
Symbolic Circuit Analysis in Maple

by

Xiaofang Xie

Graduate Program

m

Applied Mathematics

Submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Faculty of Graduate Studies

The University of Western Ontario

London, Ontario

Jan 2001

© Xiaofang Xie 2001

ABSTRACT

This thesis implements two symbolic circuit analysis methods, Mason Signal Flow­

graph Analysis and Modified Nodal Analysis, in Maple. The corresponding packages

are sjg and mna. sfg can handle circuits with all kinds of controlled sources. We also

give a function fpath in the package sfg. Using fpath, one can find all of the paths in

a graph. Using the mna package, a model of an operational amplifier is built. For

nonlinear circuits, one can get the transfer function using mna.

sfg realized Mason's Signal Flowgraph algorithm with an efficient path finding algo­

rithm. We use the compact signal flowgraph instead of a primitive signal flowgraph.

This made the package more efficient. mna is based on modified nodal analysis, but

it gets the transfer function from the element stamp of the circuit elements.

Key words: Signal Flowgraph, Modified Nodal Analysis, Mason's For­

mula, Path, Loop.

iii

To my parents and my husband ...

lV

ACKNOWLEDGEMENTS

Great thanks must go to my supervisors, Dr. Robert M. Corless and Dr. Stephen

Watt. Dr. Corless got me started the topic. And I learned a lot from him, such as

Maple, programming and so on. Without his continuous help, I could not finish my

thesis. I also thank Dr. Watt for his encouragement.

A special thank goes to Symbolic Computation Laboratory (SCL) group. I can always

get help from the people in SCL. I am lucky to be in such a group.

And also I feel thankful to my best friends here, Mr. Xiaorang Li and Ms. Xiaohe

Zhang. Living with them, I always can keep a good mood.

I am pleased to have this opportunity to thank Pat for her help during my study in

the Department of Applied Mathematics. Thank also goes to Mr. Usaf Aladl for his

offer of the Western style file for this thesis.

Thanks could not express my thankfulness to my dear husband Long. His Jove and

encouragement made me finish the thesis.

v

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION

ABSTRACT

DEDICATION

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

Chapter 1 Introduction

1.1 Introduction

1.2 Review of Symbolic Analysis Methods

1.3 Contribution of the Thesis

1.4 Thesis Outline

Chapter 2 Signal Flowgraph Analysis

2.1 Introduction

2.2 Signal Flowgraph and Mason's Rule .

2.3 Formulation of the Signal Flowgraph

2.4 Enumeration of Paths

vi

ii

iii

iv

v

vi

viii

ix

1

1

2

5

5

6

6

6

14

22

2.5 Enumeration of First-Order and nth-Order Loops

Chapter 3 Algorithms For Finding Paths And Finding Loops

3.1 An Algorithm for Finding Paths .

3.2 An Algorithm for Finding Loops .

Chapter 4 Modified Nodal Analysis

4.1 Introduction . .

4.2 Nodal Analysis

4.3 Modified Nodal Analysis

4.4 Operational Amplifier Model in MNA .

Chapter 5 User Guide And Examples

5.1 the sfg Package .

5.2 the mna Package

Chapter 6 Conclusions And Future Work

6.1 Conclusions .

6.2 Future Work.

Appendix A Source Code for sfg

Appendix B Source Code for mna

REFERENCES

VITA

vii

...... 26

32

32

34

37

37

37

44

49

53

53

76

79

79

82

83

153

160

164

LIST OF TABLES

2.1 Routing Table for Example 8 23

2.2 All Paths of Example 9 25

2.3 All First-Order Loops of Example 10 27

2.4 All Second-Order Loops of Example 11 28

2.5 All Second-Order Loops of Example 12 30

2.6 All Third-Order Loops of Example 12 . 31

2.7 All Fourth-Order Loops of Example 12 31

viii

LIST OF FIGURES

2.1 A Typical Signal Flowgraph

2.2 Figure For Example 2

2.3 Closed SFG For Example 4

2.4 General Figure of SFG

2.5 Circuit For Example 5

2.6 Primitive SFG For Circuit in Figure 2.5 .

2.7 General Compact Signal Flowgraph

2.8 Compact SFG For Example 6

2.9 Original Circuit For Example 7

2.10 Circuit Without Controlled Source For Example 7

2.11 Branches Coming to Ia

2.12 Branches Coming to VRI, VR2 and VR4

2.13 Compact SFG For Example 7

2.14 Closed Compact SFG For Example 7

2.15 Graph For Example 8

2.16 Procedure of Finding Paths

2.17 Graph For Example 10 ...

2.18 Children of Node 3 For Figure 2.17

4.1 Circuit For Example 1

ix

9

10

13

16

17

17

18

18

20

20

21

21

22

22

23

26

27

30

39

4.2 Circuit For Example 2 40

4.3 Element Stamp For R, L and C 42

4.4 Element Stamp For VCCS . . . 43

4.5 Element Stamp For Independent Current Source . 43

4.6 Element Stamp For Independent Voltage Source . 46

4.7 Element Stamp For Voltage Controlled Voltage Source 46

4.8 Element Stamp For Current Controlled Voltage Source 47

4.9 Element Stamp For Current Controlled Current Source 47

4.10 Circuit For Example 3 48

4,11 Element Stamp For Nullator . 50

4.12 Element Stamp For Norator 50

4.13 Element Stamp For Nullor 51

4.14 Circuit For Example 4 52

5.1 Circuit For Example 1 55

5.2 Graph Drawn by Maple For Example 1 56

5.3 Circuit Graph Corresponding to Figure 5.2 56

5.4 Graph Drawn by Maple For Example 2 . . . 57

5.5 Circuit Graph Corresponding to Figure 5.4 57

5.6 Tree Graph Drawn by Maple For Example 3 59

5.7 Tree Branch in Circuit Corresponding to Figure 5.6 59

5.8 Cotree Graph Drawn by Maple For Example 3 . . . 60

5.9 Cotree Branch in Circuit Corresponding to Figure 5.8 . 60

5.10 Tree Graph Drawn by Maple For Example 4 61

5.11 Tree Branch in Circuit Corresponding to Figure 5.10 61

5.12 Cotree Graph Drawn by Maple For Example 4 62

5.13 Cotree Branch in Circuit Corresponding to Figure 5.12 62

x

5.14 Signal Flowgraph For Example 5 ...

5.15 Graph Drawn by Maple For Example 5

5.16 Signal Flowgraph For Example 6 and 8

5.17 Graph Drawn by Maple For Example 6 and 8

5.18 Petersen Graph Drawn by Maple For Example 7 .

5.19 Signal Flowgraph For Example 9 ...

5.20 Graph Drawn by Maple For Example 9

5.21 Signal Flowgraph For Example 10 . . .

5.22 Graph Drawn by Maple For Example 10

5.23 Circuit For Example 12 .

5.24 Circuit For Example 13 .

5.25 Circuit For Example 14 .

5.26 Circuit For Example 18 .

6.1 Circuit For Example 1

6.2 Circuit For Example 2

xi

64

65

65

66

66

69

70

70

71

74

75

75

78

81

81

1

Chapter 1

Introduction

1.1 Introduction

The idea of Symbolic Circuit Analysis is to keep some, or all of the circuit parameters

as symbols through the entire simulation process [11]. Symbolic circuit analysis is

used to generate a circuit formula which is expressed in circuit variables and complex

frequency. For a long time, people paid more attention to numerical methods because

of their high speed. Some mature programs [3, 32] have been developed. But in recent

years, more and more people have begun to study symbolic analysis. Especially in

linearized analog integrated circuits [33], symbolic analysis has been a major topic of

research. The things which intrigue people are the following advantages of symbolic

analysis compared to numerical methods are:

• The designer can examine the behavior of a system, rather than examine the

result at some point.

• You can leave the parameters in a model as symbols.

• You can apply math operations to simplify or convert the model into related

analysis techniques.

Further, good general-purpose computer algebra programs such as Maple [7, 27, 1],

and Mathematica, have been developed. These programs provide convenient tools to

2

do symbolic analysis. For example, there are some packages such as syrup [30] which

can handle symbolic circuit analysis in Maple.

The application of symbolic analysis includes sensitivity analysis, circuit stability

analysis, fault simulation, device modeling and circuit optimization [14, 13, 28, 2].

The main goal of symbolic analysis is to get a transfer function H(x, s) in the following

form:

H()
= N(x,s)

x, 8 D(x, s) (1.1)

where xis the circuit variable, sis the complex frequency, and N(x, s) and D(x, s)

are polynomials in x an_d s.

1.2 Review of Symbolic Analysis Methods

After more than thirty years' of study on symbolic analysis, there are a series of

mature methods in the literature. Based on these methods, much progress has been

made [20, 16, 15, 5]. According to the scheme of [9], the methods can be divided

into five types:

1. Tree enumeration methods

2. Flowgraph methods

3. Parameter extraction methods

4. Interpolation methods

5. Matrix-based methods

Tree enumeration methods:

As the name of the method implies, these are used to get the transfer function by

enumerating the trees of the circuit graph. The tree enumeration method has two

different types: directed tree enumeration and undirected tree enumeration. Both of

them create a graph from the original circuit, then enumerate the trees in the graph,

and at last build the nodal admittance matrix determinant and cofactors from which

3

one can find the transfer function. The difference is that undirected tree enumeration

builds two graphs from the original circuit, one of them being the voltage graph, the

other one being the current graph, while the directed tree enumeration only builds

one graph from the original circuit.

The tree enumeration method can only handle circuits that consist only of resistors,

inductors, capacitors or voltage controlled current sources. Our direct implemention

of this method can only handle circuits in the range of 15 nodes and 30 branches.

Flowgraph methods:

These methods can also be classified into two categories: the Mason signal flowgraph

and the Coates graph. The Mason signal flowgraph is based on Mason's formula.

First, one constructs a signal flowgraph from the original circuit. Then, one creates

Mason's formula of the circuit from the signal flowgraph. One can find the transfer

function from Mason's formula. The method still has circuit size limitations if one

doesn't use a hierarchical method, but it can handle circuits that contain any kind of

controlled source. Some publicly available programs such as SNAP [29] and ASAP

[10] are based on this method. The coates graph uses a directed graph to represent

a linear system of equations. Each node of the directed graph represents one of the

equations of the system. And each node (x;) in the Coates graph represents a circuit

variable and each branch weight (w;j) represents a coefficient relating to x; and Xj·

For the Coates graph, the transfer function is expressed as the ratio of the graph's

I-connection, which is dependent on the input variable and the output variable se­

lected, to the graph's 0-connection, which is independent on the input variable and

the output variable selected. The Coates graph method is not used as widely as

. Mason's signal flowgraph methods. The idea of building a Coates graph is to use an

element stamp method. The element stamp method is used to get circuit equations

by inspection. The program FLOWUP [17] is based on the Coates graph method.

Parameter extraction method:

The method is used to get a transfer function by extracting symbolic parameters from

the matrix formulation of the original circuit. It divides the problem into two parts.

One part is in numerical form, and the other part is in symbolic form. The numerical

4

part can be solved by standard numerical methods and then combined with the sym­

bolic part. The rules of extracting parameters depend on the pattern of the symbolic

parameters in the matrix. Different algorithms for extracting parameters have been

developed to date. The parameter extraction method is good for a circuit that has

few symbolic parameters. It can handle bigger circuits than the tree enumeration

method and the flowgraph method. But if the number of symbolic parameters is high

in the circuit, it will lose its advantage.

Interpolation methods

The method is best suited for a circuit that only has the complex frequency s as the

symbolic parameter. It needs to find the coefficients of the network's determinant

polynomial by evaluating it at different values of s. However it can yield incorrect

solutions if the value of s is real. Therefore, a complex value of s is usually chosen.

The Fast Fourier Transform is used in some implementations of the method. Obvi­

ously this is one of the advantages of this method since a Fourier transform speeds

up the execution.

Matrix-based Methods:

This method builds a matrix directly from the description of the circuit. Several clas­

sical methods such as Modified Nodal Analysis (MNA), Hybrid Analysis, and Sparse

Tableau Analysis can be used to generate the matrix of the circuit. After one gets

the matrix of the circuit, one creates a linear equation in the following form:

Ax=b (1.2)

where A is the matrix of the circuit, x is the circuit variable and b is the symbolic

vector of the circuit.

The transfer function of the circuit can then be found by solving the linear sys­

tem. Based on the method of solving equation (1.2), there are two categories : the

determinant-based method and the parameter reduction method. The idea of the

determinant-based method is to apply an extension of Cramer's rule, symbolically,

to find the transfer function from the matrix in equation (1.2). Several symbolic

algorithms are based on the concept of using Cramer's rule and calculating the de-

5

terminant of an MNA matrix. ISAAC [12] is a program based on the determinant

method. The idea of the parameter reduction methods is to apply linear algebra

techniques, symbolically, to find a solution of equation (1.2). The goal here is to

reduce the matrix A to two entries which are used in the transfer functions. Gaussian

elimination is used in the reduction process. SCAPP [25] is a program based on the

parameter reduction method.

1.3 Contribution of the Thesis

I implemented Mason Signal Flowgraph and Modified Nodal Analysis with Maple in

my thesis. We can get the transfer function for a proper circuit using sfg and mna,

which are packages that can easily be extended to a hierarchical method. Large-scale

circuits can be handled by the hierarchical methods. Efficient algorithms for finding

all paths and loops are presented in sfg. These algorithms can also be used in other

fields related to graph theory. As an example, an operational amplifier model was

built in mna.

1.4 Thesis Outline

Chapter 1 introduces several methods for symbolic circuit analysis. The transfer

function is defined here. The advantages of symbolic analysis over numerical analysis

are discussed.

Chapter 2 gives a detailed description of Mason Signal Flowgraph. The procedure for

realizing the method is introduced.

Chapter 3 illustrates the precise algorithms for finding all paths and all loops.

Chapter 4 introduces Nodal Analysis and Modified Nodal Analysis. The procedure

for realizing mna is presented.

Chapter 5 is the user guide of sfg and mna. The examples used to test the packages

are given in this chapter.

Chapter 6 presents conclusions and future work.

6

Chapter 2

Signal Flowgraph Analysis

2.1 Introduction

"The concept of a fl.owgraph was originally worked out by C. E. Shannon in a classified

report dealing with analog computers" [22]. In 1956 he happened to mention his work

to several people at MIT who got similar results using other methods. Prior to that,

his work was unknown. The greatest credit for the formulation and organization of

signal fl.owgraph analysis is normally extended to S. J. Mason [22, 23]. In the 1950s,

Mason realized the importance of fl.owgraphs. He worked on it, and showed how to use

the signal fl.owgraph method to solve complicated electronic problems and provided

a formula.

Because of the electronic signals and flowcharts of the systems under analysis, people

gave the name signal ftowgraph analysis to this method. The signal fl.owgraph method

is based on Mason's rule. It is much easier to solve some problems using the signal

fl.owgraph method than using other methods. So today the signal fl.owgraph method

is widely used in many fields such as electronics, mechanics and statistics.

2.2 Signal Flowgraph and Mason's Rule

Before we introduce Mason's rule, we need the following basic concepts [6].

Definition 2.1 (Directed Graph) A directed graph consists of a set of nodes and

a set of branches which represented by an ordered pair of nodes in the form {x;, Xj)·

This ordered pair of nodes means the branch originates from node X; and ends at node

7

Definition 2.2 (Undirected Graph) An undirected graph here is a graph with two­

way branches.

Definition 2.3 (Path) Imagine each directed branch in the signal fiowgraph as a

one-way street. A path from node Xi to node Xj is any route leaving node Xi and

terminating at node x j along which no node is encountered more than once.

Definition 2.4 (Loop) A loop is a path whose initial node and terminal node coin­

cide.

Definition 2.5 (nth-order Loop) An nth-order loop is a set of n nontouching loops.

Definition 2.6 (Path Weight) The path weight is the product of all branch trans­

mittances in a path.

Definition 2.7 (Loop Weight) The loop weight is the product of all branch trans­

mittances in a loop.

Definition 2.8 (Signal Flowgraph-SFG) A signalfiowgraph is a weighted directed

graph representing a system of simultaneous linear equations according to the follow­

ing three rules:

1. Node variables represent circuit variables (known and unknown)

2. Branch weights represent coefficients in the relationships among circuit variables

3. Every node with some incoming branches has the following equation:

node variable = I; (incoming branch weights x node variable

from which the incoming branch originates)

where the summation is over all incoming branches (of the node under consid­

eration).

Definition 2.9 (source Node) In a signal fiowgraph, a node with only outgoing

branches is called a source node.

8

Definition 2.10 (Dependent Node) In a signal fiowgraph, a node with some in­

coming branches is called a dependent node.

Definition 2.11 (Sink node) In a signal fiowgraph, a dependent node with only

incoming branches is called a sink node.

Note: Electronic Circuit expresses the relationship among circuit variables. From the

definition of SFG, we can see that SFG also can express this relationship, so actually,

SFG can represent electronic circuit.

Now let's see the following signal fiowgraphs, and from them we illustrate Mason's

rule step by step.

Example 1:

Refer to Figure 2.1. The node variables are (x0 , x 1 , x2 , x3), and the branch weights

are (a, b, c, d, e, f, g). According to Rule 3 in the definition of a signal fiowgraph,

we get the following linear equations from the SFG.

X1 axo + dx2

x2 bx0 + cx1 + ex2

xa - fx1 + gx2 (2.1)

That is to say, the SFG of Figure 2.1 represents the above linear equations.

In Figure 2.1, x0 is a source node and x1 , x2 , x3 are dependent nodes. Usually, we

treat the source node as a known variable and the dependent node as an unknown

variable. The transfer function is the ratio of the unknown variable to the known

variable.

9

X>

f
a

x d
x,

c

b
g

Figure 2.1: A Typical Signal Flowgraph

10

Example 2:

Refer to Figure 2. 2

In Figure 2.2, from node x0 to node x4 , there are three paths:

Pl = fa, P2 = edc, P3 = gdc

And there are two first order loops:

Ll = ab, L2 = hd

One second order loop:

L1L2 = abhd

x, a
X4

b

f c

h

e
XO x, d x2

g

Figure 2.2: Figure For Example 2

Let's consider how to build an SFG from a system of simultaneous linear equations.

Suppose the system of simultaneous linear equations can be expressed in the following

form:

X=AX+BX. (2.2)

where X is the vector of unknown variables, X. is the vector of known (source)

variables and A, B are coefficients.

Then applying rule 3 from the definition of signal flowgraph, it is easy to build an

SFG from the above equation. For example, A;,; is the weight of the branch which

originates from node Xj and terminates at node X;, B;,; is the weight of the branch

which comes from source node Xi to dependent node X;. In this way, we can get

SFG corresponding the above equation.

11

Simultaneous linear equations can be solved by the use of Cramers rule, which requires

the evaluation of the determinant and cofactors of the coefficient matrix. Here the

determinant and cofactors can all be obtained from the signal flowgraph which is

built from the simultaneous linear equations. That is why SFG provides us a direct

and convenient method to solve linear equations.

Here is the idea: Solve X in equation (2.2) in terms of X,, we get:

X = [1- A]-1BX, (when [1- AJ-1 exists).

Then we can write X in terms of X, as the following form:

(2.3)

where each T is the transfer function we want. Here, T;j means transfer function from

source node Xsj to dependent node x;.

Mason gave the formula for Tin thf;l following form (Mason's Rule):

Xi

where

£::,. - 1 - (sum of all loop weights)

+ (sum of all second-order loop weights)

- (sum of all third-order loop weights) + ...

Pk weight of the kth path from the source node Xsj

to dependent node x;

£::,.k sum of those terms in£::,. without any constituent loops

touching Pk

And I:k means all of the paths from Xsj to x;.

£::,. is called the graph determinant.

Let's consider the application of Mason's rule in Figure 2.2.

(2.4)

(2.5)

(2.6)

(2.7)

12

Example 3:

We want to calculate the transfer function of T40 in Figure 2.2, i.e. the ratio of x 4 to

Xo.

Solution:

From example 2, we know that the paths are Pl= fa, P2 = edc, P3 = gdc, and that

the first-order loops are Ll = ab, L2 = hd, and the second-order loop is L1L2 = abhd.

Substituting the above values into equation (2.4), we get

Xo fa(l - hd) + edc + gdc
-

1 - (ab+ hd) + abhd
(2.8)

In Mason's formula, we need to get the numerator and denominator respectively in

order to get transfer function. When we make a program, we hope to get the value

of the transfer function by one single process. A closed signal flowgraph provides us

a convenient way to do this.

Definition 2.12 (Closed Signal Flowgraph) A closed signal fiowgaph is formed

by adding a branch to the original signal fiowgaph. The branch weight is - Z , - Z

is only a symbol used to distinguish it from other branch weights. And the branch

originates at the output node variable and ends at the source node variable .

Application of closed signal fiowgraph

We can get the graph determinant l::,c of a closed signal flowgraph by using equation

(2.5). We can write l::,c in the following form:

l::,c=D+CZ (2.9)

We can show that D = !::, and C = L:k Pkt:,k· So we can express l::,c in terms of !::,

and L:k Pk l::,k :

t:,c = !::, + z I: Pkt:,k (2.10)
k

So now from equation (2.10) we can get the numerator and the denominator of the

transfer function at the same time.

Example 4:

Suppose we want to find the transfer function of x3 / x0 in Figure 2.1.

Solution:

13

First, add a branch from node x3 to x0 with weight -Z, we get Figure 2.3. In Fig­

ure 2.3, there are loops:

L1 = e, L2 = cd,

£4 = -Zbg, Ls= Zacg,

Second-order loop is £ 1 L3

L3 = -Zaf

L6 = -Zbdf

According to equation (2.5), the graph determinant of the closed graph is:

Thus,

/::;c 1- (L1 + L2 + L3 + £4 +Ls+ L6) + L1L3

- (1 - e - cd) + Z(af + bg + acg + bdf - ea!)

X3 af - eaf + bg + acg + bdf
xo 1-e-cd

- z

X1

Jj
g

Figure 2.3: Closed SFG For Example 4

(2.11)

14

2.3 Formulation of the Signal Flowgraph

Basic Concept

Definition 2.13 (Cutset) A cutset is a set of branches which satisfies the following

conditions:

1. The removal of the set of branches {but not their endpoints) results in a graph

that is not connected.

2. After the removal of a set of branches, the restoration of any one branch from

the set will result in a connected graph again.

Definition 2.14 (Current and Voltage Sources) Current and voltage sources are

active devices converting other form of energy to electrical energy. Two general cate­

gories exist for these sources in electronic circuits, independent sources and controlled

sources. If the output voltage is completely independent of another voltage, then the

corresponding voltage source is called an independent voltage source, otherwise, it is

called a controlled voltage source. If the output current is completely independent

of another current, then the corresponding current source is called an independent

current source, otherwise, it called a controlled source {31, 8}.

Theorem 2.1 (KCL) KCL (Kirchoff's Current Law) states that the algebraic sum

of all current entering a node is equal to the algebraic sum of all currents leaving that

node.

Theorem 2.2 (KVL) KVL (Kirchoff's Voltage Law) states that the sum of the volt­

age drops across a closed circuit is equal to 0.

Definition 2.15 (Primitive SFG) In the SFG, construct branches that express KCL,

KVL equations and branch relationship {BR) of the circuit elements, then a Primitive

SFG is formed.

15

Definition 2.16 (Compact SFG) Based on the primitive SFG, eliminate the node

variables Ir and VL, then a Compact SFG is formed.

Now we show how to build a signal fl.owgraph from a circuit which contains RLC

elements and independent and controlled sources.

First, we consider a circuit without controlled sources. We begin by selecting a tree

and cotree for the signal fl.owgraph. All of the voltage sources VE must be in the

tree, and all of the current sources h must be in the cotree. And also we assume

that the voltage sources contain no loops, the current sources contain no cutsets,

and there is no self-loop in the final graph. Let the immittance tree branches be

characterized by the impedance matrix ZT, and the immittance cotree branches by

the admittance matrix YL. According to these rules, we have the general picture of

SFG in Figure 2.4. In Figure 2.4 8 represents a collection of nodes, and =? represents

a collection of branches in the SFG.

Then we follow the following steps to get the primitive signal fiowgraph:

1. Apply KVL to express each element of VL in terms of VE and VT.

2. Apply KCL to express each element of Ir in terms of h and IJ.

3. For immittance tree branches, each voltage is expressed in terms of the current

through the branch; i.e., VT= ZTIT.

4. For immittance cotree branches, each current is expressed in terms of the voltage

across the branch; i.e., h = YL VL.

Example 5:

For the circuit in Figure 2.5, we choose branches Va, Rd, Re as tree branches. The rest

of the branches are cotree branches. Then, according to the above steps, we get the

primitive SFG shown in Figure 2.6 which displays the KVL, KCL and BR.

From the definition of a compact signal flowgraph, we know that the compact SFG

contains less nodes and branches than the primitive SFG. So, usually, we try to find

a compact signal fiowgraph for the circuit. Figure 2.7 illustrates the compact signal

16

KVL

L

ZT

I KCL

0 1,

Figure 2.4: General Figure of SFG

flowgraph.

In order to get a compact signal flowgraph, we follow these steps:

1. For each immittance cotree branch Y/c, express its current in terms of tree branch

voltages by the use of h = Yk Vk and the KVL equation.

2. For each immittance tree branch Zj, express its voltage in terms of cotree branch

current by the use of Yj = Zjlj and the KCL equation.

Example 6:

For the circuit in Figure 2.5, we apply the above steps to get the following equations:

h = GbVb, Vb= Va - Vd ==} h = GbVa - GbVd

le= Gev;,, v;, = Vd - Ve

Vd = Rdld, Id = h - le

==}le= GeVd - Gell;,

==} Vd = Rdh - Rdle

Ve =Rel"' le = le - I1 ==} Ve = RJe - Relf
According to the last columns in the above equations, we can build the compact signal

flowgraph as Figure 2.8. It is obvious that Figure 2.8 is much simpler than Figure 2.6.

17

lb

Rb Re

I le d

Re If
+ Rd

v
a

Figure 2.5: Circuit For Example 5

"'-o:"""''--~~~_:_---~~~-c=,..01

c

f

Figure 2.6: Primitive SFG For Circuit in Figure 2.5

18

Figure 2.7: General Compact Signal Flowgraph

. ..,___ ___ q,

%

Vct ~~;;==~====:::====~-;=:;:G~b~====~==~"'°

Figure .2.8: Compact SFG For Example 6

19

Until now we have only constructed compact SFG for circuits without controlled

sources. Next we will consider compact SFG of a circuit with any type of controlled

sources. Similarly, we have the assumptions: independent and controlled voltage

sources form no loops, independent and controlled current sources form no cutsets.

The rule for choosing the tree and cotree is: independent and controlled voltage

sources must be in the tree and independent and controlled current sources must be

in the cotree.

The following is a step-by-step procedure for formulating the compact SFG for linear

networks containing controlled sources:

1. Temporarily replace all controlled sources by independent sources of the same

type. The resultant network has no controlled sources.

2. Formulate the compact SFG for the network (without controlled sources) ob­

tained in step 1 by the method described previously.

3. Desired outputs and all controlling variables, if not tree branch voltages and

cotree currents, should be expressed in terms of the latter quantities and rep­

resented in the SFG.

4. Reinstate the constraint of all controlled sources.

Example 7:

For the circuit in Figure 2.9, we want the transfer function of V0/V;.

Solution:

First, we replace the controlled current source 9m Vg by an independent current

source Ix. Then we get the circuit in Figure 2.10. Then we choose tree branches:

V;, Ri, Rz, R4. Then we apply step 2 and use the method introduced previously to

get the compact SFG. Expressing the current Im of the cotree branch R3 in terms of

tree branch voltage, we get the Figure 2.11. Expressing the voltages Vm, VR2, VR4 of

the tree branches R 1 , R2, R4 in terms of cotree currents, we get the Figure 2.12. Next

we come to step 3, i.e. expressing the desired output voltage V0 and the controlling

voltage Vg in terms of tree branch voltages. The result is Figure 2.13. Finally, we

20

follow step 4. Reinstate the constraint Ix = 9m Vir Add a branch with weight -z
from node Vo to node V;. The result is Figure 2.14. Now we get the compact SFG

Figure 2.14 for the circuit in Figure 2.9. We can find the graph determinant of the

compact SFG, then get the transfer function from it. We omit this here.

5
+

4 '{, ·-~ 2

3

Figure 2.9: Original Circuit For Example 7

' + t
' ~R3 Ixcp RI

Vg
' '{, ______ ...J

+
R4 R2

Figure 2.10: Circuit Without Controlled Source For Example 7

21

Figure 2.11: Branches Coming to Ia

VRl

- Ri

Ix VR2
I3

- Rz
- Rz

VR4

Figure 2.12: Branches Coming to Vm, VR2 and VR4

Vi

R 1

Figure 2.13: Compact SFG For Example 7

-1
R4..__~~~~_..;)6'6---­

VR4

Figure 2.14: Closed Compact SFG For Example 7

2.4 Enumeration of Paths

22

Evaluation of Mason's formula needs to find all of the paths in the SFG. We also

need to find all of the loops if we use closed signal flowgraph method. A loop is just

a closed path. So the method of finding paths is important.

Imagine the directed branches of a SFG to be one-way roads and the nodes to be

junctions. At each junction, one can reach different roads. Such choices can be com­

pletely described by a routing table.

Example 8:

For the Figure 2.15, routing table is like the table (2.1):

Note that the nodes in the second column have been listed in descending order.

5

l<>E'---__..,~----<{ 2
4 l;>--0----...::,,, 6

3

Figure 2.15: Graph For Example 8

from nodes to nodes

1 5 3 2

2 5

3 6 2

4 6 3

5 6 4 3

Table 2.1: Routing Table for Example 8

23

24

If we want to find all paths from initial node I to the last node (some destination

node) L, then we start from the initial node of the path. Referring to the routing

table, proceed to the highest-numbered adjacent node. After reaching one node, use

the following rules to go to the next node.

1. If the node is the destination node, a path has been found. Record the path,

and apply rule 4.

2. If the node is not the destination node and had not been encountered twice on

the present path from the initial node, then proceed on an untraversed branch

to the highest-numbered adjacent node. If no such untraversed branch exists,

apply rule 4.

3. If the node is not the destination node but has been encountered for the second

time on the present route from the initial node, apply rule 4.

4. Back up one node on the present route and then proceed on an untraversed

branch to the highest-numbered adjacent node. If no such untraversed branch

exists, repeat the back-up and take next choice process. If, on backing-up, the

initial node I is reached, and outgoing branches from I have been traversed,

then all paths have been found.

Example 9:

We want to find all the paths from node 1 to node 6 in Figure 2.15.

Solution:

Refer to routing table (2.1). The initial node is node 1, and the last node is node 6.

We begin from the first line, second column of the routing table, i.e. from node 5,

proceed one node to reach node 6. Then we get the first path Pl. Applying rule 4,

back up one node to node 5 and proceed one node to node 4. Node 4 fits rule 2, so

we proceed one node to node 6, and get the second path P2. Applying rule 4, back

up one node to node 3, again, use rule 2, proceed one node to node 6, get the third

path P3. Applying rule 4 again, back up to node 3, proceed to node 2, proceed to

node 5. Note that node 5 falls into rule 3, therefore, apply rule 4, back up to node

25

2, repeat back up to node 3, node 4, node 5, then proceed to node 3, apply rule 2,

proceed to node 6, get the fourth path P 4. Continue the process until we find all of

the 10 paths.

Table (2.2) displays all the paths in Figure 2.15, and Figure 2.16 illustrates the pro­

cedure of finding paths.

In the next chapter, we give the precise formulation of the corresponding algorithm.

Path Node Sequence

Pl 1 5 6

P2 1 5 4 6

P3 1 5 4 3 6

P4 1 5 3 6

P5 1 3 6

P6 1 3 2 5 6

P7 1 3 2 5 4 6

PS 1 2 5 6

pg 1 2 5 4 6

PlO 1 2 5 4 3 6

Table 2.2: All Paths of Example 9

6
P2

3

P4
2
0

PS

6
0 P3

SF

6
PlO

3 2
'-a"--~ F

Figure 2.16: Procedure of Finding Paths

2.5 Enumeration of First-Order and nth-Order Loops

Method of Finding All First-order Loops:

26

SF

First, split node i into two nodes ii and i 2 . Node i1 contains all incoming branches

and node i 2 contains all outgoing branches. Then enumerate all paths between node

i2 and node ii. Finally, remove all the branches which connect to node i. Repeat the

procedure for node i + 1. After we finish finding paths for all of the nodes in SFG,

then we have found all first-order loops. It is obvious that this method will generate

all first-order loops without duplication.

Example 10:

Find all first-order loops in Figure 2.17.

Solution:

Applying the above method, we show in table (2.3) the ten first-order loops.

27

Loop Node Sequence

1 1 2 1

2 4 5 4

3 2 6 2

4 2 6 7 8 4 3 2

5 4 8 4

6 6 10 6

7 6 7 8 11 10 6

8 8 12 8

9 9 10 9

10 12 13 12

Table 2.3: All First-Order Loops of Example 10

a
e

c 3 d 4

L4

k 7

L7

9 s 11
13

r v

Figure 2.17: Graph For Example 10

28

Method of Finding All Second-order Loops:

Once we get the first-order loops, number them to 1, 2, ... , N, like table (2.3), then

compare the node sequence of loop 1 with loop 2, loop 3, ... , loop N. Next, increase

1 to 2, and repeat the procedure, i.e. compare the node sequence of loop 2 with

loop 3, loop 4, ... , loop N. Repeat the procedure until loop N - 1 to get all of the

second-order loops.

Example 11:

Find all second-order loops in Figure 2.17.

Solution:

Applying the above method, referring to table (2.3), we show in table (2.4) all

second-order loops. Every loop in the first column together with any loop in the

same row constitute a second-order loop.

Loop K Higher-numbered loops not touching loop K

1 2 5 6 7 8 9 10

2 3 6 7 8 9 10

3 5 8 9 10

4 9 10

5 6 9 10

6 8 10

7 none

8 9

9 10

10 none

Table 2.4: All Second-Order Loops of Example 11

29

Method of Finding All nth-order Loops {n 2': 3):

Like the method of finding all paths, the method of finding all nth-order loops is

a crucial part of any analysis program using the SFG approach. The basic idea is

here: we choose loop K (initially K =1) and generate all orders of loops consisting of

loops numbered Kor higher. When this is done, we increase K by 1 and repeat the

process. We use one example to illustrate the method:

Example 12:

Find all nth-order (n 2': 3) loops in Figure 2.17.

Solution:

Here we choose K =3, i. e. find all orders of loops consisting of loops numbered 3 or

higher. We draw Figure 2.18 to explain the process.

The root in Figure 2.18 is numbered K, here 3. Every node (except the root and the

tip nodes) in the tree graph have exactly one immediate ascendent node and some

immediate descendent nodes. A node having no descendents becomes a tip node in

the tree graph. The immediate descendent nodes of the root K are numerbered with

those loops not touching loop K. The immediate descendent nodes of any other node

corresponding to loop N are those which have the same immediate ascendent node

as N and which do not touch loop N. For example, the immediate descendents of

5 are 9 and 10, 6, 9, 10 are not touching loop 5, but 6 have a different immediate

ascendent with 5. Once we get the tree in Figure 2.18, we get all loops by tracing

the paths from the root to all nodes in the tree. (See the result tables (2.5), (2.6),

(2.7)). After performing the process successively for K = 1, 2, ... , (N - 1), we will

obtain all orders of loops in the SFG.

30

L1L2 L1L5 L1L6 L1L1 L1Ls L1Lg L1L10

L2L3 L2L5 L2L1 L2Ls L2Lg L2L10

L3L5 £3£8 £3£9 L3L10

£4£9 £4£10

L5L5 L5Lg L5L10

L5Ls L6L10
L8L9
L9L10

Table 2.5: All Second-Order Loops of Example 12

3 10

9
5

8

10 10 9 10

Figure 2.18: Children of Node 3 For Figure 2.17

31

L1L2L5 L1L2L1 L1L2Ls L1L2Lg L1L2L10

L1L5L5 L1L5Lg L1LsL10

L1L5Ls L1L5L10

L1LsLg L1LgL10

L2LaLs L2L3Lg L2LaL10

L2L5Ls L2L5L10

L2LsLg L2LgL10

L3L5Lg L3LsL10

LaL8Lg L3LgL10

L4LgL10

L5L5Ls L5L5L10

L5LgL10

Table 2.6: All Third-Order Loops of Example 12

L1L2L5Ls L1L2L5L10

L1L2LsLg

L1L2LgL10

L1L5L5Ls L1L5L5L10

L1LsLgL10

L2L3LsLg

L2LaLgL10

L3L5LgL10

Table 2.7: All Fourth-Order Loops of Example 12

32

Chapter 3

Algorithms For Finding Paths And Finding Loops

3.1 An Algorithm for Finding Paths

Finding all paths between any two nodes of a directed graph has many applications.

The success of the signal fiowgraph as a tool for computer generation of symbolic

network functions depends very much on an efficient path-finding algorithm. In this

chapter, we will give the precise algorithm for finding all paths in a SFG. Note that

there are no parallel branches in the SFG. We also assume that there is no 0 vertices

in the graph.

Notation:

INI: initial path node

L: last path node

N: maximum index of node in the graph

P(w,vnode): the vth node in the sequence of path W

cj: column number of routing table

cj-1ist: column flag used to record the column which has been traversed

V(j,cj): routing table

counter: number of path

PF 1: (preliminary)

Set w = 1, vnode = 2, j = INI, P(1, 1) = INI, N =max index of vertices, counter=

33

O, cj_list = seq[1, i = 1 ... NJ

In the routing table, add node -1 as the last node in the row numbered INI and add

node 0 to other rows.

PF2: (find next node)

Repeat cj = cj_list(j),P(w,vnode) = V(j,cj) for j in routing table.

PF3: (test the last node in a row of routing table)

signum(P(w,vnode)) = 0, PF5 l
1, PF4

PF4: (prepare next node)

if P(w,vnode) =last node then

counter= counter +1;

j = P(w, vnode - 1) (back one node) ;

cj _list(j) = cj _list(j) + 1 ;

P(w+ l,k) = P(w,k),k = 1. . . vnode- l;

w =w+l;

go to PF2;

-1, stop

if numboccur(P(w), P(w, vnode)) > 1 (P(w) is repeated) then

j = P(w, vnode - 1) (back one node)

cj_list(j) = cj_list(j) + 1

go to PF2;

else

j = P(w, vnode)

vnode = vnode + 1

go to PF2

PF5: (finish path)

j = P(w, vnode - 1) (back two nodes)

cj _list(j) = cj _list + 1

cj_list(P(w, vnode - 1)) = 1

P(w, vnode) = 'P(w, vnode)' (empty P(w,vnode) for next path)

vnode = vnode - 1

go to PF2

3.2 An Algorithm for Finding Loops

34

Finding an nth-order loop is another important algorithm in SFG. Refer to figure 2.18

and table 2.4, rotate the figure 2.16 counter clockwise 90 degrees. If you treat each

tree branch as a path, and treat the second-order loop table as the routing table in

finding the paths algorithm, then the precise algorithm of finding the loops is similar

to that of finding the paths. The difference is that the terminating condition is not

the same.

Notation:

T(i): second-order loop table

N: number of first-order loops

P(i, w, vnode): tree branch node

cj: column number of second-order loop table

cj-1ist: a list used to record the column whieh has been traversed

j: row number of second-order loop table

counter: number of paths

parent: parent node of current node

current: current node

child: child node of current node

Algorithm:

Initialize: Let N equal the total number of the first-order loops.

Let T(i) equal the ith row in the table of second-order loop, where i from 1 to N.

Add -1 as the last number of T(l).

Add 0 as the last number of others T.

for i from 1 to N do the following:

let current = i,parent = i, w = 1, vnode = 1, j = i, P(i, 1, 1) = i

and let all the value of c j _list equal 0.

if the current root node is not 1, then

change the last number of T(i) from 0 to -1

and change the last number of T[1] from -1 to 0.

if child f= -1 then

set current column number, child node, tree branch node

if child > 0 then

35

check if tree branch node P(i, w, vnode) is repeated in the current tree branch.

if repeated, then

back one node and go to the next column

c j _list increases by 1

if not repeated then

check if the current node is the root node

if yes, then

go to the next node

if no, then

check if the child has the same parent with the current node

if yes, then

go to the next node

if no, then

back one node, and go to the next column.

if child = 0 then

back two nodes (note that parent node becomes current node),

find new parrent node

check if we reach tips

if yes, then

give the previous (vnode - 2) nodes to the next tree branch

if no, then

36

empty (vnode)th node of the current tree branch, i.e. empty P(i, w, vnode)

look for (vnode - 1)th node for the current tree branch, i.e. look for

P(i, w, vnode - 1)

if child= -1 then

go to the next i in for loop

37

Chapter 4

Modified Nodal Analysis

4.1 Introduction

In this chapter, we introduce how to get the transfer function by nodal analysis and

modified nodal analysis. The model of operational amplifier used in mna is introduced

also.

The key idea of modified nodal analysis is to get the nodal admittance matrix by

inspection. Here, we use an element stamp [18] to realize it. After we get the

equation of the circuit, we can use Maple to solve it directly. Thus, Maple provides

us a convenient way to do symbolic circuit ana1ysis.

4.2 Nodal Analysis

The nodal analysis [24] is based on KCL. In nodal analysis, we describe a circuit in

the following form:

YV=J (4.1)

where Y is the nodal admittance matrix, constructed by circuit parameters; V is the

vector of the node voltages, and J is the vector of the independent current sources of

the circuit.

J; represents a current source entering node i. Row i of Y represents the KCL

equation at node i. Y is created by writing the KCL equation at each node of the

circuit. We give the following examples to illustrate nodal analysis.

Example 1:

Refer to the circuit in Figure 4.1. Write the nodal equation for the circuit.

38

Solution:

The nodal analysis is based on the observation that the sum of currents at any node

is zero (KCL). At any node, there are two sets of currents, those flowing through the

passive components and those due to the independent current sources. Let us write

the KCL at each node as:

L (c~rrents leaving the node) = L (currents entering the node)

through passive components from independent sources

The above equation shows directly how the nodal admittance matrix is found by in­

spection. Applying this to the example, we get the following equations:

G2Vi + G3(Vi - V2) + v~£~' = J1

GsV2 + G3(V2 - Vi)+ sC5(V2 - V3) = J4

sC5(V3 - V2) + v~~ +gs VR3 = 0

Because VR3 =Vi - v;, the above equations become,

(G2 + G3 + .l
1
)Vi - G3 V2 - .l

1
V3 = J1

- G3Vi + (G3 +Gs+ sC5)V2 - sC5Vj = J4

(gs - .l
1
)Vi - (gs+ sC5)V2 + (.l, + sC5)Vj = 0

Writing the above equations in form of equation (4.1), we get the following equation:

[

G2 + G3 + .l,
-G3

1 gs - sL1

Example 2:

-G3

G3 +Gs+ sC6

-(gs+ sC5)
=:~6 l [~]- [~: l

.l, + sC6 V3 O

Refer to the circuit in Figure 4.2. Write the nodal equation for the circuit.

Solution:

Writing the KCL for nodes 1 to 3, we get the following equations:

G1 Vi + (sC4 + G1)(Vi - V2) + G6(Vi - V3) = J1 - J6 + J4

(sC4 + G1)(V2 - Vi)+ si. V2 + sC5(V2 - V3) = -h

.l, Va+ sCs(Va - V2) + G6(V3 - Vi) = J3 + J6

In form of equation (4.1), this becomes:

[

G1 + sC4 + G6 + G1

'-sC4 -G1

-G6

-[J1 + h- J6 l
- -h

J3+ J6

1' J1 R2

-sC4 -G1

-L
1 + sC4 + sC5 + G1 s 2

-sC5

L7

J4 1' RS

4

Figure 4.1: Circuit For Example 1

' g v 8 R3

39

R7 R6

C4 cs 2
,------1---+-----i r---t--.-----1 f---t-----! 3

JI 1' RI

L2 L3 1' J3

Figure 4.2: Circuit For Example 2

40

41

So we have the rules for getting the nodal equations by inspection:

1. The diagonal entries of Y are positive and

Yii = I: admittances connected to node j

2. The off-diagonal entries of Y are negative and are given by

Yik = - I: admittances connected between node j and k

,
3. The jth entry of the right-hand-side vector J is

Jj = I: currents from the independent sources entering node j

From the above rules, we deduce the element stamp method. It is convenient to get

the equation for a circuit using element stamp method.

Let us consider an element with admittance connected between node i and node j,

(refer to Figure 4.3). Let the current through this element be denoted by I from node

i to node j. The current will appear only in the KCL equations associated with node

i and node j, one with positive sign and the other one with negative sign:

KCL at node i: ... +I . .. = .. .

KCL at node j: ... - I ... = .. .

where ... indicates entries due to other elements and sources. Let "us now write the

current I in terms of the voltage across the element, Vj - Vk, and the admittance y:

KCL at node i: ... + y(Vj - Vk) ... = .. .

KCL at node j: ... - y(Vj - Vk) ... = .. .

Separating the terms associated with the voltages,

KCL at node i: ... + yVj- yVk ... = .. .

KCL at node j: ... -yVj +yVk . .. = .. .

We thus see that the admittance of a two-terminal element connected between nodes

i and j appears only in rows and columns i and j of Y with a positive sign at (i, i)

and (j, j) and with a negative sign at (i, j) and (j, i). Refer to the element stamp in

Figure 4.3.

42

For a voltage controlled current source, refer to Figure 4.4, the equation associated

with voes is :

(4.2)

(4.3)

Following the above procedure, we can get the element stamp for VCCS in Figure 4.4

For an independent current source, the element stamp is shown in Figure 4.5 .

• •
1 •

1 J
• y -y 1

y j i, .
J -y y

•

J
Figure 4.3: Element Stamp For R, L and C

43

1 k k I
+

1 gm - gm

gmvkl
t y

J -gm gm

J I

Figure 4.4: Element Stamp For VCCS

.
1

1 J RHS

1 -J

I ------y-----

J J

J

Figure 4.5: Element Stamp For Independent Current Source

44

4.3 Modified Nodal Analysis

Modified nodal analysis introduces independent voltage sources and three other types

of controlled sources: voltage controlled voltage source (VCVS), current controlled

current source (CCCS) and current controlled voltage source (CCVS). The key idea

of modified nodal analysis is to introduce some branch currents as variables into the

system of equations, which in turn allows for the introduction of any branch current

as an extra system variable [9]. Each extra current variable introduced would need

an extrac equation to solve for it. The extra equations are obtained from the branch

relationship (BR) equations for the branches whose currents are the extra variables.

This results in the deletion of any contribution in the nodal. admittance matrix due

to the branches whose currents have been chosen as extra variables. This matrix

is referred to as Yn- The addition of extra variables and a corresponding number

of equations to the system results in the the need to append extra rows and extra

columns to Yn. The new matrix Ym is referred to as the MNA matrix. The new

system of equations in matrix form, is

[~ ~][~]=[~]
Here I is a vector of size n; whose elements are the extra branch current variables

introduced, E is the independent voltage source values, and C and D correspond to

BR equations for the branches whose currents are in I.

Using the inspection method stated above, we can find the element stamp for the new

elements introduced by MNA.

1. Independent Voltage Source: I. is the extra current variable and the extra

equation is the BR provided by the independent voltage source, which is

V;-Vj

I; -

IJ

v
Iv

-I.

(4.4)

(4.5)

(4.6)

According to the above equations, we find the element stamp in Figure 4.6.

45

2. Voltage Controlled Voltage Source: Iv is the extra current variable and the extra

equation is the BR provided by the VCVS, which is

(4.7)

Substitute Vy = Vk - Vt into the above equation, and adding the current equa­

tions at node i and node j, we get the following equations:

Vi - V; - µVk +µVt - 0 (4.8)

I; Iv (4.9)

I; -Iv (4.10)

According to the above equations, we find the element stamp in Figure 4.7.

3. Current Controlled Voltage Source: Iv is the extra current variable, and the

extra equation is the BR provided by CCVS, which is

Vi-V;=riy

Substitute Iy = Y(Vk - Vt) into the above equation, and adding the current

equations at node i and node j, we get the following equations:

v; - V; - rVk + rVt -

Ii -

I; -

0

Iv

-Iv

(4.11)

(4.12)

(4.13)

According to the above equations, we find the element stamp in Figure 4.8.

4. Current Controlled Current Source: No extra variable is introduced by CCCS.

The equation we get from CCCS is

Ii= ,BY(V,. - Vt)· (4.14)

We find the element stamp in Figure 4.9.

46

•
1

i ~
• •

Iv 1 J . 1 + 1

RHS

v • -1 J

. ~ 1 -1
J

v

Figure 4.6: Element Stamp For Independent Voltage Source

. k 1

hv
. . k 1 Iv + 1 J

• 1 ¢uvkl 1
y . -1

J

Iv 1 -1 - 'I) 'I)

. 1 J

Figure 4.7: Element Stamp For Voltage Controlled Voltage Source

47

• k 1
• • k 1 Iv

hv Py 1 J
• 1 0 rly

1

y • -1
J

Iv 1 -1 -lY 1Y
• 1 J

Figure 4.8: Element Stamp For Current Controlled Voltage Source

Figure 4.9: Element Stamp For Current Controlled Current Source

Example 3:

Give the MNA equation for the circuit in Figure 4.10.

Solution:

48

The extra current variables are the branch current of the independent voltage source

and the CCVS, they are referred to as Ii and Is respectively. Using element stamp,

we get the MNA equation of the circuit:

G2 -G2 0 0 0 1 0 V1

-G2 G2 +Ga+ G4 + .},. -G4 1 0 0 0 V2 - sLs

(39G2 -G4 - (39G2 G4 + sC1 -sC1 0 0 1 V3
-(39G2 --

1
- + (39G2 sLs -sC1 G5+sC1+-±-s 8

0 0 0 Vi
0 0 0 0 ·a10 0 -1 Vs
1 0 0 0 0 0 0 I1

0 -r5Ga 1 0 -1 0 0 [5

1
R2 2 R4 3 c1 4

'I T5l3 + R6 CD 111
-

R,
5

RI

Figure 4.10: Circuit For Example 3

0

0

0

Ju

0

Vi
0

49

4.4 Operational Amplifier Model in MNA

The way operational amplifiers (opamps) are handled in MNA is by modeling each

opamp by a voltage source with a large gain in order to attempt to characterize the

infinite gain of the ideal opamp [19, 4]. The ideal opamp is a 4-terminal device for

which one of the terminals is always assumed to be grounded.

Before we introduce the element stamp of an opamp, we give the concepts of nullator,

norator and nullor [21 J. They are not real elements. They are tools to introduce some

mathematical constraints into a circuit. They are used as an aid to the development

of insight into the behavior of ideal devices like the ideal opamp.

Definition 4.1 (nullator) A nullator is a two terminal element defined by the con­

straints, which are

0

I - 0

(4.15)

(4.16)

According to the above equations, we find the element stamp of a nullator in Fig­

ure 4.11.

Definition 4.2 (norator) A norator is a two terminal element for which the voltage

and current are not constrained, that is

Vi - Vi - arbitrary

I arbitrary

(4.17)

(4.18)

According to the above equations, we find the element stamp of a norator in Fig­

ure 4.12.

Definition 4.3 (nullor) A nullor is produced by the combination of a nullator and

a norator. Its characteristic equations are (4.15), (4.16}, (4.17) and (4.18).

According to the characteristic equations of a null or, we get the element stamp of a

nullor in Figure 4.13.

50

I

Ix+
I J

I

J

Ix 1 -1

J

Figure 4.11: Element Stamp For Nullator

k 1

k

1 -1

1

Figure 4.12: Element Stamp For Norator

1 k

1----~ 1

1

J

k

1

1 J k 1 Ix

'
'

1

:-1
' ---------------1---

1 -1
,

Figure 4.13: Element Stamp For Nullor

Example 4:

Write the MNA equation for the circuit in Figure 4.14

Solution:

51

The extra current variables introduced are currents of an independent voltage source

and two opamps. They are referred to as IE, Ix1 and Ix2 respectively. Applying the

element stamp, we get the following equation:

Ga -Ga 0 0 0 1 0 0 Vi
-Ga Ga+ Gi + sC1 -G1 -sC1 0 0 0 0 0 Vi

0 -G1 -sC1 Gi +sC1 +G2 -G2 0 0 1 0 Va
0 0 -G2 G2 +sC2 -sC2 0 0 0 V4

-
0 0 0 -sC2 sC2+G4 0 0 1 Vs

1 0 0 0 0 0 0 0 IE

0 -1 0 0 0 0 0 0 Ix1

0 0 0 -1 0 0 0 0 Ix2

0

0

0

0

0

E

0

0

52

Cl

GI
C2

I

I 2

G3
3 5

01

'~ + E

6

Figure 4.14: Circuit For Example 4

53

Chapter 5

User Guide And Examples

5.1 the sfg Package

The sfg package provides eight functions used to get the transfer function of a circuit.

The necessary ones are gencsfg and sfgmain. The others are used to inspect the

procedure in detail. We give their syntax in the format of a maple help file.

ccgraph

• Calling Sequence:

ccgraph begininput, elementname, +node, -node, sp, element, +node, -node,

... endinput

• Parameter

+node and -node are the positive node and negative node of the element re­

spectively. The inert placeholder, sp is used to separate the elements.

• Description

ccgraph is used to input a circuit to maple. We assume that there is no parallel

branch in the circuit. Different elements have different syntax:

R, L, C: R(L, C)(string), +node, -node

independent voltage source: V(string), +node, -node

independent current source: J(string), +node, -node

voltage controlled voltage source: E(string), +node, -node, controlling parame­

ter, controlling voltage

current controlled current source: F(string), +node, -node, controlling param­

eter, controlling current

54

voltage controlled current source: G(string), +node, -node, controlling param­

eter, controlling voltage

current controlled voltage source: H(string), +node, -node, controlling parame­

ter, controlling current

The following maple worksheet presents us some examples of ccgraph.

> with(sfg);

[ccgraph, ctree, fl loop, f2loop, fnloop, fpath, gencsfg, parsinp, sfgmain]

Example!:

Refer to Fig(5.1)

> cc graph (begininput, V, 1, 2, sp, R2, 3, 2, sp, R1, 1, 3 ,.endinput) ;

> draw(G):

Refer to Fig(5.2)

Example 2:[6]

Refer to Fig(2.9)

G, {[1, 3], [3, 2], [1, 2]}

> ccgraph(begininput,Vi,1,2,sp,R4,4,3,sp,R2,2,3,sp,R1,5,2,sp,
R3,4,5,sp,G,5,4,gm,Vg,sp,Vg,1,4,endinput);

> draw(G):

Refer to Fig(5.4)

55

1 3 R

v

2'----------'
Figure 5.1: Circuit For Example 1

56

Figure 5.2: Graph Drawn by Maple For Example 1

2

R. 2 1

3

Figure 5.3: Circuit Graph Corresponding to Figure 5.2

Figure 5.4: Graph Drawn by Maple For Example 2

3

R.,

4

2

x

1

5

Figure 5.5: Circuit Graph Corresponding to Figure 5.4

57

ctree

• Calling Sequence:

ctree G

• Parameter

G is the graph produced by ccgmph

• Description

ctree is used to produce tree and cotree from the circuit graph.

The following maple worksheet presents us some examples of ctree.

Example 3:

Refer to Fig(5.1)

> ccgraph(begininput, V,1,2,sp,R2,3,2,sp,R1,1,3,endinput);

> ctree(G);

> draw(T):

Refer to Fig(5.6)

> draw(CT):

Refer to Fig(5.8)

Example 4:[6]

Refer to Fig(2.9)

G, {[1, 2], [3, 2], [1, 3]}

T,CT

> ccgraph(begininput,Vi,1,2,sp,R4,4,3,sp,R2,2,3,sp,R1,5,2,sp,
R3,4,5,sp,G,5,4,gm, Vg,sp,Vg,1,4,endinput);

G, {[1, 4], [5, 4], [4, 5], [5, 2], [2, 3], [4, 3], [1, 2]}

> ctree(G);

T,CT

> draw(T):

Refer to Fig(5.10)

58

59

> draw(CT):

Refer to Fig(5.12)

Figure 5.6: Tree Graph Drawn by Maple For Example 3

2

--~v

x

1

3

Figure 5.7: Tree Branch in Circuit Corresponding to Figure 5.6

60

Figure 5.8: Cotree Graph Drawn by Maple For Example 3

1

R.1

3

Figure 5.9: Cotree Branch in Circuit Corresponding to Figure 5.8

61

Figure 5.10: Tree Graph Drawn by Maple For Example 4

2

~ vi

3

RV
/ 1

Vg
x

4

Figure 5.11: Tree Branch in Circuit Corresponding to Figure 5.10

62

Figure 5.12: Cotree Graph Drawn by Maple For Example 4

/
2

4

gmVg
Ri

5

Figure 5.13: Cotree Branch in Circuit Corresponding to Figure 5.12

fpath

• Calling Sequence:

fpath G, m, n

• Parameter

63

G is the circuit graph, m is a number referring to the beginning node of the

path and n is a number referring ending node of the path.

• Description

path is used to find a path between nodes of the circuit graph. The pathcould

be any type of path, directed or undirected path, in a graph. It is different from

the path in Maple.

The following maple worksheet presents us some examples of fpath.

Example 5:[6]

Refer to Fig (5.14)
> G:=graph({1,2,3,4,5,6},

{ [1, 2] ' [1, 3] ' [1, 5] ' [2' 5] ' [3 '6] ' [3' 2] ' [4' 6] ' [4' 3] ' [5' 6] '[5 '4]}) :

> draw(G):

Refer to Fig(5.15)

> fpath(G,1,6);

9, [[l, 5, 6], [1, 5, 4, 6], [1, 5, 4, 3, 6], [1, 3, 6], [1, 3, 2, 5, 6], [1, 3, 2, 5, 4, 6],

[1, 2, 5, 6], [1, 2, 5, 4, 6], [1, 2, 5, 4, 3, 6]]

Example 6:

Refer to Fig(5.16)
> G: =graph ({ 1, 2., 3, 4, 5}, { [1, 3] , [1, 5] , [5, 2] , [2, 5] , [2, 3] , [3, 4] , [4, 2]

}) :

> draw(G):

Refer to Fig(5.17)

64

> fpath(G,1,4);

2, [[1, 5, 2, 3, 4], [1, 3, 4]]

Example 7:

> G:=petersen():

> draw(G):

Refer to Fig(5.18)

> fpath(G,1,10);

31, [[1, 6, 10], [1, 6, 7, 8, 9, 10], [1, 6, 7, 8, 9, 5, 4, 3, 10], [1, 6, 7, 8, 2, 3, 10],

[1, 6, 7, 8, 2, 3, 4, 5, 9, 10], [1, 6, 7, 4, 5, 9, 10], [1, 6, 7, 4, 5, 9, 8, 2, 3, 10],
[1, 6, 7, 4, 3, 10], [1, 6, 7, 4, 3, 2, 8, 9, 10], [1, 5, 9, 10], [1, 5, 9, 8, 7, 6, 10],

[1, 5, 9, 8, 7, 4, 3, 10], [1, 5, 9, 8, 2, 3, 10], [1, 5, 9, 8, 2, 3, 4, 7, 6, 10],
[1, 5, 4, 7, 8, 9, 10], [1, 5, 4, 7, 8, 2, 3, 10], [1, 5, 4, 7, 6, 10], [1, 5, 4, 3, 10],

[1, 5, 4, 3, 2, 8, 9, 10], [1, 5, 4, 3, 2, 8, 7, 6, 10], [1, 2, 8, 9, 10],
[1, 2, 8, 9, 5, 4, 7, 6, 10], [1, 2, 8, 9, 5, 4, 3, 10], [1, 2, 8, 7, 6, 10],
[1, 2, 8, 7, 4, 5, 9, 10], [1, 2, 8, 7, 4, 3, 10], [1, 2, 3, 10], [1, 2, 3, 4, 7, 8, 9, 10],

[1, 2, 3, 4, 7, 6, 10], [1, 2, 3, 4, 5, 9, 10], [1, 2, 3, 4, 5, 9, 8, 7, 6, 10]]

5

2
4

o------'"' 6

3

Figure 5.14: Signal Flowgraph For Example 5

65

Figure 5.15: Graph Drawn by Maple For Example 5

4

c
f g

d

2
Figure 5.16: Signal Flowgraph For Example 6 and 8

66

Figure 5.17: Graph Drawn by Maple For Example 6 and 8

Figure 5.18: Petersen Graph Drawn by Maple For Example 7

flloop,f2loop, fnloop

• Calling Sequence:

flloop G

f2loop G

fnloop G

• Parameter

G is the circuit graph

• Description

fl loop is used to find the first-order loops in the circuit graph.

f2loop is used to find the second-order loops in the circuit graph.

fnloop is used to find the nth-order (n ~ 3) loops in the circuit graph

The following maple worksheet presents us some examples of f1loop,f2loop,fnloop.

Example 8:

Refer to Fig(5.16)
> G:=graph({l,2,3,4,5},{[1,3], [1,5], [5,2], [2,5], [2,3], [3,4], [4,2]

}) :

> draw(G):

Refer to Fig(5.17)

> flloop(G);

> f2loop(G);

> fnloop(G);

Example 9:

2, [[2, 5, 2], [2, 3, 4, 2]]

0, [O, O], [[], OJ

o, [], []

67

68

Refer to Fig(5.19)

> G:=graph({1,2 ,3 ,4} ,{ [1,2), [1,3), [2 ,3), [3,2), [2 ,4), [3,4), [4, 1) }) :

> draw(G):

Refer to Fig(5.20)

> f1loop(G) ;

5, [[1, 3, 4, 1], [1, 3, 2, 4, 1], [1, 2, 4, 1], [1, 2, 3, 4, 1], [2, 3, 2]]

> f2loop(G);

0, [O, 0, 0, 0, OJ, [[], [], Q, [], []]

> fnloop(G);

0, [], []

Example 10:

Refer to Fig(5.21)
> G:=graph({1,2,3,4,5,6,7,8,9,10,11,12,13,14},

{[1, 11)' [2,3)' [2,6), [3,2)' [4,5) '[5,4) '[5,6) '[6,5) '[6 ,2) '[6,1).
[7,2). [8,5). [9,11). [9,12). [9,10). [10,14). [10,9). [10,7). [11,9).

[12,8). [12,13). [13,12). [14,10)}):

> draw(G):

Refer to Fig(5.22)

> f11oop(G);

10, [[1, 11, 9, 12, 8, 5, 6, 1], [1, 11, 9, 10, 7, 2, 6, 1], [2, 6, 2], [2, 3, 2], [4, 5, 4],

[5, 6, 5], [9, 11, 9], [9, 10, 9], [10, 14, 10], [12, 13, 12]]
> f2loop(G);

27, [2, 2, 5, 6, 4, 4, 2, 1, 1, OJ, [[4, 9], [5, 10], [5, 7, 8, 9, 10], [5, 6, 7, 8, 9, 10],

[7, 8, 9, 10], [7, 8, 9, 10], [9, 10], [10], [10], OJ
> fnloop(G);

69

42, [1, 2, 10, 15, 5, 5, 2, 1, 1, OJ, [[[1, 4, 9, 10, O]), [[2, 5, 10, OJ, [2, 10, OJ], [
[3, 5, 7, 9, 10, OJ, [3, 5, 7, 10, OJ, [3, 5, 8, 10, O], [3, 5, 9, 10, OJ, [3, 5, 10, OJ,
[3, 7, 9, 10, OJ, [3, 7, 10, OJ, [3, 8, 10, OJ, [3, 9, 10, OJ, [3, 10, OJ], [
[4, 5, 7, 9, 10, OJ, [4, 5, 7, 10, OJ, [4, 5, 8, 10, OJ, [4, 5, 9, 10, OJ, [4, 5, 10, OJ,
[4, 6, 7, 9, 10, OJ, [4, 6, 7, 10, OJ, [4, 6, 8, 10, OJ, [4, 6, 9, 10, OJ, [4, 6, 10, OJ,
[4, 7, 9, 10, OJ, [4, 7, 10, OJ, [4, 8, 10, OJ, [4, 9, 10, OJ, [4, 10, OJ],
[[5, 7, 9, 10, OJ, [5, 7, 10, OJ, [5, 8, 10, OJ, [5, 9, 10, OJ, [5, 10, OJ],
[[6, 7, 9, 10, OJ, [6, 7, 10, OJ, [6, 8, 10, OJ, [6, 9, 10, OJ, [6, 10, OJ],
[[7, 9, 10, OJ, [7, 10, OJ], [[8, 10, OJ], [[9, 10, OJ], [OJ]

- z

3

f

1 4

b
g

2

Figure 5.19: Signal Flowgraph For Example 9

70

Figure 5.20: Graph Drawn by Maple For Example 9

3
7

14

12

1 11
9

LI

4
13

8

Figure 5.21: Signal Flowgraph For Example 10

71

Figure 5.22: Graph Drawn by Maple For Example 10

72

gencsfg

• Calling Sequence:

gencsfg begininput, element, +node , -node, sp, element, +node, -node, ... ,

endinput

• Parameter

+node and -node are the positive node and the negative node of the element

respectively. sp is used to separate the elements.

• Description

gencsfg is used to generate the compact signal flowgraph of the circuit . But

the vertice of the graph produced is symbolic. So we need to code it in parsinp.

sfgmain

• Calling Sequence:

sfgmain G, outvar, invar

• Parameter

G is the graph produced by gencsjg, outvar is the output variable in the transfer

function, invar is the input variable in the transfer function.

• Description

sfgmain is used to get the transfer function for the circuit.

The following maple worksheet presents us some examples of sfgmain.

Example 11:

Refer to Fig(5.1)

> gencsfg(begininput, V,1,2,sp, R2,3,2,sp,R1,1,3,endinput);

RTG

> sfgmain(RTG,VV,VR1);

Rl
R2 +Rl

> sfgmain(RTG,VV,VR2);

73

R2
R2+R1

Example 12:

Refer to Fig(5.23)

> gencsfg(begininput, V,1,2,sp,R1,1,3,sp,R2,3,2,sp,R3,2,1,endinput);

RTG

> sfgmain(RTG,VV,VR1);
Rl

R2+R1
> sfgmain(RTG,VV,VR2);

R2
R2+R1

> sfgmain(RTG,VV,VR3);

-1
Example 13:

Refer to Fig(5.24)

> gencsfg(begininput, V,1,2,sp,R,3,2,sp,C,4,3,sp,L,1,4,endinput);

RTG

> sfgmain(RTG,VV,VR);

RSC
l+S2 LC+RSC

Example 14:

Refer to Fig(5.25)

> gencsfg(begininput,V,1,3,sp,R,3,2,sp,C,1,2,sp,G,2,3,gm,V,endinput);

> sfgmain(RTG,VV,VR);

Example 15: (6]

Refer to Fig(2.9)

RTG

R(-gm +SC)
l+RSC

> gencsfg(begininput,Vi,1,2,sp,R4,4,3,sp,R2,2,3,sp,R1,5,2,sp,
R3,4,5,sp,G,5,4,gm, Vg,sp,Vg,1,4,endinput);

74

RTG

> sfgmain(RTG, VVi, VR1+VR2);
R2 R3- R1 R4

R4 R3 + R2 R3 + Rl R4 + R2 Rl

1

Rl

v
3 R3

R2

2

Figure 5.23: Circuit For Example 12

75

L c

v
R

Figure 5.24: Circuit For Example 13

c 2
l~~~r~~~~....-~~~~~---,

v R

3

Figure 5.25: Circuit For Example 14

76

5.2 the mna Package

The mna package provides one function, mnamain. Here is the syntax of mnamain.

mnamain

• Calling Sequence

mnamain begininput,element, +node, -node, sp, element, +node, -node, sp, ... ,

endinput

• Parameters

element is the circuit element, +node is a number indicating the positive end

of the corresponding element, -node is a number indicating the negative end of

the corresponding element (note that you should give highest node number to

the ground node), and the placeholder, sp is used to separate the elements in

the circuit. The element syntax is :

R, L, C: R(L, C)(string), +node, -node

independent voltage source: V(string), +node, -node

independent current source: J(string), +node, -node

voltage controlled voltage source: E(string), +node, -node, +controlled node,

-controlled node, controlling parameter, element whose voltage is controlling

voltage

current controlled current source: F(string), +node, -node, +controlled node,

-controlled node, controlling parameter, element whose current is controlling

current

voltage controlled current source: G(string), +node, -node, +controlled node,

-controlled node, controlling parameter, element whose voltage is controlling

voltage

current controlled voltage source: H(string), +node, -node, +controlled node,

-controlled node, controlling parameter, element whose element is controlling

current

operation amplifier: O(string), +inputnode, -inputnode, +outputnode, -outputnode

77

• Description

mnamain computes each nodal voltages of the circuit. You can find the transfer

function using these voltages.

The following maple worksheet presents some examples of mnamain.

Example 16:

Refer to Fig(5.l), But switch the nodes 2 and 3.

> mnamain('begininput', V,1,3,sp,R1,1,2,sp,R2,2,3,'endinput');

[VJ= V, V2 = R~ :~2' iV = RJ :R2]

Example 17:

Refer to Fig(5.25)
> mnamain('begininput' ,V,1,3,sp,C,1,2,sp,R,3,2,sp,G,2,3,1,3,gm,V,

'endinput');

[VJ = v, V2 = (gm - s C) v R ·v -
J+RsC '

1
-

Example 18:

Refer to Fig(5.26)

V (gm R + J) s C]
J +RsC

> mnamain('begininput',R5,1,2,sp,R6,2,3,sp,R7,3,4,sp,R8,4,5,
sp,R9,5,6,sp,J10,6,1,sp,01,1,3,4,6,sp,02,5,3,2,6,'endinput');

[VJ = JJO (R5 + R6 + R7 +RB+ R9), V2 = JJO (R6 + R7 +RB+ R9),

V3 = JJO (R7 +RB+ R9), V4 = JJO (RB+ R9), V5 = JJO RY]

1 RS 5

RS R6 4

+
02 R9

6

Figure 5.26: Circuit For Example 18

78

79

Chapter 6

Conclusions And Future Work

6.1 Conclusions

This thesis developed two packages sfg and mna for symbolic circuit analysis. Com­

paring these two packages, we can find the following conclusions:

• In sfg, we developed efficient techniques for finding all paths and all loops in

the circuit. We use the compact signal fiowgraph instead of the primitive signal

fiowgraph. The former is more powerful. We can also handle multi-input and

multi-output transfer functions.

• In mna, we built models for circuit elements including opamp. Using maple, we

get the nodal voltages directly.

• The operations needed in the two packages increases exponentially with the

number of circuit nodes n. This is caused by the algorithms of the packages.

• The expression of transfer functions given by the two packages is not cancellation­

free. That is to say, the expression .has terms which can be cancelled. So the

result is tedious sometimes. And the number of symbolic terms increase ex­

ponentially with the number of circuit node n. The not cancellation-free and

exponential growth contribute to the circuit size limitation.

• mna is faster than sfg when handling small circuits as we see by directly com­

paring the executing times in maple.

• mna can handle circuits with nodes about 10. The sfg can handle circuit with

nodes no more than 20.

80

limitation of sfg: No program can handle all types of problems. There are some cir­

cuits sfg can't handle. We use the following examples to explain this.

Example!:

Refer to Fig(6.l)
> gencsfg(begininput, J12,1,2,sp,Rb,2,4,sp,Rc,4,3,sp,Ra,3,2,sp,

V31,3,1,endinput);

RTG

> sfgmain(RTG,VV31, VRa);

0

You get zero because VV31 is not in the compact sfg , VV31 is not involved in

any loop. That means the coefficient of Z will be ZERO. You will get ZERO result.

This is the limitation of the method. But you can calculate transfer function for iJ12.

Once you get the following result, you can use Ohm's Law to get the transfer function

for voltage scource.

> sfgmain(RTG,iJ12, iRa);

Rc+Rb
Ra+Rc+Rb

Example2:

Refer to Fig(6.2)

> gencsfg(begininput, G12,1,2,gm,V31,sp,Rb,2,4,sp,Rc,4,3,sp,Ra,3,2,
sp,V31,3,1,endinput);

Error, (in addedge) not a vertex -VV31"

Still because VV31 is not in the compact sfg, so you got the above error message.

81

V31

1 0
3

11(1) ~
2

~ 4

Figure 6.1: Circuit For Example 1

Figure 6.2: Circuit For Example 2

82

6.2 Future Work

First of all, we need to improve the method to make it cancellation-free. Then based

on the packages, we can realize partitioning the circuit [26]. In this way, the packages

will can handle large-scale circuit.

83

Appendix A

Source Code for sfg

sfg: =module()

export sfgmain, gencsfg, ccgraph,ctree,fpath,f1loop,f2loop,fnloop,

parsinp;

local incmat, extractvw,dump,ind21, rop, dig2udig, rsort,

miniohm, flrr, extractvi, mykvl,kcl, kvl, compsfg,

ohm, codingsfg, w1loop, wbranch, cdc, mycdc,weight2b;

#ccgraph generates a circuit graph for the input elements. It calls

#"dump" to dump out the input elements and then create the circuit

#graph.The weights of the edges of the graph are the input elements.

ccgraph:=proc()

local L,N,vset,eset,i;

L:=dump(args);

N:=L[1];

vset:={};

eset:={};

for i from 1 to N do

vset:=vset union convert(L[2] [i] [2],set);

vset:=vset union convert(L[2] [i] [3],set);

es et: =es et union { [L [2] [i] [2] , L [2] [i] [3]]};

end do;

new(G);

addvertex(vset,G);

for i from 1 to N do

84

addedge([[1[2] [i] [2] ,1[2] [i] [3]] J ,weights=[1[2] [i] [1]] ,G);

end do;

return (G,eset);

end proc;

#cdc calls another function named "mycdc" to calculate the

#deltac by the method in [6].

cdc:=proc(IG::graph)

local tpcdc,highest,sumloop,N,tpdc,i,tpitem,deltac;

tpcdc:=mycdc(IG);

highest:=tpcdc[1];

sumloop:=tpcdc[2];

#get the number of the highest order loop in the graph. And also

#get the sum of the n-th order loop weights, where n is the index

#of sumloop.

if evalb(highest=O)=true then

return (1);

end if;

#there is no loop in the graph at all.

N:=highest;tpdc:=O;

for i from 1 to N do

tpitem:=(-1)-i*sumloop[i];

tpdc:=tpdc+tpitem;

end do;

deltac:=1+tpdc;

return(deltac);

end proc;

85

#codingsfg reads in a SFG whose vertices are the voltages and the

#currents of the original circuit diagrams. It outputs a graph whose

#vertices are coded into 1 .. N. It also outputs the-coding scheme used.

#the scheme is simple. It uses the index of the returned list as the

#coded vertices of the corresponding vertices in the inputed SFG.

#it also add the -z weight from the output vertex to the input vertex

#to form a closed SFG.

codingsfg:=proc(SFG::graph,INI,OUT)

local vset,NV,vlist,codvset,elist,NE,i,fvb,svb,fv,sv,

te,tw,iniv,outv;

vset:=vertices(SFG);

#get all the vertices.

NV:=nops(vset);

vlist:=convert(vset,list);

#make the vertices to a list for coding's purpose.

iniv:=rop(vlist,INI);

outv:=rop(vlist,OUT);

#get the corresponding coded number for the input vertex

#and the output vertex for forming the closed SFG's purpose.

codvset:={seq(i,i=l .. NV)};

#coded vertices.

new(RG);

addvertex(codvset,RG);

elist:=convert(ends(SFG),list);

#original edges list.

NE:=nops(elist);

for i from 1 to NE do

fvb:=elist[i][l];

svb:=elist[i] [2];

#the two ends of the edge i in elist.

fv:=rop(vlist,fvb);

sv:=rop(vlist,svb);

#get the coded number for these two ends.

te:=edges([fvb,svb],SFG);

tw:=eweight(op(te),SFG);

#get the weight for this edge in original graph.

addedge([fv,sv],weights=tw,RG);

end do;

addedge([[outv,iniv]],weights=-Z,RG);

#form the closed SFG

return(RG,vlist)

end proc;

#compsfg implements the compact generating method in [6].

86

87

#the input to this function is a circuit diagram generated by "ccgraph".

#the output is the compact SFG of this circuit.

#the controlled elements in the CSFG are represented as their indepen­

#dent equivalences. And also, the resulting CSFG is not the closed SFG

#and also does not include the relationship between the controlling

#elements and the controlled elements. This is the task fulfilled in the

#"gencsfg" function.

#it calls a program "ctree", which is used to find tree and cotree.

#and also it calls several other programs "ohm", "kcl", "kvl", "extractvi",

#"flrr". See the comments of these programs for their function.

compsfg:=proc(G::graph)

local OH,TV,CTC,KVL,KCL,NTV,j,eq,lhev,res,isub,ires,req,fres,NI,

addvset,addwset,k,NCTC,NV,resctree,Tree,CoTree;

resctree:=ctree(G);

Tree:=resctree[1];

CoTree:=resctree[2];.

#generate the tree and the cotree. There are surely V,E,H in the

#tree branches and J,F,G branches in the cotree branches. And also

#the tree should be connected at this stage. These can be seen

#in the implementation of function "ctree".

draw(Tree);

draw(CoTree);

OH:=ohm(G,Tree,CoTree);

TV:=OH[1];

CTC:=OH[2];

#get the Ohm's Law for the weights.

88

#for the tree branches, the Ohm's Law is expressed as Vxx=xx*Ixx,

#while for the cotree branches, the Ohm's Law is expressed as

#Ixx=xx*Vxx. NOTE: the sources VEH and JFG are not in the equations

#returned by the Ohm's Law.

KVL:=kvl(Tree,CoTree);

#generate the KVL equations for the cotree voltages. Due to the

#fact that there is no way to guarantee that the loop formed to

#generate the KVL equation will surely include· the voltage sources

#VEH, as the result, there is no way to guarantee the equations

#returned by "kvl" will surely have the voltage sources VEH at the

#rhs of them. The result is that if they are not in the rhs of the

#equations, they will not appear in the CSFG formed later. There

#should be some mechanism to check whether they are in the CSFG

#at last. If they are, then it is ok. If they are not, then they

#should be added to the CSFG if the user input wants to calculate

#them. They should not be added to the CSFG if the user does not

#want to calculate them because the user does not want to calculate

#them. And if they are added to the CSFG, then the closed CSFG will

#also not add an edge to them. Therefore, the closed CSFG which

#is needed to calculate the Deltac will not be connected any

#more.

#Therefore, as the result, the work of adding them should be done

#at the parse input and then coding stage, not before it.

KCL:=kcl(G,Tree);

#get the kcl equations for the tree voltages.

#similar with the "kvl" function, there is no guarantee that

#the current sources will appear at the rhs of the kcl equations.

#If they are not, then they will not appear in the CSFG formed later.

#They should also be judged whether in the CSFG at the stage of

#parsing the input and forming the closed CSFG.

new(il.TG);

NTV:=nops(TV);

for j from 1 to NTV do

eq:=TV[j];

lhev:=lhs(eq);

res:=extractvi(eq);

isub:=op(res[1]);

ires:=flrr(KCL,isub);

req:=subs(isub=ires,eq);

fres:=extractvi(req);

NI: =nops (fres [1]) ;

addvset:=fres[1];

addwset:=fres[2];

for k from 1 to NI do

addvertex({lhev,addvset[k]},RTG);

addedge([[addvset[k],lhev]],weights=addwset[k],RTG);

end do;

end do;

89

#generate part of the CSFG according to the first set of Ohm's Law

#which are in the form as Vxx=xx*Ixx. Because in Ohm' Law, only

#RLC have Ohm's Law equations, their !xx should be in the kcl

#equations from function "kcl".

NCTC:=nops(CTC);

for j from 1 to NCTC do

eq: =CTC [j] ;

lhev:=lhs(eq);

res:=extractvi(eq);

isub:=op(res[1]);

ires:=flrr(KVL,isub);

req:=subs(isub=ires,eq);

fres:=extractvi(req);

NV:=nops(fres[1]);

addvset:=fres[1];

addwset:=fres[2];

for k from 1 to NV do

addvertex({lhev,addvset[k]},RTG);

addedge([[addvset[k],lhev]],weights=addwset[k],RTG);

end do;

end do;

90

#generate the other part of the CSFG from the other set of ohm's

#law equations. These equations are in the form as Ixx=xx*Vxx.

#The Vxx of these RLC should in the kvl equations from the

#function "kvl".

#ATTENTION: Because the compact SFG generated in this way comes

#from the Ohm's Law equations. But there will surely be no VEH and

#JFG in these equations. And also, in the equations from "kvl" and

#"kcl", there is no way to guarantee that the VEH and JFG will

#appear in the equations returned by these two functions, therefore,

#there is no guarantee that VEH and JFG will appear in the compact

#SFG generated in this function. There should be some way to check

#this kind of situation. But the checking should only be done at

#the stage of parsing the input and then generating the closed CSFG.

91

#If the user does not input the VEH or JFG, and they are added to

#the CSFG, then when forming the closed CSFG, there will be no edges

#incident with these sources. Therefore, the graph transferred to

#calculate the determinant Deltac will not be connected any more.

#Therefore, if the user input these sources but they are not in

#the CSFG, then they should be added.

return(RTG);

end proc;

#ctree is used to find tree and cotree using P.M.Lin method.

#Input of ctree here is a graph, output are tree and cotree.

#ATTENTION: this function can guarantee that the voltage sources (VEH)

#are in the tree branches and the current sources (JFG) are in the

#cotree branches.

ctree:=proc(G::graph)

local N,en,ew,ind,ent,ver,counter1,counter2,k,enttype,tb,tbe,cb,

cbe,temp1,temp2,l,vertT,vertCT,i,UT,fv,sv,te,res,tw;

N:=nops(edges(G));

en:=ends(G);

ew:=eweight(G);

ind:=indices(ew);

ent:=entries(ew);

ver:=vertices(G);

#The following for loop is used for finding Voltage sources and Current

#Sources out, and recording corresponding branches.

counter1:=0;

counter2:=0;

for k from 1 to N do

enttype:=substring(op(ent[k]) ,1);

if enttype='V' or enttype='E' or enttype='H' then

counter1:=counter1+1;

tb[counter1] :=op(ends(ind[k],G));

tbe[counter1] :=op(ent[k]);

elif enttype='J' or enttype='F' or enttype='G' then

counter2:=counter2+1;

cb[counter2]:=op(ends(ind[k] ,G));

cbe[counter2] :=op(ent[k]);

end if;

end do;

temp1:={seq(tb[i],i=1 .. counter1)};

temp2:={seq(cb[i],i=1 .. counter2)};

l:=en minus tempi minus temp2;

#the above lines are used to find the left branches of the

#graph after extracting the voltage and current sources.

vertT:=map(op,temp1);

vertCT:=map(op,temp2);

new(T);

addvertex(vertT,T);

for i from 1 to counter1 do

addedge(tb[i],weights=[tbe[i]],T);

end do;

#construct the primitive tree.

92

new(CT);

addvertex(vertCT,CT);

for i from 1 to counter2 do

addedge(cb[i],weights=[cbe[i]],CT);

end do;

#construct the primitive cotree.

for i from 1 to N-counter1-counter2 do

UT:=dig2udig(T);

fv:=l[i] [1];

sv:=l[i] [2];

tb: = [l [i] [1] '1 [i] [2]] ;

te:=op(edges(l[i] ,G));

res:=fpath(UT,fv,sv);

tw:=eweight(op(edges(l[i],G)),G);

if res[1]=0 then

else

addvertex({fv,sv},T);

addedge(tb,weights=tw,T);

addvertex({fv,sv},CT);

addedge(tb,weights=tw,CT);

end if;

#judge the branches of RLC to add them either

#to the tree or cotree.

end do;

return (T,CT);

end proc;

93

#dig2udig reads in a directed graph and then output an undirected

#graph which has the same topological structure as the input graph.

#it does not preserve the weights of the original graph because some

#times it is impossible to do so.

dig2udig:=proc(G::graph)

local vsetorig,esetorig,bset,N,i,tb;

vsetorig:=vertices(G);

esetorig:=edges(G);

bset:={};

N:=nops(esetorig);

for i from 1 to N do

tb:={convert(ends(esetorig[i],G),set)};

bset:=bset union tb;

end do;

new(UG);

addvertex(vsetorig,UG);

addedge(bset,UG);

#attention here, {1,2} and {2,1} are the same to addedges and also

#addedges will not repeatedly add {x,y}

return (UG);

end proc;

#dump dumps out the inputed values for the later usage.

94

#it calls another program "ind21",which covert a table to ordered list.

#user input syntax: 'beginput', elementname, (contrpos,contrneg),pos,

#neg,'sp',elementname,(contrpos,contrneg),pos,neg,'sp','endinput'.

dump: =proc ()

local gnum,enum,i,inp,totale;

if args[1]<> begininput or args[nargs]<> endinput then

eror("syntax error");

end if;

gnum:=1;enum:=1;

for i from 2 to nargs-1 do

if args[i] <> sp then

inp[gnum] [enum] :=args[i];

en um: =en um+ 1 ;

else

gnum:=gnum+1;

enum:=1;

end if;

end do;

totale:=gnum;

return(totale,[seq(ind2l(op(eval(inp[i]))),i=1 .. gnum)]);

end proc;

95

#extractvi parses an equation as ia=C1*Va+C2*Vb ... It is used to extract

#the V variables and the coefficients of these variables. It can also be

#used to extract the i variable in the V=C1*ia+C2*ib

extractvi:=proc(EQUA: :equation)

local EQ,lhseq,lhstype,rhseq,rhslist,counter,NR,j,ope,NOPE,k,

opelement,optype,varr,coff ,varlist,coflist;

EQ:=expand(EQUA);

lhseq:=lhs(EQ);

lhstype:=substring(lhseq,1);

rhseq:=rhs(EQ);

rhslist:=[op(rhseq)];

counter:=O;

NR:=nops(rhslist);

for j from 1 to NR do

ope:=[op(rhslist[j])];

NDPE:=nops(ope);

for k from 1 to NOPE do

opelement:=ope[k];

if type(opelement,numeric)=true or

type(opelement,'-')=true then

96

#numeric type is for the numeric coefficients and ,_, type is for the

#reciprocal coefficients. Note the back quotes used for

optype:='Z';

else

optype:=substring(opelement,1);

end if;

if lhstype='i' then

if optype='V' then

if has(eval(varr),opelement)=false then

counter:=counter+1;

varr[counter]:=opelement;

coff[counter]:=coeff(rhseq,

end if;

end if;

opelement);

el if lhstype='V' then

if optype='i' then

if has(eval(varr),opelement)=false

counter:=counter+1;

varr[counter]:=opelement;

coff[counter]:=coeff(rhseq

,opelement);

end if;

end if;

end if;

end do;

end do;

varlist:=ind2l(op(eval(varr)));

coflist:=ind2l(op(eval(coff)));

return(varlist,coflist);

end proc;

then

#extractvw is a general implementation of another function called

·#"extractvi" . This function extracts all the operands of an equation

#if the operands are V(voltage) or i (current). It also return the

#coefficients.

97

#it reads in an equation and outputs three things. The first is a

#symbol which is the left hand side (lhs) of the equation. The second

#is the V and i items in the rhs of the equation. The third are the

#corresponding coefficients for the operands.

extractvw:=proc(EQUA::equation)

local EQ,lhseq,rhseq,rhslist,counter,NR,j,ope,NOPE,k,opelement,

optype,varr,coff ,varlist,coflist;

EQ:=expand(EQUA);

98

#the equation needs to be expanded in order to find the coefficient

#of an operand correctly.

lhseq:=lhs(EQ);

rhseq:=rhs(EQ);

rhslist:=[op(rhseq)];

#rhlist is the list for the rhs eq's operands. Note that there are

#composite operands in rhslist.

counter:=O;

NR:=nops(rhslist);

for j from 1 to NR do

ope:=[op(rhslist[j])];

#Because there are composite operands in rhlist, it needs

#to judge each single operand one by one.

NOPE:=nops(ope);

for k from 1 to NOPE do

opelement:=ope[k];

#the single operand to be judged.

if type(opelement,numeric)=true or

type(opelement,'~')=true then

optype: =' Z';

#surely if the operand is a number or a

#reciprocal, there is no substring. 'Z'

#is just for convenience. It can be any

#meaningless chars.

else

optype:=substring(opelement,1);

end if;

if optype='i' or optype='V' then

if has(eval(varr),opelement)=false then

counter:=counter+1;

varr[counter]:=opelement;

coff[counter]:=coeff(rhseq,opelement);

#records the vars and the·

#corresponding coefficients.

end if;

end if;

end do;

end do;

varlist:=ind2l(op(eval(varr)));

coflist:=ind2l(op(eval(coff)));

return(lhseq,varlist,coflist);

end proc;

#f1loop finds out the 1st order loops of the given graph.

#When there are no 1st order loops in the given graph, then 0 and an

#empty list is returned.

f1loop:=proc(G: :graph)

local TG,N,counter,k,L,j,first_loop,res,i;

TG:=duplicate(G);

N:=nops(vertices(TG));

99

counter:=O;

for k from 1 to N do

L:=fpath(TG,k,k);

#path from k to k is a loop.

if L[1]<>0 then

for j from 1 to L[1] do

counter:=counter+1;

first_loop[counter] :=L[2][j];

end do;

end if;

delete(incident(k,TG),TG):

100

#deleting the branched connected with k, in order to avoid

#duplication.

end do;

#res:=[seq(O,i=1 .. counter)];

res:=array(1 .. counter);

#here I use array not seq because res is a long list sometimes.

#while seq has size limitation.

for i from 1 to counter do

res[i] :=first_loop[i];

end do;

return(counter,eval(res));

end proc;

#f2loop finds out the 2nd order loops of the given graph. It finds

#out the 2nd order loop by comparing the table of the 1st order loops.

f2loop:=proc(IG::graph)

101

local G,L,N,counter,cjlist,i,seta,counterj,j,setb,res,sec_loop;

G:=duplicate(IG);

L:=f1loop(G);

N:=L[1];counter:=O;

if N=O then

return(O, [], []);

end if;

cjlist:=array(1 .. N,[seq(O,i=1 .. N)]);

for i from 1 to N-1 do

seta:=convert(L[2][i],set);

counterj:=O;

for j from i+1 to N do

setb:=convert(L[2][j] ,set);

res:=seta intersect setb;

#compare the i-th 1st loop with its higher

#order loops to see whether they have

#intersected nodes.

if nops(res)=O then

counterj:=counterj+1;

counter:=counter+1;

sec_loop[i] [counterj] :=j;

end if;

end do;

if counterj=O then

sec_loop[i][1] :=NULL;

end if;

cjlist[i] :=counterj;

end do;

sec_loop[N][1] :=NULL;

return (counter,eval(cjlist),[seq(ind2l(op(eval(sec_loop[i]))),

i=1..N)]);

end proc;

#the input to flrr is a set of equations and the lhs of an

102

#equation which is to be found in the set. The output of the function

#is the rhs of the found equation, if there is any. If there is no such

#equation in the set, then FAIL is returned.

flrr:=proc(ES: :set,12f)

local N,i;

N:=nops(ES);

for i from 1 to N do

if evalb(lhs(ES[i])=l2f)=true then

return(rhs(ES[i]));

end if;

end do;

return(FAIL);

end proc;

#fnloop is used to find n-th order loops of the given graph.

#it calls f2loop and then f2loop calls f1loop.

#this function uses the similar algorithm as finding the path.

#When see the figure 14-11 on page 555 of [6], this figure can be

#rotated counter clock wise 90 degree. Then this figure is similar

#with the figure 14-9 on page 552 of [6]. The difference is the

#terminating condition is not the same.

fnloop:=proc(G::graph)

local L,N,counterj,T,i,current,parent,flag,w,vnode,j,P,

cj_list,cj,child,TL,tempp,bool,retres,kk,k,

counter;

L:=f2loop(G);

if L [1] =O then

return(O, [], []);

end if;

103

#L[l]=O means there is no second order path. So no n-th order loop.

N:=nops(convert(L[2],list));

#because the type of L[2] is not list before L[2] is converted.

counterj:=array(1 .. N,[seq(O,k=1 .. N)]);

counter:=O;

#counter is the number of how many tree branch.

#counterj is a list which will record the number of tree branch

#of each loop.

T[l] :=[op(L[3] [1]) ,-1];

for i from 2 to N do

T[i] : = [op(L [3] [i]), OJ ;

end do;

#similar to routing table in fpath.

#-1 is used to indicate the current row.

#0 is used to indicate the end of one row.

#begin to find loop.

for i from 1 to N do

current:=i;parent:=i;flag:=O;

#we use parent, current and child to locate the node.

#flag is used to check if there is high order loop.

if i <>1 then

T[i] :=subsop(nops(T[i])=-1,T[i]);

T[i-1] :=subsop(nops(T[i-1])=0,T[i-1]);

end if;

#to reset the flag of current row.

w:=1;vnode:=2;j :=i;P[i] [1] [1] :=i;

cj_list:=array(1 .. N,[seq(1,k=1 .. N)]);

104

#ci_list is used to record the colum which has been traversed.

while true do

cj: =cj_list [j] ;

P[i] [w] [vnode] :=T[j] [cj];

child:=P[i][w][vnode];

if child >O then

TL:=op(eval(P[i] [w]));

tempp:=ind2l(TL);

bool:=evalb(numboccur(tempp,P[i][w][vnode])>l);

#bool is used to check if the ,node is repeated.

if bool=true then

else

j :=P[i] [w] [vnode-1];

cj_list[j]:=cj_list[j]+l;

#if node is repeated, back one node.

#and go to next column.

if current=i then

parent:=current;

current: =child;

j:=P[i] [w] [vnode];

vnode:=vnode+1;

105

#current=i mean the current node is the root

#node.change current to next node.

else

if has(child,L[3] [parent])=true then

parent:=current;

current:=child;

j : =P [i] [w] [vnode] ;

vnode:=vnode+l;

#to judge if the child found has the same

#parent with the current node.

else

j : =P [i] [w] [vnode-1] ;

cj_list[j] :=cj_list[j]+1;

#if child has no same parent with the

#current node, then back one node and

#go to next column.

end if;

end if;

end if;

elif child =O then

j : =P [i] [w] [vnode-2] ;

cj_list[j] :=cj_list[j]+1;

cj_list[P[i] [w] [vnode-1]] :=1;

current:=parent;

#if reach the end of one row, then back two nodes,

#and parent becomes current.

if (vnode-3)<=0 then

parent: =P [i] [w] [1] ;

else

parent: =P [i] [w] [vnode-3] ;

end if;

#find new parent.

if nops(T[P[i][w] [vnode-1]])=1 then

flag:=1;

counterj[i] :=counterj[i]+1;

counter:=counter+1;

retres[i] [counterj[i]]:=

106

ind2l(op(eval(P[i] [w])));

for kk from 1 to vnode-2 do

P [i] [w+1] [kk] : =P [i] [w] [kk] ;

end do;

w:=w+1;

vnode:=vnode-1;

#nops(T[P[i][w][vnode-1]])=1) is the condition of

#terminating,i.e. we reach tips. Then we .need give

#the. ,previous vnode-2 nodes to next tree branch.

else

P[i] [w] [vnode] :=NULL;

vnode:=vnode-1;

#if not reach tips, then look for vnode-1.

end if;

elif child =-1 then

if flag=O then

retres[i][1]:=0;

end if;

break;

end if;

end do;

107

end do;

return (counter,eval(counterj),[seq(ind2l(op(eval(retres[i]))),

i=1..N)]);

end proc;

#fpath is one of the core functions in the package. It finds the

#path from the inputed initial vertex to the inputed last vertex. When

#these two vertices are the same, then it finds out all of the loops of

#the given vertex.

#it calls "ind21" and "rop", see the comments of them to get their

#function.

#tested examples 1. the model in the book;

2. petersen() in the maple;

3. tetrahedron() in the maple;

4. octahedron() in the maple but failed;

due to the reason that it has a "0" vertice;

fpath:=proc(G: :graph, IN!:: integer ,LAS:: integer)

local dep,op_table,k,i,v,N,w,vnode,j,P,cj,counter,tempp,tempp2,

bool,TL,TL2,cj_list,vset;

dep:=departures(G);

vset:=vertices(G);

op_table:=op(op(dep));

k:=max(op(vset));

if has(vset,INI)=false or has(vset,LAS)=false then

return(O, []);

end if;

for i from 1 to k do

if has(vset,i)=true then

v[i]:=convert(dep[i],list);

v[i] :=sort(v[i], '>');

if i=INI then

v[i] :=[op(v[i]) ,-1];

else

v[i] :=[op(v[i]) ,O];

end if;

else

v[i]:=[O];

end if;

end do;

#The end of generating the routine table.

#The beginning of the path finding algorithm.

N:=max(op(vset));

w:=1;vnode:=2;j:=INI;P[1][1]:=INI;

counter:=O;cj_list:=[seq(1,i=1 .. N)];

#counter is used to record the number of path.

#cj_list is a flag used to record the column which has

#been traversed in routing table. Its value is transfered

#to cj (column) in order to take out the path node.

while true do

#PF2

cj :=cj_list[j];

P[w] [vnode] :=v[j] [cj];

#PF3

if P[w] [vnode] >O then

108

I
!

#PF4

TL:=op(eval(P[w]));

tempp:=ind2l(TL);

bool:=evalb(numboccur(tempp,P[w][vnode])>1);

bool is used to judge if the node is traversed

#more than one time.

#PF5

if P[w][vnode] =LAS then

counter:=counter+1;

j:=P[w][vnode-1];

#back one node if find a path successfully.

cj_list[j] :=cj_list[j]+1;

#column flag increases one

for k from 1 to vnode-1 do

P [w+1] [k] : =P [w] [k] ;

end do;

#give the first vnode-1 node to next path.

w:=w+1;

#increase path number.

elif bool=true then

else

j : =P [w] [vnode-1] ;

#bake one node if the vnode-th node is repeated.

cj_list[j]:=cj_list[j]+1;

#column flag increases one

j : =P [w] [vnode] ;

vnode:=vnode+1;

#go ahead to find next node.

end if;

#call PF2

109

110

elif P[w] [vnode] =O then

#P[w] [vnode]=O means that one row of routing table has

#been traversed.

j:=P[w] [vnode-2];

#back two nodes.

cj_list[j]:=cj_list[j]+1;

#column flag increases one.

cj_list[P[w] [vnode-1]]:=1;

#the above line is used to reset the column flag

#in order to traversed again.

P[w][vnode] :=NULL;

TL2:=op(eval(P[w]));

tempp2:=ind2l(TL2);

#ind21 can remove the NULL element.

for k from 1 to vnode-1 do

P[w] [k]:=tempp2[k];

end do;

#the the first k nodes of w-th path.

vnode:=vnode-1;

#call PF2

elif P[w][vnode] <O then

#P[w] [vnodde] <O in the program I give -1 to it,

#means that you finish the whole process of finding

#path.

break

end if;

end do;

return (counter,[seq(ind2l(op(eval(P[k]))),k=1 .. counter)]);

end proc;

111

#gencsfg implements the first step in the SFG package. The inputs to

#this function can be only R, L, C, E (VCVS), H (CCVS), V, F (CCCS),

#G(VCCS) and J (independent current source).

#the input of the function is same as dump input, i.e.'begininput', ...

#' endinput ' .

#the output of the function is CSFG.

#For the independent sources, this function itself makes no changes on

#the compact sfg (CSFG). It just outputs the CSFG. ·

#For controlled sources, it first replace the controlled sources by their

#equivalent independent sources and then generate the circuit with the

#replaced vertices. Before it generates the circuit diagram, this

#function also records the expression of the relationship between the

#independent source and the controlled source. The controlled source can

#be controlled by more than one independent or RLC variables. Then the

#controlling variable is searched in the CSFG. If it or they are not in

#the CSFG, then Ohm's Law is used. Then add the new branches and the

#weights to the CSFG and then outputs the CSFG.

gencsfg:=proc()

local L,circuitdig,compactsfg,inpres,NIN,inp,counter,expr,

l,opelement,etype,newlhsv,lhsvlist,tprhs,NINPL,

NLOOP,j,tpnewrhsv,tpnewrhsvlist,newrhsv,ctrleq,

k,i,inpccgraph,vset,NC,ceqj,tplist,NR,tpv,feq,tpeq,

extres,headnode,nodelist,weightlist,NN,flag;

inpres:=dump(args);

NIN:=inpres[1];

112

inp:=inpres[2];

#get the parsed inputs.

counter:=O;

#counter is used to record the number of controlled sources.

expr[1] :='begininput';

#expr is used to record the final input to generate the circuit

#diagram. The controlled sources in this input are replaced by

#their equivalents.

flag:=O;

#flag is used to indicate whether there is any controlled source

#in the circuit.

for 1 from 1 to NIN do

opelement:=inp[l][1];

etype:=substring(opelement,1);

if etype='E' or etype='H' then

flag:=1;

counter:=counter+1;

newlhsv:=cat('V',opelement);

#the newly introduced vertex to represent

#the controlled element.

lhsvlist[counter] :=newlhsv;

#If the inputed element is a E or H, then introduce a new

#node which is composed by concatenating the V with the

#element. This new node is used to generate the circuit

#diagram.

#lhsvlist is for left hand side vertices list. It is

#used for storing all the newly introduced vertices.

tprhs:=O;

NINPL:=nops(inp[l]);

NLOOP:=(NINPL-3)/2;

#if the element is a E or H or F or G, then

#the variables needed to describe these kinds of

#elements are at least 5 variables according to

113

#the stipulations. And also, the first three variables

#are not useful to determine the algebraic expression

#between the controlled elements with the controlling

#elements.

#For the variable beginning from the 4th elements for

#each E, H, F, or G, each two node, i.e. a pair of

#nodes represents the information of the controlled

#elements. This is the reason that the number of

#the loop, NLOOP, is (NINPL-3)/2.

for j from 1 to NLOOP do

if etype='E' then

tpnewrhsv[j]:=cat('V',inp[l] [2*j+3]);

else

tpnewrhsv[j]:=cat('i' ,inp[l][2*j+3]);

end if;

tprhs:=tprhs+inp[l] [2*j-1+3]*tpnewrhsv[j];

end do;

#for each controlling elements, form the vertices

#and the algebraic equation of the controlled element.

tpnewrhsvlist:=ind2l(op(eval(tpnewrhsv)));

newrhsv[counter]:=tpnewrhsvlist;

#newrhsv is for new right hand side vertices. It

#is used to store all the newly introduced vertices

#for the controlling elements.

ctrleq[counter]:=newlhsv=tprhs;

#ctrleq is for controlling equations. It is used

#to record each of the controlling equations between

#the controlled element and the controlling elements.

expr[2*1] :=opelement,inp[l][2],inp[l][3];

expr[2*1+1] :='sp';

#form the new input to "ccgraph", which generate

114

#the circuit diagram according to the new replacements.

elif etype='F' or etype='G' then

#this case is similar with the above case.

flag:=1;

counter:=counter+1;

newlhsv:=cat('i',opelement);

lhsvlist[counter]:=newlhsv;

tprhs:=O;

NINPL:=nops(inp[l]);

NLOOP:=(NINPL-3)/2;

for j from 1 to NLDDP do

if etype='F' then

else

tpnewrhsv[j] :=cat('i',inp[l][2*j+3]);

else

tpnewrhsv[j] :=cat('V' ,inp[l] [2*j+3]);

end if;

tprhs:=tprhs+inp[l][2*j-1+3]*tpnewrhsv[j];

end do;

tpnewrhsvlist:=ind2l(op(eval(tpnewrhsv)));

newrhsv[counter] :=tpnewrhsvlist;

ctrleq[counter]:=newlhsv=tprhs;

expr[2*l]:=opelement,inp[l][2],inp[l] [3];

expr[2*1+1]:='sp';

#if the inputed elements are RLC, then simply form the

#new input the same as the old inputs.

expr[2*1] :=seq(inp[l][k],k=1 .. 3);

expr[2*1+1J:='sp';

end if;

end do;

expr[2*NIN+1]:='endinput';

inpccgraph:=seq(expr[i],i=1 .. 2*NIN+1);

#generate the new inputs to "ccgraph".

L:=ccgraph(inpccgraph);

#generate the circuit diagram from the inputs. The controlled

#elements are represented as their independent equivalences.

115

116

circuitdig:=L[1];

#get the circuit diagram of the inputed elements.

compactsfg:=compsfg(circuitdig);

#Get the compact SFG from the circuit diagram.

#The compact sfg at this stage has only independent sources and

#RLC. The branches and the weights for the controlled elements need

#to be added in the following.

if evalb(flag=1)=true then

vset:=vertices(compactsfg);

NC:=nops([indices(lhsvlist)]);

#Get the number of all the newly introduced vertices for the

#controlled elements.

for j from 1 to NC do

#make judgments on each of these new vertices.

ceqj : =ctrleq[j] ;

#get the relationship between the controlled

#vertices and the controlling vertices.

tplist:=newrhsv[j];

NR:=nops(tplist);

#get the number of controlling elements for each

#controlled elements.

for 1 from 1 to NR do

#judge whether these controlling elements are in the CSFG or

#not.

tpv:=tplist[l];

if has(vset,tpv)=true then

feq:=ceqj;

else

tpeq:=miniohm(tpv);

feq:=subs(tpeq,ceqj);

end if;

#if the controlling elements are not in the CSFG,

#then Ohm's Law is used and then the relationship

#is updated according to Ohm's Law.·

end do;

extres:=extractvw(feq);

headnode:=extres[1];

nodelist:=extres[2];

weightlist:=extres[3];

#get the vertices (they are supposed to be all

#in the CSFG at this stage), the branches and the weights.

NN:=nops(nodelist);

for l from 1 to NN do

addedge([nodelist[l],headnode],

weights=weightlist[l],compactsfg);

end do;

#add the branches and the weights of each of the

#newly introduced vertices for the controlled elements.

end do;

end if;

117

return (compactsfg);

end proc;

118

#incmat reads into a directed weighted graph and then output its

#incidence matrix together with a list which records the sequence of

#the column of the incidence matrix. The usage of the list is to avoid

#wrongly multiplication of the incidence matrix with the branch currents.

#If an edge is not incident to a vertex then the corresponding table

#entry is 0. If a directed edge is leaving a vertex then the corresponding

#table entry is 1. If a directed edge is coming a vertex then the correspo­

#nding table entry is -1.

incmat:=proc(G: :graph)

local vset,eset,NV,NE,inmatrix,collist,i,te,tailnode,headnode;

vset:=vertices(G);

eset:=edges(G);

NV:=nops(vset);

NE:=nops(eset);

inmatrix:=Matrix(NV,NE);

collist:=[seq(O,i=1 .. NE)];

for i from 1 to NE do

te: =es et [i] ;

tailnode:=tail(te,G);

headnode:=head(te,G);

inmatrix[tailnode,i]:=1;

inmatrix[headnode,i]:=-1;

collist[i]:=[tailnode,headnode];

119

#collist is a recorder to record the order of the columns

#of the incidence matrix. It is used for later multiplication

#with the currents.

end do;

return([inmatrix,collist]);

end proc;

#ind21 is also another core functions for the packages. It is important

#because the usage of table in other functions. In~order to suitablely

#return those tables, this function can be used to convert the tables

#into ordered list. Further, for NULL entry in the table, this function

#will let it equal negative infinity. fpath will use this.

#this program calls another program "rop", which find the position of a

#given number in a list.

#the input of this function must be op(eval(T)), suppose that Tis a one

#level table.

ind2l:=proc(LL: :list)

local counter,N,temp1,temp2,k,trhs,result,position,i;

counter:=O;

N:=nops(LL);

tempi:= [seq (-1, i=1. . N) l;

temp2:=[seq(-1,i=1 .. N)];

for k from 1 to N do

temp1[k]:=lhs(LL[k]);

trhs:=rhs(LL[k]);

if (trhs=NULL) then

temp2[k] :=-infinity;

counter:=counter+1;

else

temp2[k] :=trhs;

end if;

end do;

result:=[seq(-1,i=1 .. N-counter)J;

for k from 1 to N-counter do

position:=rop(temp1,k);

result[k] :=temp2[position];

end do;

return (result);

end proc;

120

#kcl implements the KCL according to the method in [6]. The resulted

#equations are returned as a set of equations.

#the input to this function is a circuit diagram and the tree of the

#diagram.

#the output of this function is a set of kcl equations.

#similar with the "kvl" function, there is no guarantee that the current

#sources will appear at the rhs of the kcl equations. If they are not,

#then they will not appear in the CSFG formed later.

#it calls another program "incmat" which gives the incidence matrix

#of a graph. Before running the program, must type with(LinearAlgebra).

121

kcl:=proc(G::graph,T::graph)

local incres,incmatrix,incmatcol,dirtbset,NTB,unknowni,counter,

NE,ivector,k,te,tw,tpneww,neww,res,M,elist,i,eqset,

unknownset,result;

incres:=incmat(G);

incmatrix:=incres[1];

incmatcol:=incres[2];

#incmatcol is a recorder to record the order of the columns

#of the incidence matrix. It is used for later multiplication

#with the currents.

dirtbset:=ends(T);

#dirtbset is the branches set for the tree.

NTB:=nops(dirtbset);

unknowni:=[seq(O,i=1 .. NTB)];

#unknowi is a list used to store the currents of the tree branches.

'#These currents will be treated as the unknowns in the kcl equat­

#ions.

#NOTE: At this stage, the current of the voltage sources VEH are

#also treated as unknowns.

counter:=O;

NE:=nops(incmatcol);

ivector:=Vector(NE);

#ivector is used to store all the current variables.

for k from 1 to NE do

te:=edges(incmatcol[k],G);

tw:=eweight(op(te),G);

neww:=cat('i',tw);

ivector[k] :=neww;

#form the current variables.

if member(incmatcol[k],dirtbset)=true then

counter:=counter+1;

unknowni[counter] :=neww;

#if the branch is in the tree, then the current

#variable is treated as the unknowns.

end if;

end do;

res:=incmatrix.ivector;

#get all the kcl equations for all the nodes.

M:=Dimension(res);

elist:=[seq(O,i=1 .. M)];

for i from 1 to M do

elist[i]:=res[i];

end do;

#get the equation set for later use of solve.

eqset:=convert(elist,set);

unknownset:=convert(unknowni,set);

result:=solve(eqset,unknownset);

#express the unknown currents in terms of the known currents.

#That is to say, express the tree currents in term of the

#cotree currents.

122

#NOTE: There is no guarantee that the resulted kcl equation will

#have the current sources JFG at the right hand side of these

#equations. It they are not, then they will not appear in the

#compact SFG later generated.

return(result);

end proc;

#kvl calls a function named "mykvl" which calculates a

#single KVL equation for the inputed branch and the weight.

#the inputs to this function is the tree of the diagram and the

#cotree of the diagram.

#the output of the function is a set of KVL equations.

#for the final returned values of this function, see the head of the

#comments of the function "mykvl".

kvl:=proc(Tree::graph,CoTree::graph)

local bsetCT,NCT,eqlist,i,CTbranch,CTedge,CTweight,

re seq;

bsetCT:=ends(CoTree);

#get all the cotree links for forming loop at later stage.

NCT:=nops(bsetCT); eqlist:={};

#eqlist is used to store the set of the equations which

#express the c·otree voltages in terms of tree voltages.

#NOTE: at t.his stage, the voltages of the current sources

#are expressed in terms of tree branches voltages.

123

for i from 1 to NCT do

CTbranch:=bsetCT[i];

CTedge:=edges(CTbranch,CoTree);

CTweight:=eweight(op(CTedge),CoTree);

#get the branch and the weight of the cotree link

#which is to be calculated on the KVl equations.

reseq:=mykvl(Tree,CTbranch,CTweight);

#for the result of the mykvl, see the comments at the

#head of function "mykvl".

eqlist:=eqlist union reseq;

end do;

return (eqlist);

end proc;

#miniohm generates the ohm's law according to the input. The input

#must be in the form as VR12 or iL12. Not in V12,i34.

miniohm:=proc(ELE)

local itype,element,etype,viele;

itype:=substring(ELE,1);

#the type of the input, either i or V.

element:=substring(ELE,2 .. length(ELE));

#the element needs the Ohm's law. This is the reason that the

#input must be VR12. R12 is needed to determine the element.

etype:=substring(element,1);

124

#the type of the element.

if itype='i' then

#if the input type is i then output i= .. V.

viele:=cat('V',element);

if etype='R' then

return(ELE=viele/element);

elif etype='C' then

return(ELE=S*element*viele);

elif etype='L' then

return(ELE=viele/(S*element));

end if;

elif itype='V' then

#if the input type is V, then output is V= .. i.

viele:=cat('i',element);

if etype='R' then

return(ELE=element*viele);

elif etype='C' then

return(ELE=1/(S*element)*viele);

elif etype='L' then

return(ELE=S*element*viele);

end if;

end if;

end proc;

125

#mycdc outputs a number which is the highest n-th order of loops in the

#graph and a list whose entries are the sum of the n loop weights, where

#n is the index of the entry. Say, res[1] is the sum of the 1st loop

#weights.

mycdc:=proc(G: :graph)

local wofb,sumlw,res,N1,i,L,M,N1loop,maxlen,j,temp,k,

Ne1loop,l,lnum,lw,weightk;

sumlw[1]:=0;

126

#a table used to store the values for the sum of the n-th loop

#weights in the n-th entries of the table. Say, sumlw[1] is the

#sum of the 1st loop weights of the graph and sumlw[2] is the

#sum of the 2nd loops of the graph.

res:=w1loop(G);

#res is an array whose entries are the loop weights for the

#corresponding index 1st loop. Say, res[1) is the loop weight

#for the first 1st loop.

N1:=nops(convert(res,list));

#simply convert the array to a list and then get the total

#numbers of the operands in the list, i.e. get the 1st loop number.

#if there is no 1st loops for the given graph, then the sums of all the

#loop weights of the graph are 0.

if N1=0 then

return(O, []);

end if;

#else there is 1st loops then calculate the sum of the 1st loop weights

#for the graph.

for i from 1 to N1 do

sumlw[1]:=sumlw[1]+res[i];

127

end do;

1:=fnloop(G);

#find the n-th loops of the given graph.

M:=1[1];

#If there is no 2nd loops for the given graph, then the highest order

#of the given graph will be 1 and also return the sum of 1st loop

#weights.

if M=O then

return(1,[sumlw[1]]);

end if;

#else if there are 2nd loops.

N1loop:=nops(convert(1[2],list));

#1[2] is the array which contains the number of branches for the

#corresponding indices. Say, 1[2][1] is the number of branches for

#node 1 and 1[2] [4] is the number of branches for node 4. For the

#meaning of branches, see Fig14-11 on page 555 of [6].

#N1loop is the total number of vertices or nodes for the graph.

maxlen:=1;

for i from 1 to N1loop do

#traverse each nodes.

for j from 1 to 1[2][i] do

#traverse each branches for each nodes.

temp:=nops(1[3] [i] [j])-1;

#found out the length of the branch L[3] [i] [j] .

#L[3] [i] [j] is the j-th branch for the i-th node.

if temp > maxlen then

maxlen:=temp;

128

#found out the maxium lenght of all of the branches.

#This number is the number of the highest order loops

#for the graph.

end if;

end do;

end do;

#this loop extract the nodes for the 2nd to high order loops. For a

#detailed description, refer to [6].

for k from 2 to maxlen do

sumlw [k] : =O;

#k is the index for the k-th loop, it is used to extract the

#first k-th nodes from all the branches.

for i from 1 to N1loop do

#Remember, N1loop is the total number of all the vertices or

#nodes in the graph.

Ne1loop:=L[2] [i];

#Ne1loop is the total number of the branches for node i.

for j from 1 to Ne1loop do

#traverse each branches of node i.

weightk: =1;

129

#the initial value for the product of the k-th loop

#weights.

for 1 from 1 to k do

#extract the first k nodes from the branches. For a

#detailed reason to do this, see page 555 of [6].

if k<= nops(L[3] [i] [j])-1 then

#if the L[3] [i] [j] branch still have k nodes.

#L[3] [i] [j] is the j-th branch for the i-th

#node.

lnum: =L [3] [i] [j] [l] ;

#L[3] [i] [j] [l] is the 1-th entries of

#branch L[3][i][j]. This entry is actually

#the index number of the 1st loops.

#For detailed explanation, see page 555

#of [6].

if lnum <> 0 then

1 w: =res [lnum] ;

#get the 1st-loop-weight for this loop.

weightk:=weightk*lw;

end if;

end if;

end do;

sumlw[k] :=sumlw[k]+weightk;

#calculate the high order loop weights from this

#1st loop weights.

end do;

end do;

end do;

return (maxlen,ind2l(op(eval(sumlw))));

130

#maxlen is the number of the highest order loops in the graph and

#the list is the sum of the n-th loop weights, where n is the index

#of the entry.

end proc;

#mykvl applies the KVL for a specific cotree branch. It reads

#in a Tree, a cotree branch, and the weight of the·cotree branch.

#It returns an equation which left hand side is the cotree link's

#voltage and the rhs is the tree branches voltages.

#ATTENTION: when forming the loop to use the KVL equation to express the

#voltages of the cotree links, there is no way to guarantee that the

#voltage sources (VEH) will be included because there is no way to

#guarantee that the loop will be formed in the way that the tree branches

#whose weight is the voltage sources must be in the loop to form the KVL

#equation.

#NOTE: The result of the above thing is that if the voltage sources are

#not included in the KVL equations which are returned by this function,

#then these voltage sources will not appear in the compact SFT at the

#later time.

mykvl:=proc(T::graph,CotreeBranch::list,WeightCB)

local OrigTree,Untree,L,reloop,direloop,M,eqlist,j,tb,origedge,

origw,gredge,tpw,neww,dire,i,result;

OrigTree:=duplicate(T);

#because it needs to add an edge to the tree, it needs to duplicate

#a new tree.

addedge(CotreeBranch,weights=WeightCB,OrigTree);

#add the cotree link with its weights to form a loop for KVL

#equation.

Untree:=dig2udig(OrigTree);

131

#the loops for the KVL equation should be a loop in the undirected

#graph.

L:=fpath(Untree,CotreeBranch[1],CotreeBranch[2]);

#to find the path between the cotree nodes is equivalent to find

#the loop of them.

#ATTENTION: in directed graph, two nodes can form a loop. this loop in

#the undirected graph will become a single path. in undirected graph,

#at least three nodes needs to form a loop.

if nops(L[2])=1 then

reloop: =L [2] [1] ;

else

if nops(L[2][1])>2 then

reloop: =L [2] [1] ;

else

reloop: =L [2] [2] ;

end if;

end if;

#Note, there are only two situations in fpath. One is fpath

#returns only one path. This path in directed graph is a loop.

#The other situation is fpath returns exactly two paths.

#The path with more than two nodes is the path needed.

reloop:=[op(reloop),CotreeBranch[1]];

#construct the loop with the first node of CotreeBranch

direloop:=rsort(reloop);

#reverse the orders of reloop to form direloop which has the

#positive direction of the loop.

M:=nops(direloop);

132

#M nodes in the loop. Therefore, M-1 branches.or weights in the

#equation

eqlist:=[seq(O,i=1 .. M-1)];

#to store the items in the final single KVL equation.

for j from 1 to M-1 do

tb:=[direloop[j],direloop[j+1]);

origedge:=edges(tb,OrigTree);

#when extract the edge number of tb, there is a possibility

#that the direction is the same or opposite.

if j<>1 then

if nops(origedge)>O then

origw:=eweight(op(origedge),OrigTree);

neww:=cat('V',origw);

neww:=-neww;

#when the branches of the directed

#tree has the same direction with the

#directed loop, the weight of the tree

else

else

#branch should be negative in the KVL

#equation because it is at the rhs of the

#equation. Otherwise, it is positive.

tb:=rsort(tb);

#reverse the order of the branch

gredge:=edges(tb,DrigTree);

origw:=eweight(op(gredge),OrigTree);

neww:=cat('V',origw);

neww:=neww;

#the branches of the directed tree here

#has the opposite direction with the directed

#loop, so their weights is positive in KVL

#equation.

end if;

origw:=eweight(op(origedge),DrigTree);

neww:=cat('V',origw);

#for the first two nodes in the directed loop,

#there is no need to judge their direction.

133

#because these two nodes are the cotree link nodes and

#the direction of the directed loop is set according

#to their direction.

end if;

eqlist[j] :=neww;

end do;

134

result:={eqlist[1]=convert([seq(eqlist[i] ,i=2 .. nops(eqlist))],'+')};

#convert the variables in eqlist into a form of equation.

return(result);

end proc;

#ohm:

#input: a graph

#output: generate the Ohm's Law for the RLC elements. For the elements

#of VEH and JFG, there surely will be no Ohm's law for these kinds of

#elements.

#The input of this function is a circuit diagram generated by "ccgraph",

#and the tree and the cotree of the diagram, which were generated by

11 ctree 11
•

#The output of this function is two sets of equations, one is for the

#tree voltages, the other is for the cotree currents. The sources VEH

#and JFG are not included in the Ohm's equation returned by this function.

ohm:=proc(G:: symbol, Tree: :graph,CoTree: :graph)

local eqlistT,eqlistCT,bsetT,NT,k,Tbranch,Tedge,

Tweight,weighttype,weightsuffix,lhseq,rhseq,eq,bsetCT,NCT,

CTbranch,CTedge,CTweight;

eqlistT:={}; eqlistCT:={};

#initialize the two sets of the equations.

bsetT:=ends(Tree);

#bset is the branches set for the tree of the circuit diagram

NT:=nops(bsetT);

for k from 1 to NT do

#for each branches in the tree, do the following works. Note,

#at present time, the VEH are under consideration.

Tbranch:=bsetT[k];

Tedge:=edges(Tbranch,G);

Tweight:=eweight(op(Tedge),G);

#get the weights of each of the branches of the tree.

weighttype:=substring(Tweight,1);

#get the type of the weights, i.e. the type of the

#elements.

lhseq:=cat('V',Tweight);

rhseq:=cat('i',Tweight);

#because it is in the tree, so, the lhs of the Ohm's

#Law is Vsomething and the rhs of the Ohm's Law is

#isomething. Note, at this stage, no consideration

#on VEH and JFG are made. That is to say, even for

#the sources, the two sides of the Ohm's Law are also

#formed at this stage.

if weighttype='R' then

eq:={lhseq=Tweight*rhseq};

eqlistT:=eqlistT union eq;

elif weighttype='C' then

eq:={lhseq=rhseq/(S*Tweight)};

eqlistT:=eqlistT union eq;

135

elif weighttype='L' then

eq:={lhseq=S*Tweight*rhseq};

eqlistT:=eqlistT union eq;

end if;

#at this point, only the Ohm's Law for RLC are generated,

#and the VEH JFG sources are ignored. Nothing is done on

#them. As the result, the returned Ohm's Law of this

#function will not have VEH and JFG in the returned

#equations.

end do;

#for cotree elements, it is similar with the tree elements.

bsetCT:=ends(CoTree);

NCT:=nops(bsetCT);

for k from 1 to NCT do

CTbranch:=bsetCT[k];

CTedge:=edges(CTbranch,G);

CTweight:=eweight(op(CTedge),G);

weighttype:=substring(CTweight,1);

lhseq:=cat('i',CTweight);

rhseq:=cat('V',CTweight);

#because it is in the cotree, the lhs of Ohm's Law is

#Isomething and the rhs of the Ohm's Law is Vsomething.

#at this stage, the two sides for the sources' Ohm's

#Law are also generated, although they are meaningless.

if weighttype='R' then

eq:={lhseq=rhseq/CTweight};

136

eqlistCT:=eqlistCT union eq;

elif weighttype='C' then

eq:={lhseq=S*CTweight*rhseq};

eqlistCT:=eqlistCT union eq;

elif weighttype='L' then

eq:={lhseq=rhseq/(S*CTweight)};

eqlistCT:=eqlistCT union eq;

end if;

#generate the Ohm's Law for the RLC and leave VEH and

#JFG unchanged. The returned cotree current equations

#will also not have current sources.

end do;

return(eqlistT,eqlistCT);

end proc;

#the input to parsinp is Compact SFG, the input variable and the

#output variable, between which is to be calculated the transfer

#function.

137

#this function parses the input of the SFG analysis. It extends the

#limitation on the inputs. The inputs can be any linear combinations

#of V and i variables. If the V is not in the inputed CSFG (Compacted

#SFG), then Ohm's Law is used. It is the same with the i's case. If

#the i is not in the cotree, the ohm's law is also used. Then it adds

#some new vertices and branches and weights if necessary.

#if the user input the voltage of voltage sources or the current of

#current sources but the sources are not in the CSFG, then these sources

138

#with the prefix "V" or "i" are added to CSFG and make the necessary

#steps to ensure the resulted closed CSFG is connected.

#THE CASES THIS FUNCTION CAN NOT HANDLE AT THIS STAGE:

EITHER OF THE INPUT IS 2*Vxx OR a*Vxx, I.E. SOMTHING

TIMES THE VARIABLE. THIS LEADS TO THE CONSEQUENCE THAT

THE INPUT CAN NOT BE V12+V12 EITHER BECAUSE MAPLE TREATS

IT AS 2*V12.

IN THIS CASE AN ERROR MESSAGE ABOUT THE SUBSTRING FUNCTION

WILL BE GENERATED BECAUSE THE SUBSTRING FUNCTION CAN NOT HANDLE

THE SUBSTRING OF A NUMBER OR A '~'TYPE.

parsinp:=proc(CSFG::graph,INI,OUT)

local RetCSFG,vset,NINI,NOUT,incc,ohmeq,L,newv,newe,neww,DINI,

j,tpitem,eq,res,NV,k,outcc,DOUT,tpres,RCCSFG,initype,

itemtype,outtype,tmp;

RetCSFG:=duplicate(CSFG);

#duplicate the original CSFG (Compact SFG).

vset:=vertices(CSFG);

NINI:=nops(INI);

NOUT:=nops(OUT);

if evalb(NINI=1)=true then

if has(vset,INI)=true then

incc:=INI;

#if input is only one variable and also it is in the vset,

#then it is surely the incc (input to coding of csfg).

else

initype:=substring(INI,1 .. 2);

if initype='VV' or initype='VE'

or initype='VH' or initype='IJ'

or initype='IF' or initype='IG' then

newv:=INI;

addvertex(newv,RetCSFG);

incc:=INI;

#if the inputed type is voltage sources or

#current sources but they are not in the CSFG,

#then they are added to the CSFG and make them

#as the head node of the closed CSFG.

elif initype='iV' or initype='iH'

or initype='iE' or initype='VJ'

or initype='VF' or initype='VG' then

error "please reinput the input varible";

139

#if the input is the current of voltage source or

#voltage of current source, then you need to change it.

else

#otherwise, use Ohm's Law to convert the input

#to the I and V equivalence.

ohmeq:=miniohm(INI);

#miniohm is a small code to implement Ohm's Law.

L:=extractvw(ohmeq);

#extractvw is another small ·code to extract the operands

#and the coefficients.

newv:=INI;

else

newe:=[op(L[2]),INI];

neww: =op (L [3]) ;

addvertex(newv,RetCSFG);

addedge(newe,weights=neww,RetCSFG);

incc:=INI;

140

#If it is not in the vset, then ohm's law is used and

#also add some vertices and branches and weights if

#necessary.

end if;

end if;

#if there are more than one operands in the input.

DINI:=INI;

#due to the later substitution, it is better to duplicate

#another equation.

for j from 1 to NINI do

tpitem:=op(j,INI);

#here should add some guarding mechanism to guarantee

#that if user input Vxx+2*Vxx, there is some way to

#discriminate 2 from the V of Vxx. Otherwise, the

#substring function will failed. At this stage,

#no way to watch it. So we can not give input and output

#variables as the form:Vxx+n*Vxx.

if has(vset,tpitem)=false then

itemtype:=substring(tpitem,1 .. 2);

if itemtype='VV' or itemtype='VE'

or itemtype='VH'

or itemtype='IJ' or itemtype='IF' or

itemtype='IG' then

addvertex(tpitem,RetCSFG);

DINI:=DINI;

#ALSO, IT SHOULD JUDGE WHETHER THIS OPERAND IS

#A SOURCE OR NOT, IF YES, THEN SIMPLY ADD IT AND

#LEAVE THE DINI UNCHANGED. IF NOT, THEN THE

#FOLLOWING STEPS ARE TAKEN.

elif itemtype='iV' or itemtype~'iE'

or itemtype='iH' or itemtype='VJ'

or itemtype='VF' or itemtype='VG' then

error "please reinput the input varible";

141

#if the input is the current of voltage source or

#voltage of current source, then you need to change it.

else

ohmeq:=miniohm(tpitem);

DINI:=expand(subs(ohmeq,DINI));

end if;

end if;

end do;

#for each of the operands in the input, if it is not in the vset,

#then ohm's law is used and then make the corresponding changes

#on the inputs.

newv:='Vfn';

#just introduce a new vertex. It can be meaningless thing.

addvertex({newv},RetCSFG);

eq:=newv=DINI;

res:=extractvw(eq);

#extract the coefficients and the operands.

NV:=nops(res[2]);

for k from 1 to NV do

newe:=[res[2] [k],newv];

neww: =res [3] [k] ;

addedge(newe,weights=neww,RetCSFG);

end do;

#add the new edges and the new weights.

incc:=newv;

#make the new node as the initial node for the usage of

#generating a closed CSFG.

end if;

if evalb(NOUT=l)=true then

#It is similar with the judgments made on INI.

if has(vset,OUT)=true then

outcc:=OUT;

else

outtype:=substring(OUT,1 .. 2);

if outtype='VV' or outtype='VE'

or outtype='VH' or outtype='IJ'

or outtype='IF' or outtype='IG' then

newv:=OUT;

addvertex(newv,RetCSFG);

outcc:=OUT;

142

else

#JUDGE WHETHER THIS OPERAND.IS THE SOURCE OR NOT,

#IF YES, THEN ADD IT AND MAKE IT AS THE TAIL OF

#THE CLOSED CSFG. IF NOT, THEN OHM'S LAW IS USED.

elif outtype='iV' or outtype='iE'

or outtype='iH' or outtype='VJ'

or outtype='VF' or outtype='VG' then

error "please reinput the output varible";

143

#if the output is the current of voltage source or

#voltage of current source, then you need to change it.

else

ohmeq:=miniohm(OUT);

L:=extractvw(ohmeq);

newv:=OUT;

newe:=[op(L[2]),0UT];

neww: =op (L [3]) ;

addvertex(newv,RetCSFG);

addedge(newe,weights=neww,RetCSFG);

outcc:=OUT;

end if;

end if;

DOUT:=OUT;

for j from 1 to NOUT do

tpitem:=op(j,OUT);

#here should add some guarding mechanism to guarantee

#that if user input Vxx+2*Vxx, there is some way to

#discriminate 2 from the V of Vxx. Otherwise, the

#substring function will failed. At this stage,

#no way to watch it.

if has(vset,tpitem)=false then

itemtype:=substring(tpitem,1 .. 2);

if itemtype='VV' or itemtype='VE'

or itemtype='VH' or itemtype='IJ'

or itemtype='IF' or itemtype='IG' then

addvertex(tpitem,RetCSFG);

DOUT:=DOUT;

#JUDGE WHETHER IT IS A SOURCE OR NOT, IF YES, THEN

#ADD IT AND DOUT LEAVE UNCHANGED. IF NOT THEN OHM'S

#LAW IS USED.

elif itemtype='iV' or itemtype='iE'

or itemtype='iH' or itemtype='VJ'

or itemtype='VF' or itemtype='VG' then

error "please reinput the output varible";

144

#if the output is the current of voltage source or

#voltage of current source, then you need to change it.

else

ohmeq:=miniohm(tpitem);

DOUT:=expand(subs(ohmeq,DOUT));

end if;

end if;

end do;

newv:='Vout';

addvertex({newv},RetCSFG);

eq:=newv=DOUT;

res:=extractvw(eq);

NV:=nops(res[2]);

for k from 1 to NV do

newe:=[res[2] [k],newv];

neww: =res [3] [k] ;

addedge(newe,weights=neww,RetCSFG);

end do;

outcc:=newv;

end if;

tpres:=codingsfg(RetCSFG,incc,outcc);

#according to the above results, coding the CSFG.

RCCSFG:=tpres[1];

#RCCSFG is for "Returned Closed Compact SFG".

return(RCCSFG);

end proc;

#The first argument to rop is the list which will be search for

145

#the second inputed argument, num. When num is found in the list, the

#index of num in the list is returned. If num is not in the list, then

#FAIL is returned.

rop:=proc(L: :list,num)

local N,k;

N:=nops(L);

for k from 1 to N do

if L[k]=num then

return(k);

end if;

end do;

return(FAIL);

end proc;

146

#rsort must accept an ascending numerical ordered list which was

#produced by the Maple "sort" command for a list. This program then

#swaps the corresponding entries in the ordered list to achieve the

#reversel ordered list. Therefore, this function is actually swapping.

#but its function here is not only swapping, that is why I did not use

#sort in maple.

rsort:=proc(L::list)

local i,k,temp,target,len,res;

k:=nops(args);

res:=args;

if (k mod 2)=0 then

len:=k/2;

else

for i from 1 to len do

target:=k+1-i;

temp:=res[i];

res[i):=res[target];

res[target] :=temp;

end do;

len:=(k-1)/2;

for i from 1 to len do

target:=k+1-i;

temp:=res[i];

res[i]:=res[target];

res[target] :=temp;

end do;

end if;

return(res)

end proc;

147

#sfgmain is the main function for the implementation of the SFG analysis.

#It call several other packages.

#the input to this function is a compact SFG obtained from the function

#called "gencsfg". The second input argument is the input variable

#in the transfer function and the third argument is the output variable

#in the transfer function.

#the output of the function is an symbolic expression of the transfer

#function.

sfgmain:=proc(ComSFG::graph,input,output)

local ccsfg,deltac,Zcoeff,tranfnum,tranfdenom;

ccsfg:=parsinp(ComSFG,input,output);

#parse the inputs and the outputs from the user and then

#generate the closed SFG according to these two arguments.

deltac:=cdc(ccsfg);

#calculates the Deltac of the closed SFG.

Zcoeff:=coeff(deltac,Z);

#extract the coefficients of Z. It is F in [6].

tranfnum:=Zcoeff;

tranfdenom:=simplify(deltac-Zcoeff*Z);

#get the transfer function

return(normal(tranfnum/tranfdenom));

end proc;

#w1loop calculates the weights of the 1st loops of the given

148

#graph. It returns an array whose entries are the weights of the 1st

#order loops corresponding to the indices of the array.

#it calls f1loop and wbranch.

w1loop:=proc(G::graph)

local wofb,L,N,wof1loop,i,M,j,current,nnode;

wofb:=wbranch(G);

#wofb is a matrix "Weight OF Branches". It is the matrix used

#to store the branch weights of the given graph G.

L:=f1loop(G);

N:=L[1];

#get the number of the 1st loops in the graph and also the

#loops themselves.

if N=O then

return ([]) ;

end if;

#if there is no 1st loops in the given graph, then empty list

#is returned.

wof1loop:=array(1 .. N,[seq(1,i=1 .. N)]);

#the array used to store the 1st-loop weights of the graph.

#It can also use list instead of array here. But if the total

#number of the 1st loop in the graph is too large, there will

149

#be an error from Maple said "ERROR: trying to assign values to

#a long list.

for i from 1 to N do

M:=nops(L[2] [i]);

for j from 1 to M-1 do

#this is used to calculate the loop weight of each 1st

#loops found before.

current:=op(j,L[2] [i]);

nnode:=op(j+1,L[2][i]);

#to get the ends of the branches. [current,nnode] is the

#directed branch in the loop.

wof1loop[i] :=wof1loop[i]*wofb[current,nnode];

#multiply the branch weights to form the loop weight.

end do;

end do;

return(eval(wof1loop));

end proc;

#wbranch accepts a graph and then outputs a matrix whose entries

#are the weights of the branches of the inputed graph and the row number

#is the tail node number and the column number is the head node number.

#Due to the fact that this program uses the concepts of head and 'Out'

#in the 'incident' command, this program is strongly limited by the

#graph. The inputed graph to ~his program must be one direction graph.

#As the result, undirected graph and two directions graph such as

#petersen is not valid to this program.

wbranch:=proc(G: :graph)

local N,weight,i,outedge,outhead,M,j,edgeweight,headnode;

150

N:=nops(vertices(G));

#the total number of vertices in the graph. NOTE that these vertices

#are supposed to be continuous numbers, such as 1,2,3 ... N . If the

#numbers are not continuous, then this program will fail on this

#case.

weight:=Matrix(N,N);

#the matrix used to store the weights of the branches. It is a

#square matrix whose row and column represents the nodes of the

#graph.

for i from 1 to N do

outedge:=convert(incident(i,G,Out),list);

outhead:=head(outedge,G);

#get the possible column numbers of the given row.

M:=nops(outedge);

for j from 1 to M do

edgeweight:=eweight(op(j,outedge),G);

headnode:=outhead[j];

weight[i,headnode]:=edgeweight;

#add each weight to the corresponding matrix element.

end do;

end do;

#Because of the fact that for the circuits which I deal with in my

#thesis, the number of nodes is not very large, therefore, the weight

#results are stored in a matrix in this program. Even for petersen(),

#there are only 10 nodes. But for a large amount number of nodes and

#loosely connected circuits, this matrix has better be changed into

#three arrays to represent its sparse matrix

return (evalm(weight));

end proc;

#pay attention to the help file of eweight that changing the edge

#weight table will directly affect the graph. This might be used

#in the function which changes the voltage source weight in a

#graph.

#weight2b itself reads in a directed graph and the edge weight

#which is needed to search in the graph. If the weight is found

151

#in the graph, then the vertex pair of the edge whose weight is the

#searched weight are returned as a set of lists. If the weight is not

#in the graph, then FAIL is returned.

#for searching the branches having voltage sources, independent

#or dependent, the the weight needs to be pre-processed by extracting

#the first char of the weight.

weight2b:=proc(G::graph,wei)

local L,indarray,entarray,counter,resbranch,N,i,rese,

M,tailnode,headnode;

L:=eweight(G);

indarray:=[indices(L)];

entarray:=[entries(L)];

counter:=O;

N:=nops(indarray);

for i from 1 to N do

if op(op(i,entarray))=wei then

counter:=counter+1;

rese[counter] :=op(op(i,indarray));

end if;

end do;

#find the edges of corresponding weight.

if counter=O then

return(FAIL);

end if;

M:=counter;

for i from 1 to M do

tailnode:=tail(rese[i],G);

headnode:=head(rese[i],G);

resbranch[i] :=[tailnode,headnode];

end do;

#got the tail node and head node of those edges.

return(M,ind2l(op(eval(resbranch))));

end proc;

end module;

152

153

Appendix B

Source Code for mna

mna: =module ()

export mnamain;

local dump, ind21, rop;

#this function dumps out the inputed values for the later usage.

#it calls another program "ind21",which covert a table to ordered list.

#user input syntax: beginput, elementname,pos,neg, (controlpos,

#controlneg,control-coefficient, varible),sp,elementname,pos,neg,

#(controlpos controlneg,control-coefficient,varible), sp,endinput.

dump: =proc ()

local gnum,enum,i,inp,totale;

if args[1]<> begininput or args[nargs]<> endinput then

error("syntax error");

end if;

gnum:=1;enum:=1;

for i from 2 to nargs-1 do

if args[i] <> sp then

inp[gnum] [enum] :=args[i];

enum: =en um+ 1 ;

else

gnurn: =gnurn+ 1 ;

enurn:=1;

end if;

end do;

totale:=gnurn;

return(totale,[seq(ind2l(op(eval(inp[i]))),i=1 .. gnurn)]);

end proc;

154

#this program calls another program "rop", which find the position of a

#given number in a list.

#the input of this function must be op(eval(T)), suppose that Tis a one

#level table.

ind2l:=proc(LL: :list)

local counter,N,temp1,temp2,k,trhs,result,position,i;

counter:=O;

N:=nops(LL);

temp1:=[seq(-1,i=1 .. N)];

temp2:=[seq(-1,i=1 .. N)];

for k from 1 to N do

templ[k]:=lhs(LL[k]);

trhs:=rhs(LL[k]);

if (trhs=NULL) then

else

temp2[k] :=-infinity;

counter:=counter+1;

temp2[k]:=trhs;

end if;

end do;

result:=[seq(-1,i=i .. N-counter)];

for k from 1 to N-counter do

position:=rop(temp1,k);

result[k]:=temp2[position];

end do;

return (result);

end proc;

155

#The first argument to this function is the list which will be search

#for the second inputed argument, num. When num is found in the list,

#the index of num in the list is returned. If num is not in the list,

#then FAIL is returned.

rop:=proc(L::list,num)

local N,k;

N:=nops(L);

for k from 1 to N do

if L[k]=num then

return (k);

end if;

end do;

return(FAIL);

end proc;

mnamain: =proc ()

local l·,nod, counter, temp, i, ty, tnum, n,A, B, vseq, cvseq,X ,k,mval, typ,

Y,cof ,cb,ce,solres,N,eq,t,h,nn;

l:=dump(args);

nod:={};

counter:=O;

temp:=1;

for i from 1 to 1[1] do

nod: ={l [2] [i] [2] , 1 [2] [i] [3]} union nod;

ty:=substring(l[2] [i][1],1);

end do;

if ty=V or ty=E or ty=H then

counter:=counter+1;

end if;

tnum:=nops(nod);

n:=tnum+counter;

A:=Matrix(n,n);

B:=Matrix(n,1);

vseq:=seq(cat(V,i),i=1 .. tnum);

vseq:=convert([vseq], Matrix);

cvseq:=Transpose(vseq);

X:=Matrix(n,1,[cvseq]);

for k from 1 to 1[1] do

mval: =l [2] [k] [1] ;

typ:=substring(mval,1);

t:=l[2] [k] [2];

h:=l[2] [k] [3];

if typ=R then

A[t,t] :=1/mval+A[t,t];

A[t,h]:=-1/mval+A[t,h];

A[h,t] :=-1/mval+A[h,t];

A[h,h] :=1/mval+A[h,h];

156

elif typ=C then

A[t,t]:=s*mval+A[t,t];

A[t,h] :=-s*mval+A[t,h];

A[h,t]:=-s*mval+A[h,t];

A[h,h]:=s*mval+A[h,h];

elif typ=L then

A[t,t]:=1/(s*mval)+A[t,t];

A[t,h]:=-1/(s*mval)+A[t,h];

A[h,t]:=-1/(s*mval)+A[h,t];

A[h,h] :=1/(s*mval)+A[h,h];

el if

el if

el if

typ=J then

B[t,1]:=-mval+B[t,1];

B[h,1]:=mval+B[h,1];

typ=G then

cof: =l [2] [k] [6] ;

cb:=l[2] [k] [4];

ce: =l [2] [k] [5] ;

A[t,cb]:=cof+A[t,cb];

A[t,ce]:=-cof+A[t,ce];

A[h,cb]:=-cof+A[h,cb];

A[h,ce]:=cof+A[h,ce];

typ=V then

nn: =tnum+temp;

A[t,nn]:=1+A[t,nn];

A[h,nn]:=-1+A[h,nn];

A[nn,t] :=1+A[nn,t];

A[nn,h] :=-1+A[nn,h];

B[nn,1] :=mval+B[nn,1];

X[nn,1] :=cat('i',mval);

temp:=temp+1;

157

elif typ=E then

Y:=l[2] [k] [7];

cof: =l [2] [k] [6] ;

nn:=tnum+temp;

cb:=l[2] [k] [4];

ce: =l [2] [k] [5] ;

A[nn,t] :=1+A[nn,t];

A[nn,h]:=-1+A[nn,h];

A[nn,cb]:=-cof+A[nn,cb];

A[nn,ce]:=cof+A[nn,ce];

A[t,nn] :=1+A[t,nn];

A[h,nn] :=-1+A[h,nn];

X[nn, 1] :=cat('i' ,mval);

temp:=temp+1;

elif typ=H then

y :=l [2] [k] [7] ;

cof: =l [2] [k] [6] ;

nn:=tnum+temp;

cb:=l[2] [k] [4];

ce: =l [2] [k] [5] ;

A[nn,t]:=l+A[nn,t];

A[nn,h] :=-1+A[nn,h];

A[nn,cb]:=-cof*Y+A[nn,cb];

A[nn,ce] :=cof*Y+A[nn,ce];

A [t ,nn] : =1 +A [t ,nn] ;

A[h,nn] :=-1+A[h,nn];

X[nn,1] :=cat('i' ,mval);

temp:=temp+1;

elif typ=F then

Y:=l[2] [k] [7];

158

cof: =l [2] [k] [6] ;

nn:=tnum+temp;

cb:=l[2] [k] [4];

ce: =l [2] [k] [5] ;

A[t,cb]:=cof*Y+A[t,cb];

A[t,ce] :=-cof*Y+A[t,ce];

A[h,cb] :=-cof*Y+A[h,cb];

A[h,ce]:=cof*Y+A[h,ce];

temp: =temp+1;

end if;

end do;

A:=DeleteRow(A,tnum .. tnum);

A:=DeleteColumn(A,tnum .. tnum);

B:=DeleteRow(B,tnum .. tnum);

X:=DeleteRow(X,tnum .. tnum);

solres:=LinearSolve(A,B);

N:=RowDimension(solres);

for i from 1 to N do

eq [i] : =X [i, 1] =solres [i, 1] ;

end do;

return(ind2l(op(eval(eq))));

end proc;

end module;

159

160

REFERENCES

[1] Martha L. Abell and James Braselton. Maple V by example. AP Professional,

Boston, 1994.

[2] A.Konczykowska, M.Bon, H.Wang, and R.Mezui-Mintsa. Symbolic analysis as a

tool for circuit optimization. IEEE, Int. Symp. Circuits Syst., May 1992.

[3] Water Banzhaf. Computer-Aided Circuit Analysis Using Spice. Prentice-Hall,

New Jersey, 1989.

[4] Joseph Carr. Op-amp Circuit Design and Applications. Blue Ridge Summit, Pa:

G/L Tab Books, 1976.

[5] Sin-Min Chang. Symbolic Analog Circuit Analysis. PhD thesis, Michigan State

University, 1992.

[6] Leon 0. Chua and Pen-Min Lin. Computer-Aided Analysis of Electronic Circuits:

Algorithms and Computational Techniques. Englewood Cliffs, N.J.:Prentice-Hall,

1975.

[7] Robert M. Corless. Essential Maple: an introduction for scientific programmers.

Springer-Verlag, New York, 1995.

[8] Thomas A. DeMassa. Electrical and Electronic Devices, Circuits, and Instru­

ments. West Publishing Company, 1989.

[9] Francisco V. Fernandez. Symbolic Analysis Techniques: application to analog

design automation. IEEE Press, New York, 1998.

161

(10] Francisco V. Fernandez, A.Rodriguez-Vazquez, and J.L.Huertas. An advanced

symbolic analyzer for the automatic generation of analog circuit design equations.

In IEEE Int. Symp. Circuits Syst., June 1991.

(11] Henrik Floberg. Symbolic Analysis in Analog Integrated Circuit Design. Kluwer

Academic, New York, 1997.

[12] G.Gielen, H. Walscharts, and W.Sansen. Issac: A symbolic simulator for analog

integrated circuits. IEEE J. Solid-State Circuits., December 1989.

[13] G.Gielen and W.Sansen. Symbolic Analysis for Automated Design of Analog

Integrated Circuit. Norwell, MA: Kluwer, 1991.

(14] G.Temes. Efficient method of fault simulation. In 20th Midwest Symp. Circuits

Syst., August 1977.

(15] Marwan M. Hassoun and Kevin S. Mccarville. Symbolic analysis of large-scale

networks using a hierarchical signal flowgraph approach. Analog Integrated Cir­

cuits and Signal Processing, March 1993.

(16] Marwan M. Hassoun and P.M.Lin. A hierarchical network approach to symbolic

analysis of large-scale networks. IEEE Transactions on Circuits and Systems -I,

April 1995.

[17] J .A.Starzyk and A. Konzykowska. Flowgraph analysis of large electronic net­

works. IEEE Transactions on Circuits and Systems, CAS-33, March 1986.

(18] Jiri and Kishore Singhal. Computer Methods for Circuit Analysis and Design.

Van Nostrand Reinhold, New York, 1994.

(19] J.R.Abrahams and G.P.Coverley. Signal Flow Analysis. Oxford, New York,

Pergamon Press, 1965.

(20] Jacob Katzenelson and Aaron Unikovski. Symbolic-numeric circuit analysis or

symbolic circuit analysis with online approximations. IEEE Transactions on

Circuits and Systems -I, January 1999.

[21] Charles S. Lorens. Flowgraphs for the Modeling and Analysis of Linear Systems.

Toronto:McGraw-Hill, New York, 1964.

[22] Clifford W. Marshall. Applied Graph Theory. Wiley-Interscience, New York,

1971.

[23] Samuel J. Mason and Henry J. Zimmerman. Electrnnic Circuits, Signals and

Systems. Wiley,New York, 1960.

[24] M.M.Hassoun. Symbolic Analysis of Large-Scale Networks. PhD thesis, Purdue

University, 1988.

[25] M.M.Hassoun and P.M.Lin. A new network approach to symbolic simulation of

large-scale networks. IEEE, Int. Symp. Circuits Syst., May 1989.

[26] M.M.Hassoun and P.M.Lin. An efficient partitioning algorithm for large-scale

circuits. IEEE Int. Symp. Circuits Syst., pages 2405-2408, May 1990.

[27] Roy A. Nicolaides and Noel Walkington. Maple: a comprehensive intrnduction.

Cambridge University Press, New York, 1996.

[28] P.M.Lin. Sensitivity analysis of large linear networks using symbolic programs.

IEEE, Int. Symp. Circuits Syst., May 1992.

[29] P.M.Lin and G.E.Alderson. Snap: a computer program for generating symbolic

network functions. Technical report, Purdue University, August 1970.

[30] Joseph Riel. Syrup-a symbolic circuit analyzer. Maple Tech, 3(1), 1996.

[31] Ralph J. Smith. Electrnnics: Circuits and Devices. John Wiley & Sons, Inc.,

1987.

[32] Paul W. Tuinenga. SPICE: A Guide To Circuit Simulation And Analysis Using

PSpice. Englewood Cliffs, N.J, Toronto: Prentice Hall, 1988.

[33] Piet Wambacq, Georges G.E.Gielen, and Willy Sansen. Symbolic network analy­

sis methods for practical analog integrated circuits: A survey. IEEE, Transaction

163

On Circuits And Systems -II, Analog And Digital Processing, 45(10), October

1998.

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

POST-SECONDARY

EDUCATION AND

DEGREES:

HONORS AND

AWARDS:

RELATED WORK

EXPERIENCE:

VITA

Xiaofang Xie

ShanXi, China

1974

The University of Western Ontario

London, Ontario

1999-2001 M.Sc.

Nanjing University of Science and Technology

Nanjing, P.R.China

1992-1996 B.E.

The University of Western Ontario

International Graduate Student Scholarship

Special University Scholarship

1999-2001

Teaching Assistant and Research Assistant

University of Western Ontario

London, Ontario

1999-2001

Electronic Engineer

Xi'an Electronic Engineering Research Institute

Xi'an, P.R.China

1996-1999

164

