1.1 Data Collected with an IBM CrossPad

Starting in the year 2000, studies on mathematical handwriting recognition at the

ORCCA lab have been based on mostly on each authors’ own handwriting. In 2002,

ORCCA set up the first collection of on-line handwritten samples of mathematical

symbols and expressions [16], [73], collected with an IBM CrossPad device. The

database was constructed by collecting handwriting samples from 28 volunteers in-

cluding faculty, graduate and undergraduate students. The mathematical question-

naire used in the study included 301 mathematical characters and 68 mathematical

expressions.

The CrossPad is an A4-size portable digital notepad with resolution of 0.01 cm,

or 254 dpi (dots per inch). The pen trajectory is recorded 100 times per second as

a sequence of points. The data information includes x, y coordinates together with

beginning and ending time of the stroke. The x, y coordinates are relative to the

original point which is located at the upper-left corner of the notepad.

The CrossPad devices are presently discontinued products and the hardware and

software that support these devices are no longer available. It is still possible to han-

20

dle the data generated by these devices using IBM’s Ink Manager and Ink Manager

SDK, although the CrossPad’s digital ink format is not widely used in handwrit-

ing recognition. Therefore, we have converted the CrossPad digital ink into Unipen

format.

Time stamps are quite important for on-line handwriting recognition. The Cross-

Pad can record the beginning and ending time of each page and each stroke. The

time stamps for each stroke are counted only in seconds, which is useless for most

on-line handwriting recognition applications. This limitation is a major drawback of

CrossPad devices. Even though the interval time between each points of a stroke can

be computed according to the sampling rate, the relation among strokes cannot be ac-

curately captured. Another limitation of CrossPad is that the device is able to record

only the pen down trajectory where as it has been shown that pen up trajectory is

also important in handwriting recognition.

4.1.2 Data from Tablet PC

Since the IBM CrossPad has inherent limitations a better device was needed for the

collection of suitable data. The Tablet PC was be considered to be an appropriate

choice. It has an active digitizer (pen-based stylus with a resolution of 600 dpi at

least). The Microsoft-developed tablet PC SDK is intended to help users in the

development of pen-based applications. We have used an Acer tablet PC in the

collection of mathematical handwritten symbols for the second version of the database

at ORCCA. The Tablet PC operated under Microsoft XP Tablet Edition and has an

appearance of a laptop, enabling the users to write horizontally or vertically on its

14-inch rotary screen. The digitizer of the Tablet PC uses a special stylus sending

signals to the display indicating where the stylus is on the screen.

Compared to the IBM CrossPad, the Tablet PC has the following advantages:

• High sampling rate with resolution of about 600 dpi, allowing for more accurate

data capture.

• The Tablet PC can detect its stylus status: if pen is off the screen, (i.e. pen up

stroke), the pen trajectory can also be detected.

21

• The screen of the Tablet PC is a pressure sensitive device, which permits tracking

of pressure data during writing.

• The Tablet PC can capture more detailed pen-related information, such as the

x, y tilt angle of stylus.

• Tablet PC is able to provide detailed timing information. Both start and end

stroke times can be recorded.

4.1.3 The ORCCA Data Sample

For each symbol and each formula in our questionnaire, we have collected 70 written

samples contributed by a group of about 50 individuals. The samples include alphanu-

meric symbols, Latin letters, Greek letters, scripts and mathematical formulae. The

individuals have been selected to have different academic and national backgrounds.

Academic backgrounds include mathematics, chemistry, physics, electronical engi-

neering and computer science. The contributors for the data come from Canada,

Russia, Japan, China, Iran, France, USA, Romania. The output data file contains

character names, Unicode points, x, y coordinates, pressure, a pen-down/pen-up bit

as well as time information. Figure 4.1 shows a sample of the data file.

4.1.4 Data from Unipen

Unipen has been first developed in 1993 [23] and is a well-known and widely used

digital ink format in the area of handwriting recognition. We have used Unipen data

together with our data collection in the training of our recognizers. The Unipen data

we used consisted of 16k isolated digits, 28k isolated upper case, 61k isolated lower

case and 17k isolated other symbols [23].

22

4.2 Different Digital Ink Format Conversion

In order to use multiple digital ink formats, we have implemented a number of con-

verters. Since Unipen format is quite widely used, we used Unipen as the standard

ink format and have written conversion utilities to and from IBM CrossPad and the

Tablet PC formats. This was before InkML and no standard existed. CrossPad ink

format was converted into Unipen format using Java and IBM Ink Manager SDK.

The conversion is straightforward: starting with the location of the bounding box of

each symbol in the “page”, followed by recording of the pen trajectory, i.e. the x, y

coordinates in a Unipen format file.

Converting Unipen format to ORCCA tablet digital ink format requires additional

analysis and utilizes the previously prepared database of unicodes of individual sym-

bols in tablet digital ink format. Characters in Unipen format possess only the name

of a character, while in ORCCA we use a different symbol naming system, which is

platform independent. For example, under ORCCA nomenclature, “a” and “bigA”

are the names of small “a” and capital “A” respectively. For this, a map file was pre-

pared containing Unipen character names, corresponding ORCCA nomenclature and

Figure 4.1: Tablet PC Data Sample

23

unicodes. The conversion between Unipen and ORCCA digital ink was conducted via

sequential runs of custom-built parser, syntax checker and Unipen segment parser.

The resulting Unipen data has the following structure:

.VERSION 1.0

.INCLUDE aga/data/annzchr1.dat

.SEGMENT CHARACTER 77 ? "1"

.SEGMENT CHARACTER 363-364 ? "4"

.SEGMENT CHARACTER 368 ? "6"

.SEGMENT CHARACTER 456 ? "2"

.SEGMENT CHARACTER 458-459 ? "4"

.SEGMENT CHARACTER 460-461 ? "5"

.SEGMENT CHARACTER 463 ? "7"

.SEGMENT CHARACTER 464 ? "8"

There are two possible options for the .INCLUDE statement, one of them point-

ing to a file with .doc extension which specifies .ALPHABET, HIERARCHY and

other header information. The other possibility is to include a file with a .dat ex-

tension containing the real stroke information. Sometimes, the .dat file contains an

.INCLUDE statement, which in turn specifies the .doc file. Given a Unipen data file,

our hierarchy parser can work through the .include hierarchy and find the data of

pen trajectory. The second argument of .SEGMENT uses the expression [A[:M]] -

B[:N]],[C] to refer to the actual data segment. Our Unipen segment parser processes

this format and extracts the corresponding digital ink.

Converting from ORCCA tablet digital ink format to Unipen format is easier, as

it involves extracting x, y and pressure data from ORCCA ink format and converting

them into Unipen formats.

24

Chapter 5

Preprocessing

The input for most of the handwriting recognizers is “clean” data. This requires

pre-processing of the raw data collected from tablet devices. Preprocessing is needed

for the following reasons as well:

• Raw data contains noise from the electronic device used for data collection. For

example, the uneven surface or the improper configuration may generate noise.

• Individual writers would introduce variations in the handwriting.

• The sampling rate is not sufficiently high for certain tablet devices, thereby

requiring the insertion of additional points.

• Symbol size should not affect the recognition results, which is the reason for the

scaling of symbols.

• Strokes can be written in different directions and orders. For example, one may

write a horizontal or vertical line first when recording the character “+”.

In the following sections, we describe the preprocessing operations in detail. The

preprocessing operations include: dehooking, smoothing, re-sampling, stroke re-direction,

stroke re-ordering and size normalization.

5.1 Dehooking

Hooks at the ends of the stroke are very common. In our symbol database, certain

individuals’ handwriting always begins with hooks (see the hooks in the Figure 5.1),

as hooks are associated with writing styles. In fast writing, hooks may be artifacts of

the device. The pen-down/pen-up event cannot be captured at the same time as the

stylus touches/lifts off the tablets.

25

Figure 5.1: Examples of Hooks

Since hooks are positioned at the ends of a stroke accompanied by a sharp turning

point in the stroke, we detect them by checking the changes of the turning angles as

well as the location of the hooks. Turning angle is formed by the consecutive line

pi−1pi and pipi+1 (see Figure 5.2). Mathematically, the following conditions are used

to detect hooks:

θi > θ (5.1)

where θ is a given threshold.

i−1∑
k=1

arcLength(pk+1, pk) < αL (5.2)

n−1∑
k=i

arcLength(pk+1, pk) < αL (5.3)

where α is a real number between 0 and 1 and L is the stroke’s length. In the present

work use θ = 90 degrees and α = 0.12. In comparison, Tapia [61] used a threshold

value of θ = 85 degrees. Figures 5.3, 5.4, 5.5 and 5.6 show examples of characters

before and after dehooking.

Figure 5.2: Definition of theta in the case of hooks

26

-1200

-1100

-1000

-900

-800

-700

-600

-500

-400

 1500 1600 1700 1800 1900 2000 2100 2200

-1100

-1000

-900

-800

-700

-600

-500

-400

 1500 1600 1700 1800 1900 2000 2100 2200

(a) (b)

Figure 5.3: (a) before dehooking (b) after dehooking

(a) (b)

Figure 5.4: (a) the symbol “slash” before dehooking (b) after dehooking

5.2 Smoothing

Smoothing operations are widely used as a filter in noise removal. For example, sharp

angle changes at the ends of strokes may generate digital noise. Smoothing is done

by substitution of a point with the weighted average of its neighboring points.

x
′

i =
m∑

k=−m

αkxi+k (5.4)

y
′

i =
m∑

k=−m

αkyi+k (5.5)

where αk is the weight on point (xi+k, yi+k), 2m is the number of neighboring points.

We set m = 3, αk = 1/6 in our smoothing operation. Other researchers have used

a discrete Gaussian distribution to determine the coefficients. For example, the co-

efficients’ values in Tapia’s work [61] have been set to be α−1 = 1/4, α0 = 1/2 and

α1 = 1/4.

27

-1600

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

 1400 1500 1600 1700 1800 1900 2000 2100 2200

-1600

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

 1400 1500 1600 1700 1800 1900 2000 2100 2200

-1600

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

 1400 1500 1600 1700 1800 1900 2000 2100 2200

-1600

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

 1400 1500 1600 1700 1800 1900 2000 2100 2200

(a) (b)

Figure 5.5: (a) before dehooking (b) after dehooking

(a) (b)

Figure 5.6: (a) the symbol “plus” before dehooking (b) after dehooking

Figure 5.7 and Figure 5.8 show the results of different smoothing operations.

Figure 5.7: (a) before smoothing

28

Figure 5.8: (b) after average smoothing (c) after Gaussian smoothing

5.3 Re-sampling

Depending on writing speed, the points in the handwritten strokes may be separated

by large distance and in general are unevenly distributed. In the case of fast writing,

only a few points are recorded while at slow speeds strokes are recorded with high

point density. Re-sampling is applied to remove the speed factor by interpolating new

points or removing points depending on distance so that the final separation between

consecutive points is equal.

Re-sampling can also reduce computation time by removing points which are close.

The re-sampling procedure starts at the first point p1, checks the distance to the

next point, arcLength(p1, p2) and if arcLength(p1, p2) > αL, the insertion process is

performed as follows: m points are inserted between p1 and p2,

m = barcLength(p1, p2)/(αL)c.

x
′

i = x1 − ki × (x1 − x2)/(αL+ 1) (5.6)

y
′

i = y1 − ki × (y1 − y2)/(αL+ 1) (5.7)

where i from 2 to m+ 1 in xi, yi and ki.

After inserting m points, we check the distance between p
′
m and its next point,

if the distance is greater than αL, the insertion process is repeated. Otherwise the

following removal process is applied:

29

if arcLength(p1, p2) < αL then

Remove p2

if arcLength(p1, p3) < αL then

Remove p3

else

Insert between p1 and p3

endif
else

Insert between p1 and p2

endif

Algorithm 5.1: Resampling

5.4 Stroke Re-direction

The existence of variants in the direction of handwritten strokes is another important

reason for the difference between on-line and off-line handwriting recognition. One

individual may record a given symbol leaning in various directions, as well as left-

and right-handed individuals may have preferences in systematically writing char-

acters slanted left or right thereby affecting the accuracy of an on-line recognition

process. By looking at the handwriting images, the difference in the stroke directions

cannot be detected, therefore stroke direction is not considered in off-line handwriting

recognition.

Most intuitive way to handle the stroke direction is to build different models for

different directions, although this would be computationally expensive since the num-

ber of models would double for a single stroke symbol. For a two-stroke symbol, there

would be four models even if we didn’t consider the stroke order.

Nicholas [44] created a canonical direction method for each stroke, which we have

used in stroke redirection. Strokes are classified into four types: horizontal, vertical,

diagonal and closed. Two weighted ratios are defined in strokes classification:

Rx =
|x1 − xn|

D
(5.8)

30

Ry =
|y1 − yn|

D
(5.9)

where x1, xn are the first and last point in the stroke respectively. D is the length of

the diagonal of the bounding box of the stroke.

We have used a threshold δ ∈ [0, 1] together with the following conditions to detect

the stroke type:
Horizontal: Rx ≥ δ and Ry < δ

Vertical: Rx < δ and Ry ≥ δ

Diagonal: Rx ≥ δ and Ry ≥ δ

Closed: Rx < δ and Ry < δ

Alteration in horizontal direction of the stroke is performed if x1 < xn, while vertical

and diagonal alterations in stroke direction are carried out if y1 > yn. After the stroke

direction has been normalized, we build a model for the character. To recognize a

symbol, stroke normalization is performed on the unknown symbol as well.

It is important to select a proper value of δ to avoid errors. This value need to

satisfy “horizontal”,“vertical”,“diagonal” and “closed” categories. For example, in

the case of two symbols having the same stroke, we may only reverse the stroke in

one of the symbols. Nicholas [44] used δ = 0.37, we have used this result in our

implementation.

5.5 Stroke Re-ordering

Multiple-stroke character, such as “+”, may be written by first recording either the

horizontal line or the vertical line. Similarly to variance in stroke direction, this

would affect on-line handwriting recognition. Building multiple models for the same

character is to be avoided for the sake of efficiency. Normalizing the order of the

strokes is an option to reduce the stroke order variance. Nicholas [44] defined a

canonical stroke order. It is necessary to measure the angle between the upper edge

31

of the symbol’s bounding box and the line segment defined by the upper left corner

of the bounding box and the last point in the stroke. Figure 5.9 shows the angle in

symbol π. Each stroke is assigned a value according to the angle, followed by the

strokes reordered in the ascending order based on the angle value.

Figure 5.9: Stroke Re-ordering, from Nicholas [44]

5.6 Size Normalization

Size normalization is necessary for model based recognizers since we need to compare

the unknown symbol with the model and size should not affect the recognition result.

In our size normalization, we move the upper left corner of the bounding box to (0, 0).

Given a new width w
′
, we calculate the new height to keep the height-width ratio.

The new center of the bounding box is:

h
′
= w

′ × h/w, c′x = w
′
/2, c

′
y = h

′
/2

where h
′
, w

′
is the new height and the new width respectively.

We select w
′
= 50 pixels. While the selected value is unimportant by itself, it needs

to be consistently applied to all symbols.

We use the following formulas to calculate the new x, y, i.e. x
′
, y

′
:

x
′
=

(x− cx)× w
′

w
+ c

′

x (5.10)

32

y
′
=

(y − cy)× h
′

h
+ c

′

y (5.11)

In this chapter, we discussed why it is necessary to do pre-processing operations.

We described how we preprocessed our data by the following operations: dehooking,

smoothing, re-sampling, stroke re-direction, stroke re-ordering and size normalization.

These operations removed digital noise and eliminated stroke order, stroke direction

and size impact on recognition.

33

Chapter 6

Mathematical Handwriting Variant Analysis

6.1 Introduction

Character variant analysis is important for math handwriting recognition. For this,

we need to look at actual data to see what variants arise in practice. Studies in this

field have been performed by Ward and Kuklinski [69], particularly on the components

of handwriting style variability. Kuklinski has proposed improvements of recognition

through shape correlation among characters. Srihari, et al. [60] used legibility, contour

features, etc to identify writers.

We have proposed an allomorph set for each studied symbol based on its geometry

structure and individuals’ writing habits. An allomorph is a representative example

of a handwriting symbol. We have collected handwriting samples from about 50

individuals using a Tablet PC and an IBM CrossPad. The participants in the study

were chosen to have different scientific backgrounds, such as mathematics, physics,

chemical, electronic and mechanical engineering. Also, they were selected to represent

various national backgrounds, such as Canada, Russia, Japan, China, Iran, France,

USA and Romania. The inclusion of a variety of backgrounds in the study is a promise

for the achievement of higher precision in handwriting analysis, since nationality and

mathematical background are important factors, as we shall see later.

6.2 Variant Analysis

In this section, the factors that cause variants in handwriting are presented. These

factors are the geometric structure of the symbol, writing habits, visual perception

as well as the academic and national background of the individual.

34

Figure 6.1: Different Number of Strokes

6.2.1 Number of Strokes

Number of strokes is one obvious and important factor contributing to variance.

Because of cursive writing style and national writing preference, the same character

can have a different number of strokes in different written forms (Figure 6.1). For

example, Ward and Kuklinski [69] maintained that the symbol displayed on the top

left in Figure 6.1 is common for North Americans, while the symbol on its right is

widely accepted in Europe. While it is true that nationality affects writing style, the

above conclusion is certainly not a hard and fast rule.

Tapia [61] reduced the stroke variance by enforcing fixed number of strokes per

character, e.g. if the number of strokes M exceeds the given number N , the N − 1st

to Mth strokes are concatenated. In our HMM recognizer, the number of strokes

is not reduced, but reduction has been considered by building a hierarchy hidden

Markov models for each character, which have different numbers of strokes.

6.2.2 Beginning and Ending Hooks

Sometimes individuals would write symbols that begin and end with a hook. Hooks

may be extended into lines, curves or even loops, resulting in different shapes depend-

ing on hook lengths. In our studies, length of hooks won’t be considered a factor if the

overall symbol structure is not changed by the hooks. Again, this is consistent with

the fact that we conduct shape analysis from a comprehensive perspective. Figure 6.2

shows examples of hooks.

35

Figure 6.2: Hooks

Figure 6.3: Connected Strokes

6.2.3 Cursively Connecting Segments

If one would segment the cursive and non-cursive handwriting of the same symbol at

its turning points, in most cases the cursive one would turn out to have more segments.

This is due to the connecting segments, which make handwriting complicated and

cause variant. Figure 6.3 shows some examples. The first “H” in Figure 6.3 can

be segmented to five segments while the second “H” has three segments. Cursive

writing generated different number of strokes and shapes. The different ways of

segment connections will result in different representations.

6.2.4 Cusps Changing to Small Loops

In the examples shown in Figure 6.4, one can see that how cusps could be written

as small loops. Most of these changes are caused by retracing, as seen in the cases

of symbols “m”,“n”. Some of the turning angles change to loops, as in the case of

symbol “a”. The loop in the second last symbol “r” in Figure 6.4 is hidden. Hidden

loops can still be considered as cusps, while a visible loop makes a different allomorph.

36

Figure 6.4: Cusps becoming Loops

6.2.5 Angles Changing to Loops

A loop could appear due to the style of handwriting. Examples are shown in Fig-

ure 6.5. This can also happen when an ending stroke crosses another stroke and forms

a loop (see the symbols “j” and “g” in Figure 6.5).

Figure 6.5: Angles becoming Loops

6.2.6 Omitting Character Tails

Symbol tails can be important in the recognition process. For example, the characters

“9” and “g” are distinguished through the handwriting of the tail. As it is possible

that an individual would omit writing the tails, this would cause ambiguities as seen

in the second symbol in Figure 6.6, which can be considered to represent one of the

four different symbols: “I”,“L”,“l”,“1”.

37

Figure 6.6: Omitting Little Tails

Figure 6.7: Straight Line Variance

6.2.7 Wavy Lines

In the case when straight lines are not properly written, a smoothing operation is

needed to remove a wavy line. If the wiggles are large enough, they cannot be removed

by smoothing and become a variant-producing factor as shown in Figure 6.7. The

large wiggle in π creates an allomorph, which is included in the recognition models

for π.

6.2.8 Quick and Cursive Handwriting

Such handwriting results in a reduced number of strokes as well as in an altered shape

of a character, which is another variant-producing factor. Examples are shown in Fig-

ure 6.8. We have to admit that we cannot recognize all of the simplified handwriting.

Some of them are not suitable for machine-enabled recognition.

Figure 6.8: Simplified Symbols

38

Figure 6.9: Loop to Cusp Example

6.3 Factors Which Are Not Considered

There are certain factors we do not consider for a number of reasons. For example,

Ward and Kuklinski argued that loops could collapse to cusps (Figure 6.9). This may

be useful in English, but is not a useful strategy when math symbols are used.

6.4 Allomorph Variation Among Characters

Based on the above variance considerations, we have built a database of allomorphs for

each character. From the set of allomorphs, we have reached the conclusion that hand-

written alphabetic characters have larger variability than Greek letters, followed by

numerals and mathematical operators. When Srihari and his colleagues investigated

the individuality of handwritten characters, they reached a similar conclusion [60].

The degree of variability also depends on the complexity of the handwritten character.

6.5 Using of Variance Analysis in Handwriting Recognition

The question of how to use the variance to improve handwriting recognition depends

on the method used for recognition.

For model comparison based recognition, we can create difficult models from the

variants. Ward and Kuklinski [69] have built symbol models by producing combina-

torial variations of strokes. For upper case “A”, their method was set up to estimate

15,552 symbol models, which required significant resources. In our recognizer we have

built multiple hidden Markov models for each symbol according to variants. These

models can be classified by the writing style. For example, if one writes “h” as in

Figure 6.10 (a), his or her “k” will quite likely be the “k” in Figure 6.10 (b). If one

writes “h” as the “h” in Figure 6.10 (d), then his or her “k” will quite likely be as

39

the “k” in Figure 6.10 (c). This seems like user identification, but it is much simpler

and easier to compute.

In this chapter, we described mathematical handwriting variant analysis. We ob-

served that the following factors contributed to variant: number of strokes, hooks,

cursive writing, loops coming from cusps and angles, tails and wavy lines. Allomorphs

for each symbol are represented. We also described how to use variant analysis in

recognition.

Figure 6.10: Writing Style Examples

40

Chapter 7

Feature Extraction

7.1 Introduction

It is well accepted that feature extraction is important in handwriting recognition [65].

Despite that recently there has been little research development in this area, most of

the existing recognizers use this technique to certain degree [40].

At present, there is not an agreed upon set of features that is considered sufficiently

exhaustive to be used in a universal recognizer. In handwriting recognition, especially

for large sets of symbols, extraction of proper features is challenging due to hand-

writing variances. For this reason, we have performed a feature study based on the

variance analysis outlined in the previous chapter, specifically attempting to define

features with high distinguishing effect. In this chapter, we describe the set of fea-

tures we have adopted (based on analysis of empirical data), and provide algorithms

for extracting these features. These features are then used in the elastic recognizer

and hidden Markov model recognizers.

7.2 Published Studies on Features of Written Symbols

There are three main categories of features used in handwriting recognition, namely

direction features, shape features and ink-related features. Generally speaking, these

features are used for two different purposes, either for recognizing or for grouping

handwritten symbols. We will give a brief review of what they are and how they are

used.

• Direction Features: Rigoll and Kosmala [50] used the angle between two consec-

utive points as one of the major features in their HMM-based recognizer. Win-

41

kler [72] used angle and angle difference in his HMM-based recognizer. Okamoto

and Yamamoto [47] used features with clockwise/counterclockwise change of di-

rection for Japanese character recognition.

• Shape Features: Okamoto and Yamamoto [47] used circle as their shape feature.

Chan and Yeung [8] used lines, counter-clockwise/clockwise curves and loops in

their mathematical handwriting recognition.

• Ink-related Features: Winker [72] used pen-down/pen-up and Kurtzberg [35]

used number of points in each stroke and number of strokes per symbol as ink-

related features.

The studies listed above used features for recognizing symbols. Kurtzberg [35]

also used features for grouping in order to reduce computation. After grouping,

comparisons in recognition are based on groups of models instead of the whole set of

models. Kurtzbeg’s features can be listed as: number of strokes, number of points per

stroke, number of points in the symbol, height of the lowest point, height of the highest

point, height of the lowest point per stroke and height of the highest point per stroke.

Some of these features, e.g. number of points per stroke, are device dependent. Other

features such as height are assumed to depend on certain data-collection conditions,

e.g. guidelines.

In our work, we studied several published features and decided to give preference

to device-independent and context-independent features. Some features have been

tested on small set of symbols elsewhere. Here we tested our features on a larger set

of mathematical symbols. We have selected a subset of these features for the purpose

of pre-classification in an elastic matching based recognizer. We describe more details

in the next chapter. We also used some of these features in our hidden Markov model

based recognizer, as presented in Chapter 10 and Chapter 11.

7.3 Feature Families

We have organized symbol features into different categories. When handwritten sym-

bols are recognized, geometric and other features, such as loops, play an important

42

role. If the characters are too cursive to recognize individually, one must rely on

context, loops and intersections to distinguish characters. All these factors can then

be taken into account.

7.3.1 Geometric Features

Number of Cusps : A cusp is defined as a sharp turning point in a stroke, formed

locally by three points, e.g. p1, p2, p3 (Figure 7.1 (a)). If the angle of p1, p2 and p3

is sufficiently small, a cusp could exist within the given symbol. In order to determine

which cusps are well-defined, two more neighboring points are checked: p0 and p4.

p0, p1 and p2 should be on a relatively straight line, likewise for p2, p3, p4. As our

straightness threshold, we have selected the value of 170 degrees.

Number of Loops : This includes closed and open loops. In order to find loops, we

define the so-called “minimum distance pair”.

Minimum Distance Pair : A pair of points that has the minimum non-local distance

in a given area. To ensure non-locality (e.g. sequential points in a trace), the time

interval between the pair of points must exceed a certain threshold. There is only

one minimum distance pair in a given neighborhood.

Approximate loops may be found using minimum distance pairs. Our algorithm

starts with finding a “minimum distance pair”. Given time threshold and distance

threshold, we have a sequence of pairs:

(pi, pi+mi1
), (pi, pi+mi2

), ..., (pi, pi+mik
), ..., (pj, pj+mj1

), (pj, pj+mj2
), ..., (pj, pj+mjk

), ...

those satisfy the following conditions:

miq ,mjq > n× δt, distance(pi, pi+miq
), distance(pj, pj+mjq

) > L× δd

where q ∈ 1..k, n is the total number of points, δt is the time threshold, L is total

length of the stroke, δd is the distance threshold. Next, for the pair that has the same

beginning index, we find the minimum distance one: (pi, pk), (pj, pl), ... followed by

the application of certain filters on these pairs.

43

The “v” filter starts a search with a pair of points separated by minimum distance

points, known as “begin” and “end” points. The algorithm then computes a straight

line between them, followed by building a parallel line from a neighboring point of

the “begin” point, “nextp” in the Figure 7.2. This parallel line intersects the stroke

at “interp” point. The distance between the point “nextp” and the point “interp”

is called “paraDistance”. The distance between the “begin” point and “end” point

is called “origDistance”. We filter out this minimum distance pair, with distance

expension threshold, ρd, if paraDistance < origDistance× ρd.

An “area filter” is used to remove tiny loops by computation of the polygon

area formed by the points between “begin” and “end” points. If polygonArea <

boundingboxArea× ρa, the loop is filtered out (ρa is area threshold).

The “index filter” checks the distance between beginning indexes. If two beginning

indices i, j are too close, i.e. |i − j| < n × ρi, one pair is filtered out. n is the total

number of points. ρi is index threshold.

Several thresholds are being used in the finding loop algorithm. Since setting proper

threshold values improves the work of the algorithm, we have conducted a number of

experiments and have adopted the following empirical values:

δt = 1/5, δd = 1/8, ρd = 1.125, ρa = 0.05, ρi = 1/12.

The above values are valid when character size is normalized with 50 pixels width,

while keep width-height ratio. Refer to section 5.6 for details.

Chan and Yeung pointed out that detection of loops is not always trivial [8]. They

used chain code sequences to detect loops. Their chain codes depend on the starting

stroke position. In comparison, our algorithm does not have this limitation. It is able

to detect the loop in Figure 7.2(b) while Chan and Yeung’s method fails to do so.

Number of Self- and Intra-stroke Intersections : To calculate the number of in-

tersections, we have implemented the modified Bently-Ottman [14] sweepline algo-

rithm [12] [18]. Every time an intersection is found, the two line segments associated

with the intersection are deleted, followed by the insertion of two new lines into the

set of line segments. These two lines begin from the intersection point, and end with

their old ending points.

44

This method may be described in terms of a “sweep line” which can be treated as

an imaginary vertical line. If it is made to pass through the given set of line segments

from left to right, the line segments that intersect a vertical sweep line are ordered

according to the y-coordinates of the intersection points.

Let us consider two segments a and b. We shall say that these segments are

comparable at x if the vertical sweep line with x-coordinate x intersects both of them.

We shall say that a is above b at x, written as a >x b, if a and b are comparable at x

and the intersection of a with the sweep line at x being higher than the intersection of

b with the same sweep line. For example, in Figure 7.3, we have a >r b, c >s b2 >s a2.

We introduce a sweep line status T , which is used to describe the relationships

among the line segments. The event point schedule E is another quantity being used

to store a sequence of event points, ordered from left to right. To get a set P of

intersections, the following operations are required:

• INSERT(T, s): insert segment s into T

• DELETE(T, s): delete segment s from T

• ABOVE(T, s): return the segment immediately above segment s in T

• BELOW(T, s): return the segment immediately below segment s in T

• INSERT(P,p): insert point p into P

• INSERT(E,e): insert point e into E

• DELETE(E,e): delete point e from E

(a) (b)

Figure 7.1: (a) Cusps in “h” (b) Cusps

45

Algorithm 7.3.1 takes a set of line segments S as input and finds a set P of in-

tersections:

(a) (b)

Figure 7.2: (a) Example 1 for Loop Detection (b) Example 2 for Loop Detection

Figure 7.3: Modified Sweepline Algorithm

46

Data: P ← ∅
Data: T ← ∅
Data: sort the endpoints of the line segments in S from left to right

Data: breaking ties by putting points with lower y coordinates first

Data: E ← sorted endpoints

foreach point p in E do

if p is the left endpoint of a segment s then

INSERT(T,s), if ABOVE(T,s) exists and intersects s at point p then

INSERT(P,p), INSERT(E,p)

endif

if BELOW(T,s) exists and intersects s at point p then

INSERT(P,p), INSERT(E,p)

endif
else

if p is the right endpoint of a segment s then

if ABOVE(T,s) and BELOW(T,s) exist and ABOVE(T,s) intersects

BELOW(T,s) then

INSERT(P,p), INSERT(E,p), DELETE(T,s)

endif
endif

if p is the intersection point of segment m and segment n then

build two new line segments m2 and n2 which begin with p,

end with their old ending points, mendp, nendp,

INSERT(E,p), DELETE(E,mbeginp),

DELETE(E,nbeginp), DELETE(T,m),

DELETE(T,n), INSERT(T,m2), INSERT(T,n2)

endif
endif

endforeach

return [P]

Algorithm 7.1: Intersection Detection

47

7.3.2 Ink-Related Features

Ink-related features capture ink distributions within the symbol. These features can

be used to pre-classify symbols. For example, a, b, and p belong to three groups

according to their spatial point density. The features include number of strokes,

number of points, point density and pen-down/pen-up.

Number of Strokes : This information is contained in the data structures returned

by the ink collection.

Point Density : We have adopted the letters “o,” “p” or “b” as a measure of spatial

point density.

• In the case of o-density, ink is to be evenly distributed in the whole stroke.

• In the case of p-density, ink is to be distributed in the upper part more than

that in the lower part.

• In the case of b-density, ink is to be distributed in the lower part more than that

in the upper part.

To compute these, the ink bounding box is divided vertically into three parts: the

upper 40%, the middle 20% and the lower box of remaining 40%. The ink bounding

box is divided into three boxes instead of two due to the variance in handwriting. For

example, the lower part of letter “b”may occupy more than 50% of the symbol height.

By measuring the ink in different boxes, we calculate the point density. Figure 7.4

shows the point density of symbol “b”.

Figure 7.4: Point Density

Pen-up and Pen-down: Traditionally, only pen-down strokes have been used in hand-

writing recognition, while only recently the detection of pen-up strokes has become

48

possible by using tablet devices - an advantage which is now being used by many

researchers. In our work, we have chosen 1 to represent pen-down, and 0 to represent

pen-up state.

7.3.3 Directional Features

Initial Direction: the direction from the beginning point toward the stroke.

End Direction: the direction from the end point toward the stroke.

Initial-End Direction: the direction from the initial point to the end point.

The value of the direction is one of the 8 chain codes. See Figure 7.5. The initial

direction is calculated from the first point and the third point, while the end direction

is calculated from the last point and the third last point. The following formula is

valid for the calculation of direction:

direction = b((((angle× 16)/(2× π)) + 1)%16)/2c

Figure 7.5: Chain Code

Figure 7.6: Initial-End Direction

Writing Angle: Every point i is considered to have a writing angle, defined as the

angle between line segment l(i, i− 2) and line segment s(i, i+ 2). See Figure 7.7.

49

Figure 7.7: Writing Angle

7.3.4 Global Features

Initial and End Position: If the ink bounding box is divided into four quadrants:

NE, NW, SE, SW, the initial and end points of a handwritten symbol will be posi-

tioned within one or two of these boxes, which is considered as a separated, distinctive

feature of the given symbol.

Figure 7.8: Initial-End Position

Width to Height Ratio: Depending on width and height, the symbols are classified

as having a width to height ratio of 0 (slim symbol), 1 (wide symbol) or 2 (regular

symbol).

In this chapter, we reviewed the features widely used in handwriting recognition.

Moreover, we described the features used in our recognizer. Furthermore, algorithms

for extracting these features are also presented. Our algorithm for loop extraction

performs better than other algorithms. We improved an existing algorithm for finding

intersections as well.

50

Chapter 8

Prototype Pruning in Elastic Recognition

In the previous chapter, we have described ink features and we have chosen algorithms

for extracting these features. In this chapter we describe how to use these for pruning

prototypes. The performance of the recognizer after applying them is analyzed as

well.

8.1 Prototype Pruning by Feature Extraction

Achieving a faster recognition process without sacrificing accuracy is one of the

main objectives in handwriting recognition research. In the present work, a pre-

classification strategy in combination with elastic matching has been used to improve

recognition speed. Elastic matching [26] [66] is a model-based method that involves

computation proportional to the set of candidate models. Increasing the number of

models normally improves recognition accuracy, but also reduces recognition speed.

To address this problem, we propose to prune the character prototypes by examining

certain character features. Suitable definitions arising from the analysis of different

features have enabled us to adapt them in an elastic recognition system, achieving

higher recognition speed while maintaining high recognition accuracy.

Prototype pruning is an intuitive way to break a large vocabulary into several

smaller groups. Our method locates the group to which the unknown symbol belongs

and attempts to find the symbol in the group. The computational effort in locating

the group is assumed to be low enough to ensure better recognition performance. If

there is prior knowledge of the chances for input of a particular symbol, the search

can be narrowed [54]. But such information is not available in most cases.

51

8.2 Elastic Matching

Elastic matching achieves recognition by finding the minimum distance between the

unknown symbol and a member of a set of models. Figure 8.1 (from [66]) shows an

example.

The distance between two continuous curves is approximated by summing the dis-

tances between corresponding points. The mapping between the two sequences of

points allows for both one-to-one and many-to-one correspondences between points

using dynamic programming [66]. Every point in the unknown symbol is matched to

one or many points in the model, or none at all. There is no need to have exactly

the same number of points in the model and the unknown symbol since redundant

points will be removed by the matching algorithm.

The total distance between the ith point of the unknown character and the jth point

of the model, D(i, j), is calculated as:

D(i, j) = δ(i, j) +



∑j−1
k=0 δ(0, k) if i = 0∑i−1
k=0 δ(k, 0) if j = 0

min

{
D(i− 1, j)

D(i− 1, j − 1)
if i > 0, j = 1

min


D(i− 1, j)

D(i− 1, j − 1)

D(i− 1, j − 2)

if i > 0, j > 1

(8.1)

δ(i, j) = (xi − xj)
2 + (yi − yj)

2 + C |φi − φj|

where φ represents the orientation and the curvature. Constant C is empirically

determined.

Let φ be the angle of elevation of the tangent to the point, calculated as follows:


φi = arccos(xi+1−xi

r
) yi+1 < yi

φi = arccos(xi+1−xi

r
) + π yi+1 < yi

φi = φi−1 i = n

where,

r =
√

(xi+1 − xi)2 + (yi+1 − yi)2

52

In the general case, i > 0, j > 1, at every step in the calculation of the distance

there is a choice whether to match the next point in the unknown to the same point

in the model D(i−1, j), to the next point in the model D(i−1, j−1) or skip a point

in the model D(i− 1, j − 2). The choice that gives a minimum distance is selected.

The distance function, δ, was adopted for the calculation of the sum of the Eu-

clidean distance and the weighted difference of curvature. To save computation time,

we use Euclidean distance’s square, (xi − xj)
2 + (yi − yj)

2 for δ.

The distance D(n,m) between the last points is divided by the number of points in

the model as seen in the Equation 8.2. This facilitates comparison between different

models of different lengths, so that the one with the smallest average distance is

chosen.

D̃(n,m) =
D(n,m)

m
(8.2)

The calculation of the inter-point distance (Equation 8.1) was a main factor in

slowing recognition. This is due to the fact that the calculation contains many over-

lapping sub-problems that require multiple re-calculations of the same distances. We

avoid this by using dynamic programming to implement elastic matching in C++.

For the details of the program for elastic matching, please refer to Appendix B: Dy-

namic Programming for Elastic Matching. The calculation starts at D(0, 0), building

up a matrix of distances until the top D(n,m) is reached. For example, D(0, 0) is the

distance between first point in the unknown character and first point in the model.

After we filled D(0, 0) to the matrix, we calculated D(0, 1), which is the summation of

D(0, 0) and the distance between the first point in unknown character and the second

point in the model. Similarly, D(0, 2) is the summation of D(0, 1) and the distance

between the first point in unknown character and the third point in the model. The

total distance between the unknown character and the model is D(n,m).

53

Figure 8.1: Elastic Matching (from [66])

8.3 Experimental Results

Our initial objective was to reduce the computation time, using the features in our

elastic matching-based recognizer. We have therefore based our selection of features

not just on their effectiveness at dividing the symbol set, but also on their compu-

tational cost. The features we selected for our experiments were: number of strokes,

initial position, width to height ratio, end direction and initial to end direction. The

number of strokes and the width to height ratio were required to match exactly. The

value assigned to initial position as described in section 7.3.4 could differ by one. The

same rule applies to initial to end direction, described in section 7.3.3. Additionally,

the value assigned to end direction was allowed to vary by up to two.

Our test data set contained 227 symbols shown in Figure 8.2, including digits, Latin

letters, some Greek letters and mathematical operators. In the tests individuals were

requested to write eight sets of the symbols. The first four sets were used as prototype

sets, and the rest of the sets were used as testing sets. The results are shown in

Tables 8.1, 8.2 and 8.3. P denotes prototype sets. For example, P1 indicates the

data from the first prototype set. T stands for test sets. For example, T1 denotes

the data from the first testing set.

Table 8.1 shows experimental results when features are not used. The first column

indicates the prototype and testing sets. The second column contains the number of

prototypes used for recognizing a symbol. For example, if the prototype set is P1,

54

for each symbol in T1, we need to perform 227 symbol comparisons. When another

prototype set is added, the number of prototypes is 227 × 2 for each symbol in the

test sets.

Table 8.2 presents the experimental results when features were used. The first

column is the same as in Table 8.1. The second column is the number of prototypes

in their respective sets. The prototypes are updated by training on the second,

third and fourth sets. The third column displays the number of prototypes used in

recognition. For example, if the prototype set is P1, for a symbol in T1, we need to

perform 26 comparisons. The fourth column is the percentage of prototypes pruned.

Tables 8.1 and 8.2 show a final recognition rate of 94.8% without using any features.

With features the recognition rate is 91.9%, but the prototypes are pruned by 89.6%,

reducing computation proportionately. Note that the percentage of prototypes pruned

was relatively constant for each prototype set.

Figure 8.2: Symbols for Experiments

55

Table 8.3 presents the test results for Kurtzberg’s set [35], containing 72 symbols,

including 10 digits, 52 upper and lower case Latin letters and 10 punctuation symbols.

We acknowledge that it is difficult to compare different recognition systems when the

test data sets are not exactly same. If there are large differences in the results,

however, the comparison can still be useful.

According to Table 8.3, the fraction of prototypes pruned has improved significantly

over Kurtzberg’s result, from 61.5% to 85.8%. The recognition rate has been reduced

by about 1% but still remains high. As the features used for prototype pruning

were easy to compute, the computation was insignificant compared to the elastic

matching. In contrast with Kurtzberg’s features, the ones used in the present work

are device independent and somewhat more general. The last row in Table 8.3 shows

the experimental results without using features. Since Kurtzberg used a number of

parameters, the number of prototypes in his work has been reduced.

Although we have not used all the features we have studied in the previous chapter

(such as loops, intersections etc.) for prototype pruning, they are still useful for other

purposes.

We have compared our results with Henning’s model of word recognition [2]. For

this purpose we implemented some of the characteristic features of the model, such

as ascender, descender, length of character, and number of center horizontal line

crossings. Section 3 of Henning’s paper discusses dictionary reduction, which is com-

parable to prototype pruning used in the present work. To the best of our knowledge,

there is no similar recent work for on-line handwritten symbol recognition.

We have applied the features from Henning at the character level and examined the

results. The capacity of the reduced (pruned) lexicon to include the correct match is

defined as “coverage”, which is adopted from Koerich [31]. The results are analyzed

in terms of coverage. We tested our features and the ones from Henning’s paper

(applied to symbols instead of words) on 227 symbols of 2 different writers. All the

features, except for length, require exact matches, and length must match within a

certain tolerance. Our experiments showed that both Henning’s and our features give

100% coverage.

56

Experiment # Prototypes Recog. Rate(%)

P1:T1,2,3,4 227 81.8

P1,2:T1,2,3,4 454 90.1

P1,2,3:T1,2,3,4 681 93.9

P1,2,3,4:T1,2,3,4 908 94.8

Table 8.1: Results in the case when features are not used

Experiment Number of Candidate Percentage Recognition

Prototypes Prototypes Pruned Rate(%)

P1:T1,2,3,4 227 26 88.5 76.0

P1,2:T1,2,3,4 366 38 89.6 85.5

P1,2,3:T1,2,3,4 495 52 89.5 90.0

P1,2,3,4:T1,2,3,4 575 60 89.6 91.9

Table 8.2: Results in the case when features are used

Experiment Number Of Candidate Percentage Recognition

Prototypes Prototypes Pruned Rate(%)

J.K’s Ours J.K’s Ours J.K’s Ours J.K’s Ours

P1,2,3,4:

T1,2,3,4

121 169 47 24 61.5 85.8 99.0 97.6

P1,2,3,4:

T1,2,3,4

122 288 92 288 N/A N/A 99.0 99.7

Table 8.3: Comparison with Kurtzberg’s Results

57

8.4 Conclusions

Most recognizers focus on a limited range of symbols such as postal codes or Latin

letters. Even recognizers for Asian languages deal with a limited vocabulary of strokes

which must be given in particular orders. Recognition for large set of symbols is still

a challenging research problem.

The present work uses feature sets used in pruning the number of candidates con-

sidered in a character match. This is a central feature of our symbol recognition

framework, and influences our overall mathematical handwriting project. Our rec-

ognizer is able to identify digits, English and Greek letters as well as the common

mathematical operators and notations. We have selected our features based on their

effectiveness and computational cost. In the optimization of our algorithm, we have

identified the symbols features empirically by analyzing a database of 10,000 mathe-

matical handwriting samples. The use of features in pruning was found to be effective,

greatly reducing computation time at only a modest decrease in recognition rate.

58

Chapter 9

Hidden Markov Model Based Recognition

Hidden Markov models (HMM) provide a promising approach to handwriting recog-

nition because they can model temporal patterns. In this chapter we summarize some

relevant work in handwriting recognition using HMM. We also provide for complete-

ness an overview of the theory of HMM. A more detailed introduction to HMM is

provided by Rabiner’s tutorial [49].

9.1 Introduction

Hidden Markov models (HMM) are widely used in handwriting recognition at least

in part due to their success in speech recognition. The basic theory of hidden Markov

model was published in a series of classic papers by Baum and his colleagues at

the Institute for Defense Analyses in the late 1960s [7]. Baker at Carnegie-Mellon

University(CMU) implemented the theory in speech processing application in early

1970s [6]. Jelinek and his colleagues at IBM have also applied hidden Markov models

to speech recognition in the 1970s [5]. Widespread application and understanding of

the theory,however, was not reached until the 1980s. The speech recognition systems

from AT&T, BBN and CMU were based on HMM, achieving superior results, as

HMMs could effectively model time and space variance in speech signals. The success

of HMM in speech recognition has generated strong interest towards its application

in handwriting recognition [32] [64] [67]. For example:

• Bellegarda et al. [46] at IBM included local position, curvature and global infor-

mation bearing into a feature set for the purpose of recognizing characters on a

81 character data corpus.

59

• Starner et al. [42] at BBN implemented angle, delta angle, delta x, delta y, pen

lifts and sgn(x−max(x)) features in the recognition of handwritten words.

• Shu [51] at MIT used a vertical height, space and sub-stroke features in addition

to Starner’s features, thereby achieving reliable recognition.

• Winkler [72] used both on-line and off-line features in a HMM-based symbol

recognizer. The on-line features included in the model were local position, sine

and cosine value of the writing angle, and information on whether a point belongs

to a pen-down stroke or pen-up stroke. Off-line features were extracted from

images of handwritten symbols.

• Guillevic and Suen [21] used slope and position features extracted from images

in their handwritten word recognition system.

• Lee et al. [37] designed a data-driven HMM topology for on-line handwriting

recognition, using direction features in their model.

• Kosmala et al. [34] included analysis of sine and cosine of writing and differential

angles, pen pressure and certain off-line features in their HMM-based mathemat-

ical expression recognition system.

Together with the positive results achieved with HMM, the above studies have

shown that certain problems need to be addressed in order to achieve improved

recognition. For instance, it is important to know which features should be used

to represent a handwritten symbol and what kind of HMM topology benefits the

recognition most.

In speech recognition, features representing the speech signal are now well under-

stood. At present Mel-frequency cepstral coefficients and delta Mel-frequency cepstral

coefficients are features used in HMM-based speech recognition [13]. It is still not clear

however which features provide the best results in handwriting recognition.

In this chapter we summarize the theory of HMM as it can be applied to handwrit-

ing recognition.

60

9.2 Elements of a Hidden Markov Model

9.2.1 Discrete Markov Process

A Markov process is a stochastic process that satisfies a particular condition: the

process’s future behavior does not depend on its previous states but only on its

current state. Let a discrete Markov process have a set of N states, S1, S2, . . . , SN .

We denote the actual state at time t as qt. The probability of the process being in

state Si at time t satisfies the following Markov condition:

P (qt = Si|qt−1 = Sj, qt−2 = Sk, . . .) = P (qt = Si|qt−1 = Sj) (9.1)

Figure 9.1 displays a Markov chain with four states.

Figure 9.1: Markov Chain with Four States

The state transition probabilities aij are denoted as:

aij = P (qt = Si|qt−1 = Sj), 1 ≤ i, j ≤ N

and
N∑

j=1

aij = 1

We denote the initial state probabilities as πi = P (q1 = Si).

61

The state transition probabilities and initial state probabilities can completely de-

scribe a discrete Markov process. The matrices A and
∏

shown below describe the

discrete Markov chain shown in Figure 9.1.

A = aij =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


∏

= πk = [π1 π2 π3]

If O denotes an observation sequence, then O = Si, Sj, Sk, Sl, . . ., where each state

corresponds to an observable event.

9.2.2 Hidden Markov Models

In a discrete Markov process each observation symbol is associated with a state. This

model is too restrictive and is not applicable to a range of problems. In a hidden

Markov model, the observation is a probabilistic function of the state. The state

sequence is not observable, but hidden. To illustrate the hidden Markov model, let

us consider a urn and ball example [49]: There are 3 urns in a room. Each urn has

many colored balls. The color of the balls are red, green, yellow and blue. A ball is

randomly chosen from an urn, and its color is recorded as an observation. The ball

is then replaced in the urn where it came from. A new urn is then selected, and the

ball selection process is repeated. The process generates an observation sequence of

colors without information of urns. Figure 9.2 illustrates the model. An HMM is

characterized by the following parameters:

1. N , the number of states in the model. We denote the states as S = S1, S2, . . . , SN

and the state at time t as qt.

2. M , the number of distinct observation symbols. The individual symbols are

denoted V = v1, v2, . . . , vM .

3. the state transition probability distribution A = aij, and

aij = P (qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ N .

4. the observation symbol probability distribution in state i, B = bi(k), and

62

bi(k) = P (vk at t|qt = Si), 1 ≤ i ≤ N, 1 ≤ k ≤M

5. the initial state distribution
∏

= πi, and

πi = P (q1 = Si), 1 ≤ i ≤ N

λ = (A,B,
∏

) denotes a HMM.

9.2.3 The Three Basic Problems of HMM

Given the idea of HMM reviewed in previous section, there are three basic problems

to solve if the model is to be used in handwriting recognition.

Problem 1. Given an observation sequence O = O1O2 . . . OT and a model λ =

(A,B,
∏

), how is the probability P (O|λ) of the observation sequence efficiently com-

puted?

Problem 2. Given the observation sequence O = O1O2 . . . OT and the model λ,

how is one to choose a corresponding state sequence Q = q1q2 . . . qT which is optimal

in some meaningful sense(i.e., that best “explains” the observation)?

Problem 3. How do we adjust the model parameters λ = (A,B,
∏

) to maximize

P (O|λ)?

We will describe how to solve the above problems in detail in the next session.

Figure 9.2: Three State HMM

63

9.2.4 Solutions to the Three Basic Problems of HMM

Calculating Probability of Observation Sequence

The first problem is an evaluation problem, i.e., given a model and a sequence of ob-

servations, how do we compute the probability of the observation sequence produced

by the model? This problem allows us to choose the model which best matches the

observations.

The most straightforward way to calculate P (O|λ) is enumerating all possible state

sequences.

P (O|λ) =
∑
allQ

P (O,Q|λ) (9.2)

=
∑
allQ

P (O|Q, λ)P (Q|λ) (9.3)

According to Equation 9.1, we can write,

P (Q|λ) = πq1aq1q2aq2q3 . . . aqT−1qT
(9.4)

The observation independence,

P (O|Q, λ) =
T∏

t=1

P (Ot|qt, λ) (9.5)

This gives,

P (O|Q, λ) = bq1(O1)bq2(O2)...bqT
(OT) (9.6)

Equations 9.3, 9.4 and 9.6 then give,

P (O|λ) =
∑

q1,q2,...,qT

πq1bq1(O1)aq1q2bq2(O2) . . . aqT−1qT
bqT

(OT) (9.7)

Equation 9.7 involves computational operations on the order of 2TNT . The computa-

tion becomes infeasible when the number of states, N , or the length of the observation

sequence T increases.

Fortunately, an efficient algorithm exists in the so-called “forward-backward” pro-

cedure. Only the forward part is used in the solution. The forward variable αt(i) is

64

defined as,

αt(i) = P (O1, O2, O3 . . . Ot, qt = Si|λ)

αt(i) denotes the probability of the partial observation sequence, O1, O2, . . . , Ot and

state Si at time t, given the model λ. We can solve αt(i) inductively as follows [49]:

1) Initialization:

a1(i) = πibi(O1), 1 ≤ i ≤ N (9.8)

2) Induction:

at+1(j) = [
N∑

i=1

αt(i)aij]bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (9.9)

3) Termination:

P (O|λ) =
N∑

i=1

αT (i) (9.10)

Equations 9.8, 9.9 and 9.10 show how the probability is calculated. First, the for-

ward probabilities are set to be equal to the joint probability of state Si and initial

observation O1 (equation 9.8). Then in induction step, αt(i) is calculated from 1 to T .

Finally, the probability is calculated by summing all the forward variables at time T .

The number of calculations involved is in the order of TN2. Therefore, this algorithm

is more efficient than the direct calculation of equation 9.7.

Finding a Best State Sequence

The second problem is the decoding problem to uncover the hidden part of the model

by finding a best state sequence for an observation sequence. Theoretically, there

is no exact solution. We cannot find a single “correct” state sequence. Instead we

have attempted to find a near optimal state sequence for practical situations. The

optimality criterion is to find a state sequence Q = Q1Q2 . . . QT , that maximizes

P (Q,O|λ), the joint probability of the state sequence Q and the observation sequence

O, given the model λ.

The Viterbi algorithm [49] is widely used to find the solution to Problem 2. The

best score is defined along a single path, at time t, as:

65

δt(i) = maxq1,q2,...,qt−1 P [q1, q2 . . . qt = i, O1, O2 . . . Ot|λ].

The quantity δt(i) can be computed recursively.

δt+1(j) = max
i

(δt(i)aij)bj(Ot+1) (9.11)

The following procedure is used to get best state sequence.

1) Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ N

ψ1(i) = 0

2) Recursion:

δt(j) = max
1≤i≤N

[δt−1(i)aij]bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N

ψt(j) = argmax1≤i≤N[δt−1(i)aij]

3) Termination:

P̂ = max
1≤i≤N

[δT (i)]

q̂T = argmax1≤i≤N[δT(i)]

4) Path(state sequence) backtracking:

q̂T = ψt+1(ˆqt+1), t = T − 1, T − 2, . . . , 1

To retrieve the state sequence, we need to keep track of the arguments that have

maximized equation 9.11 for each t and j. The quantity ψt(j) gives the state.

Adjusting Model Parameter

Problem 3 is a training problem. The model parameter λ is optimized to best de-

scribe the observation sequence, O = O1O2 . . . OT . The observation sequences used

to adjust the model parameters are called training sequences. The training problem

is a crucial one for most applications of HMMs since it allows the creation of the best

model for our application. However it is also a difficult problem since there is no

known analytical solution for this optimization. The Baum-Welch algorithm [49] is

66

a well-known iterative procedure that gives a locally optimal solution to the training

problem.

First, we define a backward variable βt(i) as:

βt(i) = P (Ot+1, Ot+2, Ot+3 . . . OT , qt = Si|λ) (9.12)

This denotes the probability of the partial observation sequence, Ot+1Ot+2 . . . OT ,

given the state Si at time t and the model λ. Like the forward variable αt(i), it can

also be calculated recursively. Next, we define the probability of being in state Si

at time t, and state Sj at time t + 1, given the model and the observation sequence

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ).

The probability of being in state Si at time t, given the model and the observation

sequence, is denoted as γt(i) =
∑N

j=1 ξt(i, j).

From the definition of the forward and backward variables, we can write,

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(9.13)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(9.14)

The summation of ξt(i, j) over t (t = 1, . . . , T − 1) equals the expected number of

transitions from state Si to state Sj. The summation of γt(i) over t is the expected

number of transitions from state Si. Using the above concepts and formulas, we can

write the equations for the re-estimation of the HMM parameters as follows:

πi = γ1(i)

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

bi(k) =

∑T
t=1,Ot=vk

γt(i)∑T
t=1 γt(i)

In this chapter, we have summarized the work in handwriting recognition using

hidden Markov models. We have also reviewed the theory of HMM which includes

Markov processes, the three basic problems and their solutions. We give a detailed

description of how to use HMM in handwriting recognition in the next chapter.

67

Chapter 10

A HMM for Mathematical Characters

In this chapter we describe how we map handwritten mathematical characters to

discrete observation symbols for an HMM. We also describe how we select and adjust

the model parameters such as number of states and initial observation distributions.

10.1 The Architecture of Our Hidden Markov Model Recognizer

In the following sections, we describe our hidden Markov model-based recognizer in

detail. Here we present an introductory outline of the model.

Figure 10.1 displays a diagram illustrating the recognition process. Handwritten

symbols are input into a pre-processing module, which performs de-hooking, smooth-

ing, re-sampling, stroke re-direction, stroke re-ordering and size normalization. (See

Chapter 5 for descriptions of these operations.) The pre-processed symbols are then

sent to the feature extractor module. We extract two sets of features: a positional

feature set and a chain code based feature set. At the end of this step the handwrit-

ten symbols are represented in feature space as feature vectors. Since we use discrete

hidden Markov model, we quantize the feature vectors, then calculate the sequences

of observation symbols, which are to represent handwritten symbols. Each feature

vector is mapped to a codevector. The set of all codevector is called the codebook.

In the training, many data samples are used to generate the hidden Markov models.

According to the codebook created in the vector quantization module, multiple ob-

servation sequences are generated from the training data. We use the Baum-Welch

algorithm [49] for multi-observation sequences to re-estimate the model. We build a

model for each symbol by training the model with approximately 1000 samples.

68

To recognize a given unknown symbol, we compute its observation symbols first,

then test the sequence of observation symbols with each of the hidden Markov mod-

els. The probabilities for each model are then calculated and the model with highest

probability is taken as the recognition result.

Figure 10.1: HMM Recognition Diagram

69

Symbol decomposition is introduced in the next section followed by description of

how to represent the symbols using features. Then we introduce the observation sym-

bol calculation and vector quantization. The section “HMM Topology” 10.4 describes

the design of HMM.

10.2 Modeling of Handwritten Mathematical Symbols

This section describes how handwritten mathematical symbols have been modeled

in this work. Two aspects have been considered: symbol decomposition and feature

representation.

10.2.1 Decomposing Mathematical Symbols

The idea of decomposition was inspired by the approach used to analyze Chinese

characters. A Chinese character is typically composed of several strokes, with the

most complicated characters containing over 30 strokes. Still, every Chinese character

can be decomposed into a set of basic strokes. There are only eighteen basic strokes

in total, shown in Figure 10.2.

Figure 10.2: Chinese Strokes (from [77])

Similar to this approach, we have attempted to identify basic stroke elements for

handwritten mathematical symbols and decompose symbols according to their basic

elements. In our HMM design, we used the idea of decomposition. It has been pointed

out by Lee [37] that the design of a model should be based on the modeled function

with a number of parameters sufficient to handle function’s complexity. In practice,

70

the number of the model parameters cannot be increased arbitrarily. In our design

of HMM for mathematical symbols, the number of states is based on the number of

basic elements.

Figure 10.3: Curve-based Elements

Curvature-Based Decomposition

We use the 13 basic elements in Figure 10.3. This approach is extended from Zhao’s

method [74]. Zhao and his colleagues used 10 basic elements. After analyzing around

1000 samples of each symbol, it showed that our decomposition is suitable for math-

ematical symbols.

The basic elements are extracted by traversing the points along the symbol via the

algorithm 10.2.1.

The SubElement(pi−2,pi, pi+2) function detects the element type formed by three

points. The value cos(θ) is used to distinguish lines from curves, where θ is the angle

formed by the three points. The algorithm 10.2.1 is used to detect the element type.

The function call “findDirection(pi−2, pi+2)” calculates a chain code between 0 and

7.

Figures 10.4 and 10.5 show the basic elements for an entire symbol after curved-

based decomposition.

The decomposition is used in a HMM. The number of states of the character hidden

Markov model will be the number of basic elements. Some researchers [34] [67] have

adopted 5 or 7 as the number of states of their HMMs, which helps to achieve best

results in their experiments. The disadvantage of using a constant number of states is

the lack of flexibility when modeling the character. In our work, we have allowed the

71

number of states is flexible since it is based on the symbol to be modeled. The results

are shown in tables 11.2 and 11.3 and are explained in the Chapter “Experiments and

Results”, section 11.3.

The main disadvantage of this curve-based decomposition is its inability to precisely

reconstruct the symbol without recording indexes. The curve length information is not

included in the basic element definition. We record the beginning and ending indices

of each basic element in the symbol, and then we retrace the strokes backwards to

find the corresponding segments. Equal length-based decomposition overcomes this

disadvantage.

if number of points < 5 then

element type is DOT

else

start from the third point

foreach point pi in the symbol do

element1=SubElement(pi−2,pi, pi+2)

element2=SubElement(pi−1,pi+1,pi+3)

if element1=element2 then

initialElement=element1

continue
else

found an element type: element1

continue with point pi+1

endif
endforeach

endif

Algorithm 10.1: Basic Element Extraction

72

if cos(θ) >= −1 and cos(θ) < PITHRESHOLD then

if |(x0− x2)| < LINETHRESHOLD then

Element Type = VLINE;

if |(y0− y2)| < LINETHRESHOLD then

Element Type = HLINE;

if (x0− x2)× (y0− y2) > 0 then

Element Type = WESTLINE;

if (x0− x2)× (y0− y2) < 0 then

Element Type = EASTLINE;

else Element Type = UNKNOWN ;

else

findDirection(pi−2, pi+2);

if direction is horizontal and is convex curve then

Element Type is HBCURVE

if direction is horizontal and is concave curve then

Element Type is HACURVE

if direction is vertical and Xpi
> Xpi−2

then

Element Type is VRCURVE

if direction is vertical and Xpi
> Xpi−2

then

Element Type is VLCURVE

if direction is east and is convex curve then

Element Type is ERCURVE

if direction is East and is concave curve then

Element Type is ELCURVE

if direction is west and is convex curve then

Element Type is WLCURVE

if direction is west and is concave curve then

Element Type is WRCURVE

endif

Algorithm 10.2: Element Type Detection

73

Figure 10.4: Curve-based Decomposed “3”

Figure 10.5: Curve-based Decomposed “β”

Equal Length-Based Decomposition

In equal length-based decomposition, all basic elements have equal arc lengths. There

are 25 basic elements as shown in the following Figure 10.6.

We divide the stroke into NSeg segments, the number of segments desired. For each

segment, we use θ to denote the angle between x axis and the line formed by the two

end points. Then we execute the algorithm 10.2.1.

The threshold parameter “distance threshold” is used to detect a horizontal line.

Positive and negative y may exist on one segment if the number of segments is small.

In an attempt to avoid such situations, we performed a number of experiments to

determine the proper number of segments.

The method of choosing basic elements should enable us to easily reconstruct any

symbol when needed. In equal length-based decomposition, 24 basic elements are

selected to represent direction information, and the length of each element is derived

74

from the total length of a symbol and the number of segments. Based on the direction,

length and shape (line, curve and dot) information, we are able to regenerate the

symbol. The regenerated symbol defines the “standard” format of the handwritten

symbol which can be used to obtain variance of handwriting symbols by applying

certain deformation operations.

If a HMM model is built from an equal length-based decomposition, then the

number of states will be the number of segments, which comes from the desired

“standard” format.

Figures 10.7 and 10.8 show some examples of equal length-based decompositions.

The number of segments in these figures is 10. We tried different numbers, e.g., 10,

5, 7, 4, 6, 20, etc. The regenerated symbols from small number of segments are far

away from the original symbols. On the other hand, the bigger the number of seg-

ments, the more computation involved. We find 10 is suitable for our decomposition.

Figure 10.6: Encoding Elements

75

foreach divided segment (pb to pe) do

foreach point p, between begin index and end index do

rotate the x axis to the line formed by two end points

calculate the y coordinate of the point p

y = −(xp − xpb
)× sin(θ) + (yp − ypb

)× cos(θ)

check if y > 0 or not

find the y which has maximum absolute value, ymax

normalize the ymax, normaly = ymax/seglength

find the direction between pb and pe

decide the segment type according to direction and sign of ymax

e.g., if direction is 0, normaly < distance threshold, and ymax > 0

then the segment type is 8.

endforeach
endforeach

Algorithm 10.3: Equal Length Decomposition

Figure 10.7: Equal Length Decoding of the Symbol “3”

Figure 10.8: Equal Length Decoding of the Symbol “β”

76

10.2.2 Representing Handwritten Symbols by Using Features

Traditionally, direction and position features have been used within HMM-based

handwriting recognition because HMM has the nature of modeling time sequential

signals. With directional features, such as chain codes, we can rebuild the symbol.

Similarly to directional features, positional features (such as x, y coordinates) are a

time-dependent characteristic of a handwriting signal. With the modern hardware,

the above information can be determined during handwriting, offering the promise of

an improved recognition process. In addition to directional and positional features,

we have also recorded and analyzed pen-down and space-related information as it is

considered beneficial.

Figure 10.9: Pendown Features

Figure 10.10: Penup Features

77

Feature Sets

We have used two sets of features within our recognizer. The first set contains direc-

tion and curve features, based on our equal length decoding. There are 24 features for

pen-up strokes and as many features for pen-down strokes. We shall refer to the first

set of features as chaincode-based features. The features are shown in Figure 10.9

and Figure 10.10. The second set of features include writing angle, the increments

(delta) of the writing angle, the increments (delta) of the x and y position, the pen-

up/pen-down bit, and weather x is greater than all of its previous points or not. The

last two of these features have binary values, while the rest are real numbers. We

shall call the second set of features positional features. The writing angle was defined

in Chapter 6. The delta writing angle is equal to the difference between the writing

angles of the current and the previous data points. The delta writing angle of the

first data point is set to 0.0. By subtracting the x position of point i − 2 from the

x position of point i + 2, we calculate the delta x position of point i. For the first

two points, the point i − 2 does not exist. Their own x positions are used instead.

Likewise, for the last two points, the point i + 2 is not defined, their x positions are

used as the x position of point i+2. The procedure for obtaining the delta y position

is identical.

δ(xi) =


xi+2 − xi, i = 0, 1

xi+2 − xi−2, 2 ≤ i ≤ N − 2

xi − xi−2, i = N − 1, N

The next property is penup versus pendown. We assign 0 for the points on pen up

stroke, 1 for the points on pen down stroke. The pen up stroke is invisible, but it

captures the pen movement. It is as important as the pen down stroke.

The sgn(x − max(x)) represents the spatial relation in horizontal direction. It

indicates whether the x position of the current point is greater or less than the x

positions of all the preceding points. To compute the sgn(x − max(x)) feature, the

maximum x position for all proceeding points need to be calculated. If x < max(x),

feature value of the current point is set to be 0, or 1 when the opposite is true.

78

Figure 10.11 shows examples of this spatial feature. The dashed lines in the symbol

“h” and “β” are smaller, while the solid lines are greater than the ones connecting

its previous points.

Figure 10.11: Spatial Relation

Simple spatial features, sgn(x−max(x)), is suitable for mathematical symbol recog-

nition. While some researchers investigated spatial features in handwriting recogni-

tion by using somewhat elaborated spatial features. For example, Marukatat and

Artieres [43] compared two types of spatial features: absolute and relative features.

In Marukatat and Artieres’s Korean character recognition system, they embedded

spatial information within a function for the segmentation of the handwriting signal.

Pspatial(X|Q, λ) = Pspatial(seg1, . . . , segk|λ). In the case of absolute spatial features,

the bounding box of the character was computed first. The center of each segment is

calculated as Pspatial(X|Q, λ) =
∏k

i=1 PAbsolute(segi/Si). The relative spatial features

are designed to describe the spatial information among strokes. For example, vertical

position, horizontal position and connection are used to describe the strokes relation.

The vertical position has the value of “above”, “aligned” and “below”. The horizontal

position has the value of “left”, “aligned” and “right”. The connection has the value

of “touching” and “not touching”. This relation is expressed as esr(segi, segj), and

for simplicity, only the relation between any segment and the preceding segment is

considered. While such approach can improve recognition rate, it is more suitable

for recognizing multiple strokes symbols, such as Korean and Chinese characters. In

mathematics, most of the symbols have only one stroke. Therefore we have adopted

simple feature description, i.e. sgn(x−max(x)) to represent the spatial information.

79

Integrating Features into HMM

From the first set of features (chaincode-based features) we can rebuild the symbol.

The second set of features (positional features) can also be used to reconstruct the

symbol. HMM based on these two sets of features have different information about

the pen trajectory. We use these two sets of features independently in two separate

HMM, and then combine the results to achieve the final recognition result.

To describe how to integrate the features into HMM, let us assume the handwriting

symbol X has N points, X = (p1, p2, . . . , pN). The symbol X is decomposed into k

segments, X = (seg1, seg2, . . . , segk). We use left-right HMMs. The probability of

the N -lengthed handwriting signal X in the left-right HMM, λ, is computed by:

P (X|λ) =
∑
Q

P (X|Q, λ)× P (Q|λ) (10.1)

For the chaincode-based features, the probability P (X|Q, λ) is:

P (X|Q, λ) = Pchaincode−based features(X|Q, λ) (10.2)

Using the independence assumption of the features in the above equation, we get:

Pchaincode−based features(X|Q, λ) =
k∏

i=1

Pchaincode−based features(segi|Si) (10.3)

where Si is the ith state.

The initial distributions of the observation sequences’ probability are obtained from

the mapping relation between states and the decoded segments, as shown in Fig-

ure 10.12. The distribution of the line segments is accumulated from the training

sample, then they are normalized and used as the initial parameters of the corre-

sponding state. In Figure 10.12, symbol “α” has 9 segments. Its model also has 9

states. For each segment, the probability in the corresponding state is assumed to be

a Gaussian distribution.

For the positional features, we compute the feature vectors for each point, defined

as follows: A handwritten symbol is represented by a sequence of feature vectors,

(f1, f2, . . . , fN). Each feature vector fi contains the six features. For each segment,

80

let bi, ei represent the beginning point and end point respectively. The probability

P (X|Q, λ) is computed by:

P (X|Q, λ) =
k∏

i=1

P (f ei
bi
|Si) (10.4)

=
k∏

i=1

P (fbi
, fbi+1

, . . . , fei
|Si) (10.5)

=
k∏

i=1

ei∏
t=bi

P (ft|Si) (10.6)

The above equations are based on the assumption that segments are independent.

In the same way as for the chaincode-based features, the distributions of the ob-

servation sequences’ probabilities are obtained from the training samples.

Figure 10.12: HMM and Initial Distribution for Symbol “α”

Combining Chaincode-Based Feature Set and Positional Feature Set

Each feature set we described above can be used to model a handwritten symbol.

As we pointed out, the information is redundant, but if they work together, better

recognition results can be achieved. Table 11.4 shows that combining features can

improve the recognition rate by 6.5%.

We examined two ways to combine the features. First, we combined the two HMMs

by computing the square root of the probabilities. Second, we combined the features

directly and used the combined features to build one single HMM. These two ap-

proaches are illustrated in figures 10.13 and 10.14.

81

Figure 10.13: Combined HMM

Figure 10.14: Combined Features

In the first approach, we build two HMMs. For each symbol X1 of our alpha-

bet {X1, X2, . . . , Xn}, we generate two HMMs λ
fchaincode−based

X1
, λ

fpositionalfeature

X1
from the

chaincode-based feature and positional feature respectively. Each HMM has its own

parameters, such as the number of states, state transition probabilities and obser-

vation probabilities. The probabilities P (X|λfchaincode−based

X), P (X|λfpositionalfeature

X) of

symbol X for the two HMMs are calculated by the forward-backward algorithm. The

final result is obtained from the combination of the two HMMs. The final probability

82

of the handwriting signal on the combined HMM is calculated as:

P (X|λX) =

√
P (X|λfchaincode−based

X)× P (X|λfpositionalfeature

X) (10.7)

Figure 10.14 shows the direct combination of chaincode-based features and po-

sitional features. In the second combination method, we calculated the positional

features and chain code based features individually. The two feature sets were com-

bined to produce a combined feature set. This combined feature set was used to

generate a HMM, which produces the final result. The probability of the handwriting

signal is calculated as:

P (X|λX) = P (X|λfchaincode−based+fpostionalfeature

X) (10.8)

The experiments we performed on the two combination methods showed that the

second combination method can improve the recognition rate, while the first one did

not provide satisfactory results. We explain the experiments and the results for the

second combination method in the section “Experiments and Results”, section 11.3.

10.3 Calculating Observation Symbols

We used discrete-density HMMs, requiring discrete observation symbols as input in-

stead of feature vectors. To do this, the feature vectors need to be converted into

observation symbols from a set of M discrete values, where M is determined by

experiment.

For the chaincode-based HMM, we map the features to observation symbols directly.

Recall that in our chaincode-based HMM, there are 48 features, 24 for pen-up and

24 for pen-down. We label these 48 curves as (O1, O2, . . . , O48), and use them for the

observation sequences.

In the positional feature HMM, each point has a feature vector that includes six

features. How do we convert this set of multi-dimensional feature vectors into M

observation symbols?

We use a data compression technique, called vector quantization [3] to convert a

multi-dimensional vector into a discrete symbol. We can view VQ as an approximator.

83

In one dimension, given a set of numbers, we would do the following: given the size of

the observation sequence, M , find M numbers that can divide the original numbers

evenly. Each original number is approximated by one of the new M numbers. The

same rules apply in multiple dimensions. Figure 10.15 shows an example in 2D.

Small dots are the training vectors, big circles are the codevectors, that represent

the centroid of each domain. We use the algorithm created by Linde, Buzo and

Gray [39] to compute the codevectors. The algorithm uses iterative domain splitting.

An initial codevector is obtained by averaging the entire training sequences, then the

initial codevector is split in two. An iterative algorithm is used on the two codevectors

to calculate the distortion error, defined below. Splitting and iteration are repeated

until there are the desired number of codevectors and distortion error.

We describe the algorithm here for completeness. The notation and algorithm are

from a data compression tutorial [1]. Let Γ = {x1, x2, . . . , xN} be the training se-

quence. Each vector xi is k dimensional, i.e. xi = (xi,1, xi,2, . . . , xi,k), i = 1, 2, . . . , N .

In our training data, k = 6. Let M be the number of codevectors, and denote

the codebook as C = (c1, c2, . . . , cM). Each codevector is also k dimensional, i.e.

ci = (ci,1, ci,2, . . . , ci,k), i = 1, 2, . . . ,M . Let Sn be the encoding region associ-

ated with codevector cn and let P = (S1, S2, . . . , SM) denote the partition of the

space. If the vector xm is in the encoding region Sn, then its approximation, de-

noted by Q(xm), is cn: Q(xm) = cn, if xm ∈ Sn. The average distortion is given by

Dave = 1
Nk

∑N
m=1 ‖xm −Q(xm)‖2. The algorithm is summarized below, from [1].

1. Given Γ, set distortion error ε to a very small number: 0.001.

2. Initialization: Let M = 1, and

c∗1 =
1

N

N∑
m=1

xm (10.9)

Calculate

D∗
ave =

1

N

N∑
m=1

‖xm − c∗1‖2 (10.10)

84

3. Splitting: For i = 1, 2, . . . ,M , set

c
(0)
i = (1 + ε)c∗i (10.11)

c
(0)
M+i = (1− ε)c∗i (10.12)

set M = 2M .

4. Iteration: let D
(0)
ave = D∗

ave. Set the iteration index i = 0.

i For m = 1, 2, . . . , N , find the minimum value of ‖xm − c
(i)
n ‖2, over all

n = 1, 2, . . . ,M . Let n∗ be the index which achieves the minimum. Set

Q(xm) = c
(i)
n∗ (10.13)

ii For n = 1, 2, . . . ,M , update the codevector

c(i+1)
n =

∑
Q(xm)=c

(i)
n
xm∑

Q(xm)=c
(i)
n

1
(10.14)

iii Set i = i+ 1.

iv Calculate

D(i)
ave =

1

Nk

N∑
m=1

‖xm −Q(xm)‖2 (10.15)

v If (D
(i−1)
ave −D(i)

ave)/D
(i−1)
ave > ε, go back to step(i).

vi Set D∗
ave = D

(i)
ave. For n = 1, 2, . . . ,M , set c∗n = c

(i)
n as the final codevectors.

5. Repeat steps 3 and 4 until the desired number of codevectors is obtained.

Let us use one dimensional vectors as an example. We have x1 = 1, x2 = 2, x3 = 3,

x4 = 4 as our input sequences, and we want to find two codevectors for this sequence.

First, c∗1 = 1
4

∑4
m=1 xm = 2.5, then we do the splitting: c

(0)
1 = (1+ε)c∗1 = 2.5025, c

(0)
2 =

(1 − ε)(c∗1 = 2.4975, next is the iteration: we calculate Q(x1) = c
(0)
2 , Q(x2) = c

(0)
2 ,

Q(x3) = c
(0)
1 , Q(x4) = c

(0)
1 , now we update the codevector: c1 = (x3 + x4)/2 = 3.5,

c2 = (x1 + x2)/2 = 1.5. Our input sequences are quantized by two codevectors: c1

and c2.

We have calculated the codebook for M = 64. This value of M was chosen ex-

perimentally to give the best results. It needs to be calculated once and can then

85

be used for all observation symbols. For an unknown symbol, the feature vectors are

extracted and compared with the codevectors. The index of the closest codevector is

selected as the observation symbol.

The experiments on different codebook sizes are explained in Section 11.3 “Exper-

iments and Results”.

Figure 10.15: 2D Vector Quantization

10.4 HMM Topology

The usual approach to determine and adjust the HMM topology parameters has been

empirical [17] [38]. An alternative approach was taken by Lee et al. who introduced

a data driven design of HMM topology [37] for Hangul recognition. In data driven

design, the HMM topology comes from the data to be modeled. We have taken a

data-driven approach in our mathematical symbols recognition.

10.4.1 Number of States

As discussed above, the number of states is determined by the number of segments,

which we get from the decomposition. From our design, we can see that the HMM

is based on the handwritten symbol it modeled. Our results show that this design

86

achieves better recognition result than traditional fixed number of states. This can

be found in Section 11.3 “Experiments and Results”. Figure 10.16 shows the HMMs

and their corresponding segments. The HMM is a left-right model. The number of

states is determined by mapping each segment to a single HMM state. Then each

state of the HMM corresponds to a segment of handwriting in time-sequential order.

Figure 10.16: HMM States and Segments

10.4.2 Initial Observation Distribution

Choosing an initial distribution of observation sequence probabilities is important

in the design of a HMM. If supplied with a proper initial distribution, the Baum-

Welch algorithm [49] will converge quickly, resulting in fast recognition. In random

and uniform initial distributions, the observation symbols are not associated with the

states. In the Baum-Welch algorithm, the model parameters for the computation of

probability are adjusted at each iteration. The process is repeated until the proba-

bility difference between two iterations reaches a given threshold. Using random and

uniform initial distribution takes a large number of iterations to get the desired prob-

ability difference between two iterations. We have used a Gaussian distribution as

the initial distribution for the Baum-Welch algorithm. For each state, the maximum

distribution is assigned to the observation symbol that is associated with the state.

Recall that we decomposed the symbol and associated each segment with the state.

The observation symbols within each segment are associated with the corresponding

state, thus building a map between the observation symbols and the states. From the

uniform distribution experiments, we know that a flexible number of states achieves

87

better recognition results than a fixed number of states. We have therefore used flex-

ible number of states within the Gaussian distribution. In the implementation, for

each symbol, the training samples have different number of decomposed segments.

We take the largest as the number of states to use, then we use algorithm 10.4.2 to

assign the probability of observation symbols in each state.

Data: N = max(number of observation symbols for all samples)

foreach sample in the training database do

foreach segment in the sample do

foreach state in the model do

if the segment is in the state then

set the frequency of the segment in the state

else

the frequency of the segment in the state is zero

endif
endforeach

endforeach
endforeach

foreach state in the model do

generate N Gaussian probability

assign N Gaussian probability to N observation symbols according to their fre-

quency in the state

endforeach

Algorithm 10.4: Initial Observation Distribution

We find the Gaussian distribution gives better recognition results than either the

random or the uniform distributions. The details are shown in Section 11.3 “Exper-

iments and Results”.

The choice between multiple or a single HMM to model a handwritten symbol

presents an important design decision. Lee [37] pointed out that one model for a

class has many benefits, for instance achieving a modular design of the recognizer. If

we assign one model per symbol, the model can be easily replaced with another one.

Using one model also makes post-processing much easier.

88

For these reasons, we tried to build one model for each handwritten symbol. Differ-

ent models are created for each symbol variant. To combine these models, we created

a dummy start and final states. From the starting state, we reach the first state of

each model and go through each one until the final state is reached. Figure 10.17

shows a combined HMM model.

Figure 10.17: Combined HMM

In this chapter, we have described how we model handwritten mathematical sym-

bols for a hidden Markov model. In particular, we have described the hidden Markov

model topology together with the calculation of observation symbols which may occur

in each model state.

89

Chapter 11

Implementation, Experiments and Results

In the last chapter we described HMM topology. In this chapter, we introduce our

implementation of a HMM based recognizer. The mathematical symbols databased

used in present work is also described. In the last section, we present the experiments

with our proposed recognizer and the results is also given.

11.1 Implementation of the HMM Based Recognizer

We now discuss the software architecture of our implementation. Figure 11.1 and

Figure 11.2 show the major blocks in its organization.

11.1.1 Ink Processing

In off-line recognition, ink is stored in a data file, and read to build an Ink object.

For on-line handwriting, recognition is performed upon termination of writing. The

ink information is accessed directly from memory to build an Ink object. An Ink

object has one or multiple Stroke objects. A Stroke contains many Points. After

we build the Ink object, we apply the preprocessing operations, such as re-sampling,

smoothing, re-ordering etc, to the ink object which in turn calls the related operations

on its strokes. The Point, Stroke and Ink classes are shared between the elastic and

HMM based recognizers.

90

Figure 11.1: Diagram of the Major Classes of the Recognizer (1)

91

Figure 11.2: Diagram of the Major Classes of the Recognizer (2)

11.1.2 Ink Representation

Many feature sets, such as loops, cusps, intersections and so on are defined in the

FeatureExtractor module. For the HMM based recognizer, we use two sets of fea-

92

tures, defined in the FeatureExtractor class, namely the positional features and the

decomposed features. The classes Element and SubElement are used for decomposi-

tion. The feature size is 7 (positional features plus decomposed features). We create

a feature matrix for each symbol in the training database, i.e. data from Unipen and

half of our collection. If the number of points for an ink sample is n, the feature

matrix for this symbol will be of size n× 7. These feature matrices build our feature

space. In the LBGvq module, we generate a codebook from the feature space. For an

unknown symbol, its feature matrix is quantified to discrete symbols according to the

codebook. The discrete symbols are the observation symbols of the hidden Markov

model. The sequence of these observation symbols describes the ink trace.

11.1.3 Model Parameter Selection and Implementation

We use a flexible number of states for the model. For example, to build a model for the

symbol “α”, all of the sample “α” symbols in the training database are decomposed

and then the largest number of segments, N , is selected from the decomposition

results. N is assigned as the number of states of model “α”. We can choose from

uniform, random or Gaussian distribution to build the observation symbol probability

distribution of the states. The uniform and random distributions are simple: each

bi(O(t)) needs to be assigned the value of 1/N for uniform distribution, while in

random distribution, we generate M × N random positive numbers which are less

than 1 and assign these values to each bi(O(t)). For a Gaussian distribution, we

go through all of the sample “α” symbols and count the frequency of its observation

symbols in each state. The total frequencies distribution in each state, fi(O(t)), where

i is from 1 to N , are calculated. For each observation symbol O(t), we generate N

probabilities which are Gaussian distribution, pi(O(t)), where i ranges from 1 to

N . We map state i with the largest frequency for O(t), fi(O(t)), to the maximum

Gaussian distribution. In other words, probability of O(t) in state i has the value of

our largest Gaussian distribution value. If state j has the second largest frequency for

O(t), then probability of O(t) in state j is the second largest Gaussian distribution

value. This assignment is applied repeatedly to all probabilities and frequencies that

93

follow. At the end, the resulting probability distribution for all of the observation

symbols is Gaussian.

In the implementation of a HMM, we need to consider scaling, threshold selection,

type of HMM, training etc. In the forward-backward algorithm, to compute αt(i) we

need two coefficients aij and bj(Ot), where each of these coefficients is significantly

less than 1. As t increases, each term of αt(i) tends toward zero and may exceed

the precision range of a machine. To avoid this, we performed scaling on α and β

(refer to the Scaling section 11.1.4). We set the minimum probability threshold to

0.01 with a maximum iteration count of 200 so that the iterations in Baum-welch

training algorithm will stop if the probability difference reaches 0.01 or the number

of iterations reaches 200. The type of HMM we used is left-right model with multiple

observation sequences for training purpose.

11.1.4 Scaling

Therefore, in order to calculate αt(i) correctly without exceeding the precision range

of a machine. We need to scale α and β.

The scaling procedure multiplies αt(i) and βt(i) by a scaling coefficient that is

independent of i. The scaled forward variable is :

α̂t(i) =
αt(i)∑N

j=1 αt(j)
(11.1)

= Ctαt(i) (11.2)

To recursively compute α̂t(i), we have the following:

ᾱ1(i) = α1(i) (11.3)

ᾱt+1(j) =
N∑

i=1

α̂t(i)aijbj(Ot+1) (11.4)

ct+1 =
1∑

i ᾱt+1(i)
(11.5)

α̂t+1(i) = ct+1ᾱt+1(i) (11.6)

The same scaling procedure applies to backward variable βt(i).

94

11.1.5 Training

The training procedure was designed to maximize the probability of the observation

sequence by adjusting the parameter λ = (A,B,
∏

). Our database includes Unipen

data as well as data collected at the ORCCA lab. Half of the data set, which includes

ORCCA and Unipen data, was used for training. We use the Baum-Welch algorithm

to adjust the model parameters.

Since we use multiple observation sequences to train HMMs, the re-estimating pro-

cedure in Baum-Welch algorithm needs to be modified. We denote the set of K ob-

servation sequences as: O = [O(1), O(2), . . . , O(k)], where O(k) = [O
(k)
1 , O

(k)
2 , . . . , O

(k)
Tk

]

is the kth observation sequence and 1, 2, . . . , Tk are kth sequence indexes. Our goal

is to adjust the parameters of the model λ to maximize:

P (O|λ) =
K∏

k=1

P (O(k)|λ) (11.7)

=
K∏

k=1

Pk (11.8)

We assume that the observation sequences are independent of each other. By adding

together the individual frequencies of occurrence for each observation sequence, we

calculate the modified re-estimating formulas for āij and b̄j(l) as:

āij =

∑K
k=1

1
Pk

∑Tk−1
t=1 α̂k

t (i)aijbj(O
(k)
t+1)β̂

k
t+1(j)∑K

k=1
1

Pk

∑Tk−1
t=1 α̂k

t (i)β̂
k
t (i)

(11.9)

b̄j(l) =

∑K
k=1

1
Pk

∑Tk−1
t=1,s.t.Ot=vl

α̂k
t (i)β̂

k
t (i)∑K

k=1
1

Pk

∑Tk−1
t=1 α̂k

t (i)β̂
k
t (i)

(11.10)

11.1.6 Recognition

The goal of recognition is to find the HMM model that results in a maximum prob-

ability for correctly matching the unknown symbol. The recognition process uses

extensively the forward-backward algorithm (defined in section 9.2.3 The Three Ba-

sic Problems of HMM).

For each symbol in the training database, we build a HMM. The training procedure

forces the HMM to generate the maximum probability for the symbol it models. For

95

an unknown symbol, we extract the feature vectors and apply the vector quantization

procedure. The output of VQ is a sequence of observation symbols. This observation

sequence represents the unknown symbol and becomes the input of each HMM. For

each HMM, we compute the probability of the observation sequence. The maximum

probability is calculated and the label of the corresponding HMM is the recognized

symbol.

11.2 The Mathematical Symbol Database Used in the Present Work

As mentioned in Chapter 4, we have built the ORCCA mathematical handwriting

database since such data was not available from any other source. Initially, we col-

lected data with an IBM Crosspad. Due to the limitations of the device, such as no

pen down information, we used a Tablet PCs to collect further data. Our database

has 301 mathematical symbols and 68 formulas, including matrix notation. It was

designed to cover most of the mathematical symbols used in the fields of applied

mathematics and engineering. The database also contains different styles of mathe-

matical symbols. For example, we have collected script letters as well as open face

letters. Table 11.1 shows an excerpt of the data.

The data includes information about x, y coordinates, pressure, stylus status and

timing. The stylus status is 1 or 0, indicating whether the stylus is on or off the

screen respectively. Pressure varies from 0 to 255. A time stamp is recorded at the

beginning and end of each stroke.

The questionnaire takes about 20 minutes to complete. Each questionnaire provides

to approximately 1MB of data. We collected 70 samples, which were insufficient for

HMM training and thus we use a subset of Unipen Train-R01/V07 benchmarks 1a, 1b

and 1c [23] which contain digits, upper case letters and lower case letters in addition

to our database. Half of our data and of the Unipen subset were used as training

data, while the other half was used as testing data.

96

Alphanumeric 0-9, a-z, A-Z

Greek Lower-

case Letters

α, β, γ, δ, ε, ε, ζ , η, θ, ϑ, ι, κ, λ, µ, ν, ξ,

o, π, $, ρ, σ, ς , τ , υ, φ, ϕ, χ, ψ, ω

Greek Upper-

case Letters

Γ, ∆, Θ, Λ, Ξ, Π, Σ, Υ, Φ, Ψ, Ω

Calligraphic

Letters

A, B, C, D, E , F , G, H, I, J , K, L, M,

N , O, P , Q, R, S, T , U , V ,W , X , Y , Z
Script Upper-

case Letters

A , B, C , D , E , F , G , H , I , J , K ,

L , M , N , O , P , Q, R, S , T , U , V ,

W , X , Y , Z

Open Face

Letters

A, B, C, D, E, F, G, H, I, J, K, L, M, N,

O, P, Q, R, S, T, U, V, W, X, Y, Z

Relations and

Their

Negations

<, >, ≤, ≥,�,�, ⊂, ⊃, ⊆, ⊇, @, A, v,

w, u, t, `, a, >, ⊥, ‖, |, ∈, 3,
.
=, ∼, ≈,

', ∼=, ≡, ∝, 6<, 6>, 6≤, 6≥, 6⊂
Arrows and

Pointers

←, →, ↑, ↓, ⇐, ⇒, ⇑, ⇓, ↔, ⇔, ←↩, ↪→,

, ;, ↗, ↘, ↙, ↖
Mathematical

Accents

a′, a′′, ȧ, ä, â, ā, ã, a†, ~a, å

Other Binary

Operators

±, ∓, ×, ÷, ∩, ∪, ∨, ∧,], ⊕, ⊗, �, ◦,
©, ·, ∗

Various Other

Symbols

ℵ, ~, ℘, f, <, =, ∂, ∇,
∑

,
∫

,
∏

,
∐

,
√

,

∅, ∀, ∃
Table 11.1: ORCCA Mathematical Symbol Data Set

97

11.3 Experiments and Results

Table 11.2 and Table 11.3 show an improved recognition rate when using dynamic

number of states as compared to a constant number of states. In Table 11.2, we use

positional features (e.g. writing angle, delta writing angle, delta of x and y position,

pen-up/pen-down bit and sgn(x − max(x))) described in Chapter 7. For the same

number of observation symbols, i.e. codebook size, we compare the recognition rate

of a HMM using dynamic number of states with a HMM using 7 states and the same

scenario when 5 and 3 states are used. The results show that for 16 codebook size and

dynamic number of states, the recognition rate is improved 6.37% over 16 codebook

size and 3 states. The recognition rate of 64 codebook size and dynamic number

of states is improved 2.53% over 64 codebook size and 7 states. We performed the

same experiments using chain code based feature. The results are shown in Table 11.3.

From the table we can see that the dynamic number of states gives better performance

than constant number of states. For 64 codebook size, the recognition rate is improved

2.23% over 7 states, 1.28% over 5 states, 2.03% over 3 states. For 32 codebook size,

the recognition rate is improved 2.59% over 7 states, 4.06% over 5 states, 3.66% over

3 states. For 16 codebook size, the recognition rate is improved 5.24% over 7 states,

5.99% over 5 states, 4.14% over 3 states.

Recall that we used two combination methods on two feature sets. In the first

combination, we built HMM for each feature set. Then a combined HMM is derived

from the two individual HMMs. The final probability is the square root of the two

probabilities. In the second combination, we combine the two feature sets directly to

form a combined feature set. A single HMM is built based on the combined feature

set. The probability is calculated from the combined feature set. We implemented the

two combination methods and performed experiments on our database. The result

for the first combination is not satisfactory. In the first combination, the recognition

rate is slightly lower than the one achieved by positional features only and higher

compared to the case when only the chain code based feature was utilized. Therefore

we discarded this combination method. The second combination achieved better

98

results. It can improve the recognition rate for both positional feature and chain

code based feature. From Table 11.4 we can see that the recognition rate is improved

6.47% over positional feature. We also compared the result of the second combination

with the first combination. The recognition improvement is shown in the second row

of Table 11.4. The recognition rate of the second combination is improved 7.07% over

the first combination.

We performed vector quantization to form observation symbols for discrete HMMs.

It is important to note that the size of codebook is an important parameter, which can

affect recognition results. We performed experiments on different codebook sizes. The

results are shown in Table 11.5 and Table 11.6 for positional features and chain code-

based features respectively. The first column gives the number of states. The second

column demonstrates the recognition improvement of a 64 codebook size over a 32

codebook size. The third column shows the recognition improvement of 32 codebook

size over 16 codebook size. For example, if we use 7 states and the positional feature

set, the recognition rate of a 64 codebook size is improved 5.5% over a 32 codebook

size. From the tables we see that a 64 codebook size achieves the best recognition

rate among 64, 32 and 16 codebook sizes. This conclusion holds for both positional

features and chain code-based features.

Table 11.7 shows a comparison of using a Gaussian distribution with using random

distribution of the observation symbols. The experiments are performed on chain

code-based features for different codebook sizes.

The second column shows an improvement in recognition rate. For a codebook

of size 16, Gaussian distribution performs better by 2.4% compared to a random

distribution. For a codebook of size 32, the improvement is 3.8%, while for a codebook

of size 64, it is 2.9%.

Tables 11.2 and 11.3 show that a flexible number of states achieves better recog-

nition rate than a constant number of states. We also performed experiments on

different constant numbers of states. Table 11.8 shows the comparison among 7, 5

and 3 states for positional feature-based models. The second column is the recog-

nition improvement of 7 states over 5 states. The third column is the recognition

99

improvement of 5 states over 3 states. For the case in which the size of codebook is

16, the sub-case of 7 states performs by 2.2% better than the sub-case of 5 states,

while the latter one outperforms the sub-case of 3 states by 0.9%. For the case in

which the size of codebook is 32, the sub-case of 7 states achieves best results with

0.8% improvement over the 5 states sub-case, and 5 states improves by 5.4% over

the 3 states sub-case. For the case in which the size of codebook is 64, the trend

is similar with 7 states sub-case showing 2.9% improvement than 5 states sub-case,

itself improving the performance of the 3 states sub-case by 3.4%.

Size of Dynamic States Dynamic States Dynamic States

Code Book vs. 7 States vs. 5 States vs. 3 States

16 +3.3% +5.5% +6.4%

32 +2.4% +3.2% +8.6%

64 +2.5% +5.4% +8.8%

Table 11.2: Dynamic States vs. Constant States: The Case of Positional Feature

Size of Dynamic States Dynamic States Dynamic States

Code Book vs. 7 States vs. 5 States vs. 3 States

16 +5.2% +6.0% +4.1%

32 +2.6% +4.1% +3.7%

64 +2.2% +1.9% +2.0%

Table 11.3: Dynamic States vs. Constant States: The Case of Chain-

Code Based Features

100

Number of States 7

Size of Code Book 64

Second Combination vs. Positional Features +6.5%

Second Combination vs. First Combination +7.1%

Table 11.4: Combining Feature Sets

Number of States 64 vs. 32 32 vs. 16

3 +5.4% +6.9%

5 +3.4% +11.4%

7 +5.5% +10.0%

Dynamic +5.6% +9.1%

Table 11.5: Different Code Book Sizes: The Case of positional features

Number of States 64 vs. 32 32 vs. 16

3 +1.6% +9.4%

5 +2.8% +10.9%

7 +0.4% +11.6%

Dynamic +1.0% +9.0%

Table 11.6: Different Code Book Sizes: The Case of Chain Code Based Feature

Size of Code Book Gaussian vs. Random

16 +2.4%

32 +3.8%

64 +2.9%

Table 11.7: Gaussian Distribution vs. Random Distribution: The

Case of Chain Code Based Feature

101

Size of Code Book 7 States vs. 5 States 5 States vs. 3 States

16 +2.2% +0.9%

32 +0.8% +5.4%

64 +2.8% +3.4%

Table 11.8: Number of States: The Case of 7 States, 5 States and 3 States

102

Chapter 12

Other Recognition Methodologies

12.1 Introduction

There are a number of other methodologies for pattern recognition that might be

applied to handwriting. We have explored one of them to see if it was suitable for

recognition in large sets of mathematical symbols. We studied the subspace classifi-

cation method and implemented a prototype recognizer based on this method.

Initially, the subspace method was used for data compression and reconstruc-

tion [36]. In the case of multidimensional data, one extracts only the principle com-

ponents, which form a subspace within the feature space. The resulting subspace

is used to represent the multidimensional data. The subspace method is now used

in pattern classification field [15]. First, a subspace for each class is built from all

of the training data by extracting predefined principle components. The subspace

is the image of a linear transformation of the feature space, which is formed by the

pattern and its variations. After this, the feature vector of an unknown class is ex-

tracted. The feature vector contains features representing the pattern. For example,

the feature vector of a handwritten symbol can be a vector of x and y coordinates.

The distances from the feature vector to the subspace of each class are calculated.

Finally, the minimum distance choice is selected as the classification result.

12.2 Subspace Classification

For handwriting symbols, we build the feature vector and use x and y coordinates

as our features. We use symbol α as an example to describe the process of subspace

103

recognition. If we extract x, y coordinates from symbol α, the feature vector for α is:

uα = [x0, x1, . . . , xn, y0, y1, . . . , yn] (12.1)

Assuming the number of training data samples is M , the M training vectors is

{u0, u1, . . . , uM}. The correlation matrix U is defined as :

U =
1

M

M∑
i=1

uiu
′

i (12.2)

The principal components are calculated by finding the eigenvectors of U :

Uvj = λjvj (12.3)

We can find up to M eigenvectors for each class i, vi
j, j = 1, . . . ,M .

Subspace L is defined on these eigenvectors as:

L = LU

= {x|x =
M∑
i=1

civi, ci ∈ <}

This gives the subspace on the whole space < for M vectors vi, i = 1, . . . ,M .

For an unknown symbol a, the feature vector is xa. The distance from the vector xa

to a class i is the orthogonal distance D⊥
i from xa to the subspace of class i:

D⊥2

i = ‖xa‖2 − ‖x̂i
a‖2 (12.4)

where x̂i
a is the projection of xa into the subspace of class i. The projection into the

subspace is the sum of the projections along the eigenvectors as the eigenvectors are

orthogonal. Therefore, using a dot product, we compute the projection as:

x̂i
a =

j=1∑
M

x
′

av
i
j (12.5)

Figure 12.1 shows the projection of vector x into subspace L.

To recognize an unknown symbol a, we find the minimum distanceD, and assign the

label of the class as the final recognition result. In other words, we have the following:

C = argminj(‖xa‖2 − ‖x̂i
a‖2) (12.6)

104

Equation 12.6 is equivalent to Equation 12.7:

C = argmaxj‖x̂i
a‖2 (12.7)

The meaning of Equation 12.7 is that we can find the recognition result by finding

the largest projections along the eigenvectors.

Figure 12.1: Projection into Subspace

12.3 Implementation of a Subspace Recognizer

From the algorithm described in the above section, our subspace prototype recognizer

contains two steps: building the subspace and recognition.

12.3.1 How to Build the Subspace

Similar to the cases of HMM and elastic matching recognizers, we preprocessed the

handwriting symbols. The preprocessed symbols were sent to the feature extractor

module. The extracted feature vectors are used to build the correlation matrix. The

correlation matrix was sent to the PCA (Principal Component Analysis) module,

where we calculated eigenvectors. Then the subspace for each class in the training

database was built from the eigenvectors. The diagram is shown in Figure 12.2.

12.3.2 Recognition

In the recognition step, the unknown symbol goes through the preprocessing and

feature extractor modules. Next the feature vector is projected on each subspace

105

calculated from the Build Subspace step. After each projection is calculated, we find

the maximum projection and label the corresponding class as the recognition result.

This is shown in Figure 12.3.

We used x, y coordinates as the features in the recognizer and selected 20 as the

number of principle components.

Figure 12.2: Build Subspace

Figure 12.3: Subspace Recognition

12.4 Discussion

We tested the prototype recognizer on the ORCCA database. The overall recognition

rate is about 60% over all of the symbols. We believe this is due to the following:

106

The subspace classification method models a class using a subspace. The linear

combination of the basis vectors represents the variation of the class. This limits the

variations in the pattern. Given the fact that handwritten mathematical symbols have

substantial variations, we need to work on the limitations in order to use subspace

method.

To further investigate the subspace method, we may be able to overcome its limi-

tations by:

• finding a proper subspace for each class, e.g. increasing the dimension of the

space.

• finding other distance measure rules, since the orthogonal distance measure does

not consider any distortion within the subspace [15].

• investigating other subspace classification methods.

However, our first results indicate that the non-subspace methods will initially be

more useful for mathematical symbol recognition.

107

Chapter 13

Combining Recognizers and Applying Context Rules

The software we have developed for character recognition has been used in a number

of experiments in the ORCCA laboratory. One of these is an experiment in using

context information to guide recognition and another is in the combination recogniz-

ers. Smirnova and Watt [54] have explored these ideas and have shown how they may

be used to improve recognition results. We summarize that work here to show an

application of our recognizer.

13.1 Combination of Recognizers

The combination of multiple classifiers has become a subject of attention as recent

results show that it can improve recognition [30]. However the combination of different

recognizers requires more computation. We have chosen not to combine our elastic

matching recognizer and HMM recognizer for the following reasons:

• In a combined recognizer, the recognition process needs to be performed by two

recognizers, increasing the recognition time. In addition to this, computations

are required for the combination scheme.

• The HMM and elastic matching recognizers already have reasonable perfor-

mance.

13.2 Individual Classifier Generation

Recently, a number of procedures called ensemble methods were proposed in the field

of handwriting recognition [22]. Ensemble methods have become popular and are

often embedded in the algorithms of individual handwriting recognizers [30]. Given

108

a base recognizer, an ensemble of different recognizers can be generated by changing

the training set, the input features or the parameters and architecture of the base

recognizer.

The classic ensemble methods include the Bagging, AdaBoost, random subspace

and architecture variation methods, as described in the paper by Bunke [22], which

we summarize here.

Bagging means bootstrapping and aggregating. Given a training set S of size n,

bagging generatesm new training sets S1, . . . , Sm, each of size n, by randomly drawing

elements of the original training set. Each of the new sets Si is used to train exactly

one recognizer. In this way, a set of m individual recognizers are assembled from a

trading set S.

AdaBoost was developed in 1995 and is one of the most prominent algorithms [22].

Similarly to Bagging, the original training set is also modified for the creation of

the ensemble in AdaBoost algorithm. A selection probability is assigned to each

element in the training set. AdaBoost creates a new training set by randomly selecting

elements from the original training set but taking the selection probabilities into

account. Like Bagging, the new training set is used to train one recognizer. The

new recognizer is tested on the original training set. The selection probabilities will

be modified if the new recognizer gives different recognition results from the original

recognizer. One need to repeat the process of creating new training sets and modifying

selection probability until the desired number of recognizers are created. Unlike

Bagging, where the recognizers are created independently, the recognizers generated

by AdaBoost are created dependent on the selection probabilities, which means it

depends on the recognition results of previous recognizers.

In the random subspace method, a subset of all features is selected for training and

recognition. Given the size of subset, the features are randomly chosen from the set

of all features. The subset of features is used to create a new recognizer. Each new

recognizer is trained on the entire training set. If the feature set is small, modifying the

algorithm by setting equal selection probabilities can improve the performance [22].

As the name indicates, in the architecture variation ensemble method, the structure

109

or the parameters of the architecture of the recognizer is varied. For example, in the

HMM-based recognizers, the following parameters can be modified to generate new

recognizers:

1. the number of states

2. the type of HMM

3. the number of training iterations

Other ensemble methods exist presently in the literature. Some of them are derived

from the classic ones. For example, Günter used simple probabilistic boosting method,

effort based boosting method, etc [22].

13.3 Combination Schemes

A main issue in the combination of recognizers is the choice of combination schemes.

The selection of schemes depends on the output of the recognizers. For example, if the

outputs of the recognizers are ranked lists of the classes, then the Borda count may be

applied. If the outputs are scores of each class, then we can apply certain operations

on the scores such as summation, multiplication, maximum, etc. We describe some

of the well-known combination schemes in the following paragraphs. The notations

and formulars are adopted from [22].

Bayesian Combination Rule: This method requires the calculation of probability of

a pattern belonging to a class i when the recognizer outputs class j. Thus, proba-

bilities for all pairs of classes and all recognizers need to be calculated, which is not

computationally feasible in the cases of large vocabularies.

Score Combination Scheme: requires the calculation of the maximum, minimum,

average or the median of the scores for each class over all recognizers. Since the

scores for all classes need to be computed, this scheme is not applicable for the

ranked list output. However the maximum score combination scheme is an exception.

The class that has the maximum score for each recognizer is the first one in the rank

list. Therefore maximum score is equivalent to (from [22]):

maxscore(C1,C2, . . . ,Cn)(x) = class(arg(max
ci∈{c1,...,cn}

(score(Ci, 1)(x))), 1)

110

where score(C, i)(x) denotes the score of the ith best class output by the recognizer

C for the pattern x. And class(C, i)(x) is the ith best class output by the recognizer

C for the pattern x. These notations apply to the voting schemes as well.

Voting : Only the best class output by each recognizer is considered. The class that

appears most often in the outputs of the recognizers is the output of the combined

recognizer. The voting method can be expressed as (from [22]):

vote(C1,C2, . . . ,Cn)(x) = arg(max
ci∈{c1,...,cm}

(Cj|class(Cj, 1)(x) = ci))

arg in the above equation means the variables in left hand side comes from the related

arguments of the right hand side.

To break ties, the following approaches may be used:

• All patterns where a tie occurs are rejected by the combined classifier.

• One of the tied classes is randomly selected as output of the combined classifier.

• Apply another combination scheme on the tied classes.

The voting scheme is applicable for the ranked list output. It is easy to compute.

Weighted Voting : A weight wi is assigned to each recognizer Ci. The class that has

the highest sum of weights is the output of the combined recognizer. The following

equation shows the definition of weighted voting (from [22]):

wvote(C1,C2, . . . ,Cn)(x) = arg(max
ci∈{c1,...,cm}

(
∑

{j|class(Cj,1)(x)=ci}

wj))

The weight for each recognizer can be set up according to the performance of the

recognizer or to certain optimization rules. These two weight selection approaches are

called performance weights and optimized weights respectively. In the performance

weights, the recognition rate of each recognizer is used as the weight: the better the

recognition performance, the higher the weight. In the case of optimized weights,

they are assigned to each recognizer so that the optimal performance of the combined

recognizer is achieved. Genetic algorithm is used to optimize the weights.

Borda Count : The k-best list of classes are considered in the Borda count method.

The output of the combined recognizer is computed according to the ranked list of

111

each individual recognizer. The Borda count is defined by the following equation

(from [22]):

bcount(C1,C2, . . . ,Cn)(x) = arg(max
ci∈{c1,...,cm}

n∑
j=1

(k− rank(Cj, ci)(x) + 1))

Borda count does not consider the recognition performance of each recognizer.

If we take the recognition ability of each recognizer into account, a more complex

combination is defined as (from [22]):

rcombi(C1,C2, . . . ,Cn) = arg(max
ci∈{c1,...,cm}

n∑
j=1

(aj + wj(rank(Cj, ci)(x))))

A weight function wj(rank) is assigned to each recognizer Cj, in addition, a weight

aj is assigned to each recognizer. The values for wj(rank) and aj may be set by

optimization algorithm or manually.

13.4 Combining Dictionary-Based Prediction with Recognition

Due to similarity and variability of handwriting characters, ambiguity always exists

and impedes handwriting recognition. This is illustrated in Figures 13.1 and 13.2

(from [70]). Notice that the circled symbols are exactly the same. We can apply

context information to resolve ambiguity and improve the recognition rate.

Dictionary-based methods are widely used in natural language handwriting recog-

nition. Figure 13.3 shows an example where context information applies in natural

language recognition. Even though the first and last strokes are exactly same, it is

recognized as cloud instead of doud based on the dictionary. Smirnova and Watt

extended the techniques to mathematical character recognition [54]. They built a

“mathematical vocabulary” from expressions in a large collection of research articles

and used this to compute sequence frequencies. Based on their context database, the

equation in the Figure 13.1 is recognized as “ż+z = sinωt”, while for the Figure 13.2,

the recognition result would be “
∑

i i
2”. We present a brief description of their work

here. More detailed information can be found in reference [54].

112

Figure 13.1: Context - Ambiguity in Mathematics(1)

Figure 13.2: Context - Ambiguity in Mathematics(2)

13.4.1 Building Database of Mathematical Context

So and Watt [59] analyzed and categorized 20,000 mathematical documents pub-

lished between 2000 and 2004 by the mathematical arXiv service. Based on that

analysis, Smirnova and Watt [54] studied mathematical sub-expressions and identi-

fied the “most common mathematical patterns” after extracting all possible symbol

sequences of lengths 3, 4 and 5. These expressions were recorded in presentation

MathML, which contains spatial information. For example, (a + b)2 can be ex-

pressed in MathML as: <msup> <mfenced> <mi> a </mi> <mo> + </mo> <mi> b

</mi> </mfenced> <mn> 2 </mn> </msup>. A “trie” data structure was used to

store these subsequence. A node of the trie stores the total frequency of the symbol it

represents. Figure 13.4 shows a partial trie for symbol “i”. The size of the trie can be

up to several gigabytes. By examining the tries for sub-expressions of length 3, 4 and

5, it was found that the distribution for the number of expressions at each frequency

appeared to be reciprocal to the frequency of an expression: there was a significant

increase in the number of expressions with low frequencies and vice-versa. For ex-

ample, there are about 2000 out of 456, 751 subexpressions for which the frequency

in the mathematical articles is 91, while only 10 out of 456, 751 subexpressions with

frequency 1302 appear in those articles. Based on these findings, the trie was cut off

by storing only M expressions with frequencies more than F. Three different sizes of

database were created: 1. a database with all sequences that were encountered more

than 400 times; 2. a database containing all expressions that occurred more than 100

113

times; 3. a database including all expressions with frequencies more than 1000 times.

The second one continued to be used for their research and experiments.

Figure 13.3: Context - Ambiguity in Natural Language, from [54]

13.4.2 Predicting Characters from the Mathematical Context

Based on the mathematical context, one can provide the user with the next possible

symbol that fits into the formula that was written so far. The Markov chain property

applies here, i.e. we only consider the current state to predict the next symbol. The

state consists of the sequence of previous n − 1 symbols. For example, after a user

writes
∑

in Figure 13.2, if we detect that the pen is in the subscript area of
∑

, we

can offer the prediction “i”. The probabilities of subscript of
∑

are shown in the

Table 13.1. The Figure 13.4 and Table 13.1 are from [54]. The prediction is done

by searching the database of mathematical context and normalizing the probabilities

of the possible symbols. Three alternatives are used to normalize the probability of

the possible symbol, for example, for symbol “x”: 1) frequency of “x”/ frequency of

tree root; 2) frequency of “x”/ frequency of immediate root; 3) frequency of “x”/max

frequency of siblings of “x”.

Figure 13.4: Trie for Symbol “i”, from [54]

114

Symbol Probability Symbol Probability Symbol Probability

i 1 j 0.59426 k 0.502789

n 0.59426 m 0.063205 l 0.110686

r 0.082793 p 0.079962 α 0.079631

Table 13.1: Subscripts of
∑

, from [54]

13.4.3 Combining Prediction and Recognition

Smirnova and Watt examined the following three combination functions:

C1(α, β) = αR+ β

C2(α, β) = RαPβ

C3(α, β) = α× exp(R) + β × exp(P)

Experiments were done on a set of 17 formulas written by 10 different writers.

By a proper choice of α and β, recognition rate can be increased. For example, for

C3, given α = 6, β = 1 the recognition rate can be increased by up to 7.5%.

In this chapter, we gave an overview of combining multiple recognizers. Various

ensemble scheme and combination methods are studied. We also summarized the

work of Smirnova and Watt on applying context rules for handwritten mathematical

recognition.

115

Chapter 14

Conclusion and Future Work

14.1 Conclusion

We have studied different aspects of recognition of handwritten mathematical sym-

bols and have presented new methods to model them. We have also implemented

these models in a handwriting recognition prototype with two recognizers: an elastic

matching-based recognizer and a hidden Markov model-based recognizer. We have

used C++ on Linux to implement the recognizers. We have found these methods to

be effective in recognizing handwritten mathematical symbols.

At a more detailed level, we have done the following:

• A recognition prototype was built to include data preprocessing, analysis, sym-

bol representation and recognition. Handwriting recognition relies upon a large

number of samples for each symbol, involving the assembly of raw database

which usually contains corrupt data (for instance, missing stroke). We built

tools for examination and verification of raw data. Since our database comprises

data from a variety of resources, we produced converters to transform the data

among different formats. After the initial examination and conversions are com-

pleted, we have started from preprocessing, followed by variance analysis, feature

extraction, and build training and recognition modules.

• We performed handwriting variance analysis and identified the factors con-

tributed to the variants and could be used as the most-distinguishably features.

• Based on the variance analysis, we prepared modules for all allomorphs of the

mathematical symbols to be used in elastic matching. The hidden Markov model

also used the allomorphs for training purposes.

116

• We examined different possible features of handwritten mathematical symbols.

We identified new features to represent the handwritten mathematical symbols.

Feature analysis and extraction are used in both the elastic recognizer and the

HMM recognizer.

• By grouping the large set of symbols according to different features, we pruned

the prototypes for elastic matching and the recognition speed was improved.

• Two new encoding/decomposing schemes for handwritten symbols were devel-

oped. The first encoding method is curved-based, where the number of encoded

segments is flexible and depends on the symbol under consideration. The second

encoding method has fixed number of segments of equal length. These encoding

were used in the design of HMM.

• We designed a multi-path, multi-model HMM topology. The hidden Markov

model for each character had multiple paths according to its variants. Except

for using information based on time series, we integrated inter-stroke information

into the HMM. We built individual models based on different features. These

models were combined to form a final model with an improved recognition rate

compared the traditional, flat HMM.

• We associated the decomposed segments with their corresponding states. From

the mapping, we chose the observation distribution to be of a Gaussian type

which has enabled us to achieve promising recognition results.

14.2 Future Work

Ambiguity is always present in handwriting recognition due to similarities and vari-

ability of handwriting characters. This can be alleviated by the application of context

information. Others have examined frequencies of the symbols appearing in mathe-

matical expressions and built Markov chains for prediction. Integration of this work

with ours gives the promise of an improved recognition rate.

The combination of multiple recognizers is another research direction to be explored

further. The following directions appear particularly interesting:

117

• Generation of an writer-specific Recognizer. The write-specific recognizer should

be suitable for combination and should be easily generated.

• Combination Schemes. While a number of combination schemes appear in the

literature, more effective combination schemes need to be developed.

Our handwritten mathematical symbol recognizers have been embedded in a hand-

written mathematical expression recognition system. The present work can be further

extended to editing and recognition of handwritten mathematical expression.

118

Appendix A

Samples of Allomorph of Handwritten Symbols

In Chapter 6, we introduced mathematical handwriting variant analysis. Based on

the variant analysis, we built a database of allomorphs for each character. Samples

of allomorphs are shown in this appendix. These allomorphs were used in building

hidden Markov model.

119

120

121

122

123

124

Appendix B

Dynamic Programming for Elastic Matching

// Below is the code for Elastic Matching Dynamic programming.

// Refer to Equation 8.1 in Chapter 8.

// Input parameter distanceMatrix’s index is 1 based.

void CRecognizer_Elastic::iniDisMatrix(CMatrix &distanceMatrix,

vector<CPoint> &unknownpoints, vector<CPoint> &modelpoints,

vector<double> &unknownangles, vector<double> &modelangles)

{

int nrow=distanceMatrix.NRow();

int ncol=distanceMatrix.NCol();

//initilize the matrix

for(int i=0; i<nrow; i++)

{

for(int j=0;j<ncol; j++)

{

distanceMatrix.SetAt(i+1,j+1,-1.0);

}

}

double inidis=Util::pointDistance(unknownpoints, modelpoints,0,0,

unknownangles,modelangles);

distanceMatrix.SetAt(1,1,inidis);

//if "j = 0" in Equation 8.1 in Chapter 8

125

for(int j=1; j<ncol; j++)

{

double predis=distanceMatrix.GetAt(1,j);

double pointdis=Util::pointDistance(unknownpoints, modelpoints,0,

j,unknownangles, modelangles);

distanceMatrix.SetAt(1,j+1,predis+pointdis);

}

//if "i = 0" in Equation 8.2 in Chapter 8

for(int i=1;i<nrow; i++)

{

double predis=distanceMatrix.GetAt(i,1);

double pointdis=Util::pointDistance(unknownpoints, modelpoints,i,

0,unknownangles, modelangles);

distanceMatrix.SetAt(i+1,1,predis+pointdis);

}

// if "i >0, j = 1" and if "i > 0, j > 1" in Equation 8.1

for(int i=2;i<=nrow;i++)

{

for(int j=2;j<=ncol;j++)

{

//if "i > 0, j =1" in Equation 8.1 in Chapter 8

if(j==2)

{

double min=(distanceMatrix.GetAt(i-1,j) <

distanceMatrix.GetAt(i-1,j-1) ? distanceMatrix.GetAt(i-1,j):

distanceMatrix.GetAt(i-1,j-1));

double pointdis=Util::pointDistance(unknownpoints, modelpoints,

i-1,j-1,unknownangles,modelangles);

126

distanceMatrix.SetAt(i,j,pointdis+min);

}

else //if "i > 0, j > 1" in Equation 8.1 in Chapter 8

{

double totaldis1=distanceMatrix.GetAt(i-1,j);

double totaldis2=distanceMatrix.GetAt(i-1,j-1);

double totaldis3=distanceMatrix.GetAt(i-1,j-2);

if(totaldis1 == -1 || totaldis2 == -1 ||totaldis3 == -1)

{

throw Exception("totalDistance, uninitialized value!");

}

double min1= (totaldis1 <=totaldis2 ? totaldis1 : totaldis2);

double min =(min1 < totaldis3 ? min1 : totaldis3);

double pointdis=Util::pointDistance(unknownpoints,

modelpoints,i-1,j-1,unknownangles,modelangles);

distanceMatrix.SetAt(i,j,pointdis+min);

}

} //end of for j = 2 loop

}//end of for i = 2 loop

}

//related utilities functions

namespace Util

{

double pointDistance(std::vector<CPoint> &unknownpoints,

std::vector<CPoint> &modelpoints, int i, int j,

std::vector<double> &unknownangles,

127

std::vector<double> &modelangles)

{

double pointdis=unknownpoints[i].distance(modelpoints[j]);

double angledis=angleDistance(unknownangles[i],modelangles[j]);

return (pointdis+angledis);

} //end of pointDistance

double angleDistance(double angle1, double angle2)

{

double delta=fabs(angle1-angle2);

delta=(delta <= 2*M_PI-delta ? delta : 2*M_PI-delta);

return ELASTIC_ANGLE_CONST*delta;

}

}

128

REFERENCES

[1] “Vector quantization,” http://www.data-compression.com/vq.shtmla, Valid on: Nov

9, 2007.

[2] H. A and S. N., “Cursive script recognition using wildcards and multiple experts,” in

Pattern Analysis and Applications, vol. 4, no. 1. Springer, 2001, pp. 51–60.

[3] H. Abut, Vector Quantization. Institute of Electrical & Electronics Engineer Press,

1990.

[4] R. Anderson, “Syntax-directed recognition of hand-printed two-dimensional mathemat-

ics,” in Interactive Systems for Experimental Applied Mathematics, 1968, pp. 436–459.

[5] L. Bahl and F. Jelinek, “Decoding for channels with insertions, deletions, and substi-

tutions with applications to speech recognition,” in IEEE Transactions on Information

Theory, vol. 21. Institute of Electrical and Electronics Engineers, 1975, pp. 404–411.

[6] J. Baker, “The dragon system - an overview,” in IEEE Transactions on Acoustics

Speech Signal Processing, vol. 23, no. 1. Institute of Electrical and Electronics Engi-

neers, 1975, pp. 24–29.

[7] L. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite state

Markov chains,” in Ann. Math. Stat., vol. 37, 1966, pp. 1554–1563.

[8] K. Chan and D. Yeung, “Elastic structural matching for on-line handwritten alphanu-

meric character recognition,” Department of Computer Science, Hong Kong University

of Science and Technology, Tech. Rep. 98-07, March 1998.

[9] K. Chan and D. Yeung, “Recognizing on-line handwritten alphanumeric characters

through flexible structural matching,” in Pattern Recognition, vol. 32. Elsevier Science,

1999, pp. 1099–1114.

[10] K. Chan and D. Yeung, “Mathematical expression recognition: A survey,” in Inter-

national Journal on Document Analysis and Recognition, vol. 3, no. 1. Springer,

Cagliaris, Italy, August 2000, pp. 3–15.

129

[11] B. W. Char and S. M. Watt, “Representing and characterizing handwritten mathemat-

ical symbols through succinct functional approximation,” in Internatiional Conference

on Document Analysis and Recognition. IEEE Computer Society, Sept 2007, pp.

1198–1202.

[12] B. Chazelle and H. Edelsbrunner, “An optimal algorithm for intersecting line segments

in the plane,” in ACM, vol. 39, no. 1, Jan 1992, pp. 1–54.

[13] E. Choi, “On compensating the mel-frequency cepstral coefficients for noisy speech

recognition,” in Proceedings of Twenty-Ninth Australasian Computer Science Confer-

ence. Australasian Computer Science Communications, 2006, pp. 49–54.

[14] T. H. Corman, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. MIT

Press and McGraw-Hill, 1989.

[15] V. Deepu, S. Madhvanath, and A. Ramakrishnan, “Principal component analysis for

online handwritten character recognition,” in Proceedings of the 17th International

Conference on Pattern Recognition. IEEE Computer Society, 2004, pp. 327–320.

[16] K. Durdle, “Supporting mathematical handwriting recognition through an extended

digital ink framwork,” Master’s thesis, Department of Computer Science, the Univer-

sity of Western Ontario, 2004.

[17] S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden Markov model based continuous on-

line gesture recognition,” in International Conference on Pattern Recognition. IEEE

Computer Society, August 1998, pp. 1206–1208.

[18] W. Freiseisen and P. Pau, “A generic plane-sweep for intersecting line segments,” RISC

Report Series, Univeristy of Linz, Austria, Tech. Rep. 98-18, Nov 1998.

[19] M. Fujimoto, T. Kanahori, and M. Suzuki, “Infty editor - a mathematics typesetting

tool with a handwriting interface and a graphical front-end to openXM servers,” in

Computer Algebra - Algorithms, Implementations and Applications. RIMS Kokyuroku,

2003, pp. 217–226.

[20] A. Grbavec and D. Blostein, “Mathematics recognition using graph rewriting,” in

International Conference on Document Analysis and Recognition. IEEE Computer

Society, Aug 1995, pp. 417–421.

[21] D. Guillevic and C. Y. Suen, “HMM word recognition engine.” in International Con-

ference on Document Analysis and Recognition. IEEE Computer Society, 1997, pp.

544–547.

130

[22] S. Günter and H. Bunke, “Ensembles of classifiers for handwritten word recognition,”

in International Journal of Document Analysis and Recognition, vol. 5, no. 4. Springer,

Cagliaris, Italy, 2003, pp. 224–232.

[23] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet, “Unipen project

of on-line data exchange and recognizer benchmarks,” in Proceedings of the 12th In-

ternational Conference on Pattern Recognition. IEEE Computer Society, 1994, pp.

29–33.

[24] J. Ha, R. Haralick, and I. Phillips, “Understanding mathematical expressions from doc-

ument images,” in International Conference on Document Analysis and Recognition.

IEEE Computer Society, 1995, pp. 956–959.

[25] S. Impedovo, “Frontiers in handwriting recognition,” in Fundamentals in Handwriting

Recognition. Springer-Verlag, New York, USA, 1994.

[26] N. Joshi, G. Sita, and A. Ramakrishnan, “Comparison of elastic matching algorithms

for online tamil handwritten character recognition,” in 9th International Workshop

on Frontiers in Handwriting Recognition. IEEE Computer Society, Oct 2004, pp.

444–449.

[27] J. O. Jr, J. M. de Carvalho, C. de A.Freitas, and R.Sabourin, “Feature sets evalua-

tion for handwritten word recognition,” in 8th International Workshop on Frontiers in

Handwriting Recognition. IEEE Computer Society, August 2002, pp. 446–551.

[28] B. Keshari and S. M. Watt, “Hybrid mathematical symbol recognition using support

vector machines,” in Internatiional Conference on Document Analysis and Recognition.

IEEE Computer Society, Sept 2007, pp. 859–863.

[29] B. Keshari and S. M. Watt, “Streaming-archival InkML conversion,” in Internatiional

Conference on Document Analysis and Recognition. IEEE Computer Society, Sept

2007, pp. 1183–1187.

[30] J. Kittler and F. Roli, Multiple Classifier Systems. Springer, Cagliaris, Italy, 2000.

[31] A. Koerich, R. Sabourin, and C. Suen, “Large vocabulary off-line handwriting recog-

nition: A survey,” in Pattern Analysis and Applications, vol. 6, no. 2. Springer, 2003,

pp. 97–121.

[32] A. L. Koerich, R. Sabourin, and C. Y. Suen, “Lexicon-driven HMM decoding for large

vocabulary handwriting recognition with multiple character models,” in International

Journal of Document Analysis and Recognition, vol. 6, no. 2. Springer, Cagliaris,

Italy, 2003, pp. 126–144.

131

[33] M. Koschinski, H.-J. Winkler, and M. Lang, “Segmentation and recognition of symbols

within handwritten mathematical expressions,” in International Conference on Acous-

tics, Speech and Signal Processing, vol. 4. IEEE Press, May 1995, pp. 2439–2442.

[34] A. Kosmala, G. Rigoll, S. Lavirotte, and L. Pottier, “On-line handwritten formula

recognition using hidden Markov models and context dependent graph grammars,” in

International Conference on Document Analysis and Recognition. IEEE Computer

Society, Sep 1999, pp. 107–110.

[35] J. M. Kurtzberg, “Feature analysis for symbol recognition by elastic matching,” in

IBM Journal of Research and Development. IBM Corp, January 1987, pp. 91–95.

[36] J. Laaksonen, “Subspace classifiers in recognition of handwritten digits,” Ph.D. disser-

tation, Helsinki University of Technology, 1997.

[37] J. J. Lee, J. Kim, and J. H. Kim, “Data driven design of HMM topology for on-line

handwriting recognition,” in 7th International Workshop on Frontiers in Handwriting

Recognition. IEEE Computer Society, September 2000, pp. 239–248.

[38] G. Leedham, W. K. Tan, and W. L. Yap, “Handwritten country name identification

using vector quantisation and hidden Markov model,” in Proceedings of the Sixth Inter-

national Conference on Document Analysis and Recognition. IEEE Computer Society,

Sep 2001, pp. 685–688.

[39] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,” in IEEE

Transactions on Communications. Institute of Electrical and Electronics Engineers,

1980, pp. 702–710.

[40] X. Liu and M. Blumenstein, “Experimental analysis of the modified direction fea-

ture for cursive character recognition,” in 9th International Workshop on Frontiers in

Handwriting Recognition. IEEE Computer Society, Oct 2004, pp. 353–358.

[41] A. Louie, “Bachelor’s thesis: Handwriting analysis for MathML generation,” Depart-

ment of Applied Mathematics, the University of Western Ontario, 2000.

[42] J. Makhoul, T. Starner, R. Schwartz, and G. Chou, “On-line cursive handwriting recog-

nition using hidden Markov models and statistical grammars,” in HLT ’94: Proceedings

of the workshop on Human Language Technology, 1994, pp. 432–436.

[43] S. Marukatat and T. Artières, “Handling spatial information in on-line handwriting

recognition,” in 9th International Workshop on Frontiers in Handwriting Recognition.

IEEE Computer Society, Oct 2004, pp. 14–19.

132

[44] N. E. Matsakis, “Recognition of handwritten mathematical expressions,” Master’s the-

sis, Department of Electrical Engineering and Computer Science, Massachusetts Insti-

tute of Technology, 1999.

[45] B. Murthy, “Handwriting recognition using supervised neural networks,” in Interna-

tional Joint Conference on Neural Networks, vol. 4. IEEE Press, 1999, pp. 2899–2902.

[46] K. Nathan, J. Bellegarda, D. Nahamoo, and E. Bellegarda, “On-line handwriting recog-

nition using continuous parameter hidden Markov models,” in International Conference

on Acoustics Speech and Signal Processing. IEEE Press, April 1993, pp. 121–124.

[47] M. Okamoto and K. Yamamoto, “On-line handwritten character recognition method

using directional features and clockwise/counterclockwise direction-change features,”

in International Conference on Document Analysis and Recognition. IEEE Computer

Society, Sep 1999, pp. 491–494.

[48] M. Okamoto, S. Sakaguchi, and T. Suzuki, “Segmentation of touching characters in

formulas,” in Document Analysis System. Springer-Verlag, 1998, pp. 151–156.

[49] L. R. Rabiner, “A tutorial on hidden Markov model and selected applications in speech

recognition,” in Proceedings of the IEEE, vol. 77-2, 1989, pp. 257–286.

[50] G. Rigoll and A. Kosmala, “A systematic comparison between on-line and off-line meth-

ods for signature verification with hidden Markov models,” in International Conference

on Pattern Recognition. IEEE Computer Society, August 1998, pp. 1755–1757.

[51] H. Shu, “On-line handwriting recognition using hidden Markov models,” Master’s the-

sis, Department of Electrical Engineering and Computer Science, Massachusetts Insti-

tute of Technology, 1996.

[52] E. Smirnova and S. M. Watt, “A context for pen-based mathematical computing,” in

Proceedings of Maple Conference, July 2005, pp. 409–422.

[53] E. Smirnova and S. M. Watt, “Communicating mathematics via pen-based computer

interfaces,” in Communicating Mathematics in Digital Era, 2006.

[54] E. Smirnova and S. M. Watt, “Mining expirical data to improve pen-based mathe-

matical character recognition,” in Communicating Mathematics in Digital Era, Agust

2006.

[55] E. Smirnova and S. M. Watt, “Aspects of mathematical expression analysis in arabic

handwriting,” in Internatiional Conference on Document Analysis and Recognition.

IEEE Computer Society, Sept 2007, pp. 1183–1187.

133

[56] E. Smirnova and S. M. Watt, “A cross-application architecture for pen-based mathe-

matical interfaces,” in Electronic Proc. Mathematical User Interfaces, June 2007.

[57] S. Smithies, K. Novins, and J. Arvo, “A context for pen-based mathematical comput-

ing,” in Proceedings of Graphics Interface. Morgan Kaufmann Publishers, June 1999,

pp. 84–91.

[58] C. So, “An analysis of mathematical expressions used in practice,” Master’s thesis,

Department of Computer Science, the University of Western Ontario, 2005.

[59] C. M. So and S. M. Watt, “Determining expirical properties of mathematical expression

use,” in Fourth International Conference on Mathematical Knowledge Management.

Springer, July 2005, pp. 361–375.

[60] S. Srihari, S. Cha, H. Arora, and S. Lee, “Individuality of handwriting,” in Journal of

Forensic Sciences, vol. 47, no. 4. ASTM International, July 2002, pp. 1–17.

[61] E. Tapia, “Understanding mathematics: A system for the recognition of on-line hand-

written mathematical expressions,” Ph.D. dissertation, the University of Fu Berlin,

2004.

[62] C. Tappert, C. Suen, and T. Wakahara, “On-line handwritten recognition - a survey,”

in International Conference on Pattern Recognition. IEEE Computer Society, Nov

1988, pp. 1123–1132.

[63] C. Tappert, C. Suen, and T. Wakahara, “The state of the art in online handwriting

recognition,” in IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 12, no. 8. IEEE Computer Society, Aug 1990, pp. 787–808.

[64] J. Tokuno, N. Inami, S. Matsuda, M. Nakai, H. Shimodaira, and S. Sagayama,

“Context-dependent substroke model for HMM-based on-line handwriting recogni-

tions,” in 8th International Workshop on Frontiers in Handwriting Recognition. IEEE

Computer Society, Aug 2002, pp. 78–83.

[65] O. Trier, A. Jain, and T. Taxt, “Feature extraction methods for character recognition

- a survey,” in Pattern Recognition, vol. 29, no. 4. Elsevier Science, 1996, pp. 641–662.

[66] B. Wan, “An interactive mathematical handwriting recognizer for the Pocket PC,”

Master’s thesis, Department of Computer Science, the University of Western Ontario,

2002.

[67] W. Wang, A. Brakensiek, A. Kosmala, and G. Rigoll, “Multi-branch and two-pass

HMM modeling approaches for off-line cursive handwriting recognition,” in Proceedings

134

of the Sixth International Conference on Document Analysis and Recognition. IEEE

Computer Society, Sep 2001, pp. 231–235.

[68] Z. Wang and C. Faure, “Structural analysis of handwritten mathematical expressions,”

in International Conference on Pattern Recognition. IEEE Computer Society, 1988,

pp. 32–43.

[69] J. R. Ward and T. Kuklinski, “A model for variability effects in handprint with impli-

cations for the design of handwriting character recognition systems,” in IEEE Trans-

actions on Systems, Man, and Cybernetics, vol. 18, no. 3. Institute of Electrical and

Electronics Engineers, May 1988, pp. 438–450.

[70] S. M. Watt, “Strategies for pen-based mathematics,” in Applications of Computer

Algebra, 2004.

[71] S. M. Watt, “New aspects of InkML for pen-based computing,” in Internatiional Con-

ference on Document Analysis and Recognition. IEEE Computer Society, Sept 2007,

pp. 457–460.

[72] H.-J. Winkler, “HMM-based handwritten symbol recognition using on-line and off-

line features,” in International Conference on Acoustics Speech and Signal Processing.

IEEE Press, May 1996, pp. 3438–3441.

[73] X. Wu, “Achieving interoperability of pen computing among heterogeneous devices and

digital ink formats,” Master’s thesis, Department of Computer Science, the University

of Western Ontario, 2004.

[74] Z. Xuejun, L. Xinyu, Z. Shengling, P. Baochang, and Y. Y.Tang, “On-line recogni-

tion handwritten mathematical symbols,” in 4th International Conference Document

Analysis and Recognition. IEEE Computer Society, August 1997, pp. 645–5648.

[75] R. Yamamoto, S. Sako, T. Nishimoto, and S. Sagayama, “On-line recognition of hand-

written mathematical expressions based on stroke-based stochastic context-free gram-

mar,” in International Workshop on Frontiers in Handwriting Recognition. IEEE

Computer Society, Oct 2006, pp. 249–254.

[76] R. Zanibbi, D. Blostein, and J. R. Cordy, “Recognizing mathematical expressions using

tree transformation,” in IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 11, 2002,

pp. 1455–1467.

[77] P. H. Zein, “Chinese calligraphy,” http://www.zein.se/patrik/chinen9p.html, Valid on:

Nov 9, 2007.

135

[78] L. Zhang and R. Fateman, “Survey of user input models for mathematical recognition:

Keyboards, mice, tablets,voice,” University of California, 2003.

VITA

NAME: Xiaofang Xie

PLACE OF BIRTH: ShanXi, China

YEAR OF BIRTH: 1974

POST-SECONDARY

EDUCATION AND

DEGREES:

The University of Western Ontario

London, Ontario

1999-2001 M.Sc.

Nanjing University of Science and Technology

Nanjing, P.R.China

1992-1996 B.E.

HONORS AND

AWARDS:

Ontario Graduate Scholarship

2002-2003

Ontario Graduate Scholarship in Science and Technology

2003-2004

The University of Western Ontario

International Graduate Student Scholarship

Special University Scholarship

1999-2001

RELATED WORK

EXPERIENCE:

Teaching Assistant and Research Assistant

University of Western Ontario

London, Ontario

1999-2004

136

137

PUBLICATIONS: Refereed Conference Papers:

Recognition for Large Sets of Handwritten Mathematical

Symbols, Stephen M. Watt and Xiaofang Xie, pp. 740-

744, Proc. IEEE International Conference on Document

Analysis and Recognition, August, 2005, Seoul Korea.

Prototype Pruning by Feature Extraction in Handwritten

Mathematical Symbol Recognition, Stephen M. Watt and

Xiaofang Xie, pp. 423-437, Proc. Maple Conference,

July, 2005, Waterloo, Canada, Maplesoft.

Refereed Abstracts:

Components for Pen-Based Mathematical Interfaces,

Elena Smirnova, Clare So, Stephen M. Watt and Xiao-

fang Xie, Proc. 2005 Conference on the Applications of

Computer Algebra, July, 2005, Nara, Japan.

Refereed Posters:

Handwritten Mathematical Symbol Recognition for Com-

puter Algebra Applications, Stephen M. Watt and Xiao-

fang Xie, 2005 East Cost Computer Algebra Day, March,

2005, Ashland, OH, USA.

An Experimental Handwritten Mathematical Symbol

Recognition System, Stephen M. Watt and Xiaofang Xie,

11th Annual East Coast Computer Algebra Day, March,

2004, Waterloo, Canada.

