
TOWARD HIGH-PERFORMANCE POLYNOMIAL SYSTEM SOLVERS BASED

ON TRIANGULAR DECOMPOSITIONS

(Spine title: Contributions to Polynomial System Solvers)

(Thesis format: Monograph)

by

Xin Li

Graduate Program

in

Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

April, 2009

c© Xin Li 2009

THE UNIVERSITY OF WESTERN ONTARIO

THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Joint-Supervisor: Examination committee:

Dr. Marc Moreno Maza Dr. Jeremy R. Johnson

Joint-Supervisor:
Dr. Éric Schost

Dr. Stephen M. Watt Dr. Yuri Boykov

Dr. Graham Denham

The thesis by

Xin Li

entitled:

Toward High-performance Polynomial System Solvers Based on

Triangular Decompositions

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Date Chair of the Thesis Examination Board

ii

Abstract

This thesis is devoted to the design and implementation of polynomial system solvers

based on symbolic computation. Solving systems of non-linear, algebraic or differ-

ential equations, is a fundamental problem in mathematical sciences. It has been

studied for centuries and still stimulates many research developments, in particular

on the front of high-performance computing.

Triangular decompositions are a highly promising technique with the potential

to produce high-performance polynomial system solvers. This thesis makes several

contributions to this effort.

We propose asymptotically fast algorithms for the core operations on which trian-

gular decompositions rely. Complexity results and comparative implementation show

that these new algorithms provide substantial performance improvements.

We present a fundamental software library for polynomial arithmetic in order to

support the implementation of high-performance solvers based on triangular decom-

positions. We investigate strategies for the integration of this library in high-level pro-

gramming environments where triangular decompositions are usually implemented.

We obtain a high performance library combining highly optimized C routines and

solving procedures written in the Maple computer algebra system. The experimental

result shows that our approaches are very effective, since our code often outperforms

pre-existing solvers in a significant manner.

iii

Acknowledgments

While my name is the only one that appears on the author list of this thesis, there

are several other people deserving recognition. I would like to express my sincere

appreciation to my supervisors, Dr. Marc Moreno Maza and Dr. Stephen M. Watt,

for their guidance, support, encouragement and friendship through my entire Ph.D.

study. I wish to extend my appreciation and gratitude to Dr. Marc Moreno Maza

for introducing me to these interesting and challenging projects.

I would also like to express my sincere appreciation to my dear colleagues Éric,

Yuzhen, Wei, Changbo, Filatei, Liyun, Raqeeb, and all the members from the

ORCCA lab for their great help to my research.

Finally, I hope to share my happiness of the achievement from my Ph.D. study with

my dear parents, sister and all my loved ones.

Without anyone of you, I couldn’t reach the point where I am today. Thank you

guys!

iv

Contents

Certificate of Examination ii

Abstract iii

Acknowledgments iv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Directions . 3

1.3 Contributions . 6

1.4 Outline . 7

2 Background 8

2.1 Pre-existing Fast Algorithms . 8

2.2 Implementation Environment . 17

2.3 Triangular Decompositions . 20

2.3.1 Polynomial ideal and radical 20

2.3.2 Zero-divisor, regular element, zero set 21

2.3.3 Triangular set and regular chains 21

2.3.4 Subresultants . 22

2.3.5 Regular GCD . 25

3 Foundational Fast Polynomial Arithmetic and its Implementation 26

3.1 Overview . 26

3.2 High Level Programming Environment 28

3.2.1 The Aldor environment . 29

3.2.2 The AXIOM environment . 29

3.3 Implementation Techniques: the Generic Case 30

3.3.1 Efficiency-critical operations in Aldor 30

v

3.3.2 Extended Euclidean algorithm 34

3.4 Implementation Techniques: the Non-generic Case 35

3.4.1 Data representation . 35

3.4.2 The implementation of FFT 36

3.4.3 SSE2, loop unrolling, parallelism 37

3.5 Performance . 40

3.5.1 FFT multiplication . 40

3.5.2 Multivariate multiplication . 41

3.5.3 Power series inversion . 43

3.5.4 Fast extended Euclidean algorithm 44

3.6 Summary . 44

4 Efficient Implementation of Polynomial Arithmetic in a Multiple-

level Programming Environment 45

4.1 Overview . 45

4.2 The SPAD Level . 47

4.3 The Lisp Level . 48

4.4 The C Level . 50

4.5 The Assembly Code Level . 51

4.5.1 Controlling register allocation 51

4.5.2 Using architecture specific features 52

4.6 Experimentation . 52

4.6.1 Benchmarks for the Lisp level implementation 52

4.6.2 Benchmarks for the multi-level implementation 54

4.7 Summary . 56

5 How Much Can We Speed-up the Existing Library Code in AXIOM

with the C Level Implementation? 57

5.1 Overview . 57

5.2 Software Overview . 58

5.2.1 AXIOM polynomial domain constructors 58

5.2.2 Finite field arithmetic . 59

5.2.3 Polynomial arithmetic . 61

5.2.4 Code connection . 61

5.3 Experimentation . 61

5.4 Summary . 64

vi

6 Fast Arithmetic for Triangular Sets: from Theory to Practice 65

6.1 Overview . 65

6.2 Algorithms . 68

6.2.1 Notation and preliminaries . 68

6.2.2 The main algorithm . 71

6.2.3 The case of univariate polynomials 73

6.3 Implementation Techniques . 79

6.4 Experimental Results . 83

6.4.1 Comparing different strategies 83

6.4.2 Comparing implementations 87

6.4.3 The deformation-based algorithm 89

6.5 Summary . 89

7 Fast Algorithms for Regular GCD Computations and Regularity

Test 91

7.1 Overview . 91

7.2 Specification . 94

7.3 Regular GCDs . 95

7.4 A Regular GCD Algorithm . 98

7.4.1 Case where r ∈ sat(T): the algorithm RGSZR 98

7.4.2 Case where r 6∈ sat(T) . 100

7.5 Implementation and Complexity . 100

7.5.1 Subresultant chain encoding 101

7.5.2 Solving two equations . 102

7.5.3 Implementation of Regularize 103

7.6 Experimentation . 105

7.6.1 Resultant and GCD . 106

7.6.2 Regularize . 108

7.7 Summary . 109

8 The Modpn Library: Bringing Fast Polynomial Arithmetic into

Maple 112

8.1 Overview . 112

8.2 A Compiled-Interpreted Programming Environment 114

8.2.1 The C level . 115

8.2.2 The Maple level . 116

8.2.3 Maple and C cooperation . 116

vii

8.3 Bivariate Solver . 118

8.3.1 Subresultant sequence and GCD sequence 119

8.3.2 Algorithm . 121

8.3.3 Implementation . 122

8.4 Two-equation Solver and Invertibility Test 124

8.4.1 Subroutines . 124

8.4.2 Two-equation solver . 125

8.4.3 Invertibility test . 126

8.5 Experiments . 127

8.5.1 Bivariate solver . 128

8.5.2 Two-equation solver . 131

8.5.3 Invertibility test . 132

8.5.4 Profiling information for the solvers 136

8.6 Summary . 138

9 Multithreaded Parallel Implementation of Arithmetic Operations

Modulo a Triangular Set 139

9.1 Overview . 139

9.2 Algorithms . 140

9.3 Implementation . 141

9.3.1 Multidimensional FFT . 141

9.3.2 Two traversal methods for normal form 142

9.3.3 Parallelizing normal form . 146

9.4 Benchmarks . 148

9.5 Summary . 153

10 Conclusion 154

Bibliography 155

Curriculum Vitae 163

viii

List of Algorithms

1 The Montgomery Integer Division trick 9

2 Power Series Inversion of f to Precision ℓ 12

3 Fast Division with Remainder Algorithm 13

4 Kronecker Multiplication . 17

5 Modular Reduction . 72

6 MulSplit . 75

7 Lift Roots . 77

8 MulUnivariate . 78

9 Modular Generic Solve . 121

10 Modular Solve . 123

11 Modular Generic Solve N-variable . 126

12 Invertibility Test . 127

13 Normal Form . 143

14 Fast Univariate Division . 144

15 Fast Coefficients Reduction . 144

16 Normal Form 2 . 144

17 Iterative Reduction . 144

18 Fast Univariate Division 2 . 145

19 Iterative Reduction 2 . 145

20 Parallel Normal Form . 146

21 Creating Tasks . 146

22 Dump Thread-pool . 146

23 Parallelism in Bottom-up Level-by-level Method 147

24 Parallelism in Bottom-up Level-by-level Method Variant. 148

ix

List of Figures

2.1 Algebraic categories’ hierarchy in AXIOM (partial). 19

3.1 Power series inversion: naive vs. optimized implementation vs. multi-

plication, 27-bit prime. 31

3.2 Power series inversion: space usage of naive vs. optimized implemen-

tations, 27-bit prime. 32

3.3 FFT multiplication: GMP functions vs. double precision integer func-

tions vs. CRT, 64 bit prime. 37

3.4 FFT multiplication: generic assembly vs. SSE2 assembly, 27-bit prime. 38

3.5 FFT multiplication: inlined vs. non-inlined, 27-bit prime. 40

3.6 Multiplication modulo a 27-bit prime. 41

3.7 Multiplication modulo a 64-bit prime. 41

3.8 Bivariate multiplication, 27-bit prime. 42

3.9 Bivariate multiplication, 64-bit prime. 42

3.10 Four-variable multiplication, 64-bit prime. 43

3.11 Power series inversion: Aldor vs. NTL vs. MAGMA, 27-bit prime. . . 43

3.12 EEA: ALDOR vs. NTL vs. MAGMA, 27-bit prime. 44

4.1 Benchmark of van Hoeij and Monagan’s algorithm 55

5.1 Resultant computation in Z/pZ[x] . 63

5.2 Square-free factorization in Z/pZ[x] 63

5.3 Irreducible factorization in Z/pZ[x] 63

5.4 Resultant computation in (Z/pZ[x]/〈m〉)[y] 63

5.5 Irreducible factorization in (Z/pZ[x]/〈m〉)[y] 64

5.6 Square-free factorization in Z/pZ[x] 64

6.1 TFT vs. FFT. 81

6.2 TFT vs. FFT. 84

x

6.3 Multiplication in L1, all strategies, using FFT multiplication. 85

6.4 Multiplication in L2, fast without precomputations vs. fast using

precomputations (top) and plain vs. fast using precomputations. . 85

6.5 Multiplication in L2, time vs. d = d1d2, Plain (left) and Fast using

precomputations (right). 86

6.6 Multiplication in L3, plain vs. fast, patterns 1–3 from top left to

bottom. 86

6.7 Multiplication in L3, pattern 3, Magma vs. our code. 87

6.8 Inverse in L3, pattern 1, Maple vs. our code. 88

6.9 GCD computations L3[X4], pure AXIOM code vs. combined C-

AXIOM code. 89

6.10 General vs. specialized algorithm. 90

7.1 Resultant and GCD random dense 2-variable. 106

7.2 Resultant and GCD random dense 3-variable. 108

7.3 Resultant and GCD random dense 4 variable. 108

7.4 Resultant and GCD random dense 3-variable. 109

8.1 The polynomial data representations in modpn. 115

8.2 Bivariate solver dense case. 129

8.3 Bivariate solver dense case. 129

8.4 Bivariate solver non-equiprojectable case. 130

8.5 Bivariate solver non-equiprojectable case. 131

8.6 Bivariate case: timings, p = 0.98. 133

8.7 Bivariate case: timings, p = 0.5. 134

8.8 Bivariate case: time spent in conversions. 134

8.9 Trivariate case: time spent in conversions. 135

8.10 Bivariate solver: profiling, p = 0.5. 137

9.1 Method 0 vs. method 1 . 149

9.2 Method 0 vs. method 2 . 150

9.3 Method 0 vs. method 3 . 151

9.4 Method 0 vs. method 3 with TFT implementation. 152

xi

List of Tables

7.1 Random dense 2-variable case. 107

7.2 Random dense 3-variable case. 107

7.3 Non-equiprojectable 2-variable case. 110

7.4 Non-equiprojectable 3-variable case. 110

8.1 Bivariate solver dense case. 130

8.2 Bivariate solver non-equiprojectable, us vs. Maple. 131

8.3 Bivariate solver non-equiprojectable case. 132

8.4 Solving two equations in three variables 132

8.5 Trivariate case: timings, p = 0.98. 135

8.6 Trivariate case: timings, p = 0.5. 136

8.7 Bivariate solver: profiling, p = 0.98. 137

8.8 Two-equation solver: profiling. 137

9.1 List of parallel strategies. 148

9.2 Selected data points from Figure 9.1 . 149

9.3 Selected data points from Figure 9.2 . 150

9.4 Selected data points from Figure 9.3 . 151

9.5 Selected data points from Figure 9.4 . 152

9.6 Larger benchmark 1. 152

9.7 Larger benchmark 2. 153

xii

1

Chapter 1

Introduction

1.1 Motivation

This thesis is devoted to the design and implementation of polynomial system solvers

based on symbolic computation. Solving systems of non-linear, algebraic or differen-

tial equations is a fundamental problem in mathematical sciences. It has been studied

for centuries and still continues to stimulate research.

Solving polynomial systems is also a driving subject for symbolic computation.

In many computer algebra systems, the solve command involves nearly all libraries

in the system, challenging the most advanced operations on matrices, polynomials,

algebraic numbers, polynomial ideals, etc.

Symbolic solvers are powerful tools in scientific computing: they are well suited

for problems where the desired output must be exact and they have been applied

successfully in mathematics, physics, engineering, chemistry and education, with im-

portant outcomes. See Chapter 3 in [48] for an overview of these applications. While

the existing computer algebra systems have met with some practical success, symbolic

computation is still under-utilized in areas like mathematical modeling and computer

simulation. Part of this is due to the fact that much larger and more complex com-

puters are required - often beyond the scope of existing systems.

The implementation of symbolic solvers is, indeed, a highly difficult task. Sym-

bolic solvers are extremely time-consuming when applied to large problems. Even

worse, intermediate expressions can grow to enormous size and may halt the com-

putations, even if the result is of moderate size [45]. Therefore, the implementation

of symbolic solvers requires techniques that go far beyond the manipulation of al-

gebraic or differential equations; these include efficient memory management, data

compression, parallel and distributed computing, etc.

2

The development of polynomial system solvers, as computer programs based on

symbolic computation, started four decades ago with the discovery of Gröbner bases

in the Ph.D. thesis of B. Bucherger [20], whereas efficient implementation capable of

tackling real-world applications is very recent [39].

Triangular decompositions are an alternative way for solving systems of algebraic

equations symbolically. They focus on extracting geometrical information from the

solution set V (F) of the input polynomial system F rather than insisting on revealing

algebraic properties as Gröbner bases do. A triangular decomposition of V (F) is given

by finitely many polynomial sets, each of them with a triangular shape and so-called a

triangular set1; these sets describe the different components of V (F), such as points,

curves, surfaces, etc. Triangular decompositions were invented by J.F. Ritt in the 30’s

for systems of differential polynomials [81]. Their stride started in the late 80’s with

the method of W.T. Wu dedicated to algebraic systems [91]. Different concepts and

algorithms extended the work of Wu. At the end of 90’s the notion of a regular chain,

introduced independently by M. Kalkbrener in [55] and by L. Yang and J. Zhang

in [92], led to important algorithmic improvements, such as the Triade algorithm (for

TRIAngular Decompositions) by M. Moreno Maza [75]. The era of polynomial system

solvers based on triangular decompositions could commence.

Since 2000, exciting complexity results [29] and algorithms [27] have boosted the

development of implementation techniques. From these works, triangular decomposi-

tions appear at the start of this Ph.D. thesis as highly promising techniques with the

potential to produce high-performance solvers. The goals of the proposed research

were then the following ones.

(1) Develop a high performance software library for polynomial arithmetic in order

to support the implementation of high-performance solvers based on triangular

decompositions.

(2) Integrate these routines in high-level programming environments where trian-

gular decompositions are implemented.

(3) Design theoretically and/or practically efficient algorithms, based on the asymp-

totically fast algorithms and modular methods, for the key routines on which

triangular decompositions rely.

(4) Evaluate the performances, including speed-up factors and bottlenecks, of this

approach and compare it with the pre-existing polynomial system solvers.

1This notion extends to non-linear systems that of a triangular system, well-known in linear
algebra.

3

With these goals in mind, we have developed the research directions described in

the next section.

1.2 Research Directions

Polynomial arithmetic is at the foundation of our research subject. Since the early

days of computer algebra systems, one of the main focuses has been on sparse polyno-

mial arithmetic and classical algorithms (by opposition to asymptotically fast ones).

A tentative explanation for this historical fact is given in the overview of Chapter 3. In

the last decade, asymptotically fast algorithms for dense polynomial arithmetic have

been proved to be practically efficient. Among them are FFT-based algorithms which

are well adapted for supporting operations like the Euclidean division, Euclidean Al-

gorithm and their variants which are at the core of methods for computing triangular

decompositions. Indeed, these types of calculations tend to make intermediate data

dense even if input and output polynomials are sparse; thus “dense methods” like

FFT-based polynomial multiplication and division fit well in this context. It was,

therefore, necessary to invest significant effort on these algorithms, which we actually

started in the Masters thesis [64]. The theoretical and experimental results from this

thesis are beyond our initial expectation.

Certainly, fast algorithms and high-performance are always popular topics. The

SPIRAL [79] and FFTW [42] projects are well-known high-performance software

packages based on FFT techniques for numerical computation and with application

to areas like digital signal processing. A central feature of these packages is automatic

code tuning for generating architecture-aware highly efficient code. In the case of our

library for symbolic computation with polynomials, this feature remains future work.

FFTs in computer algebra are primarily performed over finite fields leading to a range

of difficulties which do not occur over the field of complex numbers. For instance,

primitive roots of unity of large orders may not always exist in finite fields, making

the use of the Cooley-Tukey Algorithm [25] not always possible. For this reason and

others, such as performance considerations, each FFT-based polynomial operation

(multiplication, division, evaluation, interpolation, etc.) has several implementations.

Although we have not reached yet the level of automatic tuning, hand-tuning was

used a lot. We have considered specific hardware features such as memory hierarchy,

pipelining, vector instructions. We tried to write compiler-friendly code, relying on

compiler optimization to generate highly efficient code. We have also considered

the parallelization of polynomial arithmetic (mainly multiplication) and higher-level

4

operations (normal form computations). Section 3.3 and Section 3.4 describe our

implementation whereas Section 3.5 at Page 40 presents comparative experimental

results. Chapter 9 is dedicated to the parallelism study.

Developing a fundamental high-performance software library for polynomial arith-

metic appeared to be a necessary task. At the time of starting this work, there were

no such packages that we could extend or build on. All the existing related software

had either technical limitations (as was the case for the NTL [6] library, limited by its

univariate arithmetic and the characteristic of its fields of coefficients) or availability

issues (as was the case for the Magma [5] computer algebra system, that doesn’t

make it a research tool which is not open source). Developing this fundamental high-

performance software library was also motivated by the desire of adapting it to our

needs. For instance, when we started to develop higher-level algorithms, such as nor-

mal form computations, see Chapter 6, adjustments in our multivariate multiplication

had to be done.

Implementing a polynomial system solver based on triangular decompositions from

scratch was, however, out of question. First, because better subroutines for these de-

compositions had to be designed, such as those presented in Chapters 6 and 7, before

engaging an implementation effort. Secondly, because the amount of coding would

simply be too large for work of this scale. Polynomial system solvers such as FGb [40]

or the command Triangularize in the RegularChains library [63] are the results of

20 and 16 years of continuous work respectively! Last, but not least, implementation

techniques and programing environments are evolving quickly these days, stimulated

by progress in hardware acceleration technologies. In order to avoid developing code

that could quickly become obsolete, we were looking into strategies driven by code

modularity and reusability. This led us to consider integrating our fundamental high-

performance software library for polynomial arithmetic, written in the C programing

language, into higher-level algorithms written in the computer algebra systems AX-

IOM and Maple. (These are presented in Section 3.2.2 and Section 8.2.3 respec-

tively.) The overhead of data conversion between different polynomial representations

from different language levels may be significant enough to slow down the whole com-

putation. Thus, this technique of mixing code brings extra difficulties to achieve high

performance for those applications involving frequent cross language-level data map-

ping (see Section 3.4.1 and Section 8.2 for details). Each of AXIOM and Maple

has its specifies on this front.

AXIOM is a multiple-language-level system (see Section 2.2 for details). We took

advantage of this feature for combining in the same application different polynomial

5

data types realized at different language levels. Chapter 4 reports on this investigation

and stresses the fact that selecting suitable polynomial data types is essential toward

high performance implementation.

With Maple, we have focused on the integration of our C library with high-level

algorithms. Our goal was to provide support and speed-up for the RegularChains

library and its commands for computing triangular decompositions of polynomial

systems. Since the technique of mixing code is much more challenging in the context

of Maple than within AXIOM (See Chapter 8 for details) this objective is not

guaranteed to be successful. In fact, we asked ourselves the following questions while

designing this mixing code framework: to which extent can triangular decomposition

algorithms (implemented in the Maple RegularChains library) take advantage of

fast polynomial arithmetic (implemented in C)? What is a good design for such hybrid

applications? Can an implementation based on this strategy outperform other highly

efficient computer algebra packages? Does the performance of this hybrid C-Maple

application comply to its complexity analysis? In Chapter 8, we will provide the

answers to these questions.

Once our fundamental high-performance software library for polynomial arith-

metic and its interface with AXIOM and Maple have been in place, we could start

investigating the third objective of this PhD work: developing more efficient algo-

rithms for the core operations involved in computing triangular decompositions, with

an emphasis in dimension zero. (see Section 2.3 for the definition of triangular de-

compositions). We started with multiplication modulo a triangular set in Chapter 6,

followed by regular GCD computations and regularity test with respect to a regular

chain, see Chapter 7.

Triangular decompositions rely intensively on polynomial arithmetic operations

(addition, subtraction, multiplication and division) modulo ideals given by triangu-

lar sets in dimension zero or regular chains in positive dimension. (see Chapter 2 for

these terms.) Modular multiplication and division are expensive (often dominant) op-

erations in terms of computational time when computing triangular decompositions.

Under certain assumptions, the modular division can be achieved by two modular

multiplications as reported in Section 2.1 in the fast division algorithm. Thus, mod-

ular multiplication is unarguably a “core” operation.

Triangular decompositions rely also on an univariate and recursive representation

of polynomials. The motivation is to reduce solving systems of multivariate polyno-

mials to univariate polynomials GCD computations. This reduction is achieved at

the price of working over non-standard algebraic structures, more precisely modulo

6

the so-called regular chains. We have designed and implemented the first algorithm

for this kind of GCD computations which is based on asymptotically fast polynomial

arithmetic and modular techniques, while not making any restrictive assumptions on

the input. Chapter 7 presents this algorithm.

We designed these high-level operations in a way that our previous fast polynomial

arithmetic implementation could efficiently be used. Certainly, these new algorithms

are also better than existing ones in terms of complexity. All our reported new

implementations and algorithms from this thesis have been finalized as a solid software

library modpn with its Maple-level wrapper FastArithmeticTools (see Section 8.2):

a C-Maple library dedicated to fast arithmetic for multivariate polynomials over

prime field including fundamental operations modulo regular chains in dimension

zero.

1.3 Contributions

As mentioned in Section 1.1 one of our motivations of this research is to design effi-

cient algorithms, based on asymptotically fast algorithms and modular methods for

the key routines. At the end of this research we have designed a set of asymptoti-

cally fast algorithms for core operations supporting polynomial system solvers based

on triangular decompositions. These are fast multiplication modulo a triangular set

(modular multiplication, see Chapter 6), fast regular GCD computation and regular-

ity test, see Chapter 7. As a byproduct, we have obtained highly efficient algorithms

for solving bivariate polynomial systems and multivariate systems of two equations,

see Chapters 7 and 8. Our implementation effort for polynomial arithmetic over fi-

nite fields has led to an improved version of the so-called Montgomery’s trick [74].

More precisely, we have obtained a fast integer reduction trick when the modulus is

a Fourier prime number (see Section 6.3).

We have systematically investigated and documented a set of suitable implementa-

tion techniques adapted for asymptotically fast polynomial algorithms and operations

supporting triangular decompositions (see Section 3.3, Section 3.4; Section 4.2-4.5;

Section 5.2, Section 6.3, Section 8.2, and Chapter 9).

As mentioned in Section 1.1 another motivation for this research is to develop

a foundational software library for polynomial arithmetic in order to support the

implementation of high-performance solvers. At the end of this work, besides the

theoretical contributions we have also provided a solid software result: the modpn

library. The library modpn consists of a set of highly optimized C implementations

7

including the base-level routines and operations modulo regular chains. Essentially,

all the research results reported in this thesis have been implemented in the modpn

library. The modpn library has been integrated into the computer algebra system

Maple (version 13). Concretely, this provides Maple users with fast arithmetic for

multivariate polynomials over the prime fields Fp, where p is a machine word-size

prime number. While being easy to use, it mainly focuses on high performance.

We present the experimental results in Chapter 7 and in Chapter 8 to compare

our library with pre-existing Maple and Magma implementations. The experimen-

tal result show that our approaches are very effective, since they often significantly

outperform pre-existing implementations. The experimentation effort meets our last

motive mentioned in Section 1.1. Namely, we have systematically evaluated the per-

formance, including speed-up factors and bottlenecks, of this approach and compared

it with the pre-existing polynomial system solvers. For operations such as Regular

GCD, Regularity Test, our new algorithm implementation has a factor of hundreds

faster than pre-existing ones.

1.4 Outline

In Chapter 2, we provide an overview of the background knowledge related to this re-

search, including implementation environment and existing asymptotically fast poly-

nomial algorithms. Chapter 3 is the starting point of this research. In this chapter

we investigate the existing fundamental fast polynomial algorithms; we demonstrate

that by using suitable implementation techniques, these fast algorithms can outper-

form the classical ones in a significant manner; moreover, the new implementation can

directly support existing popular computer algebra systems such as AXIOM (see Sec-

tion 2.2), thus can speed up related higher-level packages. In Chapter 4 and Chapter 5

we focus on our new implementation strategies for asymptotically fast polynomial al-

gorithms. More specifically, we investigate the implementation techniques suited to

the multiple-level language environment in AXIOM. In Chapters 6, 7, and 8, we

present the new fast algorithms we have developed and their implementation result

which is integrated in Maple version 13. The new algorithms include modular mul-

tiplication, regular GCD, bivariate solver, two-equation solver and regularity test. In

Chapter 9, we present our parallel implementation of efficiency-critical operations for

fast polynomial arithmetic.

8

Chapter 2

Background

In this chapter we introduce asymptotically fast polynomial arithmetic, our imple-

mentation environment and the concept of a triangular decomposition.

2.1 Pre-existing Fast Algorithms

In this section, we describe, or give references to, a set of basic fast algorithms we have

implemented. These algorithms are low-level operations in the sense that they will

be used in almost all upper level algorithms reported in this thesis. We will describe

our new asymptotically fast algorithms in Chapters 6, 7, and 8. In the following

text, all rings are commutative with unity; we denote by M a multiplication time in

Definition 1.

Definition 1. A multiplication time is a map M : N → R, where R is the field of

real numbers, such that:

• For any ring R, polynomials of degree less than d in R[X] can be multiplied in

at most M(d) operations (+,×) in R.

• For any d ≤ d′, the inequality M(d)
d
≤ M(d′)

d′
holds.

Examples of multiplication times are:

• Classical: 2d2;

• Karatsuba: C dlog 2(3) with some C ≥ 9;

• FFT over an arbitrary ring: C d log(d) log(log(d)) for some C ≥ 64 [21].

9

Note that the FFT-based multiplication in degree d over a ring that supports the

FFT (that is, possessing primitive n-th root of unity, where n is a power of 2 greater

than 2d) can run in C d log(d) operations in R, with some C ≥ 18.

The Montgomery integer division trick. Montgomery integer division trick [74] is a

fast way to compute integer division. Since our algorithms are mostly over Z/pZ,

operations modulo prime number p are essential. We have designed various versions

of this trick in order to improve performances as reported in Sections 5.2.2 and 6.3.

Here we give the original Montgomery trick. The principle of this trick is that instead

of computing an Euclidean division, it reduces the input integer w.r.t to a number

which is power of 2. In machine arithmetic, an integer can be divided by a power of

2 can simply by bitwise operations which are very cheap.

Algorithm 1 The Montgomery Integer Division trick

Input: Z, R, v, V ∈Z, where v is the modulus and V ·v≡ − 1 mod R, assume
Z < R·v, R < v, R usually chosen to be some power of 2, and GCD(R, v) = 1.

Output: T = Z·R−1 rem v.

1 A = V ·Z
2 B = A rem R
3 C = B·v
4 T = Z + C quo R
5 if v < T then T = T − v
6 return T

Fast Fourier transform and truncated Fourier transform. The fast Fourier transform

(FFT) is a fast algorithm for calculating the discrete Fourier transform (DFT) of a

function, see [44] for details.

This algorithm was essentially known to Gauss and was rediscovered by Cooley

and Turkey in 1965. In symbolic computations, the FFT algorithm has many appli-

cations [36]. The most famous one is the fast multiplication of polynomials. Even if

the principles of these calculations are quite simple, their practical implementation is

still an active area of investigation.

The principle of FFT-based univariate polynomial multiplication is the following.

We consider two polynomials f =
∑k=n−1

k=0 akx
k and g =

∑k=n−1
k=0 bkx

k over some field

K. We do not need to assume that they have the same degree; if they do not have

the same degree, we add a “zero leading coefficient” to the one of smaller degree.

10

We want to compute the product fg =
∑k=2n−2

k=0 ck. The classical algorithm would

compute the coefficient ck of fg by

ck =
∑i=k

i=0
aibk−i (2.1)

for k = 0, . . . , 2n− 2, amounting to O(n2) operations in K.

If the values of f and g are known at 2n−1 different points of K, say x0, . . . , x2n−2,

then we can obtain the product fg by computing f(x0)g(x0), . . . , f(x2n−2)g(x2n−2)

amounting to O(n) operations in K. The second idea is to use points x0, . . . , x2n−1 in

K such that

(i) evaluating f and g at these points can be done in nearly linear time cost, such

as O(nlog(n)),

(ii) interpolating the values f(x0)g(x0), . . . , f(x2n−2)g(x2n−2) can be done in nearly

linear time, that is O(nlog(n)) again.

Such points x0, . . . , x2n−2 do not always exist in K. However, there are techniques to

overcome this limitation (essentially by considering a field extension of K where the

desired points can be found). In the end, this leads to an algorithm for FFT-based

univariate polynomial multiplication which runs in O(nlog(n)log(log(n))) operations

in K [21]. This is the best known algorithm for arbitrary K.

In this thesis, we restrict ourselves to the case where we can find points

x0, . . . , x2n−2 in K satisfying the above (i) and (ii). Most finite fields possess such

points for n small enough. (Obviously n must be at most equal to the cardinality of

the field.) More precisely, for n, p > 1, where p is a prime, the finite field Z/pZ has

a primitive m-th root of unity if and only if m divides p − 1. (Recall that ω ∈ K is

a primitive m-th root of unity of the field K if and only if ωm = 1 and ωk 6= 1 for

0 < k < m). If Z/pZ has a primitive m-th root of unity ω, m > 2n− 2

• then we use xk = ωk for k = 0, . . . , 2n− 2,

• Step (i) is the FFT of f and g at ω (to be detailed in the next section),

• Step (ii) is the FFT of fg
n

at ω−1.

Again, we refer to [44] for more details.

In [51], J. van der Hoeven reported a truncated version of the classical fast

Fourier transform. It is referred as the truncated Fourier transform (TFT) in the

literature. When applied to polynomial multiplication, this algorithm has the nice

11

property of eliminating the jumps in the complexity at powers of two. Essentially,

this algorithm avoids computing the leading zeros during the DFT/evaluation and

inverse-DFT/interpolation stages. We have implemented this algorithm which in-

deed removed the stair-case like timing curves from FFT based methods. However,

this algorithm requires more complicated programming structures which may curb

compilers to apply certain loop optimization techniques, whereas the standard itera-

tive FFT implementation has a much simpler nested loop structure which is easy for

compiler to optimize the code.

Power series inversion. Power series inversion using Newton iteration method pro-

vides a fast method of computing multiplicative inverses. Given a commutative ring

R with a 1 and ℓ ∈ N, it computes the inverse of the polynomial f ∈ R[x], such that,

f(0) = 1 and deg f < ℓ, modulo xℓ. The Newton iteration is used in numerical anal-

ysis to compute successive approximations to solutions of φ(g) = 0. From a suitable

initial approximation g0, subsequent approximations are computed using:

gi+1 = gi −
φ(gi)

φ′(gi)
(2.2)

where φ
′

is the derivative of φ. This corresponds to intersecting the tangent with an

axis or, in other words, replacing φ by its linearization at that point. If we apply

this to the problem of finding a g ∈ R[x], given ℓ ∈ N with f(0) = 1, satisfying

f g ≡ 1 mod xℓ, we want to approximate a root of 1/g−f = 0. The Newton iteration

step becomes:

gi+1 = gi −
1/gi − f
−1/g2

i

= 2 gi − f g2
i (2.3)

.

Proposition 1 shows that this method converges quickly to a solution, also in this

algebraic setting.

Proposition 1. Let R be a ring (commutative with 1), f, g0, g1, . . . ∈ R[x], with

f(0) = 1, g0 = 1, and gi+1 ≡ 2 gi − f g2
i mod x2i+1

, for all i. Then f gi ≡ 1 mod x2i

for all i ≥ 0.

Proof. The proof is by induction on i. For i = 0 we have

f g0 ≡ f(0)g0 ≡ 1·1 ≡ 1 mod x20

(2.4)

12

For the induction step, we find

1− f gi+1 ≡ 1− f (2 gi− f g2
i) ≡ 1− 2 f gi + f 2 g2 ≡ (1− f gi)2 ≡ 0 mod x2i+1

(2.5)

Based on the above, we obtain the following Algorithm 2 for computing the inverse

of f mod xℓ.

Algorithm 2 Power Series Inversion of f to Precision ℓ

Input: f ∈ R[x] such that f(0) = 1, ℓ ∈ N such that deg(f) < ℓ and R[x] in variable
x is a ring of power series.

Output: g ∈ R[x] such that f g ≡ 1 mod xℓ. Runs in 3M(ℓ) + 0(ℓ) operations in R.
Recall from Definition 1 that M is multiplication time whose value is dependent
on the multiplication algorithm used.

Inv(f, ℓ) ==
1 g0 := 1
2 r := ⌈ log2(ℓ) ⌉
3 for i = 1..r repeat gi := (2gi−1 − fgi−1

2) mod x2i

4 return gr

Proposition 2. If ℓ is a power of 2, then Algorithm 2 uses at most 3M(ℓ) +O(ℓ) ∈
O(M(l)) arithmetic operations in R [44, Ch. 9].

Proof. The correctness stems from Proposition 1 which concludes that

f gi ≡ 1 mod x2i

(2.6)

for all i ≥ 0. In line 3, all powers of x greater than 2i can be dropped, and since,

gi ≡ gi−1 (2− fgi−1) ≡ gi−1 mod x2i−1

(2.7)

the powers of x less than 2i−1 can also be dropped.

The cost for one iteration of line 3 is M(2i−1) for the computation of gi−1
2, M(2i) for

the product f gi−1
2 mod x2i

, and then the negative of the upper half of fgi−1
2 modulo

x2i

is the upper half gi, taking 2i−1 operations. Thus we have M(2i)+M(2i−1)+2i−1 ≤
3
2
M(2i) + 2i−1, resulting in a total running time:

13

∑

1≤i≤r

3

2
M(2i) + 2i−1 ≤ (

3

2
M(2r) + 2r−1)

∑

1≤i≤r

2i−r < 3 M(2r) + 2r = 3 M(ℓ) + ℓ (2.8)

since 2M(n) ≤ M(2n) for all n ∈ N (see Definition 1 at Page 8)

Fast division. Using fast multiplication enables us to write a fast Euclidean division

for polynomials, using Cook-Sieveking-Kung’s approach through power series inver-

sion [43, Chapter 9]. Given two polynomials a and b, both ∈ R[x] and b monic, where

R is a ring (commutative with 1); assuming that a and b have respective degrees

m and n, with m ≥ n, we can compute the polynomials q and r in R[x] satisfying

a = q b + r and deg(r) < deg(b). Using standard techniques this takes O(n2) op-

erations in R. Equipped with a fast power series inversion, it can be improved to

O(M(n)) operations in R [44].

We define A and B as the reversals of a and b:

A(x) = xm a(1/x) (2.9)

B(x) = xn b(1/x) (2.10)

With the inverse C ≡ 1/B(x) mod xm−n+1, we obtain q as the reversal of Q from the

subsequent multiplication:

Q(x) ≡ A(x)C(x) mod xm−n+1 (2.11)

The full algorithm is shown in Algorithm 3.

Algorithm 3 Fast Division with Remainder Algorithm

Input: a, b ∈ R[x], where R is a ring (commutative, with 1) and b 6= 0 is monic

Output: q, r ∈ R[x] such that a = qb+ r and deg r < deg b

FDiv(a, b) ==

1: s := Rev(b)−1 mod xdeg(a)−deg(b)+1

2: Q := Rev(a)s mod xdeg(A)−deg(T1)+1

3: q := Rev(Q)
4 r := a− b q
5: return (q, r)

14

Kronecker’s substitution. Let A be a commutative ring with units. Let x1 < x2 <

· · · < xn be n ordered variables and let α1, α2, . . . , αn be n positive integers with

α1 = 1. We consider the ideal I of A[x1, x2, . . . , xn] generated by x2 − xα2

1 , x3 −
xα3

1 , . . . , xn − xαn

1 . Define α = (α1, α2, α3, . . . , αn). Let Ψα be the canonical map

from A[x1, x2, . . . , xn] to A[x1, x2, . . . , xn]/I, which substitutes the variables x2, x3,

. . . , xn with xα2

1 , xα3

1 , . . . , xαn

1 respectively. We call it the Kronecker map of α.

This map transforms a multivariate polynomial of A[x1, x2, . . . , xn] into an univariate

polynomial of A[x1]. It has the following immediate property.

Proposition 3. The map Ψα is a ring-homomorphism. In particular, for all a, b ∈
A[x1, x2, . . . , xn] we have

Ψα(ab) = Ψα(a)Ψα(b). (2.12)

Therefore, if the product Ψα(a)Ψα(b) has only one pre-image by Ψα, one can

compute the product of the multivariate polynomials a and b via the product of the

univariate polynomials Ψα(a) and Ψα(b). This is advantageous, when one has at hand

a fast univariate multiplication. In order to study the pre-images of Ψα(a)Ψα(b) we

introduce additional material.

Let d1, d2, . . . , dn be non-negative integers. We write d = (d1, d2, . . . , dn) and we

denote by ∆n the set of the n-tuple e = (e1, e2, . . . , en) of non-negative integers such

that we have ei ≤ di for all i = 1, . . . , n. We define

δn = d1 + α2d2 + · · ·+ αndn and δ0 = 1, (2.13)

and we consider the map ψd defined by

ψd :
∆n −→ [0, δn]

(e1, e2, . . . , en) 7−→ e1 + α2e2 + · · ·+ αnen
(2.14)

that we call the packing exponent map.

Proposition 4. The packing exponent map ψd is one-to-one map if and only if the

following relations holds:

α2 = 1 + d1

α3 = 1 + d1 + α2d2

...
...

αn = 1 + d1 +
∑i=n−1

i=2
αidi.

15

that we call the packing relations.

Proof. We proceed by induction on n ≥ 1. For n = 1 we have δ1 = d1 and

ψd(e1) = e1 for all 0 ≤ e1 ≤ d1. Thus the packing exponent map ψd is clearly one-to-

one map in this case. Since the packing relations trivially hold for n = 1, the property

is proved in this case. We consider now n > 1 and we assume that the property holds

for n − 1. We look for necessary and sufficient conditions for ψd to be a one-to-one

map. We observe that the partial function

ψ(d1,...,dn−1) :
∆n−1 −→ [0, δn−1]

(e1, e2, . . . , en−1) 7−→ ψd(e1, e2, . . . , en−1, 0)
(2.15)

of ψd needs to be a one-to-one map for ψd to be a one-to-one map. Therefore, by

induction hypothesis, we can assume that the following relations hold.

α2 = 1 + d1

α3 = 1 + d1 + α2d2

...
...

αn−1 = 1 + d1 +
∑i=n−2

i=2
αidi.

Observe that the last relation writes

αn−1 = 1 + δn−2. (2.16)

We consider now f ∈ [0, δn]. Let q and r be the quotient and the remainder r of the

Euclidean division of f by αn. Hence, we have

f = qαn + r and 0 ≤ r < αn. (2.17)

Moreover, the couple (q, r) is unique with these properties. Assume that αn = 1+δn−1

holds then f has a unique pre-image in ∆n by ψ−1
d which is

ψ−1
d (f) = (ψ−1

(d1,...,dn−1)(r), q). (2.18)

If αn > 1 + δn−1 holds, then f = 1 + δn−1 has no pre-images in ∆n by ψ−1
d . If

αn < 1 + δn−1 holds, then f = αn has two pre-images in ∆n, namely

(0, . . . , 0, 1) and ψ−1
(d1,...,dn−1)(αn). (2.19)

16

Finally, the map ψd is one-to-one if and only if the packing relations hold. �

Proposition 5. Let e = (e1, e2, . . . , en) be in ∆n and X = xe11 x
e2
2 · · ·xen

n be a mono-

mial of A[x1, x2, . . . , xn]. We have

Ψα(X) = x
ψd(e)
1 . (2.20)

Moreover, for all f =
∑

X∈S cXX

Ψα(f) =
∑

X∈S
cXΨα(X). (2.21)

where S is the support of f , that is the set of the monomials occurring in p.

Proof. Relation (2.20) follows easily from the definition of Ψα. Relation (2.21)

follows from Proposition 3. �

We denote by A[∆n] the set of the polynomials p ∈ A[x1, x2, . . . , xn] such that

for every X = xe11 x
e2
2 · · ·xen

n in the support of p we have (e1, e2, . . . , en) ∈ ∆n. The

set A[∆n] is not closed under multiplication, obviously. Hence it is only a A-module.

The same remark holds for the set A[δn] of univariate polynomials over A with degree

equal or less than δn.

Kronecker’s substitution based multivariate multiplication. Following the previous

notations and definitions from Kronecker’s substitution, we investigate Kronecker’s

substitution based multivariate multiplication as follows. Although the restriction

of the map Ψα to A[∆n] is not a ring isomorphism, it can be used for multiplying

multivariate polynomial as follows. Let f, g ∈ A[x1, x2, . . . , xn] and let p be their

product. For all 1 ≤ i ≤ n we choose

di = deg(p, xi), (2.22)

that is the partial degree of p w.r.t. xi. Observe that for all 1 ≤ i ≤ n we have

deg(p, xi) = deg(f, xi) + deg(g, xi). (2.23)

It follows that the three polynomials f, g, p belong to A[∆n]. Moreover, from Propo-

sition 3, we have

Ψα(p) = Ψα(f)Ψα(g). (2.24)

Therefore, we can compute p using the simple following algorithm . Let us assume

that we have at hand a quasi-linear algorithm for multiplying in A[x1], that is an

17

Algorithm 4 Kronecker Multiplication

Input: f, g ∈ A[∆n] such that fg ∈ A[∆n] holds.

Output: fg

1 uf := Ψα(f)
2 ug := Ψα(g)
3 ufg := ufug
4 p := Ψ−1

α (ufg)
5 return p

algorithm such that the product of two polynomials of degree less that k can be

computed in O(k1+ǫ) operations in A. Such algorithm exists over any ring A [21]. It

follows that step 3 of the above algorithm can be performed in O(δn
1+ǫ) for every

ǫ > 0. Therefore, we have:

Proposition 6. For every ǫ > 0, Algorithm 4 runs in O(((d1 + 1) · · · (dn + 1))1+ǫ)

operations in A.

2.2 Implementation Environment

In this section, we introduce the computer algebra systems and their programming

languages on which we rely to implement our algorithm and test the performance.

We use two systems: AXIOM and Maple.

AXIOM [52] is a comprehensive Computer Algebra System which has been in de-

velopment since 1971. It was originally developed by IBM under the direction of

Richard Jenks. AXIOM has a very high level programming language called SPAD,

the abbreviation of Scratchpad. It can be compiled into Common Lisp by its own

built-in compiler. There is an external stand-alone compiler implemented in C which

also accepts the SPAD language, called Aldor [1]. AXIOM has both an interactive

mode for user interactions and a programming language for building library modules.

The typical way of programming in AXIOM is as follows. The programmer creates

an input file defining some functions for his or her application. Then, the programmer

runs the file and tries the functions. Once everything works well, the programmer

may want to add the functions to the local AXIOM library. To do so, the program-

mer needs to integrate his or her code in AXIOM type constructors and then invoke

the compiler.

18

By definition, an AXIOM type constructor is a function that returns a type which

can be either a category, a domain, or a package. Roughly speaking, a domain is a class

of objects. For example, Polynomial domain denotes polynomials, Matrix domain

denotes matrices. A category is a class of domains which has common properties. For

example, the AXIOM category Ring designates the class of all rings with units, any

AXIOM domain that has this property belongs to the category Ring. The source

code for the category Ring is shown below.

Ring(): Category == Join(Rng,Monoid,LeftModule(%)) with

--operations

characteristic: () -> NonNegativeInteger

++ characteristic() returns the characteristic of the ring

++ this is the smallest positive integer n such that

++ \spad{n*x=0} for all x in the ring, or zero if no such n

++ exists.

-- We can not make this a constant, since some domains are

-- mutable

coerce: Integer -> %

++ coerce(i) converts the integer i to a member of

++ the given domain.

unitsKnown

++ recip truly yields

++ reciprocal or "failed" if not a unit.

++ Note: \spad{recip(0) = "failed"}.

add

n:Integer

coerce(n) == n * 1$%

From the above AXIOM source code we can observe another important concept:

categories form a hierarchy. We can see that Ring is extended from the categories

Rng, Monoid and LeftModule. In addition, we can observe that Ring has

• 2 operations: characteristic, coerce,

• 1 attribute unitsKnown,

• and 1 default implementation for the operation coerce: Integer -> %.

19

The programmer can construct her/his own categories by extending existing cat-

egories. This requires knowledge of the existing hierarchies. Figure 2.1 shows a

fragment of the hierarchy of the AXIOM algebraic categories.

AbelianGroup

SetCategory

SemiGroup

OrderedSet

OrderedMonoidMonoid

Ring OrderedRing

Group
SemiGroup

Abelian
Ordered

Figure 2.1: Algebraic categories’ hierarchy in AXIOM (partial).

Next to the concept of category, domain is easier to understand. It actually

corresponds to the notion of data type. When a domain is defined, it is asserted to

belong to one or more categories and promises to implement the set of operations

defined in these categories. After an newly defined domain is compiled, it becomes

an AXIOM data type which can be used just like a system-provided data type. The

programmer usually needs to design a lower level data structure to represent the

objects of the domain. When a domain is instantiated, the AXIOM system will

allocate memory for those data structures.

MAPLE is one of the most popular computer algebra systems. It was first developed

by the Symbolic Computation Group at the University of Waterloo in 1980. Maple in-

corporates a dynamically typed imperative-style interpreted programming language.

The language permits variables of lexical scope. There are also interfaces to other

20

languages (C, Fortran, Java, Matlab, and Visual Basic). Maple is based around a

small kernel, written in C, which provides the Maple language. Most functionality

is provided by libraries. Most of the libraries are written in the Maple language.

Symbolic expressions including polynomials are stored in memory as directed acyclic

graphs. Maple has a set of powerful symbolic polynomial computation libraries.

The related existing polynomial packages are RegularChains, PolynomialIdeals.

Maple language is interpreted and easy to use. As reported in later chapters (Chap-

ters 7, 8), the previous triangular decomposition technique based implementation in

Maple relies on the Maple interpreted high level language and classical polynomial

arithmetic. Our new Maple library modpn is developed based asymptotically fast

polynomial arithmetic and the majority part written in C. Therefore, the new algo-

rithms and implementation from this thesis practically have sped up the triangular

decomposition packages in Maple. In Chapter 8 we will report the C/Maple code

integration procedure in details.

2.3 Triangular Decompositions

2.3.1 Polynomial ideal and radical

Let K be a field and let K[x] = K[x1, . . . , xn] be the ring of polynomials with coeffi-

cients in K, with ordered variables x1 ≺ · · · ≺ xn. Let K be the algebraic closure of

K. If u is a subset of x then K(u) denotes the fraction field of K[u].

Definition 1. Let F = {f1, . . . , fm} be a finite subset of K[x1, . . . , xn]. The ideal

generated by F in K[x1, . . . , xn], denoted by 〈F 〉 or 〈f1, . . . , fm〉, is the set of all

polynomials of the form

h1f1 + · · ·+ hmfm

where h1, . . . , hm are in K[x1, . . . , xn]. If the ideal 〈F 〉 is not equal to the entire

polynomial ring K[x1, . . . , xn], then 〈F 〉 is said to be a proper ideal.

Definition 2. The radical of the ideal generated by F , denoted by
√

〈F 〉, is the set

of polynomials p ∈ K[x1, . . . , xn] such that there exists a positive integer e satisfying

pe ∈ 〈F 〉. The ideal 〈F 〉 is said to be radical if we have 〈F 〉 =
√

〈F 〉.

Remark 1. Let f1, . . . , fm ∈ K[x1] be univariate polynomials. The Euclidean Algo-

rithm for computing greatest common divisors implies that the ideal 〈f1, . . . , fm〉 is

equal to 〈g〉, where g = gcd(f1, . . . , fm). This means that there exists polynomials

21

a1, . . . , am, b1, . . . , bm ∈ K[x1] such that we have

a1f1 + · · ·+ amfm = g and fi = big for i = 1, . . . , e.

Therefore, every ideal of K[x1] is generated by a single element.

Definition 3. A univariate polynomial f ∈ K[x1] is said to be squarefree if for all

non-constant polynomials g ∈ K[x1] the polynomial g2 does not divide f .

Remark 2. Let f ∈ K[x1] be non-constant. It is not hard to see that the ideal

〈f〉 ⊆ K[x1] is radical if and only if f is squarefree.

2.3.2 Zero-divisor, regular element, zero set

For a subset F of K[x], let h be a polynomial in K[x], the saturated ideal of 〈F 〉 with

respect to h, denoted by 〈F 〉 : h∞, is the ideal

{q ∈ K[x] | ∃m ∈ N such that hmq ∈ 〈F 〉}.

A polynomial p ∈ K[x] is a zero-divisor modulo 〈F 〉 if there exists a polynomial q

such that pq ∈ 〈F 〉, and neither p nor q belongs to 〈F 〉. The polynomial p is regular

modulo 〈F 〉 if it is neither zero, nor a zero-divisor modulo 〈F 〉. Geometrically, we

denote by V (F) the zero set (or solution set, or variety) of F in K
n
. For a subset

W ⊂ K
n
, we denote by W its closure in the Zariski topology.

2.3.3 Triangular set and regular chains

Main variable and initial. If p ∈ K[x] is a non-constant polynomial, the largest

variable appearing in p is called the main variable of p and is denoted by mvar(p).

The leading coefficient of p w.r.t. mvar(p) (p is viewed as an univariate polynomial

in mvar(p)) is its initial, written init(p) whereas lc(p, v) is the leading coefficient of p

w.r.t. v ∈ x. For example, let p be the polynomial 2y3x2 + 3yx+ 1 ∈ K[x, y], x > y,

init(p) = 2y3 but lc(p, y) = 2x2.

Triangular Set. A subset T of non-constant polynomials of K[x] is a triangular set if

the polynomials in T have pairwise distinct main variables. Denote by mvar(T) the

set of the main variables of the polynomials in T . A variable v ∈ x is algebraic with

respect to T if v ∈ mvar(T); otherwise it is free. For a variable v ∈ x we denote by

22

T<v (resp. T>v) the subsets of T consisting of the polynomials with main variable less

than (resp. greater than) v. If v ∈ mvar(T), we denote by Tv the polynomial in T

with main variable v. If T is not empty, we denote by Tmax the polynomial of T with

largest main variable.

Quasi-component and saturated ideal. Given a triangular set T in K[x], denote by

hT the product of the init(p) for all p ∈ T . The quasi-component W (T) of T is

V (T) \ V (hT), that is, the set of the points of V (T) which do not cancel any of the

initials of T . We denote by sat(T) the saturated ideal of T , defined as follows: if T is

empty then sat(T) is the trivial ideal 〈0〉; otherwise it is the ideal 〈T 〉 : h∞T .

For the given regular chain T = {xy − z2, y4 − z5}, the quasi-component W (T) =

V (xy − z2, y4 − z5)\V (y) is W (T) = {(x, y, z)|xy − z2 = 0, y4 − z5 = 0, y 6=0}. The

saturate ideal of T is sat(T) =< x3 − yz, xy − z2, y4 − z5, xz3 − y3, zx2 − y2 >.

Regular chain. A triangular set T is a regular chain if either T is empty, or T−{Tmax}
is a regular chain and the initial of Tmax is regular with respect to sat(T − {Tmax}).
In this latter case, sat(T) is a proper ideal of K[x]. From now on T ⊂ K[x] is a regular

chain; moreover we write m = |T |, s = mvar(T) and u = x \ s. The ideal sat(T)

enjoys several properties. First, its zero-set equals W (T). Second, the ideal sat(T)

is unmixed with dimension n −m. Moreover, any prime ideal p associate to sat(T)

satisfies p∩K[u] = 〈0〉. Third, if n = m, then sat(T) is simply 〈T 〉. Given p ∈ K[x]

the pseudo-remainder (resp. iterated resultant) of p w.r.t. T , denoted by prem(p, T)

(resp. res(p, T)) is defined as follows. If p ∈ K or no variables of p is algebraic

w.r.t. T , then prem(p, T) = p (resp. res(p, T) = p). Otherwise, we set prem(p, T) =

prem(r, T<v) (resp. res(p, T) = res(r, T<v)) where v is the largest variable of p which

is algebraic w.r.t. T and r is the pseudo-remainder (resp. resultant) of p and Tv

w.r.t. v. The following holds: p is null (resp. regular) w.r.t. sat(T) if and only if

prem(p, T) = 0 (resp. res(p, T) 6= 0).

2.3.4 Subresultants

We follow the presentation of [31]. Other references that we have used are [47, 93, 35].

Determinantal polynomial. Let A be a commutative ring with identity and let m ≤ n

be positive integers. Let M be a m × n matrix with coefficients in A. Let Mi be

the square submatrix of M consisting of the first m − 1 columns of M and the i-th

column of M , for i = m · · ·n; let detMi be the determinant of Mi. We denote by

23

dpol(M) the element of A[X], called the determinantal polynomial of M , given by

detMmX
n−m + detMm+1X

n−m−1 + · · ·+ detMn.

Note that if dpol(M) is not zero then its degree is at most n−m. Let P1, . . . , Pm be

polynomials of A[X] of degree less than n. We denote by mat(P1, . . . , Pm) the m× n
matrix whose i-th row contains the coefficients of Pi, sorting in order of decreasing

degree, and such that Pi is treated as a polynomial of degree n − 1. We denote by

dpol(P1, . . . , Pm) the determinantal polynomial of mat(P1, . . . , Pm).

Subresultant. Let P,Q ∈ A[X] be non-constant polynomials of respective degrees p, q

with q ≤ p. Let d be an integer with 0 ≤ d < q. Then the d-th subresultant of P and

Q, denoted by Sd(P,Q), is

dpol(Xq−d−1P,Xq−d−2P, . . . , P,Xp−d−1Q, . . . , Q).

This is a polynomial which belongs to the ideal generated by P and Q in A[X]. In

particular, S0(P,Q) is res(P,Q), the resultant of P and Q. Observe that if Sd(P,Q)

is not zero then its degree is at most d. When Sd(P,Q) has degree d, it is said

non-defective or regular; when Sd(P,Q) 6= 0 and deg(Sd(P,Q)) < d, Sd(P,Q) is said

defective. We denote by sd the coefficient of Sd(P,Q) in Xd. For convenience, we

extend the definition to the q-th subresultant as follows:

Sq(P,Q) =

{

γ(Q)Q, if p > q or lc(Q) ∈ A is regular

undefined, otherwise

where γ(Q) = lc(Q)p−q−1. Note that when p equals q and lc(Q) is a regular element

in A, Sq(P,Q) = lc(Q)−1Q is in fact a polynomial over the total fraction ring of A.

We call specialization property of subresultant sequence the following statement.

Let B be another commutative ring with identity and Ψ a ring homomorphism from

A to B such that we have Ψ(lc(P)) 6= 0 and Ψ(lc(Q)) 6= 0. Then we have

Sd(Ψ(P),Ψ(Q)) = Ψ(Sd(P,Q)).

For example, the subresultant chain of F1 = x4
2 + x1x2 + 1 and F2 = 4x3

2 + x1 is as

24

follows:
S4 = x4

2 + x1x2 + 1

S3 = 4x3
2 + x1

S2 = −4(3x1x2 + 4)

S1 = −12x1(3x1x2 + 4)

S0 = −27x4
1 + 256

Divisibility relations of subresultants. The subresultants Sq−1(P,Q), Sq−2(P,Q),

. . . , S0(P,Q) satisfy relations which induce an Euclidean-like algorithm for comput-

ing them. Following [31] we first assume that A is an integral domain. In the above,

we simply write Sd instead of Sd(P,Q), for d = q − 1, . . . , 0. We write A ∼ B for

A,B ∈ A[X] whenever they are associated. A is associated with B if and only if the

following condition hold

aA = bB, a, b∈A

For d = q − 1, . . . , 1, we have:

(rq−1) Sq−1 = prem(P,−Q), the pseudo-remainder of P by −Q,

(r<q−1) if Sq−1 6= 0, with e = deg(Sq−1), then the following holds: prem(Q,−Sq−1) =

lc(Q)(p−q)(q−e)+1Se−1,

(re) if Sd−1 6= 0, with e = deg(Sd−1) < d− 1, thus Sd−1 is defective, and we have

(i) deg(Sd) = d, thus Sd is non-defective,

(ii) Sd−1 ∼ Se and lc(Sd−1)
d−e−1Sd−1 = sd

d−e−1Se, thus Se is non-defective,

(iii) Sd−2 = Sd−3 = · · · = Se+1 = 0,

(re−1) if Sd, Sd−1 are non zero, with respective degrees d and e then we have

prem(Sd,−Sd−1) = lc(Sd)
d−e+1Se−1,

We consider now the case where A is an arbitrary commutative ring, following The-

orem 4.3 in [35]. If Sd, Sd−1 are non zero, with respective degrees d and e and if sd

is regular in A then we have lc(Sd−1)
d−e−1Sd−1 = sd

d−e−1Se; moreover, there exists

Cd ∈ A[X] such that we have:

(−1)d−1lc(Sd−1)coeff(Se, X
e)Sd + CdSd−1 = lc(Sd)

2Se−1.

In addition Sd−2 = Sd−3 = · · · = Se+1 = 0 also holds.

25

2.3.5 Regular GCD

Regular GCD. Let I be the ideal generated by
√

sat(T) in K[x1, . . ., xn−1][xn]. Then

L(T) := K(u)[s]/I is a direct product of fields. It follows that every pair of univariate

polynomials p, t ∈ L(T)[y] possesses a GCD in the sense of [76]. The following

GCD notion [75] is convenient since it avoids considering radical ideals. Let T ⊂
K[x1, . . . , xn−1] be a regular chain and let p, t ∈ K[x] be two non-constant polynomials

with the same main variable xn. Assume that the initials of p and t are regular

modulo sat(T). A non-zero polynomial g ∈ K[x] is a regular GCD of p, t w.r.t. T if

the following conditions hold:

(i) lc(g, xn) is regular with respect to sat(T);

(ii) there exist u, v ∈ K[x] such that g − up− vt ∈ sat(T);

(iii) if g 6∈ K and mvar(g) = xn hold, then 〈p, t〉 ⊆ sat(T ∪ g).
In this case, the polynomial g has several properties. First, it is regular with

respect to sat(T). Moreover, if sat(T) is radical and g has positive degree in xn, then

the ideals 〈p, t〉 and 〈g〉 of L(T)[xn] are equal, so that g is a GCD of (p, t) w.r.t. T in

the sense of [76]. The notion of regular GCD can be used to compute intersections of

algebraic varieties. As an example we will make use of the following formula which

follows from Theorem 32 in [75]. Assume that the regular chain T is simply {r} where

r = res(p, t, xn), for r 6∈ K, and let h is the product of the initials of p and t. Then,

we have:

V (p, t) = W (r, g) ∪ V (h, p, t). (2.25)

where W (r, g) is the algebraic closure of the quasi-component of r and g.

Splitting. Two polynomials p, t may not necessarily admit a regular GCD w.r.t. a

regular chain T , unless sat(T) is prime, see our Example 1 of Section 7.3 at Page 95.

However, if T is “split” into several regular chains, then p, t may admit a regular

GCD w.r.t. each of them. To this end, we need a notation. For non-empty regular

chains T, T1, . . . , Te ⊂ K[x] we write T −→ (T1, . . . , Te) whenever we have mvar(T) =

mvar(Ti) for all 1 ≤ i ≤ e, sat(T) ⊆ sat(Ti) and
√

sat(T) =
√

sat(T1)∩· · ·∩
√

sat(Te).

If this holds, observe that any polynomial h regular w.r.t sat(T) is also regular w.r.t.

sat(Ti) for all 1 ≤ i ≤ e.

26

Chapter 3

Foundational Fast Polynomial

Arithmetic and its Implementation

3.1 Overview

As mentioned in Section 1.2, one of the major contributions of this thesis is that we

have developed a set of highly efficient implementation operations of asymptotically

fast polynomial arithmetic and integrated it into several computer algebra systems.

The existing fast polynomial arithmetic such as fast multiplication, division, fast

GCD are the efficiency-critical ones. We report the implementation effort on these

operations in this chapter and Chapters 4, 5, 9. Based on these implementations, we

have developed new higher level polynomial operations for polynomial system solving.

The new algorithms and new implementation result will be reported in Chapters 6,

7 and 8.

Asymptotically fast algorithms for polynomial arithmetic have been known for

more than forty years. Among others, the work of Karatsuba [57], Cooley and

Tukey [25], and Strassen [88] has initiated an intense activity in this area. Unfortu-

nately, its impact on computer algebra systems has been reduced until recently. One

reason was, probably, the belief that these algorithms were of very limited practical

interest. In [45] p. 132, referring to [73], the authors state that the FFT-based uni-

variate polynomial multiplication is “better than the classical method approximately

when n + m ≥ 600”, where n and m are the degrees of the input polynomials. In

[58] p. 501, quoting [18], Knuth writes “He (R. P. Brent) estimated that Strassen’s

scheme would not begin to excel over Winograd’s until n ≈ 250 and such enormous

27

matrices rarely occur in practice unless they are very sparse, when other techniques

apply.”

Moreover, the implementation of asymptotically fast arithmetic was not the pri-

mary concern of the early computer algebra systems, which had many other challenges

to face. For instance, one of the main motivations for the development of the AX-

IOM computer algebra system [52] was the design of a language where mathematical

properties and algorithms could be expressed in a natural and efficient manner. Nev-

ertheless, successful implementations of the FFT-based univariate polynomial multi-

plication [73] and Strassen’s matrix multiplication [10] have been reported for several

decades.

In the last decade, several software for performing symbolic computations have put

a great deal of effort in providing outstanding performances, including successful im-

plementation of asymptotically fast arithmetic. As a result, the general-purpose com-

puter algebra system Magma [5] and the Number Theory Library NTL [6] have set

world records for polynomial factorization and determining orders of elliptic curves.

The book Modern Computer Algebra [44] has also contributed to increase the gen-

eral interest of the computer algebra community for these algorithms. As to linear

algebra, in addition to Magma, let us mention the C++ template library LinBox [7]

for exact linear algebra computation with dense, sparse, and structured matrices over

the integers and over finite fields. A cornerstone of this library is the use of BLAS

libraries such as ATLAS to provide high-speed routines for matrices over small finite

fields, through floating-point computations [33].

However little has been reported on the details of such effort. In this chapter, we

mainly discuss how we achieve high performance for some well-studied fast polynomial

algorithms in two high-level programming environments, Aldor and AXIOM. Two

approaches are investigated. With Aldor we rely only on high-level generic code,

whereas with AXIOM we endeavor to mix high-level, middle-level and low-level

specialized code. We show that our implementations are satisfactory compared to

other well-known computer algebra systems or libraries such as Magma v2.11-2 and

NTL v5.4.

The outline of this chapter is as follows. Section 3.2 is an overview of the language

features of AXIOM and Aldor systems. In Sections 3.3 and 3.4, we discuss our

implementation techniques in the Aldor and AXIOM. In Section 3.5 we report

our experimentation result. Our implementations in Aldor generic code are only

approximately twice slower than the highly optimized C++ implementation in of

NTL. Our specialized implementation in AXIOM leads to comparable performance

28

and sometimes outperforms those of Magma and NTL. All timings given in this

chapter are obtained on a bi-Pentium 4, 2.80 GHz machine, with 1 Gb of RAM.

NOTE: This chapter is written based on the published paper [65].

3.2 High Level Programming Environment

AXIOM and Aldor are the first two computer algebra systems on which we conduct

our experimentation. We use the word “experimentation” since we have tried a

few methods to speed up polynomial packages in these two systems by plugging in

our new asymptotically fast implementation. The most appropriate methods and

implementation are finally integrated in Maple as reported in Chapter 7 and 8.

Recall that in Section 2.2 at Page 17 we have provided a brief introduction of

AXIOM and an example of its type system. Originally Aldor is an extension lan-

guage from AXIOM, thus it shares many language features. In the following text

we describe the language features of these two systems. Primarily, AXIOM and

Aldor designers attempted to surmount the challenges of providing an environment

for implementing the extremely rich relationships among mathematical structures.

Hence, their design is of somewhat different direction than that of other contempo-

rary programming languages. They have a two-level object model of categories (see

the example: the AXIOM Ring category in Section 2.2) and domains that is sim-

ilar to Interfaces and Classes in Java. They provide a type system that allows the

programmer the flexibility to extend or build on existing types or create new type

categories as is usually required in algebra.

In AXIOM and Aldor, types and functions can be constructed and manipu-

lated within programs dynamically like the way values are manipulated. This makes

it easy to create generic programs in which independently developed components

are combined in many useful ways. For instance, for a given AXIOM or Aldor

ring R, the domains SUP(R) and DUP(R), for sparse and dense univariate polyno-

mials respectively, provide exactly the same operations; that is they have the same

user interface, which is defined by the category UnivariatePolynomialCategory(R).

But, of course, the implementation of the operations of SUP(R) and DUP(R) is quite

different. While SUP(R) implements polynomials with linked lists of terms, DUP(R)

implements them with arrays of coefficients indexed by their degrees. This allows us

to specify a package, FFTPolynomialMultiplication(R, U), parametrized by R, an

FFTRing, that is, a ring supporting the FFT; and by U, a domain of UnivariatePoly-

29

nomialCategory(R). After discussing the common part in AXIOM and Aldor, we

illustrate the unique features in each system environment. Based on the uniqueness

we have developed suitable implementation techniques for each system respectively

(see Section 3.3 and 3.4 for detail).

3.2.1 The Aldor environment

Aldor can be used both as a compiled and interpreted language. Code optimization

is however only available in the compiled mode. An Aldor program can be compiled

into: stand-alone executable programs; object libraries in native operating system

formats; portable byte code libraries; and C or Lisp source [1]. Code improvement by

techniques such as program specialization, cross-file procedural integration and data

structure elimination, is performed at the optimization stage of the compilation [90].

3.2.2 The AXIOM environment

The general introduction of AXIOM has been given in Section 2.2. In this section, we

provide more technical details. Based on these details, we can better understand how

to make the lower level (GCL, C and Assembly) implementation packages available

for AXIOM system. Recall that in Section 2.2, we have mentioned that AXIOM

has both an interactive mode for user interactions and a high level programming

language, called SPAD, for building library modules. Concretely, the compilation

process in AXIOM is as follows:

• The SPAD code will be translated into Common Lisp code by a built-in com-

piler.

• Then the Common Lisp code will be translated into C code by the GCL

compiler.

• Finally, GCL makes use of a native C compiler, such as GCC, to generate

machine code.

Since these compilers can generate fairly efficient code, programmers can concentrate

on their mathematical algorithms and write them in SPAD.

However, to achieve higher performance, our implementation also involves Lisp,

C, and assembly level code. By modifying the AXIOM makefiles, new Lisp functions

can be compiled and made available at SPAD level. Moreover, by using the GCL

system provided make-function, one can add new C implementation in the format

30

of functions into the GCL kernel. These new functionality will be available at the

GCL and SPAD level. Finally Assembly code can either be inlined into C code or

compiled into Lisp kernel images, and so available for Lisp and SPAD level.

3.3 Implementation Techniques: the Generic Case

Our goal in the generic case is to implement algorithms with quasi-linear time com-

plexities in a high-level programming environment(Aldor), without resorting to low-

level techniques. The primary focus is not to outperform other implementations of

similar algorithms on other platforms, but rather to ensure that we achieve our best in

terms of space and time complexities in our target environment. For instance, in the

Aldor high level programming environment we write optimizer-friendly and garbage

collector (GC)-friendly code without compromising the high-level nature of our imple-

mentations. The practically result shows that our efforts are effective. In Section 3.3.1

we describe the implementation techniques we developed for the efficiency-critical op-

erations, and in Section 3.3.2 we show that the higher level algorithms in Aldor can

be sped up in large scale consequently.

3.3.1 Efficiency-critical operations in Aldor

We first discuss the techniques and results of our Aldor implementation of two

efficiency-critical algorithms: FFT and power series inversion as defined in Section 2.1

at Page 8.

FFT. We specify a FFT multiplication package that accepts a generic polynomial

type, but performs all operations on arrays of coefficients, which are pre-allocated and

released when necessary, without using the compiler’s garbage collector. For coeffi-

cient fields Z/pZ, Aldor’s optimizer produces code comparable to hand-optimized

C code.

Power series inversion. We have implemented two versions of the power series

inversion algorithm: a “naive” version without optimization and a space-efficient

version. The latter implementation uses the following ideas:

• We pre-determine all array sizes and pre-allocate all needed buffers, so that

there is no memory allocation in the loop.

31

• Even though we accept a generic polynomial type, we change the data repre-

sentation to arrays of coefficients, work only with these arrays, and reuse DFT

as much as possible.

• As in NTL, we use wrapped convolution to compute the n middle coefficients

of a (2n− 1)× n full product (this is the middle-product operation of [49]).

Figure 3.1 shows the running time of our two implementations, together with

the time for a single multiplication, in a field of the form Z/pZ. We measured the

maximum resident set size; Figure 3.2 shows that the naive version used a total of

over 16000 Kb to invert a polynomial of degree 8000 while the space efficient version

used less than 2500 Kb for the same polynomial. For examples with higher degrees,

the factor of improvement is larger.

 0

 0.5

 1

 1.5

 2

 2.5

 3

8K7K6K5K4K3K2K1K

T
im

e
 [

s
e

c
]

 Degree (K=1000)

_Naive
Optimized

Poly Multiplication

Figure 3.1: Power series inversion: naive vs. optimized implementation vs. multipli-
cation, 27-bit prime.

We first give the source code of the naive version as follows:

modularInversion(f:U,n:Z):U == {

assert(one?(trailingCoefficient(f)));

local m,g0,g__old,g__new,mi:U;

m: == monom;

g0:U:=1; g__old:U:=1; g__new:U:=1;

local r,mii:MI;

if PowerOfTwo?(n) then r := length(n)-1;

32

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

8K7K6K5K4K3K2K1K

R
S

S
: R

es
id

en
t S

et
 S

iz
e

(in
 K

B
)

Degree (K=1000)

Naive
Optimized

Figure 3.2: Power series inversion: space usage of naive vs. optimized implementa-
tions, 27-bit prime.

else r := length(n);

for i in 1..r repeat {

mi := m^(2^i);

g__new := (2*(g__old)-(f*((g__old)*(g__old)))) mod mi;

g__old := g__new;

}

return (g__new);

}

Then follows the source code of the efficient version:

macro {

U == DenseUnivariatePolynomial(K:Field);

Z == AldorInteger;

}

fastModInverse(f:U,n:Z):U == {

import from Z,MI;

local dftf,dftg,Y,G,workspace,dftw,op,coeff:AK;

local di__1,di,r,mii:MI; local res:U; local wi:K;

if PowerOfTwo?(n) then r := length(n)-1;

else r := length(n);

nn:MI := shift(1,r); -- 2^r

33

– allocate storage

dftg := new(nn,0$K);

Y := new(nn,0$K);

G := new(nn,0$K);

workspace := new(nn,0$K);

op := new(nn,0$K);

– stores gi−1

G.0 := 1$K;

dftg.0 := 1$K;

– stores truncated f

coeff := new(nn,0$K);

dftf := new(nn,0$K);

dftw := new(nn,0$K);

kk:MI := 0;

for k in coefficients(f) repeat {

kk = nn => break;

coeff.kk := k; kk := next(kk);

}

for i in 1..r repeat {

mii := shift(1,i); -- 2^i

– degree of gi

di := mii - 1;

w:Partial K := primitiveRootOfUnity(mii);

wi := retract(w);

– op stores OmegaPowers up to mii

OmegaPowers!(op,wi,mii);

dftg := dft!(dftg,mii,i,op,workspace);

– f mod X2i

: truncates f

for j in 0..di repeat dftf.j := coeff.j;

dftf := dft!(dftf,mii,i,op,workspace);

– dftf*dftg pointwise

34

for j in 0..di repeat dftf.j := dftf.j*dftg.j;

dftf := idft!(dftf,mii,i,op,workspace); -- invert dft

di__1 := shift(1,i-1) - 1; -- degree of g_i_1

ndi__1 := next di__1;

– takes the end part

kk:=0;

for j in ndi__1..di repeat {

dftw.kk := dftf.j; kk:=next kk;

}

dftw := dft!(dftw,mii,i,op,workspace);

for j in 0..di repeat dftg.j := dftg.j*dftw.j;

dftg := idft!(dftg,mii,i,op,workspace);

– Xndi 1 ∗ Y : the middle product

for j in 0..di__1 repeat Y.(j+(ndi__1)) := dftg.j;

for j in ndi__1..di repeat G.j := G.j - Y.j;

– to allow dft! in-place of G, save G

for j in 0..di repeat dftg.j := G.j;

}

– convert to polynomial

res := unvectorize(dftg,nn);

free!(dftg); free!(dftf); free!(dftw); free!(workspace);

free!(op); free!(coeff);

return res;

}

3.3.2 Extended Euclidean algorithm

We implemented the Half-GCD algorithms of [93] and [19], adapted to yield monic

remainders. The algorithms given in Section 2.1 at Page 8 contain the adaptation we

made. Our implementation of Euclidean division uses power series inversion [43, Ch.

9], when the degree difference between two consecutive remainders is large enough. We

use Strassen’s algorithm [43, Ch. 13] for the 2× 2 polynomial matrix multiplication;

This implementation outperforms the standard Euclidean algorithm by a factor of 8

at degree 3000.

35

3.4 Implementation Techniques: the Non-generic

Case

For AXIOM the non-generic case, we put additional efforts on investigating the

efficiency of the compiled code. The reasons are as following. First, we are curious

that, to what extend, a compiler optimizes our polynomial applications. Second,

our work is largely motivated by the implementation of modular methods. High

performance for these methods relies on appropriately utilizing machine arithmetic

as well as carefully constructing underlying data representation. This leads us to look

into machine-level questions, such as machine integer arithmetic, memory hierarchy,

and processor architecture. At this level, C is preferred and assembly is used if

necessary. Third, we are interested in parallel programming, which is not available

at SPAD level, but can be achieved in Lisp and C (see Chapter 9 at Page 139 for

our parallel implementation result). In the following text, we focus on the major

efforts: suitable data representation, SIMD instructions, loop unrolling and thread-

level parallelism.

3.4.1 Data representation

We use dense polynomials as the data representation. We have in mind to implement

algorithms for solving polynomial systems by modular methods over Z/pZ. Polyno-

mials appearing in such applications tend to become “densified” due to intensive use

of Euclidean algorithm, Hensel lifting techniques, etc.

In concrete terms, elements of the prime field Z/pZ are encoded by integers in

the range 0, . . . , p − 1. This allows us to use C-like arrays such as fixnum-array in

Lisp to encode polynomials in Z/pZ[X]. If p is small enough, we tell the compiler to

use machine integer arithmetic; for large p, we use the Gnu Multiple Precision library

(GMP).

To test the best performance, we write C and assembly code for the operations

such as univariate polynomial addition, multiplication : we pass the array of refer-

ences to our C and assembly code, then return the result back to AXIOM. In the

final implementation as reported in later chapters, we avoid using assembly code for

maintaining the good code portability.

We compare the performance of two univariate polynomial constructors SUP and

UMA. SUP is a pure SPAD level implementation, and UMA is written in Lisp, C and

assembly with a SPAD level wrapper. UMA means Univariate Modular Arithmetic,

36

since it is designed for polynomials in Z/pZ[x]. Over a 64-bit prime field, UMA addi-

tion of polynomials is up to 20 times faster than SUP addition, in degree 30000; the

quadratic UMA implementation of polynomial multiplication is up to 10 times faster

than SUP multiplication, in degree 5000. The FFT multiplication will be discussed

in later text. The UMA implementation is integrated into AXIOM library and used

in an user-transparent way, thanks to the concept of conditional implementation in

AXIOM. Namely, on the condition where polynomial computation is over Z/pZ, UMA

will be automatically used.

Similarly, we have implemented a specialized multivariate polynomial domain over

Z/pZ. The operations in this domain are mostly implemented at the Lisp level

which offers us more flexibility (less type checking, better support from the machine

arithmetic) than at the SPAD level. We follow the vector-based approach proposed

by Fateman [38] where a polynomial is either a number or a vector: If a coefficient is

a polynomial, then the corresponding slot of the “parent” vector keeps a reference to

that polynomial or, say, another vector; otherwise, if the coefficient is a number, the

slot keeps that number.

3.4.2 The implementation of FFT

Our implementation of FFT-based univariate polynomial multiplication in Z/pZ[X]

distinguishes the cases of small (single-precision) primes and big (multiple-precision)

primes. For the big prime case, one can either directly use the big integer arith-

metic, Or use the Chinese Remainder Theorem (CRT) based approach. The general

principle of CRT is to reduce the big integer problem into 2 or more smaller integer

problems [86, 43].

For both small and big prime cases, we used the algorithm of [26] and techniques

discussed in Subsection 3.4.3 below. Figure 3.3 shows a comparison between these

two approaches. We put special effort on the big prime case. We rewrite some GMP

low-level functions for double word size prime arithmetic which is the most useful

case in our polynomial computation. Figure 3.3 shows that the specialized double

precision big prime functions and CRT approaches are faster than the generic GMP

functions. The CRT recombination part spends a negligible 0.06% to 0.07% percent

of the time in the whole FFT algorithm.

37

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

8,0004,0002,0001,0000

T
im

e
[s

ec
]

Degree

CRT
Specialized

GMP

Figure 3.3: FFT multiplication: GMP functions vs. double precision integer functions
vs. CRT, 64 bit prime.

3.4.3 SSE2, loop unrolling, parallelism

Modern compilers can generate highly efficient code, however for some cases the hand-

tuned code still outperforms the compiler optimization. We show three examples of

hand-tuned improvement from our FFT implementation.

Single precision integer division with SSE2. The single precision modular

reduction uses floating point arithmetic, based on the formula a≡ a−⌊a∗ 1/p⌋∗p [86].

We have implemented this idea in assembly for the Pentium IA-32 architecture with

SSE2 support. This set of instructions is Single Instruction Multiple Data (SIMD);

they make use of XMM registers which pack 2 double floats or 4 single floats/integers

in one single register. The following sample code computes (a ∗ b) mod p with SSE2

instructions.

1 movl RPTR, %edx 11 movups (%eax), %xmm0

2 movl WD1, %eax 12 cvttpd2pi %xmm2, %mm2

3 movl WPD1, %ecx 13 cvtpi2pd %mm2, %xmm2

4 movq (%edx), %mm0 14 mulpd %xmm2, %xmm0

5 movups (%eax), %xmm1 15 subpd %xmm0, %xmm1

6 cvtpi2pd %mm0, %xmm0 16 cvttpd2pi %xmm1, %mm1

7 movups (%ecx), %xmm2 17 movq %mm1, (%edx)

8 movl PD, %eax 18 emms

9 mulpd %xmm0, %xmm1 19 ret

10 mulpd %xmm0, %xmm2

38

Figure 3.4 shows that our SSE2-based FFT implementation is significantly faster

than our generic assembly version.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

32,00016,0008,0004,0002,0001,0000

T
im

e
[s

ec
]

Degree

FPU
SSE2

Figure 3.4: FFT multiplication: generic assembly vs. SSE2 assembly, 27-bit prime.

Reducing loops overhead. Many algorithms operating on dense polynomials have

an iterative structure. One major overhead for such algorithms is loop indexing

and loop condition testing. We can reduce this overhead by unrolling loops. This

technique is provided by some compilers. For example GCC has a compiler option

funroll-loops which may unroll the loops when certain conditions are satisfied.

However, there is a trade-off: although the overhead mentioned above can be

reduced after loop unrolling, the transformed code may suffer from code size growth

which will aggravate the burden of instruction caching. If the loop body contains

branching statements, increased number of branches in each iteration will have a

negative impact on branch prediction. Hence, compilers and interpreters usually do

static or run-time analysis to decide how much to unroll a loop. However, the analysis

may not be precise when loops become complex and nested. Moreover, compilers

usually do not check if there is a possibility to combine the unrolled straight line

statements for better performance. Therefore, we have unrolled some loop structures

by hand to better control the trade-off mentioned above. We have also recombined

the “flat” code (after the unrolling) into small assembly functions. This allows us

to keep some values in registers or evict those unwanted ones at the most suitable

time. Our purpose is to investigate how much the hand-tuned code outperforms the

compiler optimized code. The assembly implementation is not a part of our final

library implementation due to the portability and maintainability issue.

39

The following is a fragment of our implementation of the FFT-based univariate

polynomial multiplication.

#include "fftdfttab_4.h"

typedef void (* F) (long int *, long int, long int,

long int *, long int, int);

typedef void (* G) (long int *, long int *,

long int *, long int, int);

inline void

fftdftTAB_4(long int * a, long int * b, long int * w,

long int p, F f, G g1, G g2){

long int w0=1, w4=w[4], * w8=w+8;

f(a, w0, w4, a+2, p, 8); g2(a+4, w8, a+8, p, 4);

g2(a+12, w8, a+16, p, 4); g1(a+8, w8, a+16, p, 8);

f(b, w0, w4, b+2, p, 8); g2(b+4, w8, b+8, p, 4);

g2(b+12, w8, b+16, p, 4); g1(b+8, w8, b+16, p, 8); return;}

This function is dedicated to compute the case where n = 4 (see Section 2.1 at

Page 8 in the FFT algorithm. The functions f, g1, g2 are small assembly functions

which recombine the “flat” (straight-line) statements for higher efficiency. We also

developed similar functions for the cases from n = 5 to 8. However, starting for

n ≥ 6, these straight-line functions are less efficient than the ones using original loop

structure, for the reason of code growth. Figure 3.5 shows that for the small degree

examples, the loop-unrolling version may gain about 10% of the running time of the

complete FFT computation. Actually, this is a significant improvement, since there

are at least 50% time spending on integer division which is irrelevant to loop-unrolling.

Parallelism. Parallelism is a fundamental technique used to achieve high perfor-

mance. In the FFT-based polynomial multiplication, the DFT of the input polynomi-

als are independent, hence, they can be computed simultaneously. Another example is

the (standard) Chinese remaindering algorithm, where the computations w.r.t. each

modulo can be performed in parallel. This can be achieved by thread-level parallelism.

However, AXIOM compiler doesn’t generate parallel code. Therefore, we directly

use the native Posix Thread Library to achieve explicit thread-level parallelism. In

Chapter 9 we report our parallel implementation for more complex algorithms.

40

 0

 0.02

 0.04

 0.06

 0.08

 0.1

63311570

T
im

e
[M

il
li

.
S

ec
.]

Degree

Inlined
Non-inlined

Figure 3.5: FFT multiplication: inlined vs. non-inlined, 27-bit prime.

3.5 Performance

In this section, we provide a set of benchmark results. These benchmark programs are

implemented either in Aldor high level code, or in AXIOM mixing code or in both.

The performance of our code demonstrates that by using suitable implementation

techniques asymptotically fast polynomial arithmetic can outperform the classical

one with relatively low cut-off.

3.5.1 FFT multiplication

We compared our implementations with their counterparts in NTL and Magma. For

NTL-v5.4, we used the functions FFTMul in the classes zz_p and ZZ_p, respectively

for small and big primes. For Magma-v2.11-2, we used the general multiplication

function “*” over GF(p), the prime field with the prime number p. The input polyno-

mials are randomly generated, with no zero term. In the non-generic case, as shown

in Figures 3.6 and 3.7, our AXIOM implementation is faster than NTL’s over small

primes, but slower than NTL over big primes; but we are faster than Magma and

other known computer algebra systems in both cases. One possible reason is that

NTL re-arranges the computations in a more “cache-friendly” way. In the generic

case, the Aldor implementation is comparable to (generally slightly slower than)

Magma’s counterpart. Aldor’s implementation is at pure high level with high level

abstraction of coding, thus, the performance is still satisfactory.

41

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5000 10000 15000 20000 25000 30000 35000

T
im

e
[s

ec
]

Degree

ALDOR
MAGMA

NTL
AXIOM

Figure 3.6: Multiplication modulo a 27-bit prime.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5000 10000 15000 20000 25000 30000 35000

T
im

e
[s

ec
]

Degree

ALDOR
MAGMA

AXIOM
NTL

Figure 3.7: Multiplication modulo a 64-bit prime.

3.5.2 Multivariate multiplication

We compute the product of multivariate polynomials via the Kronecker substitu-

tion (see the appendix). Recall that we use vector-based recursive representation for

multivariate polynomials, and one-dimensional arrays for univariate ones. So, the for-

ward substitution simply copies coefficients from the coefficient tree of a multivariate

polynomial to the coefficient array of an univariate polynomial. We use a recursive

depth first tree walk to compute all the univariate polynomial exponents from the

corresponding multivariate monomials’ exponents; at the same time, according to this

correspondence we conduct the forward substitution. We use the same idea for the

backward substitution. The comparisons between Magma and our AXIOM code

42

are given in Figures 3.8 to 3.10, where “degree” denotes the degree of the univari-

ate polynomials obtained through Kronecker’s substitution. We used random inputs,

with no zero terms.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 2000 4000 6000 8000 10000 12000

T
im

e
[s

ec
]

Degree

MAGMA
AXIOM

Figure 3.8: Bivariate multiplication, 27-bit prime.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000

T
im

e
[s

ec
]

Degree

MAGMA
AXIOM

Figure 3.9: Bivariate multiplication, 64-bit prime.

Our FFT-based multivariate polynomial multiplication over Z/pZ outperforms

Magma’s in these cases. Figure 3.8 may infer that Magma is in the “classical multi-

plication” stage; our FFT-based implementation is already faster. From Figures 3.9,

3.10 we observe that both our and Magma’s FFT’s show the FFT staircase-like

curves.

43

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
[s

ec
]

Degree

MAGMA
AXIOM

Figure 3.10: Four-variable multiplication, 64-bit prime.

3.5.3 Power series inversion

We compare here the power series inversion, in the optimized Aldor version, with

NTL’s and Magma’s implementations. Magma offers a built-in InverseMod function

(called “builtin” in the figure), but the behavior of this generic function is that of an

extended GCD computation. We have also compared the Magma PowerSeriesRing

domain inversion (called “powerseries” in the figure) with our own implementation

of the Newton iteration. Figure 3.11 shows the relative performances: NTL is the

fastest one in this case, and Aldor is the second, within a factor of 2 slower.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

7K6K5K4K3K2K1K

T
im

e
[s

ec
]

Degree (K=1000)

MAGMA(powerseries)

MAGMA(our impl)

ALDOR

NTL

Figure 3.11: Power series inversion: Aldor vs. NTL vs. MAGMA, 27-bit prime.

44

3.5.4 Fast extended Euclidean algorithm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

8K7K6K5K4K3K2K1K

 T
im

e
[s

ec
]

Degree (K=1000)

MAGMA XGCD

ALDOR

MAGMA GCD

NTL

Figure 3.12: EEA: ALDOR vs. NTL vs. MAGMA, 27-bit prime.

In Section 3.3.2 we have reported the relative performance between the existing

standard (non-fast) Euclidean algorithm in Aldor and the implementation of the fast

algorithm. We have also compared our Aldor generic fast algorithm with the existing

implementations in NTL and Magma. In the following benchmark, we compare our

fast extended Euclidean algorithm implementation in Aldor with NTL and Magma

again. Unlike ours, the NTL implementation is not over a generic field but over a

finite field, and uses improvement like FFT-based polynomial matrix multiplication.

Magma’s performance differs, according to whether the GCD or XGCD commands are

used. Figure 3.12 shows the relative performances; our input is degree d polynomials,

with a GCD of degree d/2. Again, NTL is the fastest and Aldor’s performance is

in between two flavors of Magma’s implementation (using GCD or XGCD).

3.6 Summary

The work reported in this chapter is the beginning of a large scale effort; The re-

sult from this chapter demonstrates that asymptotically fast polynomial arithmetic

can outperform the classical one with relatively low cut-off. The implementation

technique is highly important for reducing the overhead in these fast methods. Af-

ter replacing the classical polynomial arithmetic by the fast ones, the higher level

algorithms can be sped up in a significant manner.

45

Chapter 4

Efficient Implementation of

Polynomial Arithmetic in a

Multiple-level Programming

Environment

4.1 Overview

In Chapter 3 we have discussed the asymptotically fast polynomial arithmetic and

our preliminary implementation effort towards high performance. In this chapter we

proceed to more intensive investigation on the implementation technique itself. More

specifically, we investigate the implementation techniques suited to the multiple-level

language environment in AXIOM. We target on the implementation for polynomial

arithmetic in this chapter. Indeed, some polynomial data types and algorithms can

further take advantage of the unique features in lower level languages, such as the

specialized data structures or the direct accessing to machine level arithmetic. On

the other hand, some data types or algorithms maybe more abstract and suited to be

implemented in a very expressive high level languages. Therefore, we are interested

in the integration of polynomial data type and implementation realized at different

language levels. In particular, we consider the situation for which code from different

language levels can be combined together within the same application.

However, linkage to specialized code is a substantial bonus when low-level imple-

mentation can take advantage of special software or hardware features. The purpose

of this study is to investigate implementation techniques for polynomial arithmetic

46

in a multiple-level programming environment. We are interested in the integration of

polynomial data type implementations realized at the different code levels. In par-

ticular, we consider situations for which code from different levels can be combined

together within the same application in order to achieve high-performance. As a

driving example, we use the modular algorithm of van Hoeij and Monagan [50]. We

recall its specifications. Let K = Q(a1, a2, . . . , ae) be an algebraic number field over

the field Q of the rational numbers. Let f1, f2 ∈ K[y] be univariate polynomials over

K. The algorithm of van Hoeij and Monagan computes gcd(f1, f2). To do so, for

several prime numbers p, a tower of simple algebraic extensions Kp of the prime field

Z/pZ is used. Arithmetic operations in Kp are performed by means of operations on

multivariate polynomials over Z/pZ, whereas the operations on the images of f1, f2

modulo p are performed in the univariate polynomial ring Kp[y]. Therefore, several

types of polynomials are used simultaneously in this algorithm. This is why it is a

good candidate for our study. We chose AXIOM as our implementation environ-

ment based on the following observations. AXIOM has a high-level programming

language, called SPAD, which possesses all the essential features of object-oriented

languages. Libraries written in SPAD implement a hierarchy of algebraic structures

(groups, rings, fields, . . .) and a hierarchy of algebraic domains (Q, A[x] for a given

ring A, . . .).

As mentioned in Section 2.2 at Page 2.2, the SPAD compiler translates SPAD

code into Common Lisp, then invokes the underlying Lisp compiler to generate

machine code. Today, GCL [3] (GNU Common Lisp) is the underlying Lisp of

AXIOM [2]. The design of GCL makes use of the native C compiler for compiling

to native machine code. In addition, GCL employs the GNU Multi-Precision library

(GMP) [4] for its arbitrary precision number arithmetic. Therefore, AXIOM is an

efficient multiple language level system. Moreover, the complete AXIOM system is

open-source. Hence, we can implement our packages at any language level and even

modify the AXIOM kernel. This allows us to take advantage of each language level’s

strength and access machine arithmetic directly when necessary. Therefore, we believe

that AXIOM, with its different implementation levels, all in open source, provides

an exceptional development environment among all computer algebra systems, for

the purpose of our study.

The outline of this chapter is as following. In Sections 4.2, 4.3 and 4.4 we discuss

the unique features (in view of our objectives) of the SPAD, Lisp, C and Assembly

level from AXIOM. Implementation techniques at each level are also discussed re-

spectively. In Section 4.6, we report our experimentation result. Our result suggests

47

that choosing adapted data structures and writing code at suitable language level are

essential for high-performance for our polynomial applications.

NOTE: This chapter is written based on the published paper [65].

4.2 The SPAD Level

From Section 3.2 at Page 28, we know that the SPAD language of AXIOM has a

two-level object model of categories and domains. In fact, the user can define an

new category or domain and add it into the library modules. The new definition

is called an AXIOM type constructor. An AXIOM type constructor is simply a

function which returns an AXIOM type, that is a category or a domain. For in-

stance, SparseUnivariatePolynomial, abbreviated to SUP, is a type constructor,

which takes an argument R of type Ring and returns an instance of the type: univari-

ate polynomials over R, with an underlying sparse polynomial data representation.

The interface (in sense of Java) of SUP(R) is UnivariatePolynomialCategory(R)

where UnivariatePolynomialCategory is a category constructor.

The SPAD language supports conditional exports. This permits to implement the

following statement: if R has type Field then SUP(R) implements EuclideanDomain.

SPAD also supports conditional implementation. This is similar to the concept of

generics in Java. For instance, if R has type PrimeFieldCategory, The specialized

“modular integer arithmetic” package can be automatically chosen. These features of

the SPAD language are important for combining different data types and achieving

high-performance.

To implement an new domain constructor, the programmer may have to choose

a data representation for this domain type. For example SUP uses sparse polynomial

data representation and DUP uses dense polynomial data representation. After an

newly defined domain or category is compiled, it becomes an AXIOM data type

which can be used just like any system provided data type.

In the light of these properties of the SPAD language, we describe briefly the

polynomial type constructors that we use in this study. Please, see [52] and [64] for

more details. Let R be an AXIOM Ring and V be an AXIOM OrderedSet.

SUP or UP. As mentioned above, the domain SUP(R) implements the ring of uni-

variate polynomials with coefficients in R. More precisely, it satisfies the

AXIOM category UnivariatePolynomialCategory(R). The representation of

these polynomials is sparse, that is, only non-zero terms are encoded.

48

DUP. The domain DUP(R) implements UnivariatePolynomialCategory(R) as well.

The representation is dense: all terms, null or not, are encoded.

NSMP. The domain NSMP(R,V) implements the ring of multivariate polynomials with

coefficients in R and variables in V. (To be precise, it implements the AXIOM

category RecursivePolynomialCategory(R, V).) A non-constant polynomial

f of NSMP(R), with greatest variable v, is regarded as an univariate polynomial

in v implemented as an element of SUP(NSMP(R)). Therefore, the representation

is recursive and sparse.

DRMP. The domain DRMP(R,V) implements the same category as NSMP(R,V). The

representation is also recursive. However, it is based on DUP rather than SUP.

The constructors SUP and NSMP are provided by the AXIOM standard distribu-

tion, whereas DUP and DRMP are our implementation. As mentioned in Section 1.2

modular methods tend to “densify” the polynomial computation. Therefore, dense

polynomial representation is the most suitable one for this kind of methods. Our

algorithms in this thesis are mostly related to modular arithmetic, thus dense poly-

nomials is our canonical data representation in our implementation. One example of

modular algorithms we implemented as a benchmark program in this Chapter is van

Hoeij and Monagan’s modular GCD algorithm [50]. We will use this implementation

as the principle benchmark program to test the performance of all the polynomial

data types and their combination.

4.3 The Lisp Level

The domain constructors SUP, DUP, NSMP and DRMP allow the user to construct polyno-

mials over any AXIOM Ring. So we say that their code is generic. Ideally, one would

like to use also conditional data representations. For instance, one could think of a

domain U(R) implementing univariate polynomials over R such that sparse polynomi-

als have a sparse representation and dense polynomials have a dense representation.

In addition, if R implements a prime field Z/pZ for a machine word size prime p, one

could encode each dense polynomial of U(R) by an array of machine words (such that

the slot of index i contains the coefficient in the term of degree i). But this ideal type

constructor U would be very difficult to be analyzed by the run-time system. Indeed,

many tests would be needed for selecting the appropriate representation for the right

computation, at the right moment. Therefore, we use specialized domain construc-

tors (say, dense univariate polynomials over a prime field) canonically for a specific

49

algorithm (for instance, the modular GCD algorithm by van Hoeij and Monagan).

By experimentation, we observe that this approach is more effective than switching

data representation at run-time for our application due to the overhead mentioned

above.

For these reasons, we have defined at the SPAD level a specialized polynomial

type constructor MultivariateModularArithmetic, abbreviated to MMA. It takes a

prime integer p and V an OrderedSet as its arguments. MMA(p,V) implements the

same interface as DRMP(PF(p),V) does where PF(p) is a prime field of characteristic

p. In fact, all the concrete operations of MMA(p,V) have been implemented at Lisp

level. The SPAD level MMA(p,V) domain is just a wrapper. The reason we write MMA

at Lisp level instead at SPAD level is as following:

In MMA, we have used the vector-based recursive dense representation proposed by

Richard J. Fateman [38]: a multivariate polynomial f is encoded by a number (to be

precise, an integer modulo p) if f is constant and, otherwise, by a Lisp vector storing

the coefficients of f w.r.t its leading variable. At the SPAD level, such disjunction has

to be implemented by an union type bringing an extra indirectness. However, this can

be avoided at the Lisp level. Not like SPAD doing strict compile time type-checking,

Lisp only does run-time type-checking. Moreover, for the Lisp implementation such

as GCL, the run-time type-checking can be switched off manually. Thus, f can be

assigned by a number or a vector in Lisp without any compilation error and run-time

overhead optionally.

In addition, in Lisp for the machine integer size prime case we can decorate the

code to force the Lisp compiler to use machine integer array (fixnum-array). However

this is a non-easy task in SPAD language. Even we decorate the code at SPAD level,

the array type used is an array of reference to the machine integers. This array type is

far less efficient than the C-like array “fixnum-array” while the dense polynomials are

over Z/pZ with p a machine integer prime. Therefore, for certain applications such as

our example the Lisp level code may yield more efficient implementation comparing

to the SPAD level.

We have defined at the SPAD level an univariate type constructor

UnivariateModularArithmetic, abbreviated to UMA, taking a prime integer p as

argument and implementing the same operations as DUP(PF(p)). It is also a SPAD

level wrapper for two Lisp level implementations: one for the machine prime case

and one for the big prime case. In both cases, univariate polynomials are again en-

coded by fixnum-array. It is possible directly using C arrays to encode univariate

polynomials over Z/pZ, but we prefer, at this experimentation stage, the Lisp level

50

garbage collection system which is more convenient. For the machine prime case,

each entry in fixnum-array is a coefficient. For the big prime case, two or more

entries encode one coefficient up to the size the prime number. All these specialized

implementations at the Lisp level yield significant speed up comparing to the original

SPAD level packages. The benchmark result is reported in Section 4.6 at Page 52.

4.4 The C Level

GCL is implemented in C language and uses the native optimizing C compiler to

generate native machine code. This allows us to extend the functionality of the Lisp

level in AXIOM by writing new C code. For example, we can integrate an new C

function into the GCL kernel image, or add it into a GCL library.

This interoperability between Lisp and C has at least two benefits. First, our

Assembly code (written for some efficiency critical operation previously, see Sec-

tion 4.5 below) can be inlined in the C code, thus available for Lisp function. Sec-

ond, we can directly use existing C libraries such as GMP library [4] or NTL [6] to

speed up Lisp level implementation. We illustrate these two benefits by an important

example: the implementation of dense univariate polynomial domain over the prime

field Z/pZ, i.e the UMA domain constructor (see Section 4.3 at Page 48).

Recall that we have two implementation cases for UMA: one for small primes p (that

fits in single precious machine word) and one for big primes p (that is bigger than

the biggest single precious machine word). For both the small and big prime cases,

we have the following code which has been integrated into the GCL kernel:

• classical multiplication, addition and Chinese remaindering algorithm written

in Assembly,

• FFT-based multiplication written in C with Assembly sub-routines.

Moreover, in the big prime case, we have developed a highly efficient double precision

big integer arithmetic package by modifying GMP multiprecision subroutines. This

is motivated by the importance of the double precision integer computation in our

application. For instance, most prime numbers used in the modular method of [27]

are of that size.

51

4.5 The Assembly Code Level

Primarily, our Assembly level implementation is for univariate polynomial addition

and multiplication. As we know that big integer arithmetic is basically the same as

univariate polynomial arithmetic modulo a prime number. The only difference is the

“carry” issue. So we can directly modify the existing big integer libraries such as

GMP to perform univarivate polynomial arithmetic over Z/pZ. Since the related

GMP operations are implemented in assembly, we directly modify their Assembly

level operations and link the modified operations into AXIOM. In this way, we have

avoided extra encoding effort and obtained highly efficient Assembly level polyno-

mial operations. Besides this, there are two other reasons to use Assembly code in

our AXIOM environment: “controlling register allocation” and “using architecture

specific features”.

4.5.1 Controlling register allocation

In a modern computer architecture, CPU registers sit at the top level of the memory

hierarchy. Although optimizing compilers devote special efforts to make good use of

the target machine’s register set, this effort can be constrained by numerous factors,

such as:

• difficulty to estimate the execution frequencies of each part of the program,

• difficulty to allocate or evict ambiguous values,

• difficulty to take advantage of some new hardware features on specific platforms.

Therefore, some high-performance oriented applications require programmers to bet-

ter exploit the power of registers on a target machine. In fact, we have spent a

great effort in this direction in our implementation. First, we directly program the

efficiency-critical parts in Assembly language in order to explicitly manipulate data

in registers. For example, for dense univariate polynomials over Z/pZ, we write the

classical multiplication algorithm in both C and Assembly language. The Assembly

version is faster than the C version since we always try to keep frequently used vari-

ables in registers instead of a memory location. Although in C we can declare a

variable to be of “register” type as in GCC, this does not guarantee that the register

is reserved for this variable. According to our benchmark results, our explicit register

allocation method is always faster than the C compiler’s optimization.

52

Besides the general purpose registers, we also can use MMX, XMM registers if they

are available. Keeping the working set in registers will yield significant performance

improvement comparing to keeping them in the main memory.

4.5.2 Using architecture specific features

Polynomial arithmetic in Z/pZ[x] makes an intensive use of integer division. This

integer operation has a dominant cost in crucial polynomial operations like the FFT-

based multiplication over Z/pZ. Therefore, improving the performance of integer

division is one of the key issues in our implementation.

In Section 3.4.3 at Page 37, we have introduced the fast integer division trick

by using assembly code with SIMD instructions. Our implementation of the FFT-

based polynomial multiplication over Z/pZ uses this technique. It is faster than using

FPU unit, as reported in Section 4.6 at Page 52. In Section 5.2.2 at Page 59 and

Section 6.3 at Page 79. we present other integer division tricks we have developed

whereas implemented at C level.

4.6 Experimentation

4.6.1 Benchmarks for the Lisp level implementation

The goal of these benchmarks is to measure the performance improvements obtained

by our specialized dense multivariate polynomial domain constructor MMA imple-

mented at the Lisp level and described in Section 4.3 of this chapter. We are also

curious about measuring the practical benefit of dense recursive polynomial domains

in a situation (polynomial GCD computations over algebraic number fields) where

AXIOM libraries traditionally use sparse recursive polynomials.

As mentioned in the introduction, our test algorithm is that of van Hoeij and

Monagan [50]. Recall that, given an algebraic number field K = Q(a1, a2, . . . , ae),

this algorithm computes GCDs in K[y] by means of a small prime modular algorithm,

leading to computations over a tower of simple algebraic extensions Kp of Z/pZ.

Recall also that the algorithm involves two polynomial data types:

• a multivariate one for the elements of K and Kp,

• a univariate one for the polynomials in K[y] and Kp[y].

Figure 4.1 shows the different combinations that we have used.

53

Q(a1, a2, . . . , ae) K[y]

NSMP in SPAD SUP in SPAD

DMPR in SPAD DUP in SPAD

MMA in Lisp SUP in SPAD

MMA in Lisp DUP in SPAD

Note that:

• the first two combinations, that is NSMP + SUP (sparse polynomial domains)

and DMPR + DUP (dense polynomial domains), involve only SPAD code,

• the other two combinations use MMA - our dense multivariate polynomials

implemented at the Lisp level and SUP/DUP - univariate polynomials written

at the SPAD level.

We would like to stress the following facts:

• the algorithms for addition, multiplication, division of DRMP and MMA are iden-

tical,

• none of the above polynomial types uses fast arithmetic, such as FFT-based or

Karatsuba multiplication.

Remember also that:

• the SPAD constructors NSMP, DMPR, UP, and DUP are generic constructors, i.e.

they work over any AXIOM ring,

• however, our dense multivariate polynomials implemented at the Lisp level

(provided by the MMA constructor) only work over a prime field.

Therefore, we are comparing here is the performances of

• specialized code at the Lisp level versus generic code at the SPAD level,

• sparse representation versus dense representation.

We have set the benchmark of van Hoeij and Monagan’s algorithm for

• different degrees of the extension Q→ K,

• different degrees of the input polynomials

• and different sizes for their coefficients.

54

Figure 4.1 p. 55 shows our benchmark results. First, we fix the coefficient size bound

to 5 and increase the total degree (degree of the extension plus maximum degree

of an input polynomial). The charts (a), (b) and (c) correspond to towers of 3, 4

and 5 simple extensions respectively. Second, we fix the total degree to 2000 and

increase the coefficient bound. The charts (d), (e) and (f) correspond to towers of 3,

4 and 5 simple extensions respectively. In (a), (b) and (c) fixing the coefficient size

bound, and increase the total degree of input polynomials. Conversely in (d), (e),

and (f) fixing the total degree and increase the coefficient size bound. We observe

the following facts.

Charts (a), (b), (c). For univariate polynomial data types, DUP outperforms SUP

and, for the multivariate polynomial data types, MMA outperforms DRMP, which

outperforms NSMP. For the largest degrees, the timing ratio between the best

combination, DUP + MMA, and the worst one, SUP + NSMP is in the range 2 · · · 3.

Charts (d), (e), (f). The best and the worst combinations are the same as

above, however the timing ratio is in the range 3 · · · 4. Interestingly, the sec-

ond best combination is SUP + MMA for small coefficients and DUP + DRMP for

larger ones. This fact maybe explained by following reasons: First, the SUP

constructor relies on some fast routines which allows it to compete with the

DUP constructor for small input data. Second, memory allocation and garbage

collection of polynomials built with DUP + DRMP appears to be more efficient

than for SUP + MMA polynomials, for large size data.

4.6.2 Benchmarks for the multi-level implementation

In the previous chapter, we have already demonstrated that our AXIOM fast mul-

tivariate multiplication based Kronecker substitution is competitive and often out-

performs its counterpart - a similar computer algebra system, namely Magma. This

implementation involves code from SPAD, Lisp, C and Assembly level. For the

Kronecker substitution part, we write code at SPAD and Lisp levels. However, for

the FFT-based univariate multiplication, we write code at C and Assembly level as

reported in Section 3.4.2 at Page 36, since the optimized grouping of machine level

operations has a huge impact on the performance. As shown in Figures 3.7, this

mix-code approach yields high-performance result.

55

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000

T
im

e
[s

ec
]

Total Degree

UP(NSMP(Q,[w,x,y,z]))
DUP(DMP(Q,[w,x,y,z]))
UP(MMA(Q,[w,x,y,z]))

DUP(MMA(Q,[w,x,y,z]))

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
[s

ec
]

Total Degree

UP(NSMP(Q,[v,w,x,y,z]))
DUP(DMP(Q,[v,w,x,y,z]))
UP(MMA(Q,[v,w,x,y,z]))

DUP(MMA(Q,[v,w,x,y,z]))

(a) (b)

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
[s

ec
]

Total Degree

UP(NSMP(Q,[u,v,w,x,y,z]))
DUP(DMP(Q,[u,v,w,x,y,z]))
UP(MMA(Q,[u,v,w,x,y,z]))

DUP(MMA(Q,[u,v,w,x,y,z]))

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

T
im

e
[s

ec
]

Coefficients bound

UP(NSMP(Q,[w,x,y,z]))
DUP(DMP(Q,[w,x,y,z]))
UP(MMA(Q,[w,x,y,z]))

DUP(MMA(Q,[w,x,y,z]))

(c) (d)

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

T
im

e
[s

ec
]

Coefficients bound

UP(NSMP(Q,[v,w,x,y,z]))
DUP(DMP(Q,[v,w,x,y,z]))
UP(MMA(Q,[v,w,x,y,z]))

DUP(MMA(Q,[v,w,x,y,z]))

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25

T
im

e
[s

ec
]

Coefficients bound

UP(NSMP(Q,[u,v,w,x,y,z]))
DUP(DMP(Q,[u,v,w,x,y,z]))
UP(MMA(Q,[u,v,w,x,y,z]))

DUP(MMA(Q,[u,v,w,x,y,z]))

(e) (f)

Figure 4.1: Benchmark of van Hoeij and Monagan’s algorithm

56

4.7 Summary

We have investigated implementation techniques for polynomial arithmetic in the

multiple-level programming environment of the AXIOM computer algebra system.

Our benchmark results show that careful integration of data structures and code

from different levels can improve the performances in a significant manner (a ratio

of 2-4 speed up reported in Section 4.6). The integration process requires deep un-

derstanding of polynomial arithmetic, machine arithmetic and compiler optimization

techniques. However, we believe that it should be implemented in a transparent way

for the end-user.

57

Chapter 5

How Much Can We Speed-up the

Existing Library Code in AXIOM

with the C Level Implementation?

5.1 Overview

In Chapter 4 we use van Hoeij and Monagan’s modular GCD algorithm as a benchmark

example. By choosing different polynomial data type and implementation technique

at different language level, the performance on the same algorithm are obviously dif-

ferent. Based on this experimentation, we believe that the appropriate combination

of lower level language implementations are the most efficient way to realize high

performance packages for our dense classical and asymptotically fast polynomial ap-

plications. However, one problem of this strategy is that the multiple language level

implementation is difficult to maintain and has limited portability. Therefore, we try

to compress the multiple level code into a single level - the C level. From Lisp level

to C level, the code becomes more complex. However, for our application, this step is

relatively simple since our Lisp level code doesn’t use too much functional language

features. We also carefully study the C compiler optimization technique. We try

to write highly efficient C code which is close to the performance of our previous

Assembly level code. Therefore, similarly to Chapter 4 we need to systematically

measure the performance improvement for SPAD level algorithms after supplied with

C level support. More precisely, in this chapter our experimentation examples can

be formulated as following: given a high-level AXIOM package P parametrized by a

univariate polynomial domain U, we compare the performances of P when applied to

58

different U’s. One of the Us is our C asymptotically fast polynomial arithmetic im-

plementation wrapped in a SPAD level domain constructor. The rest Us are existing

AXIOM domain constructors implemented at SPAD level.

Our experiments show that when P relies our C level fast arithmetic implementa-

tion a significant speed-up observed comparing to those relying on other Us. We also

compare with other systems. For instance, the square-free factorization in AXIOM

with the new support is 7 times faster than the one in Maple and very close to the one

in Magma. Therefore, we believe our asymptotically fast algorithm implementation

in C can speed up high level language interfaces generally.

The outline of this chapter is as following. In Section 5.2.1, we review the AXIOM

polynomial domain constructors used in our experimentation. In Section 5.2.2 and

5.2.3, we discuss finite field arithmetic and polynomial arithmetic. In Section 5.3, we

compare the benchmark results.

NOTE: This chapter is written based on the published paper [70].

5.2 Software Overview

5.2.1 AXIOM polynomial domain constructors

In Section 4.2 at Page 47, we have introduced AXIOM univariate and multivariate

polynomial domain constructors. In this section, we introduce an new univariate

polynomial domain constructor DUP2(R) (DenseUnivariatePolynomialDomain version

two of the base ring R) DUP2(R) is designed for the one whose base ring R is a prime

field. In Section 5.2.1 at Page 58 we will review all the related AXIOM constructors,

then illustrate DUP2(R). In Section 5.3 at Page 61 we will provide the benchmark

between DUP2(R) and other constructors. Let R be an AXIOM Ring. The domain

SUP(R) implements the ring of univariate polynomials with coefficients in R. The data

representation of SUP(R) is sparse: only non-zero terms are encoded. The domain

constructor SUP is written in the SPAD language.

The domain DUP(R) implements exactly the same operations in SUP(R). More

precisely, these two domains satisfy the same category UnivariatePolynomial-

Category(R) (or interface in the sense of Java). However, the representation of the

latter domain is dense: all terms, null or not, are encoded. The domain constructor

DUP is also implemented in the SPAD language, see [64] for details.

Another important domain constructor in our study is PF: for a prime num-

ber p, the domain PF(p) implements the prime field Z/pZ. Our C code is ded-

59

icated to polynomial computation over Z/pZ with dense polynomial representa-

tion. To make this code available at the AXIOM level, we have implemented a

wrapper domain constructor DUP2 to wrap up our C code. For a prime number

p, the domain DUP2(p) implements the same category as DUP(FP(p)) does , i.e.

UnivariatePolynomialCategory(PF(p)).

5.2.2 Finite field arithmetic

As mentioned in previous chapters, finite field arithmetic is especially important for

our modular fast algorithms. Thus, we have put great effort on it. On the one hand,

we design more efficient tricks for finite field arithmetic as reported in this section

(and later an new trick in Section 6.3 at Page 79), on the other hand we implement

these tricks in C code. The C implementation of the new tricks has even better

performance comparing to the previous Assembly level implementation (the one

reported in Section 3.4.3 at Page 37). There are two reasons: better arithmetic and

highly optimized C code.

In this section, we focus on some special small finite fields. By a small finite field,

we mean a field of the form K = Z/pZ, for p a prime that fits in a 26-bit word (so that

the product of two elements reduced modulo p fits into a double floating-point

register). Furthermore, the primes p we consider have the form k2ℓ + 1, with k a

special small odd integer (typically k ≤ 7), which enables us to write specific code for

integer Euclidean division. Although this is a trick for special prime numbers, it is

good enough for the most of our polynomial applications where we have the freedom

to choose prime numbers.

The elements of Z/pZ are represented by integers from 0 to p− 1. Additions and

subtractions in Z/pZ are performed in a straightforward way: we perform integer

operations, and the result is then reduced modulo p. Since the result of additions and

subtractions is always in −(p− 1), . . . , 2(p− 1), modular reduction requires at most

a single addition or subtraction of p; for the reduction, we use routines from Shoup’s

NTL library [6, 86]. Multiplication in Z/pZ requires more work. A popular solution

implemented in NTL conducts a multiplication in double precision floating-point

registers, computes numerically the quotient appearing in the Euclidean division by

p, and finally deduces the remainder.

Using the special form of the prime p, we have designed the following faster “ap-

proximate” Euclidean division, that shares similarities with Montgomery’s REDC

algorithm [74]; for another use of arithmetic modulo special primes, see [37]. Let

60

thus Z be in 0, . . . , (p− 1)2; in actual computations, Z is obtained as the product of

two integers less than p. The following algorithm computes an approximation of the

remainder of kZ by p, where we recall that p has the form k2ℓ + 1:

1. Compute q = ⌊ Z
2ℓ ⌋.

2. Compute r = k(Z − q2ℓ)− q.

Proposition 5.2.1. Let r be as above and let r0 < p be the remainder of kZ by p.

Then r ≡ r0 mod p and r = r0 − δp, with 0 ≤ δ < k + 1.

Proof. Let us write the Euclidean division of kZ by p as kZ = q0p + r0. This

implies that

q = q0 +

⌊

q0 + r0
k2ℓ

⌋

holds. From the equality qp+ r = q0p+ r0, we deduce that we have

r = r0 − δp with δ =

⌊

q0 + r0
k2ℓ

⌋

p.

The assumption Z ≤ (p− 1)2 enables us to conclude that δ < k + 1 holds. �

In terms of operations, this reduction is faster than the usual algorithms which rely

on either Montgomery’s REDC or Shoup’s floating-point techniques. The computa-

tion of q is done by a logical shift; that of r requires a logical and (to obtain Z−2ℓq),

and a single multiplication by the constant c. Classical reduction algorithms involve 2

multiplications, and other operations (additions and logical operations). Accordingly,

in practical terms, our approach turns out to be the most efficient one.

There are however drawbacks to this approach. First, the algorithm above does

not compute Z mod p, but a number congruent to kZ modulo p (this multiplication

by a constant is also present in Montgomery’s approach). This is however easy to

circumvent in several cases, for instance when doing multiplications by precomputed

constants (this is the case in FFT polynomial multiplication, see below), since a

correcting factor k−1 mod p can be incorporated in these constants. The second

drawback is that the output of our reduction routine is not reduced modulo p. When

results are reused in several computations, errors accumulate, so it is necessary to

perform some error reduction regularly which is an overhead.

In Section 6.3 at Page 79, we extend this special prime reduction trick into a more

generic method. The trick presented in this section has approximation steps in the

middle stage, and obtain the exact result in the end after removing the “errors”. The

more generic trick will maintain all intermediate results exact and it works for all

Fourier prime numbers.

61

5.2.3 Polynomial arithmetic

In Section 2.1 at Page 8 we have introduced a set of FFT-based algorithms. In this

section, we briefly review the fast division and Half-GCD algorithms. We use these

two as benchmark programs in Section 5.3 of at Page 61.

Our implementation of fast Euclidean division is based on Cook-Sieveking-Kung’s

approach [43, Chapter 9]. One of the major steps in this approach is to compute New-

ton’s iteration. We have implemented Newton’s iteration with the support of middle

product technique [49]. This technique can reduce the cost of a direct implementation

by a constant factor. For the GCD computation, we have implemented both the

classical Euclidean algorithm and the faster Half-GCD techniques [43, Chapter 11].

The classical one has complexity in O(d2), whereas the latter one is in O(d log(d)2)

with a large multiplicative constant factor.

5.2.4 Code connection

Recall that in Section 3.2.2 at Page 29, we have described the way to integrate multiple

level code in AXIOM. Actually, the crucial step is converting different polynomial

data representations between AXIOM and the ones in our C library via GCL level.

The overhead of these conversions may significantly reduce the effectiveness of our C

implementation. Thus, good understanding of data structures in AXIOM and GCL

is a necessity to establish an efficient code connection.

5.3 Experimentation

In this section, we compare our specialized domain constructor DUP2 with our generic

domain constructor DUP and the existing (default) AXIOM domain constructor SUP.

Our experimental computations are in the polynomial rings:

• Ap = Z/pZ[x],

• Bp = (Z/pZ[x]/〈m〉)[y],
for a machine word prime number p and an irreducible polynomial m ∈ Z/pZ[x]. The

ring Ap can be implemented by any of the three domain constructors DUP2, DUP and

SUP applied to PF(p), whereas Bp is implemented by either DUP and SUP applied to

Ap. In both Ap and Bp, we compare the performances of factorization and resultant

computation. We have two goals for this experimentation:

(G1) When a large portion of the running time spends on computing products, re-

mainders, quotients, GCDs in Ap, we believe that there are opportunities for

62

significant speed-up when using DUP2 and we want to measure this speed-up

w.r.t. SUP and DUP.

(G2) Otherwise, when there is a little portion spends on computing products, re-

mainders, quotients, GCDs in Ap, we want to check whether using DUP2 is still

better than using SUP and DUP.

For computing univariate polynomial resultants over a field, AXIOM calls the

package PseudoRemainderSequence (using the algorithms of Ducos [32]). This pack-

age takes R: IntegralDomain and polR: UnivariatePolynomialCategory(R) as

parameters. However, this code has its private divide operation and does not rely

on the one provided by the domain polR. In fact, the only non-trivial operation will

be used from polR is polynomial addition. Therefore, the package PseudoRemain-

derSequence does not take advantage of our fast division even it’s available. Hence,

for this example, there is very little speedup when using DUP2 instead SUP and DUP.

For square-free factorization over a finite field, AXIOM calls the package

UnivariatePolynomialSquareFree. It takes RC: IntegralDomain and P: Univa-

riatePolynomialCategory(RC) as parameters. In this case, the code relies on the

operations gcd and exquo provided by P. Hence, if P provides fast GCD computations

and fast divisions, UnivariatePolynomialSquareFree can use them. In this case,

DUP2 does help.

We start the description of our experimental results with resultant computations

in Ap = Z/pZ[x]. As mentioned above, this is not a good example for significant

performance improvement. Figure 5.1 shows that computations with DUP2 are just

slightly faster than those with SUP. In fact, it is satisfactory to verify that using DUP2,

which implies data-type conversions between the AXIOM and C data-structures,

does not slow down computations.

We continue with square-free factorization and irreducible factorization in Ap.

Figure 5.2 (resp. Figure 5.3) shows that DUP2 provides a speed-up ratio of 8 (resp. 7)

for polynomial with degrees about 9000 (resp. 400). This shows that the combination

of the fast arithmetic (FFT-based multiplication, Fast division, Half-GCD) and highly

optimized code from DUP2 does help.

In the case of irreducible factorization, we could have obtained a better ra-

tio if the code was more generic. Indeed, the irreducible factorization over finite

fields in AXIOM involves a package which has its private univariate polynomial

arithmetic, leading to a problem similar to that observed with resultant computa-

63

tions. The package in question is ModMonic, parametrized by R: Ring and Rep:

UnivariatePolynomialCategory(R), which implements the Frobenius map.

 0

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
[s

ec
]

Degree

SUP(FP(p))
DUP2(FP(p))

Figure 5.1: Resultant computation in
Z/pZ[x]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
[s

ec
]

Degree

SUP(FP(p))
DUP2(FP(p))

Figure 5.2: Square-free factorization
in Z/pZ[x]

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

T
im

e
[s

ec
]

Degree

SUP(FP(p))
DUP2(FP(p))

Figure 5.3: Irreducible factorization in
Z/pZ[x]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80 90 100

T
im

e
[s

ec
]

Total Degree

SUP(SUP(FP(p)))
DUP(DUP(FP(p)))

DUP(DUP2(FP(p)))

Figure 5.4: Resultant computation in
(Z/pZ[x]/〈m〉)[y]

We conclude this section with our benchmarks in Bp = (Z/pZ[x]/〈m〉)[y]. For

resultant computations in Bp the speed-up ratio obtained with DUP2 is better than

in the case of Ap. This is because the arithmetic operations of DUP2 (addition, multi-

plication, inversion) perform better than those of SUP or DUP. Finally, for irreducible

factorization in Bp, the results are quite surprising. Indeed, AXIOM uses Trager’s

algorithm (which reduces computations to resultants in Bp, irreducible factorization

in Ap and GCDs in Bp) and, based on our previous results, we could have antici-

pated a good speed-up ratio. Unfortunately, the package AlgFactor, which is used

for algebraic factorization, has its private arithmetic. More precisely, it “re-defines”

Bp with SUP and factorizes the input polynomial over this new Bp. Therefore, there

is no impressive speed-up at all.

64

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5

T
im

e
[s

ec
]

Total Degree

SUP(SUP(FP(p)))
DUP(DUP(FP(p)))

DUP(DUP2(FP(p)))

Figure 5.5: Irreducible factorization in
(Z/pZ[x]/〈m〉)[y]

 0

 5

 10

 15

 20

 25

 30

 35

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
[s

ec
]

Total Degree

AXIOM-Apr-06
Magma-2.11-2

Maple-9.5

Figure 5.6: Square-free factorization
in Z/pZ[x]

5.4 Summary

The purpose of this Chapter is to measure the impact of our C level specialized

implementation for fast polynomial arithmetic on the performances of AXIOM high-

level algorithms. Generic programming is well designed in the AXIOM system.

The experimental results demonstrate that by replacing a few important operations

in DUP(PF(p)) with our C level implementation, the original AXIOM univariate

polynomial arithmetic over Z/pZ has been sped up by a large factor in general. For

algorithm such as univariate polynomial square free factorization over Z/pZ, the

improved AXIOM code is 7 times faster than the one in Maple and very close to

the one in Magma (see Figure 5.6 at Page 64).

65

Chapter 6

Fast Arithmetic for Triangular

Sets: from Theory to Practice

6.1 Overview

In Chapters 3, 4 and 5 we have presented implementation techniques for both asymp-

totically fast and classical polynomial arithmetic. From this chapter to Chapter 8 we

focus on developing faster algorithms with comparing to the best known algorithms

in terms of complexity for triangular decompositions technique (see Section 2.3 at

Page 20).

For each new algorithm, we have realized a high performance implementation

based on our previous techniques. The benchmark result for each implementation

will be reported at the end of each chapter. As a starting point of our new algorithms

development, we study those “core” operations. In this chapter, we have identified,

improved and implemented one of these operations: modular multiplication. Indeed,

all triangular decomposition technique based methods involve polynomial arithmetic

operations (addition, subtraction, multiplication and division) modulo a triangular

set. We call them modular operations. As we explained in this chapter, modular

multiplication and division are expensive (often dominant) operations in terms of

computational time in triangular decompositions based polynomial solving. Under

certain assumptions, the modular division can be achieved by two modular multi-

plications as described in this chapter. Thus, modular multiplication is unarguably

the “core” operation and at the base level to support all triangular decompositions

based algorithms such as Regular GCD, Bivariate Solver, regularity test reported in

66

Chapters 7 and 8. In the following text, we will give an overview of the concepts of

triangular set, modular multiplication, and our contributions in this chapter.

Triangular sets. Triangular set is an useful data structure for dealing with a variety

of problems, from computations with algebraic numbers to the symbolic solution of

polynomial or differential systems. At the core of the algorithms for these objects, one

finds a few basic operations, such as multiplication and division in dimension zero.

Higher-level algorithms can be built on these subroutines, using for instance modular

algorithms and lifting techniques [27]. The zero-dimensional case is discussed in

detail (with worked-out examples) in [62]; a general introduction (including positive

dimensional situations) is given in Section 2.3 at Page 20 (also see [9]). In this

chapter, we adopt the following convention: a monic triangular set is a family of

polynomials T = (T1, . . . , Tn) in R[X1, . . . , Xn], where R is a commutative ring with

1. For all i, we impose that Ti is in R[X1, . . . , Xi], is monic in Xi and reduced with

respect to T1, . . . , Ti−1. Since all our triangular sets will be monic, we simply call

them triangular sets.

The natural approach to arithmetic modulo triangular sets is recursive: to work in

the residue class ring LT = R[X1, . . . , Xn]/〈T1, . . . , Tn〉, we regard it as LT− [Xn]/〈Tn〉,
where LT− is the ring R[X1, . . . , Xn−1]/〈T1, . . . , Tn−1〉. This point of view allows one

to design elegant recursive algorithms, whose complexity is often easy to analyze,

and which can be implemented in a straightforward manner in high-level languages

such as AXIOM or Maple [63]. However, as shown below, this approach is not

necessarily optimal, regarding both complexity and practical performance.

Complexity issues. The core of our problematic is modular multiplication: given A

and B in the residue class ring LT , compute their product; here, one assumes that the

input and output are reduced with respect to the polynomials T . Besides, one can

safely suppose that all degrees are at least 2 (see the discussion in the next section).

In one variable, the usual approach consists in multiplying A and B and re-

ducing them by Euclidean division. Using classical arithmetic, the cost is about

2d2
1 multiplications and 2d2

1 additions in R, with d1 = deg(T1, X1). Using fast

arithmetic, polynomial multiplication becomes essentially linear, the best known re-

sult ([21], after [83, 82]) being of the form k d1 lg(d1) lg lg(d1), with k a constant and

lg(x) = log2 max(2, x). A Euclidean division can then be reduced to two polynomial

multiplications, using Cook-Sieveking-Kung’s algorithm [24, 87, 59]. In n variables,

the measure of complexity is δT = deg(T1, X1) · · · deg(Tn, Xn), since representing a

polynomial modulo T requires storing δT elements. Then, applying the previous

67

results recursively leads to bounds of order 2nδ2
T for the standard approach, and

(3k + 1)nδT for the fast one, neglecting logarithmic factors and lower-order terms.

An important difference with the univariate case is the presence of the overheads 2n

and (3k + 1)n, which cannot be absorbed in a big-Oh estimate anymore (unless n is

bounded).

Improved algorithms and the advantages of fast arithmetic. Our first con-

tribution is the design and implementation of a faster algorithm: while still relying

on the techniques of fast Euclidean division, we show in Theorem 6.2.1 that a mixed

dense / recursive approach yields a cost of order 4nδT , neglecting again all lower order

terms and logarithmic factors; this is better than the previous bound for δT ≥ 2n.

Building upon previous work [41], the implementation is done in C, and is dedicated

to small finite field arithmetic.

The algorithm uses fast polynomial multiplication and Euclidean division. For

univariate polynomials over Fp, such fast algorithms become advantageous for degrees

of approximately 100. In a worst-case scenario, this may suggest that for multivariate

polynomials, fast algorithms become useful when the partial degree in each variable

is at least 100, which would be a severe restriction. Our second contribution is to

contradict this expectation, by showing that the cut-off values for which the fast

algorithm becomes advantageous decrease with the number of variables.

A quasi-linear algorithm for a special case. We next discuss a particular case,

where all polynomials in the triangular set are actually univariate, that is, with Ti

in K[Xi] for all i. Despite its apparent simplicity, this problem already contains non-

trivial questions, such as power series multiplication modulo 〈Xd1
1 , . . . , X

dn

n 〉, taking

Ti = Xdi

i . For the question of power series multiplication, no quasi-linear algorithm

was known until [85]. We extend this result to the case of arbitrary Ti ∈ K[Xi], the

crucial question being how to avoid expanding the (polynomial) product AB before

reducing it. Precisely, we prove that for K of cardinality greater than, or equal to,

maxi≤n di, and for ε > 0, there exists a constant Kε such that for all n, products

modulo 〈T1(X1), . . . , Tn(Xn)〉 can be done in at most Kεδ
1+ε
T operations, with δT as

before.

Following [13, 14, 12, 85], the algorithm uses deformation techniques, and is un-

fortunately not expected to be very practical, except for example. when all degrees

equal 2. However, this shows that for a substantial family of examples, and in suit-

able (large enough) fields, one can suppress the exponential overhead seen above.

Generalizing this result to an arbitrary T is a major open problem.

68

Applications to higher-level algorithms. Fast arithmetic for basic operations

modulo a triangular set is fundamental for a variety of higher-level operations. By

embedding fast arithmetic in high-level environments like AXIOM (see [41, 65]) or

Maple, one can obtain a substantial speed-up for questions ranging from computa-

tions with algebraic numbers (GCD, factorization) to polynomial system solving via

triangular decomposition, such as in the algorithm of [75], which is implemented in

AXIOM and Maple [63].

Our last contribution is to demonstrate such a speed-up on the example of van

Hoeij and Monagan’s algorithm for GCD computation over number fields. This algo-

rithm is modular, most of the effort consisting in GCD computations over small finite

fields. We compare a direct AXIOM implementation to one relying on our low-level

C implementation, and obtain improvement of orders of magnitude.

Outline of this chapter. Section 6.2 presents our multiplication algorithms, for

general triangular sets and triangular sets consisting of univariate polynomials. We

next describe our implementation in Section 6.3; experiments and comparisons with

other systems are given in Section 6.4.

NOTE: This chapter is written based on the published paper [69].

6.2 Algorithms

We describe here our main algorithm. It relies on the Cook-Sieveking-Kung idea but

differs from a direct recursive implementation: recalling that we handle multivariate

polynomials makes it possible to base our algorithm on fast multivariate multiplica-

tion.

6.2.1 Notation and preliminaries

Notation. Triangular sets will be written as T = (T1, . . . , Tn). The multi-degree of a

triangular set T is the n-tuple di = deg(Ti, Xi)1≤i≤n. We will write δT = d1 · · · dn; in

Subsection 6.2.3 at Page 73, we will use the notation rT =
∑n

i=1(di− 1) + 1. Writing

X = X1, . . . , Xn, we let LT be the residue class ring R[X]/〈T 〉, where R is our base

ring. Let MT be the set of monomials MT =
{

Xe1
1 · · ·Xen

n | 0 ≤ ei < di for all i
}

;

then, because of our monicity assumption, the free R-submodule generated by MT in

R[X], written

Span(MT) =
{

∑

m∈MT

amm | am ∈ R
}

,

69

is isomorphic to LT . Hence, in our algorithms, elements of LT are represented on the

monomial basis MT . Without loss of generality, we always assume that all degrees

di are at least 2. Indeed, if Ti has degree 1 in Xi, the variable Xi appears neither in

the monomial basis MT nor in the other polynomials Tj, so one can express it as a

function of the other variables, and Ti can be discarded.

Standard and fast modular multiplication. As said before, standard algorithms

have a cost of roughly 2nδ2
T operations in R for multiplication in LT . This bound

seems not even polynomial in δT , due to the exponential overhead in n. However,

since all degrees di are at least 2, δT is at least 2n; hence, any bound of the form KnδℓT
is actually polynomial in δT , since it is upper-bounded by δ

log2(K)+ℓ
T .

Our goal is to obtain bounds of the form KnδT (up to logarithmic factors), that are

thus softly linear in δT for fixed n; of course, we want the constant K as small as pos-

sible. We will use fast polynomial multiplication, denoting by M : N→ N a function

such that over any ring, polynomials of degree less than d can be multiplied in M(d)

operations, and which satisfies the super-linearity conditions of [43, Chapter 8]. Us-

ing the algorithm of Cantor-Kaltofen [21], one can take M(d) ∈ O(d log(d) log log(d)).

Precisely, we will denote by k a constant such that M(d) ≤ k d lg(d) lg lg(d) holds for

all d, with lg(d) = log2 max(d, 2)

In one variable, fast modular multiplication is done using the Cook-Sieveking-

Kung algorithm [24, 87, 59]. Given T1 monic of degree d1 in R[X1] and A,B of

degrees less than d1, one computes first the product AB. To perform the Euclidean

division AB = QT1 + C, one first computes the inverse S1 = U−1
1 mod Xd1−1

1 , where

U1 = Xd1
1 T1(1/X1) is the reciprocal polynomial of T1. This is done using Newton

iteration, and can be performed as a precomputation, for a cost of 3M(d1) + O(d1).

One recovers first the reciprocal of Q, then the remainder C, using two polynomial

products. Taking into account the cost of computing AB, but leaving out precompu-

tations, these operations have cost 3M(d1)+d1. Applying this result recursively leads

to a rough upper bound of
∏

i≤n(3M(di) + di) for a product in LT , without taking

into account the similar cost of precomputation (see [60] for similar considerations);

this gives a total estimate of roughly (3k + 1)nδT , neglecting logarithmic factors.

One can reduce the (3k + 1)n overhead: since additions and constant multipli-

cations in LT can be done in linear time, it is the bilinear cost of univariate mul-

tiplication which governs the overall cost. Over a field of large enough cardinality,

using evaluation / interpolation techniques, univariate multiplication in degree less

than d can be done using 2d − 1 bilinear multiplications; this yields estimates of

rough order (3 × 2)nδT = 6nδT . Studying more precisely the multiplication pro-

70

cess, we prove in Theorem 6.2.1 that one can compute products in LT using at most

K 4nδT lg(δT) lg lg(δT) operations, for an universal constant K. This is a synthetic

but rough upper bound; we give more precise estimates within the proof. Obtaining

results linear in δT , without an exponential factor in n, is a major open problem.

When the base ring is a field of large enough cardinality, we obtain first results in

this direction in Theorem 6.2.2: in the case of families of univariate polynomials, we

present an algorithm of quasi-linear complexity Kεδ
1+ε
T for all ε.

Basic complexity considerations. Since we are estimating costs that depend on

an a priori unbounded number of parameters, big-Oh notation is delicate to handle.

We rather use explicit inequalities when possible, all the more as an explicit control

is required in the proof of Theorem 6.2.2. For similar reasons, we do not use O˜

notation.

We denote by CEval (resp. CInterp) functions such that over any ring R, a polynomial

of degree less than d can be evaluated (resp. interpolated) at d points a0, . . . , ad−1

in CEval(d) (resp. CInterp(d)) operations, assuming ai − aj is a unit for i 6= j for

interpolation. From [43, Chapter 10], we can take both quantities in O(M(d) lg(d)),

where the constant in the big-Oh is universal. In Subsection 6.2.3, we will assume

without loss of generality that M(d) ≤ CEval(d) for all d.

Recall that k is such that M(d) is bounded by k d lg(d) lg lg(d) for all d. Up to

maybe increasing k, we will thus assume that both CEval(d) and CInterp(d) are bounded

by k d lg2(d) lg lg(d). Finally, we let MM(d1, . . . , dn) be such that over any ring R,

polynomials in R[X1, . . . , Xn] of degree in Xi less than di for all i can be multiplied

in MM(d1, . . . , dn) operations. One can take

MM(d1, . . . , dn) ≤ M((2d1 − 1) · · · (2dn − 1))

using Kronecker’s substitution. Let δ = d1 · · · dn. Assuming di ≥ 2 for all i, we

deduce the inequalities

(2d1 − 1) · · · (2dn − 1) ≤ 2nδ ≤ δ2,

which imply that MM(d1, . . . , dn) admits the upper bound

k2nδ lg(2nδ) lg lg(2nδ) ≤ 4k2nδ lg(δ) lg lg(δ).

71

Up to replacing k by 4k, we thus have

δ ≤ MM(d1, . . . , dn) ≤ k 2nδ lg(δ) lg lg(δ). (6.1)

Pan [78] proposed an alternative algorithm, that requires the existence of interpolation

points in the base ring. This algorithm is more efficient when for example di are fixed

and n →∞. However, using it below would not bring any improvement, due to our

simplifications.

6.2.2 The main algorithm

Theorem 6.2.1. There exists a constant K such that the following holds. Let R be

a ring and let T be a triangular set in R[X]. Given A,B in LT , one can compute

AB ∈ LT in at most K 4nδT lg(δT) lg lg(δT) operations (+,×) in R.

Proof. Let T = (T1, . . . , Tn) be a triangular set of multi-degree (d1, . . . , dn) in

R[X] = R[X1, . . . , Xn]. We then introduce the following objects:

• We write T− = (T1, . . . , Tn−1), so that LT− = R[X1, . . . , Xn−1]/〈T−〉.

• For i ≤ n, the polynomial Ui = Xdi

i Ti(X1, . . . , Xi−1, 1/Xi) is the reciprocal

polynomial of Ti; Si is the inverse of Ui modulo 〈T1, . . . , Ti−1, X
di−1
i 〉. We write

S = (S1, . . . ,Sn) and S− = (S1, . . . ,Sn−1).

Two subroutines are used, which we describe in Figure 5. In these subroutines, we

use the following notation:

• For D in R[X1, . . . , Xi] such that deg(D,Xi) ≤ e, Rev(D,Xi, e) is the reciprocal

polynomial Xe
iD(X1, . . . , Xi−1, 1/Xi).

• For D in R[X], Coeff(D,Xi, e) is the coefficient of Xe
i .

We can now give the specification of these auxiliary algorithms. These algorithms

make some assumptions, that will be satisfied when we call them from our main

routine.

• The first one is Rem(A, T,S), with A in R[X]. This algorithm computes the

normal form of A modulo T , assuming that deg(A,Xi) ≤ 2di − 2 holds for all

i. When n = 0, A is in R, T is empty and Rem(A, T,S) = A.

72

• The next subroutine is MulTrunc(A,B, T,S,dn+1), with A,B in R[X, Xn+1]; it

computes the product AB modulo 〈T,Xdn+1

n+1 〉, assuming that deg(A,Xi) and

deg(B,Xi) are bounded by di − 1 for i ≤ n + 1. If n = 0, T is empty, so this

function return AB mod Xd1
1 .

To compute Rem(A, T,S), we use the Cook-Sieveking-Kung idea in LT− [Xn]: we

reduce all coefficients of A modulo T− and perform two truncated products in LT− [Xn]

using MulTrunc. The operation MulTrunc is performed by multiplying A and B as

polynomials, truncating in Xn+1 and reducing all coefficients modulo T , using Rem.

Algorithm 5 Modular Reduction

Rem(A, T,S)

1 if n = 0 return A

2 A′ ←∑2dn−2
i=0 Rem(Coeff(A,Xn, i), T−,S−)Xi

n

3 B ← Rev(A′, Xn, 2dn − 2) mod Xdn−1
n

4 P ← MulTrunc(B,Sn, T−,S−,dn − 1)
5 Q← Rev(P,Xn, dn − 2)
6 return A′ mod Xdn

n −MulTrunc(Q, Tn, T−,S−,dn)

MulTrunc(A,B, T,S,dn+1)

1 C ← AB

2 if n = 0 return C mod Xd1
1

3 return
∑dn+1−1

i=0 Rem(Coeff(C,Xn+1, i), T,S)Xi
n+1

For the complexity analysis, assuming for a start that all inverses S have been pre-

computed, we write CRem(d1, . . . , dn) for an upper bound on the cost of Rem(A, T,S)

and CMulTrunc(d1, . . . , dn+1) for a bound on the cost of MulTrunc(A,B, T,S,dn+1). Set-

ting CRem() = 0, the previous algorithms imply the estimates

CRem(d1, . . . , dn) ≤ (2dn − 1)CRem(d1, . . . , dn−1) + CMulTrunc(d1, . . . , dn − 1)

+ CMulTrunc(d1, . . . , dn) + d1 · · · dn;
CMulTrunc(d1, . . . , dn) ≤ MM(d1, . . . , dn) + CRem(d1, . . . , dn−1)dn.

Assuming that CMulTrunc is non-decreasing in each di, we deduce the upper bound

CRem(d1, . . . , dn) ≤ 4CRem(d1, . . . , dn−1)dn + 2MM(d1, . . . , dn) + d1 · · · dn,

73

for n ≥ 1. Write MM′(d1, . . . , dn) = 2MM(d1, . . . , dn) + d1 · · · dn. This yields

CRem(d1, . . . , dn) ≤
n
∑

i=1

4n−i MM′(d1, . . . , di)di+1 · · · dn,

since CRem() = 0. In view of the bound on MM given in Equation (6.1), we obtain

MM′(d1, . . . , di)di+1 · · · dn ≤ 3k2iδT lg(δT) lg lg(δT).

Taking e.g. K = 3k gives the bound CRem(d1, . . . , dn) ≤ K 4nδT lg(δT) lg lg(δT). The

product A,B 7→ AB in LT is performed by multiplying A and B as polynomials and

returning Rem(AB, T,S). Hence, the cost of this operation admits a similar bound,

up to replacing K by K + k. This concludes our cost analysis, excluding the cost

of the precomputations. We now estimate the cost of precomputing the inverses S:

supposing that S1, . . . , Sn−1 are known, we detail the cost of computing Sn. Our upper

bound on CMulTrunc shows that, assuming S1, . . . , Sn−1 are known, one multiplication

modulo X
d′n
n in LT− [Xn] can be performed in

k2nδ′ lg(δ′) lg lg(δ′) + K 4nδ′ lg(δT−) lg lg(δT−)

operations, with δT− = d1 · · · dn−1 and δ′ = δT−d
′
n. Up to replacing K by K + k,

and assuming d′n ≤ dn, this yields the upper bound K 4nδ′ lg(δT) lg lg(δT). Let now

ℓ = ⌈log2(dn − 1)⌉. Using Newton iteration in LT− [Xn], we obtain Sn by performing

2 multiplications in LT− [Xn] in degrees less than m and m/2 negations, for m =

2, 4, . . . , 2ℓ−1, see [43, Chapter 9]. By the remark above, the cost is at most

t(n) =
∑

m=2,...,2ℓ−1

3K 4nd1 · · · dn−1m lg(δT) lg lg(δT) ≤ 3K 4nδT lg(δT) lg lg(δT).

The sum t(1) + · · · + t(n) bounds the total precomputation time; one sees that it

admits a similar form of upper bound. Up to increasing K, this gives the desired

result.

6.2.3 The case of univariate polynomials

To suppress the exponential overhead, it is necessary to avoid expanding the product

AB. We discuss here the case of triangular sets consisting of univariate polynomials,

where this is possible. We provide a quasi-linear algorithm, that works under mild

74

assumptions. However, the techniques used (deformation ideas, coming from fast

matrix multiplication algorithms [13, 14, 12]) induce large sub-linear factors.

Theorem 6.2.2. For any ε > 0, there exists a constant Kε such that the following

holds. Let K be a field and T = (T1, . . . , Tn) be a triangular set of multi-degree

(d1, . . . , dn) in K[X1] × · · · × K[Xn], with 2 ≤ di ≤ |K| for all i. Given A,B in LT ,

one can compute AB ∈ LT using at most Kε δ
1+ε
T operations (+,×,÷) in K.

Step 1. We start by a special case. Let T = (T1, . . . , Tn) be a triangular set of

multi-degree (d1, . . . , dn); for later applications, we suppose that it has coefficients in

a ring R. Our main assumption is that for all i, Ti is in R[Xi] and factors as

Ti = (Xi − αi,0) · · · (Xi − αi,di−1),

with αi,j − αi,j′ a unit in R for j 6= j’. Let V ⊂ Rn be the grid

V = [(α1,ℓ1 , . . . , αn,ℓn) | 0 ≤ ℓi < di],

which is the zero-set of (T1, . . . , Tn) (when the base ring is a domain). Remark that

Ti and Tj can have non-trivial common factors: all that matters is that for a given i,

evaluation and interpolation at the roots of Ti is possible.

Proposition 6.2.3. Given A,B in LT , as well as the set of points V , one can compute

AB ∈ LT using at most

δT

(

1 +
∑

i≤n

2CEval(di) + CInterp(di)

di

)

operations (+,×,÷) in R.

In view of our remarks on the costs of evaluation and interpolation, this latter cost

is at most K′ δT lg2(δT) lg lg(δT), for an universal constant K′, which can be taken as

K′ = 3k + 1.

Proof. The proof uses an evaluation / interpolation process. Define the evalu-

ation map

Eval : Span(MT) → RδT

F 7→ [F (α) | α ∈ V].

Since all αi,j − αi,j′ are units, the map Eval is invertible. To perform evalua-

tion and interpolation, we use the algorithm in [78, Section 2], which general-

75

izes the multidimensional Fourier transform: to evaluate F , we see it as a poly-

nomial in K[X1, . . . , Xn−1][Xn], and evaluate recursively its coefficients at V ′ =

[(α1,ℓ1 , . . . , αn−1,ℓn−1
) | 0 ≤ ℓi < di]. We conclude by performing d1 · · · dn−1 univariate

evaluations in Xn in degree dn.

Extending our previous notation, we immediately deduce the recursion for the

cost CEval of multivariate evaluation

CEval(d1, . . . , dn) ≤ CEval(d1, . . . , dn−1) dn + d1 · · · dn−1CEval(dn),

so that CEval(d1, . . . , dn) ≤ δT
∑

i≤n

CEval(di)

di
.

The inverse map of Eval is the interpolation map Interp. Again, we use Pan’s algo-

rithm; the recursion and the bounds for the cost are the same, yielding

CInterp(d1, . . . , dn) ≤ δT
∑

i≤n

CInterp(di)

di
.

To compute AB mod T , it suffices to evaluate A and B on V , multiply the δT pairs

of values thus obtained, and interpolate the result. The cost estimate follows.

This algorithm is summarized in Figure 6, under the name MulSplit (since it refers

to triangular sets which completely split into linear factors).

Algorithm 6 MulSplit

MulSplit(A,B, V)

1 ValA ← Eval(A)
2 ValB ← Eval(B)
3 ValC ← [ValA(α)ValB(α) | α ∈ V]
4 return Interp(ValC)

Step 2. We continue with the case where the polynomials Ti do not split anymore.

Recall our definition of the integer rT =
∑n

i=1(di − 1) + 1; since the polynomials

T form a Gröbner basis for any order, rT is the regularity of the ideal 〈T 〉. In the

following, the previous exponential overhead disappears, but we introduce a quasi-

linear dependency in rT : these bounds are good for triangular sets made of many

polynomials of low degree.

76

Proposition 6.2.4. Under the assumptions of Theorem 6.2.2, given A,B in LT , one

can compute the product AB ∈ LT using at most

k′ δT M(rT)
∑

i≤n

CEval(di) + CInterp(di)

di
,

operations (+,×,÷) in K, for an universal constant k′.

As before, there exists an universal constant K′′ such that this estimate simplifies as

K′′ δT rT
(

lg(δT) lg(rT)
)3
. (6.2)

Proof. Let T = (T1, . . . , Tn) be a triangular set with Ti in K[Xi] of degree di

for all i. Let U = (U1, . . . , Un) be the polynomials

Ui = (Xi − ai,0) · · · (Xi − ai,di−1),

where for fixed i, the values ai,j are pairwise distinct (these values exist due to our

assumption on the cardinality of K). Let finally η be a new variable, and define

V 0 = (V1, . . . , Vn) ⊂ K[η][X] by Vi = ηTi + (1 − η)Ui, so that Vi is monic of degree

di in K[η][Xi]. Remark that the monomial bases MT , MU and M0
V are all the same,

that specializing η at 1 in V 0 yields T and that specializing η at 0 in V 0 yields U.

Lemma 6.2.5. Let A,B be in Span(MT) in K[X] and let C = AB mod 〈V 0〉 in

K[η][X]. Then C has degree in η at most rT −1, and C(1,X) equals AB modulo 〈T 〉.

Proof. Fix an arbitrary order on the elements of MT , and let Mat(Xi, V
0) and

Mat(Xi, T) be the multiplication matrices of Xi modulo respectively 〈V 0〉 and 〈T 〉 in

this basis. Hence, Mat(Xi, V
0) has entries in K[η] of degree at most 1, and Mat(Xi, T)

has entries in K. Besides, specializing η at 1 in Mat(Xi, V
0) yields Mat(Xi, T). The

coordinates of C = AB mod 〈V 0〉 on the basis MT are obtained by multiplying the

coordinates of B by the matrix Mat(A, V 0) of multiplication by A modulo 〈V 0〉. This

matrix equals A(Mat(X1, V
0), . . . ,Mat(Xn, V

0)); hence, specializing its entries at 1

gives the matrix Mat(A, T), proving our last assertion. To conclude, observe that

since A has total degree at most rT −1, the entries of Mat(A, V 0) have degree at most

rT − 1 as well.

Let R be the ring K[η]/〈ηrT 〉 and let A,B be in Span(MT) in K[X]. Define Cη =

AB mod 〈V 0〉 in R[X] and let C be its canonical preimage in K[η][X]. By the previous

lemma, C(1,X) equals AB mod 〈T 〉. To compute Cη, we will use the evaluation /

77

interpolation techniques of Step 1, as the following lemma shows that the polynomials

V 0 split in R[X]. The corresponding algorithm is in Figure 7; it uses a Newton-Hensel

lifting algorithm, called Lift, whose last argument indicates the target precision.

Lemma 6.2.6. Let i be in {1, . . . , n}. Given ai,0, . . . , ai,di−1 and Ti, one can compute

αi,0, . . . , αi,di−1 in Rdi, with αi,j − αi,j′ invertible for j 6= j′, and such that

Vi = (Xi − αi,0) · · · (Xi − αi,di−1)

holds in R[Xi], using O(M(rT)CEval(di)) operations in K. The constant in the big-Oh

estimate is universal.

Proof. As shown in [17, Section 5], the cost of computing Ui from its roots is

CEval(di) + O(M(di)), which is in O(CEval(di)) by our assumption on CEval; from this,

one deduces Vi with O(di) operations. The polynomial Ui = Vi(0, Xi) splits into a

product of linear terms in K[Xi], with no repeated root, so Vi splits into R[Xi], by

Hensel’s lemma. The power series roots αi,j are computed by applying Newton-Hensel

lifting to the constants ai,j, for j = 0, . . . , di− 1. Each lifting step then boils down to

evaluate the polynomial Vi and its derivative on the current di-tuple of approximate

solutions and deducing the required correction. Hence, as in [43, Chapter 15], the

total cost is O(M(rT)CEval(di)) operations; one easily checks that the constant hidden

in this big-Oh is universal.

Algorithm 7 Lift Roots

LiftRoots(ai,0, . . . , ai,di−1, Ti)

1 Ui ← (Xi − ai,0) · · · (Xi − ai,di−1)
2 Vi ← ηTi + (1− η)Ui
3 return Lift(ai,0, . . . , ai,di−1, Vi, η

rT)

We can finally prove Proposition 6.2.4. To compute AB mod 〈T 〉, we compute

Cη = AB mod 〈V 0〉 in R[X], deduce C ∈ K[η][X] and evaluate it at 1. By the

previous lemma, we can use Proposition 6.2.3 over the coefficient ring R to compute

Cη. An operation (+,×,÷) in R has cost O(M(rT)). Taking into account the costs

of Step 1 and Lemma 6.2.6, one sees that there exists a constant k′ such that the cost

is bounded by

k′ δT M(rT)
∑

i≤n

CEval(di) + CInterp(di)

di
.

78

The algorithm is given in Figure 8, under the name MulUnivariate; we use a func-

tion called Choose(K, d), which returns d pairwise distinct elements from K.

Algorithm 8 MulUnivariate

MulUnivariate(A,B, T)

1 for i = 1, . . . , n do

1.1 ai,0, . . . , ai,di−1 ← Choose(K, di)
1.2 αi,0, . . . , αi,di−1 ← LiftRoots(ai,0, . . . , ai,di−1, Ti)
2 V ← [(α1,ℓ1 , . . . , αn,ℓn) | 0 ≤ ℓi < di]
3 Cη ← MulSplit(A,B, V) (computations done mod ηrT)

4 return Cη(1,X) (Cη is seen in K[η][X])

Step 3: conclusion. To prove Theorem 6.2.2, we combine the previous two ap-

proaches (the general case and the deformation approach), using the former for large

degrees and the latter for smaller ones. Let ε be a positive real, and define ω = 2/ε.

We can assume that the degrees in T are ordered as 2 ≤ d1 · · · ≤ dn, with in particular

δT ≥ 2n. Define an index ℓ by the condition that dℓ ≤ 4ω ≤ dℓ+1, taking d0 = 0 and

dn+1 =∞ for definiteness, and let

T ′ = (T1, . . . , Tℓ) and T ′′ = (Tℓ+1, . . . , Tn).

Then the quotient LT equals R[Xℓ+1, . . . , Xn]/〈T ′′〉, with R = K[X1, . . . , Xℓ]/〈T ′〉. By

Equation (6.2), a product in R can be done in K′′ δT ′ rT ′

(

lg(δT ′) lg(rT ′)
)3

operations

in K; additions are cheaper, since they can be done in time δT ′ . By Theorem 6.2.1,

one multiplication in LT can be done in K 4n−ℓδT ′′ lg(δT ′′) lg lg(δT ′′) operations in R.

Hence, taking into account that δT = δT ′δT ′′ , the total cost for one operation in LT

can be roughly upper-bounded by

K K′′ 4n−ℓ δT rT ′

(

lg(δT ′) lg(rT ′) lg(δT ′′)
)3
.

Now, observe that rT ′ is upper-bounded by dℓn ≤ 4ω lg(δT). This implies that the

factor

rT ′

(

lg(δT ′) lg(rT ′) lg(δT ′′)
)3

is bounded by H lg10(δT), for a constant H depending on ε. Next, (4n−ℓ)ω = (4ω)n−ℓ

is bounded by dℓ+1 · · · dn ≤ δT . Raising to the power ε/2 yields 4n−ℓ ≤ δ
ε/2
T ; thus, the

79

previous estimate admits the upper bounds

K K′′ H δ
1+ε/2
T lg10(δT) ≤ K K′′ H H′δ1+ε

T ,

where H′ depends on ε.

6.3 Implementation Techniques

The previous algorithms were implemented in C; most efforts were devoted to the

generic algorithm of Section 6.2.2. As in Chapter 5 (or see Papers [41, 65]), the C

code was interfaced with AXIOM. In this section, we describe this implementation.

Arithmetic in Fp. Our implementation is devoted to small finite fields Fp, with p a

machine word prime of the form c2n + 1, for c < 2n. Multiplications in Fp are done

using Montgomery’s REDC routine [74]. A straightforward implementation does not

bring better performance than the floating point techniques of Shoup [86]. We use

an improved scheme, adapted to our special primes, presented below. Compared to a

direct implementation of Montgomery’s algorithm, it lowers the operation count by

2 double word shifts and 2 single word shifts. This approach performs better on our

experimentation platform (Pentium 4) than Shoup’s implementation, the gain being

of 32%. It is also more efficient and more portable than the one in [41], which explicitly

relied on special machine features like SSE registers of late IA-32 architectures. We

formally describe this scheme as following:

Let p be a prime of the form p = c2n + 1, for c < 2n (in our code, n ranges from

20 to 23 and c is less than 1000). Let ℓ = ⌈log2(p)⌉ and let R = 2ℓ. Given a and

ω, both reduced modulo p, Montgomery’s REDC algorithm computes aω/R mod p.

We present our tailor-made version here. Precomputations will be authorized for

the argument ω (this is not a limitation for our main application, FFT polynomial

multiplication). We compute

1. M1 = aω

2. (q1, r1) = (M1 div R,M1 mod R)

3. M2 = r1c2
n

4. (q2, r2) = (M2 div R,M2 mod R)

5. M3 = r2c2
n

80

6. q3 = M3 div R

7. A = q1 − q2 + q3.

Proposition 6.3.1. Suppose that c < 2n. Then A satisfies A ≡ aω/R mod p and

−(p− 1) < A < 2(p− 1).

Proof. By construction, we have the equalities Rq1 = M1 − r1 and Rq2 =

M2 − r2. Remark next that 2n divides M2, and thus r2 (since R is a power of two

larger than 2n). It follows that 22n divides M3. Since we have c < 2n, p is at most

22n, so R is at most 22n as well. Hence, R divides M3, so that Rq3 = M3. Putting

this together yields

RA = M1 − r1 −M2 + r2 +M3.

Recall that M2 = r1c2
n, so that M2 = −r1 mod p. Similarly, M3 = r2c2

n, so

M3 = −r2 mod p. Hence, RA = M1 mod p, which means that A = aω/R mod p,

as claimed. As to the bounds on A, we start by remarking that M1 < (p − 1)2, so

that q1 < p − 1. Next, since r1 < R, we deduce that M2 < c2nR which implies that

q2 < c2n = p − 1. Similarly, we obtain that q3 < p − 1, which implies the requested

inequalities.

Let us now describe our implementation on 32-bit x86 processors. We use an as-

sembly macro MulHiLo(a, b) from the GMP library; this macro computes the product

d of two word-length integers a and b and puts the high part of the result (d div 232)

in the register AX and the lower part (d mod 232) in the register DX, avoiding shifts.

In our case, R does not equal 232. However, since we allow precomputations on ω, we

will actually store and use ω′ = 232−ℓω instead of ω; hence, MulHiLo(a, ω′) directly

gives us q1 and r′1 = 232−ℓr1. Similarly, we do not compute the product r1c2
n; in-

stead, we use MulHiLo(r′1, c
′), where c′ is the precomputed constant c2n, to get q2 and

r′2 = 232−ℓr2.

To compute q3, it turned out to be better to do as follows. We write q3 as r2c/2
ℓ−n.

Now, recall from the proof of the previous proposition that 2n divides r2. Under the

assumption that c < 2n, we saw in the proof that ℓ ≤ 2n, so that 2ℓ−n divides r2.

Hence, we obtain q3 by right-shifting r2 by ℓ−n places, or, equivalently, r′2 by 32−n
places, and multiplying the result by c. Eventually, we need to bring the result A

between 0 and p − 1. As in NTL [86], we avoid if statements: using the sign bit of

A as a mask, one can add p to A in the case A < 0; by subtracting p and correcting

once more, we obtain the correct remainder.

81

In the following benchmark we compare our specialized trick versus the standard

Montgomery trick when applying them into a FFT computation over a 32 bit FFT

prime number. The specialized trick outperforms the standard one. Note that our

specialized trick utilizes an assembly subroutine for multiplying machine integers

whereas the standard one is implemented in pure C language.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

T
im

e

Partial degree

Specialized Mont.
Standard Mont.

Figure 6.1: TFT vs. FFT.

Arithmetic in Fp[X]. Univariate polynomial arithmetic is crucial: multiplication

modulo a triangular set boils down to multivariate polynomial multiplications, which

can then be reduced to univariate multiplications through Kronecker’s substitution.

We use classical and FFT multiplication for univariate polynomials over Fp. We use

two FFT multiplication routines: the first one is that from [26]; its implementation

is essentially the one described in [41], up to a few modifications to improve cache-

friendliness. The second one is van der Hoeven’s TFT (Truncated Fourier Trans-

form) [51], which is less straightforward but can perform better for transform sizes

that are not powers of 2. We tried several data accessing patterns; the most suitable

solution is platform-dependent, since cache size, associativity properties and register

sets have huge impact. Going further in that direction will require automatic code

tuning techniques, as in [54, 53, 79].

Multivariate arithmetic over Fp. We use a dense representation for multivariate

polynomials: important applications of modular multiplication (GCD computations,

Hensel lifting for triangular sets) tend to produce dense polynomials. We use multi-

dimensional arrays (encoded as a contiguous memory block of machine integers) to

represent our polynomials, where the size in each dimension is bounded by the cor-

82

responding degree deg(Ti, Xi), or twice that much for intermediate products. Multi-

variate arithmetic is done using either Kronecker’s substitution as in [41] or standard

multidimensional FFT. While the two approaches share similarities, they do not ac-

cess data in the same manner. In our experiments, multidimensional FFT performed

better by 10-15% for bivariate cases, but was slower for larger number of variables

with small FFT size in each dimension.

Triangular sets over Fp. Triangular sets are represented in C by an array of

multivariate polynomials. For the algorithm of Subsection 6.2.3, we only implemented

the case where all degrees are 2; this mostly boils down to evaluation and interpolation

on n-dimensional grids of size 2n, over a power series coefficient ring.

More work was devoted to the algorithm of Subsection 6.2.2. Two strategies for

modular multiplication were implemented, a plain one and that of Subsection 6.2.2.

Both first perform a multivariate multiplication then do a multivariate reduction;

the plain reduction method performs a recursive Euclidean division, while the faster

one implements both algorithms Rem and MulTrunc of Subsection 6.2.2. Remark in

particular that even the plain approach is not the entirely naive, as it uses fast mul-

tivariate multiplication for the initial multiplication. Both approaches are recursive,

which makes it possible to interleave them. At each level i = n, . . . , 1, a cut-off

point decides whether to use the plain or fast algorithm for multiplication modulo

〈T1, . . . , Ti〉. These cut-offs are experimentally determined: as showed in Section 6.4,

they are surprisingly low for i > 1.

The fast algorithm uses precomputations (of the power series inverses of the re-

ciprocals of the polynomials Ti). In practice, it is of course better to store and reuse

these elements: in situations such as GCD computation or Hensel lifting, we expect

to do several multiplications modulo the same triangular set. We could push further

these precomputations, by storing Fourier transforms; this is not done yet.

GCD’s. One of the first applications of fast modular multiplication is GCD com-

putation modulo a triangular set, which itself is central to higher-level algorithms

for solving systems of equations. Hence, we implemented a preliminary version of

such GCD computations using a plain recursive version of Euclid’s algorithm. This

implementation has not been thoroughly optimized. In particular, we have not in-

corporated any half-GCD technique, except for univariate GCD’s; this univariate

half-GCD is far from optimal.

The AXIOM level. Integrating our fast arithmetic into AXIOM is straightforward,

after dealing with the following two problems. First, AXIOM is a Lisp-based system,

83

whereas our package is implemented in C. Second, in AXIOM, dense multivariate

polynomials are represented by recursive trees, but in our C package, they are encoded

as multidimensional arrays. Both problems are solved by modifying the GCL kernel.

For the first issue, we integrate our C package into the GCL kernel, so that our C-

level functions from can be used by AXIOM at run-time. For the second problem,

we realized a tree / array polynomial data converter. This converter is also linked to

GCL kernel; the conversations, happening at run-time, have negligible cost.

6.4 Experimental Results

The main part of this section describes experimental results attached to our main

algorithm of Subsection 6.2.2; we discuss the algorithm of Subsection 6.2.3 in the last

paragraphs. For the entire set of benchmarks, we use random dense polynomials. Our

experiments were done on a 2.80 GHz Pentium 4 PC, with 1GB memory and 1024

KB cache.

6.4.1 Comparing different strategies

We start by experiments comparing different strategies for computing products mod-

ulo triangular sets in n = 1, 2, 3 variables, using our general algorithm.

Strategies. Let L0 = Fp be a small prime field and let Ln be L0[X1, . . . , Xn]/〈T 〉,
with T a n-variate triangular set of multi-degree (d1, . . . , dn). To compute a prod-

uct C = AB ∈ Ln, we first expand P = AB ∈ L0[X], then reduce it modulo T .

The product P is always computed by the same method; we use three strategies for

computing C.

• Plain. We use univariate Euclidean division; computations are done recursively

in Li−1[Xi] for i = n, . . . , 1.

• Fast, using precomputations. We apply the algorithm Rem(C, T,S) of

Algorithm 5, assuming that the inverses S have been precomputed.

• Fast, without precomputations. We apply the algorithm Rem(C, T,S) of

Algorithm 5, but recompute the required inverses on the fly.

Our ultimate goal is to obtain a highly efficient implementation of the multiplication

in Ln. To do so, we want to compare our strategies in L1, L2, . . . , Ln. In this report

84

we give details for n ≤ 3 and leave for future work the case of n > 3, as the driving

idea is to tune our implementation in Li before investigating that of Li+1. This ap-

proach leads to determine cut-offs between our different strategies. The alternative

is between plain and fast strategies, depending on the assumption regarding pre-

computations. For applications discussed before (quasi-inverses, polynomial GCDs

modulo a triangular set), using precomputations is realistic.

Univariate multiplication. Figure 6.2 compares our implementation of the Trun-

cated Fourier Transform (TFT) multiplication to the classical Fast Fourier Transform

(FFT). Because the algorithm is more complex, especially the interpolation phase,

the TFT approach does not outperform the classical FFT multiplication in all cases.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 50 100 150 200 250 300 350

T
im

e

Degree

FFT
TFT

Figure 6.2: TFT vs. FFT.

Univariate triangular sets. Finding the cut-offs between our strategies is straight-

forward. Figure 6.3 shows the result using classical FFT multiplication; the cut-off

point is about 150. If precomputations are not assumed, then this cut-off doubles.

Using Truncated Fourier Transform, one obtains roughly similar results.

Bivariate triangular sets. For n = 2, we let in Figure 6.4 d1 and d2 vary in the

ranges 4, . . . , 304 and 2, . . . , 102. This allows us to determine a cut-off for d2 as a

function of d1. Surprisingly, this cut-off is essentially independent of d1 and can be

chosen equal to 5. We discuss this point below. To continue our benchmarks in L3,

we would like the product d1d2 to play the role in L3 that d1 did in L2, so as to

determine the cut-off for d3 as a function of d1d2. This leads to the question: for a

fixed product d1d2, does the running time of the multiplication in L2 stay constant

85

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 50 100 150 200 250 300 350

T
im

e

Degree

Plain
Fast without precomputation

Fast using precomputation

Figure 6.3: Multiplication in L1, all strategies, using FFT multiplication.

 60 120 180 240 300 0 20 40 60 80 100 120
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

Time
Fast without precomputation

Fast using precomputation

d1
d2

Time

 60 120 180 240 300 0 20 40 60 80 100 120
 0

 2

 4

 6

 8

 10

 12

Time
Plain

Fast using precomputation

d1
d2

Time

Figure 6.4: Multiplication in L2, fast without precomputations vs. fast using
precomputations (top) and plain vs. fast using precomputations.

when (d1, d2) varies in the region 4 ≤ d1 ≤ 304 and 2 ≤ d2 ≤ 102? Figure 6.5

gives timings obtained for this sample set; it shows that the time varies mostly for

the plain strategy (the levels in the fast case are due to our FFT multiplication).

These results guided our experiments in L3.

Trivariate triangular sets. For our experiments with L3, we consider three patterns

for (d1, d2). Pattern 1 has d1 = 2, Pattern 2 has d1 = d2 and Pattern 3 has d2 =

2. Then, we let d1d2 vary from 4 to 304 and d3 from 2 to 102. For simplicity,

we also report only the comparison between the strategies plain and fast using

precomputations. The timings are in Figure 6.6; they show an impressive speed-

up for the Fast strategy. We also observe that the cut-off between the two strategies

can be set to 3 for each of the patterns. Experiments as in Figure 6.5 gives similar

conclusion: the timing depends not only on d1d2 and d3 but also on the ratios between

these degrees.

86

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000 25000 30000

tim
e

d

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000

tim
e

d

Figure 6.5: Multiplication in L2, time vs. d = d1d2, Plain (left) and Fast using
precomputations (right).

 60 120 180 240 300 0 20 40 60 80 100 120 0
 5

 10
 15
 20
 25
 30
 35
 40

Time Plain
Fast

d1 d2 d3

Time

 60 120 180 240 300 0 20 40 60 80 100 120 0
 5

 10
 15
 20
 25
 30
 35

Time Plain
Fast

d1 d2 d3

Time

 60 120 180 240 300 0 20 40 60 80 100 120 0

 5

 10

 15

 20

 25

Time Plain
Fast

d1 d2 d3

Time

Figure 6.6: Multiplication in L3, plain vs. fast, patterns 1–3 from top left to
bottom.

Discussion of the cut-offs. To understand the low cut-off points we observe, we

have a closer look at the costs of several strategies for multiplication in L2. For a ring

R, classical polynomial multiplication in R[X] in degree less than d uses about (d2, d2)

operations (×,+) respectively (we omit linear terms in d). Euclidean division of a

polynomial of degree 2d− 2 by a monic polynomial T of degree d has essentially the

same cost. Hence, classical modular multiplication uses about (2d2, 2d2) operations

(×,+) in R. Additions modulo 〈T 〉 take d operations.

Thus, a pure recursive approach for multiplication in L2 uses about (4d2
1d

2
2, 4d

2
1d

2
2)

operations (×,+) in K. Our plain approach is less naive. We first perform a bivariate

product in degrees (d1, d2). Then, we reduce all coefficients modulo 〈T1〉 and perform

87

Euclidean division in L1[X2], for a cost of about (2d2
1d

2
2, 2d

2
1d

2
2) operations. Hence, we

can already make some advantage of fast FFT-based multiplication, since we traded

2d2
1d

2
2 base ring multiplications and as many additions for a bivariate product.

Using precomputations, the fast approach performs 3 bivariate products in de-

grees about (d1, d2) and about 4d2 reductions modulo 〈T1〉. Even for moderate (d1, d2)

such as in the range 20–30, bivariate products can already be done efficiently by FFT

multiplication, for a cost much inferior to d2
1d

2
2. Then, even if reductions modulo 〈T1〉

are done by the plain algorithm, our approach performs better: the total cost of

these reductions will be about (4d2
1d2, 4d

2
1d2), so we save a factor ≃ d2/2 on them.

This explains why we observe very low cut-offs in favor of the fast algorithm.

6.4.2 Comparing implementations

Comparison with Magma. To evaluate the quality of our implementation of

modular multiplication, we compared it with Magma v. 2-11 [16], which has set

a standard of efficient implementation of low-level algorithms. We compared multi-

plication in L3 for the previous three patterns, in the same degree ranges. Figure 6.7

gives the timings for Pattern 3. The Magma code uses iterated quo constructs over

UnivariatePolynomial’s, which was the most efficient configuration we found. For

our code, we use the strategy Plain using precomputations. On this exam-

ple, our code outperforms Magma by factors up to 7.4; other patterns yield similar

behavior.

 60 120 180 240 300 0 20 40 60 80 100 120
 0
 2
 4
 6
 8

 10
 12
 14
 16

Time
Magma

Our code

d1 d2
d3

Time

Figure 6.7: Multiplication in L3, pattern 3, Magma vs. our code.

Comparison with Maple. Our future goal is to obtain high-performance implemen-

tations of higher-level algorithms in higher-level languages, replacing built-in arith-

metic by our C implementation. Doing it within Maple is not straightforward; our

88

Maple experiments stayed at the level of GCD and inversions in L3, for which we

compared our code with Maple’s recden library. We used the same degree pat-

terns as before, but we were led to reduce the degree ranges to 4 ≤ d1d2 ≤ 204 and

2 ≤ d3 ≤ 20. Our code uses the strategy fast using precomputations. The

Maple recden library implements multivariate dense recursive polynomials and can

be called from the Maple interpreter via the Algebraic wrapper library. Our Maple

timings, however, do not include the necessary time for converting Maple objects

into the recden format: we just measured the time spent by the function invpoly

of recden. Figure 6.8 gives the timings for Pattern 3 (the other results are similar).

There is a significant performance gap (our timing surface is very close the bottom).

When using our plain strategy, our code remains faster, but the ratio diminishes by

a factor of about 4 for the largest configurations.

 60
 120

 180 2 4 6 8 10 12 14 16 18 20
 0

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Time
Maple

Our code

d1 d2
d3

Time

Figure 6.8: Inverse in L3, pattern 1, Maple vs. our code.

Comparison with AXIOM. Using our arithmetic in AXIOM is made easy by the

C/GCL structure. In [65], the modular algorithm by van Hoeij and Monagan [71] was

used as a driving example to show strategies for such multiple-level language imple-

mentations. This algorithm computes GCD’s of univariate polynomials with coeffi-

cients in a number field by modular techniques. The coefficient field is described by a

tower of simple algebraic extensions of Q; we are thus led to compute GCD’s modulo

triangular sets over Fp, for several primes p. We implemented the top-level algorithm

in AXIOM. Then, two strategies were used: one relying on the built-in AXIOM

modular arithmetic, and the other on our C code; the only difference between the

two strategies at the top-level resides in which GCD function to call. The results

are given in Figure 6.9. We use polynomials A,B in Q[X1, X2, X3]/〈T1, T2, T3〉[X4],

with coefficients of absolute value bounded by 2. As shown in Figure 6.9 the gap is

dramatic.

89

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

T
im

e

Degree

Pure AXIOM
Combined C-AXIOM

Figure 6.9: GCD computations L3[X4], pure AXIOM code vs. combined C-AXIOM
code.

6.4.3 The deformation-based algorithm

We conclude with the implementation of the algorithm of Subsection 6.2.3, devoted to

triangular sets made of univariate polynomials only. We focus on the most favorable

case for this algorithm, when all degrees di are 2: in this case, in n variables, the

cost reported in Proposition 6.2.4 becomes O(2nnM(n)). This extreme situation is

actually potentially useful, see for instance an application to the addition of algebraic

numbers in characteristic 2 in [85]. For most practical purposes, n should be in the

range of about 1, . . . , 20; for such sizes, multiplication in degree n will rely on naive

or at best Karatsuba multiplication; hence, a reasonable practical estimate for the

previous bound is O(2nn3), which we can rewrite as O(δT log(δT)3). We compare

in Figure 6.10 the behavior of this algorithm to the general one. As expected, the

former behaves better: the general algorithm starts by multiplying the two input

polynomials, before reducing them. The number of monomials in the product before

reduction is 3n = δ
log2(3)
T . Hence, for this family of problems, the general algorithm

has a non-linear complexity.

6.5 Summary

We have provided new estimates for the cost of multiplication modulo a triangu-

lar set. The outstanding challenge for this question remains the suppression of ex-

90

variables δT general (Subsection 6.2.2) specialized (Subsection 6.2.3)
3 8 0.000188 0.000043
4 16 0.001288 0.000126
5 32 0.007888 0.000337
6 64 0.045804 0.000983
7 128 0.254427 0.002720
8 256 1.434127 0.008141
9 512 7.682161 0.019928
10 1024 40.519331 0.052337
11 2048 204.719505 0.131778

Figure 6.10: General vs. specialized algorithm.

ponential overheads; a tempting approach is a higher-dimensional extension of the

Cook-Sieveking-Kung idea, or the related Montgomery approach.

On the software level, our experiments show the importance of both fast algo-

rithms and implementation techniques. While most of our efforts were limited to

multiplication, the next steps are well-tuned inversion and GCD computations. The-

ory and practice revealed that, as far as multivariate multiplication is concerned, fast

algorithms become faster than plain ones for very low degrees.

91

Chapter 7

Fast Algorithms for Regular GCD

Computations and Regularity Test

Recall that in Chapters 3, 4 and 5 we have studies and implemented a set of asymp-

totically fast operations such as univariate/multivariate polynomial multiplication,

division, GCD. In chapter 6 we have advanced our study further by considering

operations modulo triangular sets, i.e. polynomial multiplication, inversion, GCD

modulo a monic triangular set. In this and next chapters we develop new higher-level

algorithms. They are fundamental subroutines for triangular decompositions based

polynomial solving. Besides the algorithmic design, their high performance rely on

the highly efficient implementations reported in previous chapters. In following sec-

tions, we report two new algorithms: polynomial GCDs modulo regular chains and

regularize modulo saturated ideals.

NOTE: This chapter is written based on the submitted Paper [67].

7.1 Overview

A triangular decomposition of a set F ⊂ K[x1, . . . , xn] is a list of polynomial systems

T1, . . . , Te, called regular chains (or regular systems, see Section 2.3) at Page 20 and

representing the zero set V (F) of F . Each regular chain Ti may encode several

irreducible components of V (F) provided that those share some properties (same

dimension, same free variables, . . .).

Triangular decomposition methods are based on an univariate and recursive vision

of multivariate polynomials. Most of their routines manipulate polynomial remainder

sequences (PRS). Moreover, these methods are usually “factorization free”, which ex-

92

plains why two different irreducible components may be represented the same regular

chain. An essential routine is then to check whether a hyper-surface f = 0 contains

one of the irreducible components encoded by a regular chain T . This is achieved

by testing whether the polynomial f is a zero-divisor modulo the so-called saturated

ideal (see Section 2.3) of T . The univariate approach allows to perform this regularity

test by means of GCD computations. However, since the saturated ideal of T may

not be prime, the concept of a GCD used here is not standard.

The first formal definition of this type of GCDs was given by Kalkbrener in his

PhD thesis [55]. However GCDs over non-integral domains were already used in

several papers [34, 62, 46] since the introduction of the celebrated D5 Principle [30]

by Della Dora, Dicrescenzo and Duval. Indeed, this brilliant and simple observation

allows one to carry out over direct product of fields computations that are usually

conducted over fields. For instance, computing univariate polynomial GCDs by means

of the Euclidean Algorithm.

To define a polynomial GCD of two (or more) polynomials modulo a regular chain

T , Kalkbrener refers to the irreducible components that T represents. In order to

improve the practical efficiency of those GCD computations by means of subresultant

techniques, Rioboo and the second author proposed a more abstract definition in [76].

Their GCD algorithm is, however, limited to regular chains with zero-dimensional

saturated ideals.

While Kalkbrener’s definition cover the positive dimensional case, his approach

cannot support triangular decomposition methods solving polynomial systems incre-

mentally, that is, by solving one equation after another. This is a serious limitation

since incremental solving is a powerful way to control the complexity of intermediate

computations and develop efficient sub-algorithms, by means of geometrical consid-

eration. The first incremental triangular decomposition method was proposed by

Lazard in [61], without proof nor a GCD definition. Another such method was pre-

sented and established by the second author in [75] together with a formal notion of

GCD adapted to the needs of incremental solving. This concept, called regular GCD,

is reviewed in Section 2.3.5 of this Chapter. It is stated there in the context of regular

chains. A more abstract definition is as follows.

Let A be a commutative ring with unity. Let p, t, g be non-zero univariate polyno-

mials in A[x]. We say that g is a regular GCD of p, t if the following three conditions

hold: (i) the leading coefficient of g in x is a regular element of A,

(ii) g belongs to the ideal generated by p and t in A[x], and

93

(iii) if g has positive degree w.r.t. x, then g pseudo-divides both of p and t, that is,

the pseudo-remainders prem(p, g) and prem(t, g) are null.

In the context of regular chains, the ring A is the residue class ring of a polynomial

ring K[x1, . . . , xn] (over a field K) by the saturated ideal sat(T) of a regular chain T .

Even if the leading coefficients of p, t are regular and sat(T) is radical, the polynomials

p, t may not necessarily admit a regular GCD (unless sat(T) is prime). However, by

splitting T into several regular chains T1, . . . , Te (in a sense specified in Section 2.3.5)

one can compute a regular GCD of p, t over each of the ring K[x1, . . . , xn]/sat(Ti),

as shown in [75].

In this chapter, we propose an new algorithm for this task, together with a the-

oretical study and implementation report, providing significant improvements w.r.t.

previous work [55, 75]. First, we aim at understanding when does a pair of polynomi-

als p, t admit a regular GCD w.r.t. a regular chain T . In Section 7.3 of this Chapter

we exhibit sufficient conditions for a subresultant of p, t (regarded as univariate poly-

nomials in x) to be a regular GCD of p, t w.r.t. T . Some of these results are probably

not new, but we could not find a reference for them, in particular when sat(T) is not

radical.

Secondly, we aim at making use of fast polynomial arithmetic and in particu-

lar FFT-based multivariate arithmetic. (Indeed, Euclidean-like algorithms tend to

densify computations.) In addition, we observe that, when computing triangular de-

composition, whenever a regular GCD of p and t w.r.t. T is needed, the resultant

of p and t w.r.t. x is likely to be computed too. This suggests to organize calcula-

tions in a way that a PRS of p and t is computed only once. Moreover, we wish to

follow a successful strategy introduced in [69]: compute in K[x1, . . . , xn] instead of

K[x1, . . . , xn]/sat(T), as much as possible, while controlling expression swell. These

three requirements targeting efficiency are satisfied by the regular GCD algorithm

proposed in Section 7.4. The use of fast arithmetic for computing regular GCDs

was proposed in [28] in the case of regular chains with zero-dimensional radical satu-

rated ideals. However this method does not meet our two other requirements. Some

complexity results for the algorithms of this chapter are given in Sections 7.5.1 and

7.5.2.

Efficient implementation is also a main objective of our work. We discuss our

implementation techniques in Sections 7.5.1 and 7.5.3. In particular, we explain how

we create opportunities for using modular methods and fast arithmetic in operations

modulo regular chains, such as regular GCD computation and regularity test. The

experimental results reported in Section 7.6 illustrate the high efficiency of our pro-

94

posed algorithms. We obtain speed-up factors of several orders of magnitude w.r.t.

the algorithms of [75] for regular GCD computations and regularize. In addition, our

code compares and often outperforms packages with similar specifications in Maple

and Magma.

7.2 Specification

In this chapter, we follow the notations used in Section 2.3:

• Let K be a field and let K[x] = K[x1, . . . , xn] be the ring of polynomials with

coefficients in K, with ordered variables x1 ≺ · · · ≺ xn.

• The main variable of p ∈ K[x] is denoted by mvar(p).

• The leading coefficient of p in xi, i = 1. . .n is denoted by lc(p, xi) in lc(p, xn).

• The partial degree of p in xi is denoted by deg(p, xi).

• The partial degree of p in its main variable is denoted by mdeg(p).

• The initial of p is lc(p, xn) denoted by init(p).

• Given a triangular set T in K[x], We denote by sat(T) the saturated ideal of T .

• Given p ∈ K[x] the pseudo-remainder (resp. iterated resultant) of p w.r.t. T ,

denoted by prem(p, T).

We list below the specifications of the fundamental operations on regular chains

used in this chapter. The names of these operations are the same as in the

RegularChains library in Maple.

NormalForm. Let T be a zero-dimensional normalized regular chain, that is, a

regular chain whose saturated ideal is zero-dimensional and whose initials are all in

the base field K. Observe that T is a lexicographic Gröbner basis. Then, for p ∈ K[x],

the operation NormalForm(p, T) returns the normal form of p w.r.t. T in the sense

of Gröbner bases.

Normalize. Let T be a regular chain such that all variables occurring in T are

algebraic w.r.t. T . Let p ∈ K[x] a non-constant polynomial whose initial h is reg-

ular w.r.t. sat(T) and such that all variables occurring in h are algebraic w.r.t.

95

T . Then h is invertible modulo sat(T) and the operation Normalize(p, T) returns

NormalForm(h−1p, T) where h−1 is the inverse of h modulo sat(T).

RegularGcd. Let T be a regular chain and let p, t ∈ K[x] be non-constant poly-

nomials with mvar(p) = mvar(t) and such that both init(p) and init(t) are regular

w.r.t. sat(T). Then, the operation RegularGcd(p, t, T) returns a sequence of pairs

(g1, T1), . . . , (ge, Te), called a regular GCD sequence, where g1, . . . , ge are polynomials

and T1, . . . , Te are regular chains of K[x], such that T−→(T1, . . . , Te) holds and gi is

a regular GCD of p, t w.r.t. Ti for all 1 ≤ i ≤ e.

Regularize. For a regular chain T ⊂ K[x] and p in K[x], the operation

Regularize(p, T) returns regular chains T1, . . . , Te of K[x] such that, for each 1 ≤ i ≤ e,

p is either zero or regular modulo sat(Ti) and we have T−→(T1, . . . , Te).

7.3 Regular GCDs

Throughout this section, we assume n ≥ 2 and we consider p, t ∈ K[x1, . . . , xn]

non-constant polynomials with the same main variable xn and such that mdeg(t) ≤
mdeg(p) holds. We denote by r the resultant of p and t w.r.t. xn. Let T ⊂
K[x1, . . . , xn−1] be a non-empty regular chain such that r ∈ sat(T) and the initials of

p, t are regular w.r.t. sat(T). We denote by A and B the ring of univariate polynomi-

als in xn with coefficients in K[x1, . . . , xn−1] and K[x1, . . . , xn−1]/sat(T), respectively.

Let Ψ be the canonical homomorphism from A to B. For 0 ≤ j ≤ mdeg(t), we denote

by Sj the j-th subresultant of p, t in A[xn].

Let d be an index in the range 1 · · ·mdeg(t) such that lc(Sd, xn) is regular modulo

sat(T) and Sj ∈ sat(T) for all 0 ≤ j < d. Lemma 3, Lemma 4 and Corollary 1 exhibit

conditions under which Sd is a regular GCD of p and t w.r.t. T .

Lemma 1. Under the above assumptions, the polynomial Sd is a non-defective sub-

resultant of p and t over A. Consequently, since lc(Sd, xn) is regular modulo sat(T),

Ψ(Sd) is a non-defective subresultant of Ψ(p) and Ψ(t) in B[xn].

proof. When d = mdeg(t) holds, we are done. Hence, we assume d < mdeg(t).

Suppose that Sd is defective, that is, deg(Sd, xn) = e < d. According to item (re)

in the divisibility relations of subresultants, there exists a non-defective subresultant

Sd+1 such that

lc(Sd, xn)
d−eSd = sd−ed+1Se,

where sd+1 is the leading coefficient of Sd+1 in xn. By our assumptions, Se belongs

to sat(T), thus lc(Sd, xn)
d−eSd ∈ sat(T) holds. It follows from the fact lc(Sd, xn) is

96

regular modulo sat(T) that Sd is also in sat(T). However the fact that lc(Sd, xn) =

init(Sd) is regular modulo sat(T) also implies that Sd is regular modulo sat(T). A

contradiction. �

The following lemma justifies the assumption that lc(Sd, xn) is regular modulo

sat(T).

Lemma 2. With the same setting as Lemma 1, if lc(Sd, xn) is contained in sat(T),

then all the coefficients of Sd regarded as a univariate polynomial in xn are nilpotent

modulo sat(T).
proof. If the leading coefficient lc(Sd, xn) is in sat(T), then lc(Sd, xn) ∈ p holds for

all the associated primes p of sat(T). By the Block Structure Theorem of subresultants

(Theorem 7.9.1 of [72]) over an integral domain K[x1, . . . , xn−1]/p, Sd must belong to

p. Hence we have Sd ∈
√

sat(T), since
√
I equals the intersection of all associated

primes of I for any ideal I. That is to say, Sd is nilpotent modulo sat(T). It follows

from Exercise 2 of [8] that all the coefficients of Sd in xn are also nilpotent modulo

sat(T). �

The above lemma says, when lc(Sd, xn) is in sat(T), Sd will vanish on all the

components after splitting sat(T) sufficiently. This is the key reason that Lemma 1

can be applied for computing regular GCD modulo sat(T). To be more precise, there

are following cases:

(1) if lc(Sd, xn) is regular modulo sat(T), then Lemma 1 directly applies;

(2) if lc(Sd, xn) is in sat(T), then Sd must not be a regular GCD;

(3) if lc(Sd, xn) is a zero-divisor modulo sat(T), then it reduces to case (1) or (2)

after regularizing the leading coefficient of Sd w.r.t sat(T).

The subresultant Sd in Lemma 1 shall be referred as the candidate regular GCD of p

and t modulo sat(T).
Example 1. If lc(Sd, xn) is not regular modulo sat(T) then Sd may be defective.

Consider for instance the following polynomials p and t in Q[x1, x2, x3].

p = x2
3x

2
2 − x4

1 and t = x2
1x

2
3 − x4

2.

We have

prem(p,−t) = (x6
1 − x6

2) and r = (x6
1 − x6

2)
2.

Let T = {r}. Then the last subresultant of p, t modulo sat(T) is prem(p,−t), which

has degree 0 w.r.t x3, although its index is 1. Note that prem(p,−t) is nilpotent

modulo sat(T).

97

In what follows, we give sufficient conditions for the subresultant Sd to be a regular

GCD of p and t w.r.t. T . When sat(T) is a radical ideal, Lemma 4 states that the

assumptions of Lemma 1 are sufficient. This lemma validates the search for a regular

GCD of p and t w.r.t. T in a bottom-up style, from S0 up to Sd for some d. Corollary 1

covers the case where sat(T) is not radical and states that Sd is a regular GCD of p

and t modulo T , provided that Sd satisfies the conditions of Lemma 1 and provided

that, for all d < k ≤ mdeg(t), the coefficient sk of xkn in Sk is either null or regular

modulo sat(T).

Lemma 3. Under the assumptions of Lemma 1, assume further that, for all d < j ≤
mdeg(t), the j-th subresultant Sj of p, t is either null modulo sat(T) or lc(Sj, xn) is

regular modulo sat(T). Then, Sd is a regular GCD of p, t w.r.t. T .

proof. The assumptions and Lemma 1 imply that T ∪ {Sd} is a regular chain.

Note also that, Sd is in the ideal generated by p, t, since Sd is a subresultant of these

two polynomials. Hence, to prove that Sd is a regular GCD of p, t w.r.t. T , it suffices to

check that both p and t belong to sat(T ∪ Sd). When d = mdeg(t) holds, we conclude

by applying Property (rq−1) from the divisibility relations of subresultants over an

integral domain. Hence, we assume d < mdeg(t). Let Sj be the non-zero subresultant

of smallest index i such that mdeg(t) ≥ j > d. The divisibility relations (either

(r<q−1) or (re−1)) imply that prem(Sj, Sd) ∈ sat(T) holds, that is, Sj ∈ sat(T ∪ Sd).
If j < mdeg(t), let Si be the non-zero subresultant of smallest j such that i > j. The

divisibility relations imply now that prem(Si, Sj) ∈ sat(T ∪ Sd) holds. By assumption

init(Sj) = lc(Sj, xn) is regular modulo sat(T). Hence, we deduce Si ∈ sat(T ∪ Sd).
Continuing in this manner, we obtained the desired result. �

Corollary 1. We reuse the notations and assumptions of Lemma 1. Then Sd is a

regular GCD of p and t modulo sat(T), if for all d < k ≤ mdeg(t), the coefficient sk

of xkn in Sk is either null or regular modulo sat(T).

proof. Let us assume that for all d < k ≤ mdeg(t), the coefficient sk is either

null or regular modulo sat(T). It follows from Lemma 3 that we only need to prove

that every defective subresultant Ψ(Sj) of Ψ(p) and Ψ(t) in B[xn] has a leading

coefficient which is regular w.r.t. sat(T). So let d < j < mdeg(t) such that Ψ(Sj) 6= 0

and deg(Ψ(Sj), xn) < j hold. Let k = deg(Ψ(Sj), xn). The divisibility relations of

subresultants over an arbitrary commutative ring, together with the assumption that

init(t) is regular w.r.t. sat(T), imply that the non-zero subresultants Ψ(Sj+1) and

Ψ(Sk) are non-defective and we have:

lc(Ψ(Sj))
j−kΨ(Sj) = Ψ(sj+1)

j−kΨ(Sk).

98

This implies that lc(Ψ(Sj)) is regular modulo sat(T). �

Lemma 4. Under the assumptions of Lemma 1, assume further that sat(T) is radical.

Then, Sd is a regular GCD of p, t w.r.t. T .

proof. As in the proof of Lemma 3, it suffices to check that both p and t belong

to sat(T ∪ {Sd}). Let p be any prime ideal associated with sat(T). Define D =

K[x1, . . . , xn]/p and let L be the fraction field of the integral domain D. Clearly Sd is

the last subresultant of p, t in D[xn] and thus in L[xn]. Hence Sd is a GCD of p, t in

L[xn]. Thus Sd divides p, t in L[xn] and pseudo-divides p, t in D[xn]. Therefore both

prem(p, Sd) and prem(t, Sd) belong to p. Finally prem(p, Sd) and prem(t, Sd) belong

to sat(T). Indeed, sat(T) being radical, it is the intersection of its associated primes.

�

7.4 A Regular GCD Algorithm

Following the notations and assumptions of Section 7.3 we propose an algorithm for

computing a regular GCD sequence of p, t w.r.t. T , as specified in Section 2.3.5. This

algorithm is called RGSZR for regular gcd sequence with zero resultant. In Section 7.4.2

we show how to relax the assumption r ∈ sat(T).

There are three main ideas behind the RGSZR algorithm. Firstly, the subresultants

of p, t in A[xn] are assumed to be known. We shall explain in Section 7.5 how we

compute them in our implementation. Secondly, we rely on the Regularize operation

specified in Section 2.3.5. Lastly, we inspect the subresultant chain of p, t in A[xn]

in a bottom-up manner. Therefore, we view S1, S2, . . . has successive candidates and

apply Lemma 4, if sat(T) is known to be radical, otherwise we apply Corollary 1.

7.4.1 Case where r ∈ sat(T): the algorithm RGSZR

Calling sequence. RGSZR(p, t, xn, T)

Input: p, t, xn, T as in Section 7.3.

Output: Same output specification as RegularGcd(p, t, T), see Section 2.3.5

S1: Compute the subresultants of p and t in xn. See Section 7.5.1 for details.

S2: Initializing the search for a regular GCD. Let i = 1. The index i represents

the smallest possible index of a subresultant Si of p, t (regarded in A[xn]) such that

Si 6∈ sat(T). Recall that S0 = res(p, t, xn) ∈ sat(T). The algorithm manages three

sets Tasks, Candidates and Results. Define

Tasks = {[i, T]}, Candidates = ∅, Results = ∅.

99

Each item in Tasks or Candidates is a pair [ℓ, C] where ℓ is a subresultant index

in the range 1 · · ·mdeg(t) and where C is a regular chain such that |T | = |C| and

sat(T) ⊆ sat(C) hold. Each item in Tasks or Candidates is the input data of some

computation, whereas Results is the value returned by the algorithm. Each task

[ℓ, C] ∈ Tasks satisfies the following: for each 0 ≤ j < ℓ we have Sj ∈ sat(C).

S3: If Tasks = ∅ then go to S6, otherwise continue to S4.

S4: Searching for a candidate. Take an item [ℓ, C] out of Tasks. If ℓ = mdeg(t)

then set j = ℓ and go to S5. Otherwise, let j ≤ ℓ be the smallest index of a

subresultant Sj of p and t such that Sj 6∈ sat(C). Observe that j exists since init(t)

regular w.r.t. sat(T) implies t 6∈ sat(C).

S5: Checking the candidate. Denote by cu the leading coefficient of Sj in xn. If

cu ∈ sat(C) holds, then for each D ∈ Regularize(Sj, C) do the following:

Tasks := Tasks ∪ {[j + 1, D]}.

If cu 6∈ sat(C) holds, then for each D ∈ Regularize(cu, C) do the following:

(a) if cu 6∈ sat(D) then

Candidates := Candidates ∪ {[j, D]};

(b) if cu ∈ sat(D) then

Tasks := Tasks ∪ {[j, D]}.
Go back to S3.

We make two comments. When cu ∈ sat(C) holds, by Lemma 2, Sj is nilpotent

modulo sat(C). Hence after regularizing Sj, Sj belongs to sat(D) for each D and we

can proceed to the next level j + 1. When cu 6∈ sat(C), we split C by regularizing

cu. In case (a), the polynomial cu is regular modulo sat(D) and, by Lemma 1, Sj is

non-defective. We regard Sj as a candidate regular GCD of p, t w.r.t. D. In case (b),

the polynomial cu is in sat(D), we simply add it back to the task pool.

S6: Applying Lemma 4. If sat(T) is not known to be radical then go to S7. Other-

wise, for all [j, D] ∈ Candidates set

Results := Results ∪ {[Sj, D]}

and return Results. Observe that for all [j, D] ∈ Candidates the ideal sat(D) is

radical too. Thus, Lemma 4 shows that Sj is a regular GCD of p, t w.r.t D.

S7: Applying Corollary 1. For each [j, D] in Candidates,

100

(a) Set Tasks = {[j, D]} and Split = ∅.

(b) while Tasks 6= ∅ do

(b.1) Take an element [ℓ, E] out of Tasks.

(b.2) Let ℓ < k ≤ mdeg(t) be the smallest index of a subresultant Sk such that

sk (the coefficient of Sk in xkn) is non-zero modulo sat(E).

(b.3) If k = mdeg(t) then Split := Split ∪ {E}. Otherwise, for each F ∈
Regularize(sk, E) do Tasks := Tasks ∪ {[ℓ+ 1, F]}.

(c) For each regular chain E ∈ Split

Results := Results ∪ {[Sj, E]}.

Finally, we return Results.

7.4.2 Case where r 6∈ sat(T)

We explain how to relax the assumption r ∈ sat(T) and thus obtain a general

algorithm for the operation RegularGcd. The principle is straightforward. Let

r = res(p, t, xn). Then, we call Regularize(r, T) obtaining regular chains T1, . . . , Te

such that T −→ (T1, . . . , Te). For each 1 ≤ i ≤ e we compute a regular GCD sequence

of p and t w.r.t. Ti as follows: If r ∈ sat(Ti) holds then we call RGSZR(p, t, xn, Ti);

otherwise r 6∈ sat(Ti), the resultant r is actually a regular GCD of p and t w.r.t. Ti

by the definition. Observe that in the case where r ∈ sat(Ti) holds the subresultant

chain of p and t in xn is used to compute their regular GCD w.r.t. Ti. This is one of

the motivations for the implementation techniques described in Section 7.5.

7.5 Implementation and Complexity

In this section we address implementation techniques and complexity issues. We

follow the notations introduced in Section 7.3. However we do not assume that

r = res(p, t, xn) belongs to the saturated ideal of the regular chain T .

In Section 7.5.1 we describe our encoding of the subresultant chain of p, t in

K[x1, . . . , xn−1][xn]. This representation is used in our implementation and complexity

results. For simplicity our analysis is restricted to the case where K is a finite field

whose “characteristic is large enough”. The case where K is the field Q of rational

numbers could be handled in a similar fashion, with the necessary adjustments.

101

One motivation for the design of the techniques presented in this chapter is the

solving of systems of two equations, say p = t = 0. Indeed, this can be seen as

a fundamental operation in incremental methods for solving systems of polynomial

equations, such as the one of [75]. We make two simple key observations. Formula 2.25

p. 25 shows that solving this system reduces “essentially” to computing r and a

regular GCD sequence of p, t modulo {r}, when r is not constant. This is particularly

true when n = 2 since in this case the variety V (h, p, t) is likely to be empty for

“generic” polynomials p, t. The second observation is that, under the same genericity

assumptions, a regular GCD g of p, t w.r.t. {r} is likely to exist and to have degree

one w.r.t. xn. Therefore, once the subresultant chain of p, t w.r.t. xn is calculated,

one can obtain g “essentially” at no cost. Section 7.5.2 extends these observations

with two complexity results.

In Section 7.5.3 an algorithm for the operation Regularize and its implementation

are discussed. We show how to create opportunities for making use of fast polynomial

arithmetic and modular techniques, bringing a significant improvement w.r.t. other

algorithms for the same operation, as illustrated in Section 7.6.

7.5.1 Subresultant chain encoding

Following [23], we evaluate (x1, . . . , xn−1) at sufficiently many points such that the

subresultants of p and t (regarded as univariate polynomials in xn) can be computed

by interpolation. To be more precise, we need some notations. We denote by di the

maximum of the degrees of p and t in xi, for all i = 1, . . . , n. Observe that bi := 2didn

is an upper bound for the degree of r (or any subresultant of p and t) in xi, for all

i = 1, . . . , n. Let B be the product (b1 + 1) · · · (bn−1 + 1).

We proceed by evaluation/interpolation; our sample points are chosen on an

(n − 1)-dimensional rectangular grid. We call “Scale” the evaluation of the sub-

resultant chain of p, t on this grid, which is how the subresultants of p, t are encoded

in our implementation. Of course, the validity of this approach requires that our

evaluation points cancel no leading term in p or t. Even though finding such points

deterministically is a difficult problem, this created no issue in our implementation.

Whenever possible (typically, over suitable finite fields), we choose roots of unity

as sample points, so that we can use FFT (or van der Hoeven’s Truncated Fourier

Transform [51]); otherwise, the standard fast evaluation/interpolation algorithms are

used. We have O(dn) evaluations and O(d2
n) interpolations to perform. Since our

102

evaluation points lie on a grid, the total cost becomes

O

(

Bd2
n

n−1
∑

i=1

log(bi)

)

or O

(

Bd2
n

n−1
∑

i=1

M(bi) log(bi)

bi

)

,

depending on the choice of the sample points (see e.g. [78] for similar estimates).

Here, as usual, M(b) stands for the cost of multiplying polynomials of degree less

than b, see [43, Chap. 8]. Using the estimate M(b) ∈ O(b log(b) log log(b)) from [21],

this respectively gives the bounds

O(d2
nB log(B)) and O(d2

nB log2(B) log log(B)).

These estimates are far from optimal. A first improvement (present in our code) con-

sists in interpolating only the leading coefficients of the subresultants in a first time,

and recover all other coefficients when needed. This is sufficient for the algorithms of

Section 7.3. For instance, in the FFT case, the cost is reduced to

O(d2
nB + dnB log(B)).

Another desirable improvement would of course consist in using fast arithmetic based

on Half-GCD techniques [43], with the goal of reducing the total cost to O (̃dnB),

which is the best known bound for computing the resultant, or a given subresultant.

However, as of now, we do not have such a result, due to the possible splittings.

7.5.2 Solving two equations

Our goal now is to estimate the cost of computing the polynomials r and g in the

context of Formula 2.25 p. 25. We propose an approach where the computation of g

essentially comes free, once r has been computed. This is a substantial improvement

compared to traditional methods, such as [56, 75], which compute g without recycling

the calculation of r. With the assumptions and notations of Section 7.5.1, we saw

that the resultant r can be computed in at most O(dnBlog(B) + d2
nB) operations in

K. In many cases (typically with random systems), g has degree one in v = xn. Then,

the GCD g can be computed within the same bound as the resultant. Besides, in this

case, one can use the Half-GCD approach instead of computing all subresultants of p

and t. This leads to the following result in the bivariate case; we omit its proof here.

Corollary 2. With n = 2, assuming that V (h, p, t) is empty, and assuming

103

deg(g, v) = 1, solving the input system p = t = 0 can be done in O∼(d2
2d1) oper-

ations in K.

7.5.3 Implementation of Regularize

Regularizing a polynomial w.r.t regular chain is a fundamental operation in methods

computing triangular decompositions. It has been used in the algorithms presented

in Section 7.4 and its specification can be found in Section 2.3.5. Algorithms for this

operation appear in [56, 75].

The purpose of this section is to show how to realize efficiently this operation.

For simplicity, we restrict ourselves to regular chains with zero-dimensional saturated

ideals, in which case the separate operation of [56] and the regularize operation [75] are

similar. For such a regular chain T in K[x] and a polynomial p ∈ K[x] we denote by

RegularizeDim0(p, T) the function call Regularize(p, T). In broad terms, it “separates”

the points of V (T) that cancel p from those which do not. The output is a set of

regular chains {T 1, . . . , T e} such that the points of V (T) which cancel p are given by

the T i’s modulo which pi is null.

Algorithm 1 differs from those with similar specification in [56, 75] by the fact

it creates opportunities for using modular methods and fast polynomial arithmetic.

Our first trick is based on the following result (Theorem 1 in [22]): the polynomial p

is invertible modulo T if and only if the iterated resultant of p with respect to T is

non-zero. The correctness of Algorithm 1 follows from this result, the specification of

the algorithm of RGSZR and an inductive process. Similar proofs appear in [56, 75].

The main novelty of Algorithm 1 is to employ the fast evaluation/interpolation

strategy described in Section 7.5.1. In our implementation of Algorithm 1, at Step

(6), we compute the “Scube” representing the subresultant chain of q and Cv. This

allows us to compute the resultant r and then to compute the regular GCDs (g, E)

at Step (12) from the same “Scube”. In this way, intermediate computations are

recycled. Moreover, fast polynomial arithmetic is involved through the manipulation

of the “Scube”.

Algorithm 1.

Input: T a normalized zero-dimensional regular chain and p a polynomial, both in

K[x1, . . . , xn].

104

Output: See specification in Section 2.3.5.

RegularizeDim0(p, T) ==

(1) Results := ∅;
(2) for (q, C) ∈ RegularizeInitDim0(p, T) do

(3) if q ∈ K then

(4) Results := {C} ∪Results
(5) else v := mvar(q)

(6) r := res(q, Cv, v)

(7) for D ∈ RegularizeDim0(r, C<v) do

(8) s := NormalForm(r,D)

(9) if s 6= 0 then

(10) U := {D ∪ {Cv} ∪ C>v}
(11) Results := {U} ∪Results
(12) else for (g, E) ∈ RegularGcd(q, Cv, D) do

(13) g := NormalForm(g, E)

(14) U := {E ∪ {g} ∪D>v}
(15) Results := {U} ∪Results
(16) c := NormalForm(quo(Cv, g), E)

(17) if deg(c, v) > 0 then

(18) Results :=

RegularizeDim0(q, E ∪ c ∪ C>v)

∪Results
(19) return Results

In Algorithm 1, a routine RegularizeInitialDim0 is called, whose specification and

pseudo-code are given below. Briefly speaking, this routine splits a regular chain T

according to the initial of a polynomial p such that p either is a constant or has a

regular initial over each component of sat(T).

Algorithm 2.

Input: T a normalized zero-dimensional regular chain and p a polynomial, both in

K[x1, . . . , xn].

105

Output: A set of pairs {(pi, Ti) | i = 1 · · · e}, in which pi is a polynomial and Ti is

a regular chain, such that either pi is a constant or its initial is regular modulo

sat(Ti), and p ≡ pi mod sat(Ti) holds.

RegularizeInitDim0(p, T) ==

(1) p := NormalForm(p, T)

(2) Tasks := {(p, T)}
(3) Results := ∅
(4) while Tasks 6= ∅ do

(5) Take a pair (q, C) out of Tasks

(6) if q ∈ K then

(7) Results := {(q, C)} ∪Results
(8) else for D ∈ RegularizeDim0(init(q), C) do

(9) t := NormalForm(tail(q), D)

(10) h := NormalForm(init(q), D)

(11) if h 6= 0 then

(12) Results := {(h rank(q) + t,D)} ∪Results
(13) else Tasks := {(t,D)} ∪ Tasks
(14) return Results

7.6 Experimentation

We have implemented in C language all the algorithms reported in the previous

sections. The new implementations rely on the set of asymptotically fast polynomial

arithmetic operations from our modpn library [68] as their base level sub-routines. We

also provide a Maple interface FastArithmeticTools calling these new implementations

and our previous ones reported in [68]. In this section, we compare the performance

of our algorithms and their implementation with Maple’s and/or Magma’s existing

counterparts. For Maple, we use its latest distribution version 13; For Magma we

ordered its latest version V2.15-4 however the performance for the algorithms we

have benchmarked on such as TriangularDecomposition and Saturation is slower than

the ones in the previous version, thus we still use Magma’s Version V2.14-8. We

focus on Resultant and GCD in Section 7.3 and Regularize in Section 7.5.3. All the

106

benchmarks are conducted on Intel Pentium VI, Quad CPU 2.40 GHZ machines with

4 MB cache and 3 GB main memory.

7.6.1 Resultant and GCD

In Figure 7.1 we benchmark our Resultant and GCD algorithm. The “degree” shown

in the figure is the partial degree of each input polynomial in its main variable. The

input polynomials are random dense polynomial in two variables and each of them

has a totally degree of the square of “degree” (see the first line of definition of “de-

gree”). This is one of the so-called “internal” benchmarks. Namely we compare two

flavor of implementations of our Resultant and GCD algorithm. One is based on

the subproduct-tree interpolation method, the other is based on the DFT interpola-

tion. Obviously the DFT based approach is faster in this benchmark. However the

subproduct-tree is more generally applicable since it does not require the character-

istic p to be a Fourier prime. Figures 7.2 and 7.3 have the same setting except they

are the 3-variable and 4-variable cases respectively.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

T
im

e

Degree

SubProduct-Tree
DFT

Figure 7.1: Resultant and GCD random dense 2-variable.

Figure 7.4 is one of so-called “external” benchmarks. We are comparing our

Resultant and GCD algorithm with Magma’s counterpart. In Figure 7.4 we use the

same “degree” as defined in previous Resultant and GCD benchmark. As shown our

performance is way beyond Magma’s.

107

d1. d2 Regularize Fast Regularize Magma
2 2 0.000 0.004 0.000
4 6 0.044 0.000 0.010
6 10 1.256 0.012 0.020
8 14 6.932 0.020 0.070
10 18 35.242 0.048 0.160
12 22 > 100.000 0.052 0.370
14 26 > 100.000 0.100 0.900
16 30 > 100.000 0.132 1.760
18 34 > 100.000 0.240 3.260
20 38 > 100.000 0.472 6.400
22 42 > 100.000 0.428 11.150
24 46 > 100.000 0.668 18.890
26 50 > 100.000 1.304 29.120
28 54 > 100.000 1.052 44.770
30 58 > 100.000 1.260 74.450
32 62 > 100.000 2.408 97.380
34 66 > 100.000 3.768 183.930

Table 7.1: Random dense 2-variable case.

d1 d2 d3 Regularize Fast Regularize Magma
2 2 3 0.032 0.004 0.010
3 4 6 0.160 0.016 0.020
4 6 9 0.404 0.024 0.060
5 8 12 >100 0.129 0.330
6 10 15 >100 0.272 1.300
7 12 18 >100 0.704 5.100
8 14 21 >100 1.276 14.530
9 16 24 >100 5.836 40.770
10 18 27 >100 9.332 107.280
11 20 30 >100 15.904 229.950
12 22 33 >100 33.146 493.490

Table 7.2: Random dense 3-variable case.

108

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20

T
im

e

Degree

SubProduct-Tree
DFT

Figure 7.2: Resultant and GCD random dense 3-variable.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 3 4 5 6 7 8 9 10

T
im

e

Degree

SubProduct-Tree
DFT

Figure 7.3: Resultant and GCD random dense 4 variable.

7.6.2 Regularize

In the following benchmarks (Tables 7.1, 7.2, and 7.4), we compare our fast regularize

algorithm with “Regularize” from Maple RegularChains library and Magma’s coun-

terpart. Namely, in Magma we first saturate the ideal generated by the triangular set

with an input polynomial by using the Saturation command. Then we use Triangu-

larDecomposition command to decompose the output from the first step. The total

degree of the input polynomial i is di. In Table 7.1, we generate two random dense

polynomials with 2 variables for each, thus we are generally in the equiprojectable

case and the “split” step in terms of triangular decomposition rarely happen. Simi-

larly in Table 7.2, we generate three random dense polynomials with 3 variables for

109

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20

T
im

e

Degree

Magma
Maple

Figure 7.4: Resultant and GCD random dense 3-variable.

each. In this “non-splitting” (equiprojectable) case, our fast regularize algorithm is

significantly faster than the other two implementations. For the three variables case,

we are more than 150 times faster than both Magma’s and RegularChains “Regular-

ize” for the larger input examples. However, in the “splitting” (non-equiprojectable)

case where we design the input systems with large number of “split” in terms of trian-

gular decomposition, our fast regularize is slightly slower than Magma’s counterpart,

but still much faster than “Regularize” from RegularChains. Table 7.3 shows the run

time of the “split” case with two input bivariate polynomials. Table 7.4 shows the

run time of the “split” case with three input trivariate polynomials.

7.7 Summary

The concept of a regular GCD extends the usual notion of polynomial GCD from

polynomial rings over fields to polynomial rings modulo saturated ideals of regular

chains. Regular GCDs play a central role in triangular decomposition methods. Tra-

ditionally, regular GCDs are computed in a top-down manner, by adapting standard

PRS techniques (Euclidean algorithm, subresultant algorithms, etc.).

In this chapter, we have examined the properties of regular GCDs of two poly-

nomials w.r.t a regular chain. With the Algorithm RGSZR presented in Section 7.3,

our main theoretical result, one can proceed in a bottom-up manner. This has three

benefits described in Section 7.5. Firstly, this algorithm is well-suited to employ

modular methods and fast polynomial arithmetic. Secondly, we avoid the repetition

of (potentially expensive) intermediate computations. Lastly, we avoid, as much as

110

d1. d2 Regularize Fast Regularize Magma
2 2 0.024 0.004 0.000
4 6 0.232 0.012 0.000
6 10 1.144 0.016 0.010
8 14 7.244 0.040 0.030
10 18 25.281 0.080 0.050
12 22 > 100.000 0.176 0.090
14 26 > 100.000 0.340 0.250
16 30 > 100.000 0.516 0.280
18 34 > 100.000 1.196 0.630
20 38 > 100.000 1.540 0.920
22 42 > 100.000 2.696 1.450
24 46 > 100.000 3.592 2.540
26 50 > 100.000 4.328 4.700
28 54 > 100.000 6.536 4.790
30 58 > 100.000 10.644 6.570
32 62 > 100.000 10.028 9.360
34 66 > 100.000 15.648 11.540

Table 7.3: Non-equiprojectable 2-variable case.

d1 d2 d3 Regularize Fast Regularize Magma
2 2 3 0.292 0.012 0.000
3 4 6 1.732 0.028 0.010
4 6 9 68.972 0.072 0.030
5 8 12 328.296 0.204 0.150
6 10 15 >1000 0.652 0.370
7 12 18 >1000 2.284 1.790
8 14 21 >1000 5.108 2.890
9 16 24 >1000 18.501 10.950
10 18 27 >1000 31.349 19.180
11 20 30 >1000 55.931 56.850
12 22 33 >1000 101.642 76.340

Table 7.4: Non-equiprojectable 3-variable case.

111

possible, computing modulo regular chains and use polynomial computations over

the base field instead, while controlling expression swell. The experimental results

reported in Section 7.6 illustrate the high efficiency of our algorithms.

112

Chapter 8

The Modpn Library: Bringing Fast

Polynomial Arithmetic into Maple

8.1 Overview

In Chapter 7 at Page 91, we have reported our new algorithms for the Regular GCD

and Regularize operations. The latter can be regarded as an application of the former.

We also mentioned briefly another application of Regular GCD, i.e two-equation solver.

In this chapter, besides explaining in greater details for the two-equation solver, we

report two other based on the operation Regular GCD based algorithms: Bivariate

Solver and Invertibility Test. We are restricted to the two variable case for Bivariate

Solver, thus more specialized tricks can be applied as described in Section 8.3 at

Page 118. Invertibility Test is also a specialized algorithm with respect to Regularize

since it assumes that the input regular chain is zero-dimensional and generates a

radical ideal.

Besides the theoretical result, we are more interested in the implementation strat-

egy for computations modulo regular chains. Therefore, while reporting the new

algorithms, we will combine the practical programming consideration. Moreover, we

have also conducted new experimentation in terms of programming environment. Re-

call that in Chapter 3 at Page 26, Chapter 4 at Page 45, Chapter 5 at Page 57, and

Chapter 6 at Page 65, we use AXIOM as the experimentation environment. In this

chapter, we investigate the integration of fast arithmetic operations implemented in

C into Maple. Most of Maple library functions are high-level interpreted code such

as the Regularchains library. Our objective is to let these high-level triangular com-

position library benefit from our C-level fast routines. However, to reach this goal, we

113

have to handle the following facts in a careful manner. To our knowledge, the standard

method to connect C code into Maple is simple but quite rudimentary. The only

structured data which can be recognized by the both sides are the simple ones such as

strings, arrays, tables. This leads to potential conversion overheads. Indeed, generally,

Maple polynomials are represented by sparse data structures whereas those used by

fast arithmetic operations are dense. Thus, we have to convert Maple sparse object

into our dense object. This situation implies a second downside factor: Since conver-

sions from Maple to C objects must be performed on the Maple side as interpreted

code, the overhead of conversion is significant. Clearly, one would like to implement

them on the C side, as compiled and optimized code. However, this requires a lot

expertise of OpenMaple (see Maple help page) which is huge amount of efforts. The

third disadvantage is that the Maple language does not enforce “modular program-

ming” or “generic programming” compared to AXIOM integration. Only providing

a Maple connection-package capable of calling our C routines will not be sufficient

to speed up all Maple triangular decomposition libraries. Clearly, high-level Maple

code also needs to be carefully rewritten to call this connection-package in a delicate

manner. The “top-level” algorithms such as bivariate solver, two-equation solver,

invertibility test, are written in Maple and relies on our C routines of different tasks

such as the computation of subresultant chain, normal form of a polynomial w.r.t. a

zero-dimensional regular chain, etc. These three applications are actually part of the

new module of the RegularChains library, called FastArithmeticTools, which pro-

vides operations on regular chains (in prime characteristic and mainly in dimensions

zero or one) based on modular methods and fast polynomial arithmetic. Therefore,

these three applications are well representatives and simple enough such that their

performance can be sharply evaluated.

After the success of this experimentation, we have collected selectively all our past

C level implementation as a complete library called modpn (Multivariate Polynomial

Arithmetic Modulo a prime number with N variables). As mentioned in Section 1.2,

this library is in features of asymptotically fast polynomial arithmetic and their highly

efficient implementation. This library targets on supporting symbolic polynomial

solving via triangular decomposition techniques. modpn has already been accepted

and integrated into the latest Maple distribution, version 13 (at the time writing

this thesis).

The outline of this chapter is as following: In Section 8.2 at Page 114, we inves-

tigate the integration of asymptotically fast arithmetic operations implemented in C

into Maple. In Sections 8.3 at Page 118 and 8.4 at Page 124, we present our new al-

114

gorithms Two-equation Solver and Invertibility Test and their implementation.

In Section 8.5 at Page 127, we show the performance result of our new algorithms.

We demonstrate that with suitable implementation strategies, our new algorithms

are highly effective methods.

NOTE: This chapter is written based on the published Paper [68].

8.2 A Compiled-Interpreted Programming Envi-

ronment

Our library, modpn, contains two levels of implementation: Maple code (interpreted)

and C code (compiled); our purpose is to reach high performance while spending a

reasonable amount of development time. Relying on asymptotically fast algorithms

and code optimization, the C level routines are very solid result. The “core” oper-

ations consist of modular multiplication/inversion 6, lifting techniques [84]), GCD’s,

resultants and fast interpolation, etc. At the Maple level, we write more abstract

algorithms; typically, they are higher level polynomial solvers. The major trade-off

between two levels is language abstraction and high performance.

We use multiple polynomial data encoding at each level, showed in Figure 8.1.

The Maple-Dag and Maple-Recursive-Dense polynomials are Maple built-in types;

the C-Dag, C-Cube and C-2-Vector polynomials are written in C by us. Each encoding

will be used in certain computation; for instance C-Cube will be used in the fast dense

computation at C level and Maple-Dag will be used in regular chain computation at

Maple level. Our polynomial solving algorithms are each composed by such different

computations. Therefore, at run time in the same algorithm a polynomial may need

to be represented differently. Consequently, how to efficiently map one encoding to

another, especially from Maple level ones to C level ones (or vice versa) is highly

important.

For the four questions regarding C/Maple integration mentioned in Section 1.2,

we try to answer the first two in Sections 8.2.1, 8.2.2 and 8.2.3:

• To what extent triangular decomposition algorithms can take advantage of fast

polynomial arithmetic implemented in C?

• What is a good design for a hybrid C-Maple application?

115

Maple−Dag

Maple−

Recursive−

Dense

C−Dag

C−Cube

C level

Maple Level

6

7

3
4

C−2−Vector

8
9

5

1

2

Figure 8.1: The polynomial data representations in modpn.

8.2.1 The C level

Primarily, our C code targets on the best performance. All operations are based

on asymptotically fast algorithms rooted at fast Fourier transform (FFT) and its

variant truncated Fourier transform (TFT) [51]. These operations are optimized with

respect to crucial features of hardware architecture: memory hierarchy, instruction

pipe-lining, and vector instructions. As reported in Chapters 5, 6, and 7 (or see

Papers [69, 65]), our C library often outperforms the best known implementations

such as Magma and NTL [5, 6].

Large portion of the C code is dedicated to regular chain operations modulo a

machine size prime number, mainly in dimension zero. Such computation typically

generates dense polynomials in the middle stages; thus, we use multidimensional

arrays as the canonical encoding for polynomials, and we call them C-Cubes This

encoding is the most appropriate one for FFT-based modular multiplication, inver-

sion, interpolation, etc. For this encoding, we can pre-allocate the working buffer

since all the partial degrees of a polynomial are bounded by the given regular chain.

Then, in-place operations can be easy conducted on these buffers whenever they are

applicable. Moreover, tracing coefficients and degrees also becomes trivial constant

operations.

Besides C-Cube, we have another polynomial encoding called C-Dag. It’s designed

for triangular lifting algorithms [84, 27]. in which we use a Directed Acyclic Graph

(DAG) to encode a polynomial. Actually, DAG polynomials is the default data

116

presentation in Maple. Our C-Dag polynomials are used at C level only. This

data representation has its unique properties, such as by setting flags in the nodes of

these Dags, we can track their visibility and aliveness in constant time.

In addition to C-Cube and C-Dag, we have implemented a third data structure

at C level called C-2-Vector. At the beginning of this chapter, we mentioned that

the overhead of data conversion between Maple and C can be significant. Thus, we

designed C-2-Vector to ease this problem (see 8.2.3 for explanation).

8.2.2 The Maple level

Many complex algorithms for triangular decompositions are highly abstract, so it is

sensible to implement them in a well equipped high-level language environment like

Maple. First, the implementation effort is much less intensive than that in C or

C++; Second, Maple has a comprehensive mathematical library, so it is possible to

directly use other existing algorithms to verify our results. In our case, we use Maple

RegularChains library [63] to verify the result of our new algorithms and their imple-

mentation. At the Maple level, we use two types of polynomials: Maple Dags and

RecDen (recursive dense) polynomials. As mentioned previously, Dags are the default

data representation for polynomials in Maple. For example, Maple RegularChains

library uses it uniformly. Thus, for the hybrid Maple/C implementation, we need

to convert the C level polynomials to Maple Dag’s (vice versa).

RecDen is an efficient Maple library for doing dense polynomial computation. It

has its own data representation for polynomials; we call it RecDen polynomials. In

our hybrid implementation we use some RecDen operations, thus we need the data

representation conversion.

8.2.3 Maple and C cooperation

When designing polynomial solving algorithms such as the ones reported in Section 8.3

at Page 118 and 8.4 at Page 124, we try to rely on the fast arithmetic in our C library.

Recall our first question: is this an effective approach? Our answer is a conditional

yes: if the code integration process is careful, our C code provides a large speed-up to

the Maple code. This has been demonstrated in Section 8.5 at Page 127. However,

if the overall overhead of data conversion between C and Maple is significant this

might not be a good approach. This observation naturally leads we to investigate

this overhead and the methods to reduce it.

For general users, Maple ExternalCalling package is the only standard way

117

to link in externally C functions. The procedure of linking is not complicated: the

user just needs to carefully map Maple level data onto C level ones. For example,

a Maple rtable type can be directly mapped to a C level array. However, if the

Maple data encoding is very different from the C one, the data conversion might be

an issue. Actually, there are only a small group of simple Maple data structures,

such as integers, floats or tables, can be automatically converted into C responding

ones. For other compound data structures, such as converting from a Maple Dag

polynomial to a C Dag polynomial, we have to manually pack the data into a Maple

rtable, and unpack it at C level. In other words, we need to “encode” the data at

Maple level and “decode” it at the C level. This encoding/decoding process maybe

expensive especially at the Maple end. There are two major ways to reduce this

overhead:

1. to minimize the amount of conversions at the algorithm design level,

2. to minimize the amount of time for each conversion at the implementation level.

The amount of conversions is application dependent; it turns out that it happens

quite often in the implementation of our new algorithms. Many conversions are “vol-

untary”: namely, we are willing to conduct them, expecting that better algorithms or

better implementations can be used after converting to suitable data representation.

For example, in the triangular lifting algorithm we use C-Dag as the default represen-

tation since it is more efficient for the sub operations such as differentiation, variable

substitution and variable lifting. However, we need to convert the C-Dag polynomials

into C-Cube polynomials in the middle stage to use our FFT based fast arithmetic.

We are willing to pay this overhead since the speed-up from FFT outweighs the extra

cost from the data conversion. However, some conversions are “involuntary”. Indeed,

we would like all the computational intensive operations are implemented at the C

level. However, this is unrealistic due to the complexity of implementation. Thus,

there are often cases that we have to convert polynomials from C to Maple to use

Maple level operations. As mentioned previously, the data conversion of polynomials

might be very expensive. Therefore, we need to carefully study both the “voluntary”

and “involuntary” conversions and decide 2 things: (1) what kind polynomial arith-

metic or which sub-algorithm should be used. (2) which portion of the code should

rely on Maple code or instead on the C code.

The amount of time for each conversion can be reduced by carefully designed

data converters. For example, as mentioned previously we designed a so-called C-2-

Vector polynomial representation: one vector we called degree vector recursively

118

encodes the degrees of all polynomial coefficients, and the other vector we called

number coefficients vector encodes all the base number coefficients. Two vectors

use the same traversal order to encode information. To be specific, the recursive

dense polynomial representation [64] uses a tree structure to encode a multivariate

polynomial. The root itself represents the given polynomial. Its children nodes are

its coefficients which may have their own children nodes, i.e. their coefficients. The

leaves in the tree are numbers from the base ring. We call the nodes between the

root and the leaves are polynomial coefficients. Therefore, by choosing a fixed

tree traversal order we encode the degrees of those polynomial coefficients into

the degree vector. Then accordingly, we use the same traversal order to encode the

number coefficients into the number coefficients vector.

This data representation in our library does not participate to any real compu-

tation: it is specifically designed for facilitating the data conversion from C-Cube

to RecDen encoding. The C-2-Vector encoding has the same recursive structure as

RecDen, so the data conversion become easier. Moreover, the C-2-Vector encoding

use flattened polynomial tree structures (a tree encodes in an 1-dimensional array),

which are convenient to pass from C to Maple.

8.3 Bivariate Solver

The first application we used to evaluate our framework is the solving of bivariate

polynomial systems by means of triangular decompositions. We consider two bivariate

polynomials F1 and F2, with ordered variables X1 < X2 and with coefficients in a

field K. We assume that K is perfect; in our experimentation K is a prime field whose

characteristic is a machine word size prime.

We rely on an algorithm introduced in [80] and based on the following well-known

fact [11]. The common roots of F1 and F2 over an algebraic closure K of K are “likely”

to be described by the common roots of a system with a triangular shape:

{

T1(X1) = 0

T2(X1, X2) = 0

such that the leading coefficient of T2 w.r.t. X2 is invertible modulo T1; moreover the

degree of T2 w.r.t. X2 is “likely” to be 1. For instance, the system

{

X2
1 +X2 + 1 = 0

X1 +X2
2 + 1 = 0

119

is solved by the triangular system

{

X4
1 + 2X2

1 +X1 + 2 = 0

X2 +X2
1 + 1 = 0.

In general, though, more complex situations can arise, where more than one triangular

system is needed. The goal of this section is to show that this algorithm can easily

be implemented in our framework while providing high-performance. Section 8.3.2 at

Page 121 and Section 8.3.3 at Page 122 contain the algorithm and the corresponding

code, respectively.

8.3.1 Subresultant sequence and GCD sequence

In Sections 2.3.4 and 2.3.5 at Page 22, We have studied subresultant theory and regular

GCD. Here we define subresultant sequence and GCD sequence in the bivariate case.

Subresult sequence. In Euclidean domains such as K[X1], polynomial GCD’s

can be computed by the Euclidean algorithm and by the subresultant algorithm (we

refer here to the algorithm presented in [32]). Consider next more general rings,

such as K[X1, X2]. Assume F1, F2 are non-constant polynomials with deg(F1, X2) ≥
deg(F2, X2), and deg(F2, X2) = q. The polynomials computed by the subresultant

algorithm form a sequence, called the subresultant chain of F1 and F2 and denoted

by src(F1, F2). This sequence consists of q+1 polynomials, starting at lc(F2, X2)
δ F2,

with δ = deg(F1, X2) − deg(F2, X2), and ending at R1 := res(F1, F2), the resultant

of F1 by F2 w.r.t. X2. We write this sequence Sq, . . . , S0 where the polynomial

Sj := Sj(F1, F2) is called the subresultant (of F1, F2) of index j. Let j be an index

such that 0 ≤ j ≤ q. If Sj is not zero, it turns out that its degree is at most j and Sj

is said regular when deg(Sj, X2) = j holds.

The subresultant chain of F1 and F2 satisfies a fundamental property, called the

block structure, which implies the following fact: if the subresultant Sj of index j,

with j < deg(F2, X2) − 1, is not zero and not regular, then there exists a non-zero

subresultant Si with index i < j such that Si is regular, has the same degree as Sj

and for all i < ℓ < j the subresultant Sℓ is null.

The subresultant chain of F1 and F2 satisfies another fundamental property, called

the specialization property, which plays a central in our algorithm. Let Φ be a ho-

momorphism from K[X1, X2] to K[X2], with Φ(X1) ∈ K. Assume Φ(a) 6= 0 where

120

a = lc(f1, X2). Then we have:

Φ(Sj(F1, F2)) = Φ(a)q−kSj(Φ(F1),Φ(F2)) (8.1)

where q = deg(F2, X2) and k = deg(Φ(F2), X2).

GCD sequence Let T1 ∈ K[X1]\K and T2 ∈ K[X1, X2]\K[X1] be two polynomials.

Note that Ti has a positive degree in Xi, for i = 1, 2. The pair {T1, T2} is a regular

chain if the leading coefficient lc(T2, X2) of T2 in X2 is invertible modulo T1. By

definition, the set {T1} is also a regular chain. For simplicity, we will require T1 to

be squarefree, which has the following benefit: the residue class ring L = K[X1]/〈T1〉
is a direct product of fields. For instance, with T1 = X1(X1 + 1), we have:

K[X1]/〈T1〉 ≃ K[X1]/〈X1〉 ⊕K[X1]/〈X1 + 1〉
≃ K⊕K.

Let F1, F2, G ∈ K[X1X2] be non-zero. We say G is a regular GCD of F1, F2 modulo

T1 if the following conditions hold:

1. lc(G,X2) is invertible modulo T1,

2. there exist A1, A2 ∈ K[X1, X2] such that G ≡ A1f1 + A2f2 mod T1,

3. if deg(G,X2) > 0 then G divides F1 and F2 in L[X2].

The polynomials F1, F2 may not have a regular GCD in the previous sense. How-

ever the following holds.

Proposition 7. There exists polynomials A1, . . . , Ae in K[X1] and polynomials

B1, . . . , Be in K[X1, X2] such that the following properties hold:

• the product A1 · · ·Ae equals T1,

• for all 1 ≤ i ≤ e, the polynomials Bi is a regular GCD of F1, F2 modulo Ai.

The sequence (A1, B1), . . . , (Ae, Be) is called a GCD sequence of F1 and F2 modulo

T1.

Consider for instance T1 = X1(X1 + 1),

F1 = X1X2 + (X1 + 1)(X2 + 1) and F2 = X1(X2 + 1) + (X1 + 1)(X2 + 1).

Then (X1, X2 + 1), (X1 + 1, 1) is a GCD sequence of F1 and F2 modulo T1.

121

8.3.2 Algorithm

Recall that we aim at computing the set V (F1, F2) of the common roots of F1 and

F2 over K. For simplicity, we assume that both F1 and F2 have a positive degree in

X2; we define h1 = lc(f1, X2), h2 = lc(f2, X2) and h = gcd(h1, h2). Recall also that

R1 denotes the resultant of F1 and F2 in X2. Since h divides R1, we define R′
1 to be

the quotient of the squarefree part of R1 by the squarefree part of h. Our algorithm

relies on the following observation.

Theorem 1. Assume that V (F1, F2) is finite and not empty. Then R′
1 is not constant.

Moreover, for any GCD sequence (A1, B1), . . . , (Ae, Be) of F1 and F2 modulo R′
1, we

have

V (F1, F2) =
i=e
⋃

i=1

V (Ai, Bi) ∪ V (h, F1, F2). (8.2)

and for all 1 ≤ i ≤ e the polynomial Bi has a positive degree in X2 and thus V (Ai, Bi)

is not empty.

This theorem implies that the points of V (F1, F2) which do not cancel h can

be computed by means of one GCD sequence computation. This is the purpose of

Algorithm 9. The entire set V (F1, F2) is computed by Algorithm 10.

Algorithm 9 Modular Generic Solve

Input: F1, F2 as in Theorem 1.

Output: (A1, B1), . . . , (Ae, Be) as in Theorem 1.

ModularGenericSolve2(F1, F2, h) ==
(1) Compute src(F1, F2)
(2) Let R1

′ be as in Theorem 1
(3) i := 1
(4) while R1

′ 6∈ K repeat
(5) Let Sj ∈ src(F1, F2) regular with j ≥ i minimum
(6) if lc(Sj, X2) ≡ 0 mod R1

′

then i := i+ 1; goto (5)
(7) G := gcd(R1

′, lc(Sj, X2))
(8) if G ∈ K

then output (R1
′, Sj); exit

(9) output (R1
′ quo G,Sj)

(10) R1
′ := G; i := i+ 1

The following comments justify Algorithm 9 and are essential in view of our imple-

122

mentation. In Step (1) we compute the subresultant chain of F1, F2 in the following

lazy fashion:

1. B := 2d1d2 is a bound for the degree of R1, where d1 = max(deg(Fi, X1)) and

d2 = max(deg(Fi, X2)). We evaluate F1 and F2 at B + 1 different values of

X1, say x0, . . . , xB, such that none of these specializations cancels lc(F1, X2) or

lc(F2, X2).

2. For each i = 0, . . . , B, we compute the subresultant chain of F1(X1 = xi, X2)

and F2(X1 = xi, X2).

3. We interpolate the resultant R1 and do not interpolate any other subresultants

in src(F1, F2).

In Step (5) we consider Sj the regular subresultant of F1, F2 with minimum index

j greater or equal to i. We view Sj as a “candidate GCD” of F1, F2 modulo R′
1 and we

interpolate its leading coefficient w.r.t. X2 only. In Step (6) we test whether lc(S,X2)

is null modulo R′
1; if this is the case, then it follows from the block structure property

that Sj is null modulo R′
1 and we go to the next candidate. In Step (8), if G ∈ K then

we have proved that Sj is a GCD of F1, F2 modulo R′
1; in this case we interpolate

Sj completely and return the pair (R′
1, Sj). In Steps (9)-(10) lc(Sj, X2) has been

proved to be a zero-divisor. Since R′
1 is squarefree, we apply the D5 Principle and

the computation splits into two branches:

1. lc(Sj, X2) is invertible modulo R′
1 quo G, so we output the pair (R′

1 quo G,Sj)

2. lc(S,X2) = 0 mod G; we go to the next candidate.

The following comments justify Algorithm 10. Recall that V (F1, F2) is assumed

to be non-empty and finite. Steps (1)-(2) handle the case where one input polynomial

is univariate in X1; the only motivation of the trick used here is to keep pseudo-code

simple. Step (4) computes the points of V (F1, F2) which do not cancel h. From Step

(6) one computes the points of V (F1, F2) which do cancel h, so we replace F1, F2 by

their reductums w.r.t. X2. In Steps (8)-(10) we filter out the solutions computed at

Step (7), discarding those which do not cancel h.

8.3.3 Implementation

We explain now how Algorithms 9 and 10 are implemented in Maple interpreted

code, using the functions of the modpn library. We start with Algorithm 9. The

123

Algorithm 10 Modular Solve

Input: F1, F2 as in Theorem 1.

Output: regular chains (A1, B1), . . . , (Ae, Be) such that V (F1, F2) =
⋃i=e
i=1 V (Ai, Bi).

ModularSolve2(F1, F2) ==
(1) if F1 ∈ K[X1] then return ModularSolve2(F1 + F2, F2)
(2) if F2 ∈ K[X1] then return ModularSolve2(F1, F2 + F1)
(3) h := gcd(lc(F1, X2), lc(F2, X2))
(4) G := ModularGenericSolve2(F1, F2, h)
(5) if h = 1 return G
(6) (F1, F2) := (reductum(F1, X2), reductum(F2, X2))
(7) D := ModularSolve2(F1, F2)
(8) for (A(X1), B(X1, X2)) ∈ D repeat
(9) g := gcd(A, h)
(10) if deg(g,X1) > 0 then G := G ∪ {(g,B)}
(11) return G

dominant cost is at Step (1) and it is desirable to perform this step entirely at the

C level in one “function call”. On the other hand the data computed at Step (1)

must be accessible on the Maple side, in particular at Step (5). Recall that the only

structured data that the C and Maple levels can share are arrays. Fortunately, there

is a natural efficient method for implementing Step (1) under these constraints:

• We represent F1 (resp. F2) by a (B + 1) × d2 array (or “cube”) C1 (resp. C2)

where C1[i, j] (resp. C2[i, j]) is the coefficient of F1 (resp. F2) of X i
2 evaluated

at xj; if F1 (resp. F2) is given over the monomial basis of K[X1, X2], then the

“cube” C1 (resp. C2) is obtained by fast evaluation techniques.

• For each i = 0, . . . , B, the subresultant chain of F1(X1 = xi, X2) and F2(X1 =

xi, X2) is computed and stored in an (B + 1) × d2 × d2 array, that we call

“Scube”; this array is allocated on the Maple side and is available at the C

level without any data conversions.

• The resultant R1 of (F1 and F2 w.r.t. X2) is obtained from the “Scube” by fast

interpolation techniques.

In Step (5) the “Scube” is passed to a C function which computes the index j and in-

terpolates the leading coefficient lc(Sj, X2) of Sj, the candidate GCD. Testing whether

lc(Sj, X2) is zero or invertible modulo R′
1 is done at the Maple level using the RecDen

124

module. Finally, in Step (8), when lc(Sj, X2) has been proved to be invertible modulo

R′
1, the “Scube” is passed to a C function in order to interpolate Sj.

The implementation of Algorithm 10 is much more straightforward, since

the operation ModularSolve2 consists mainly of recursive calls and calls to

ModularGenericSolve2. The only place where computations take place “locally” is at

Step (9) where the RecDen module is called for performing GCD computations.

8.4 Two-equation Solver and Invertibility Test

In this section, we present the two other applications used to evaluate the framework

reported in Section 8.2. In Subsection 8.4.1, we specify the main subroutines on which

these algorithms rely; we also include there the specifications of the invertibility test

for convenience. The top-level algorithms are presented in Subsections 8.4.2 and

8.4.3.

As we shall see in Section 8.5 at Page 127, under certain circumstances, the data

conversions implied by the calling of subroutines can become a bottleneck. It is thus

useful to have a clear picture of these subroutines.

In this chapter, however, we do not assume a preliminary knowledge on triangular

decomposition algorithms. To this end, the presentation of our bivariate solver in

Section 8.3 at Page 118 was relatively self-contained, while omitting proofs; this was

made easy by the bivariate nature of this application. In this section, we deal with

polynomials with an arbitrary number of variables. In Section 2.3 at Page 2.3 we have

introduced the notion of a regular chain and that of a regular GCD (modulo a regular

chain) for bivariate polynomials. In the sequel, we rely on “natural” generalizations of

these notions: we recall them briefly and refer to [9, 22] for introductory presentations.

8.4.1 Subroutines

Note that we restrict ourselves here to zero-dimensional regular chains. In this set-

ting, observe that a normalized regular chain is a lexicographical Gröbner basis. In

the specification of our subroutines below, we denote by T a normalized regular

chain and p, q polynomials in K[X1, . . . , Xn]. We reuse the notations mvar(p), initp,

NormalForm(p, T), Normalize(p, T) and RegularGcd(p, q, T) as defined in Section 7.2

at Page 94 and add two more notations as following:

IsInvertible(p, T): returns pairs (p1, T
1), . . . , (pe, T

e) where p1, . . . , pe are polynomials

and T 1, . . . , T e are normalized regular chains, such that V (T) = V (T 1) ∪ · · · ∪

125

V (T e) holds and such that for all i = 1, . . . , e, the polynomial pi is either null or

invertible modulo T i and p ≡ pi mod T i. The algorithm and implementation

of this operation are described in Section 8.4.3 at Page 126.

T<v, Tv, T>v: these denote respectively the polynomials in T with main variable less

than v, the polynomial in T with main variable v and the polynomials in T

with main variable greater than v, where v ∈ {X1, . . . , Xn}.

8.4.2 Two-equation solver

Let F1, F2 ∈ K[X1, . . . , Xn] be non-constant polynomials with MainVariable(F1) =

MainVariable(F2) = Xn. We assume that R1 = res(F1, F2, Xn) is non-constant. Algo-

rithm 11 below is simply the adaptation of Algorithm 9 to the case where F1, F2 are

n-variate polynomials instead of bivariate polynomials. The relevance of Algorithm 11

to our study is based on the following observation.

As we shall see in Section 8.5, the implementation of Algorithm 9 at Page 121 in

our framework is quite successful. It is, therefore, natural to check how these results

are affected when some of its parameters are modified. A natural parameter is the

number of variables. Increasing it makes some routine calls more expensive and could

raise some overheads. In broad terms, Algorithm 11 computes the “generic solutions”

of F1, F2. Formally speaking, it computes regular chains T , . . . , T e such that we have

V (F1, F2) = W (T 1) ∪ · · · ∪W (T e) ∪ V (F1, F2, h1h2) (8.3)

where h1h2 is the product Initial(F1)Initial(F2) and where W (T i) denotes the Zariski

closure of the quasi-component of T i. It is out of the scope of this chapter to expand

on the theoretical background of Algorithm 11; this can be found in [75]. Instead, as

mentioned above, our goal is to measure how Algorithm 9 scales when the number of

variable increases.

The implementation plan of Algorithm 11 is exactly the same as that of Algo-

rithm 9. In particular, the computations of squarefree parts, primitive parts and

the GCDs at Steps (1) and (7) are performed on the Maple side, whereas the sub-

resultant chain src(F1, F2) is computed on the C side. In the complexity analysis

of Algorithm 11 the dominant cost is given by src(F1, F2) and a natural question is

whether this is verified experimentally. If this is the case, this will be a positive point

for our framework.

126

Algorithm 11 Modular Generic Solve N-variable

Input: F1, F2 ∈ K[X1, . . . , Xn] with deg(F1, Xn) > 0, deg(F2, Xn) > 0 and
res(F1, F2, Xn) 6∈ K.

Output: T 1 = (A1, B1), . . . , T
e = (Ae, Be) as in (8.3).

ModularGenericSolveN(F1, F2) ==
(1) Compute src(F1, F2); R1 := res(F1, F2, Xn)

h := gcd(Initial(F1), Initial(F2))
(2) R′

1 := squarefreePart(R1) quo squarefreePart(h)
v := MainVariable(R1);
R′

1 := primitivePart(R1, v)
(3) i := 1
(4) while deg(R′

1, v) > 0 repeat
(5) Let Sj ∈ src(F1, F2) regular with j ≥ i minimum
(6) if lc(Sj, Xn) ≡ 0 mod R′

1

then i := i+ 1; goto (5)
(7) G := gcd(R′

1, lc(Sj, X2))
(8) if deg(G, v) = 0

then output (R′
1, Sj); exit

(9) output (R′
1 quo G,Sj)

(10) R′
1 := G; i := i+ 1

8.4.3 Invertibility test

Invertibility test modulo a regular chain is a fundamental operation in algorithms

computing triangular decompositions. The precise specification of this operation has

been given in Section 8.4.1 at Page 124. In broad terms, for a regular chain T =

T1(X1), . . . , Tn(X1, . . . , Xn) and a polynomial p the call IsInvertible(p, T) “separates”

the points of V (T) that cancel p from those which do not. The output is a list of pairs

(p1, , T
1), . . . , (pe, T

e) where p1, . . . , pe are polynomials and T 1, . . . , T e are normalized

regular chains: the points of V (T) which cancel p are given by the T i’s such that pi

is null.

Algorithm 12 is in the spirit of those in [76, 75] implementing this invertibility test.

However, it offers more opportunities for using modular methods and fast polynomial

arithmetic. The trick is based on the following result (Theorem 1 in [22]): the poly-

nomial p is invertible modulo T if and only if the iterated resultant of p with respect

to T is non-zero. Iterated resultants can be computed efficiently by evaluation and

interpolation, following the same implementation techniques as those of Algorithm 9.

Our implementation of Algorithm 12 employs this strategy. In particular the resul-

127

tant r (computed at Step (4)) and the regular GCDs (g,D) (computed at Step (7))

are obtained from the same “Scube”.

The calls to NormalForm(p, T) (Step (1)), NormalForm(quo(Tv, g), D) (Step (10))

and Normalize(g,D) (Step (8)) are performed on the C side: they require the con-

versions of regular chains encoded by Maple polynomials to regular chains encoded

by C-Cube polynomials. If the call to RegularGcd(p, Tv, C) (Step (7)) outputs many

cases, that is, if computations split in many branches, these conversions could become

a bottleneck as we shall see in Section 8.5. Finally, for simplicity, we restrict Algo-

rithm 12 to the case of (zero-dimensional) regular chains generating radical ideals.

Algorithm 12 Invertibility Test

Input: T a normalized regular chain generating a radical ideal and p a polynomial,
both in K[X1, . . . , Xn].

Output: See specification in Section 8.4.1 at Page 124.

IsInvertible(p, T) ==
(1) p := NormalForm(p, T)
(2) if p ∈ K then return [p, T]
(3) v := mvar(p)
(4) r := res(p, Tv, v)
(5) for (q, C) ∈ IsInvertible(r, T<v) repeat
(6) if q 6= 0 then output [p, C∪Tv∪T>v]
(7) else for (g,D) ∈ RegularGcd(p, Tv, C) repeat
(8) g := Normalize(g,D)
(9) output [0, D∪g∪T>v]
(10) q := NormalForm(quo(Tv, g), D)
(11) if deg(q, v) 6= 0 then output [p,D∪q∪T>v]

8.5 Experiments

We discuss here the last two questions mentioned in the Section 3:

• Can our implementation based on the Maple/C hybrid model outperforms

other highly efficient systems?

• Does the performance of the implementation of the new algorithms comply with

the theoretical complexity?

128

Our answer for the first one is “yes, if the application is well suitable for our frame-

work”. As shown below, we have improved the performance of triangular decompo-

sition based computation in Maple. On the example of the invertibility test, our

code is competitive with Magma and often outperforms it. The answer to the last

question is “yes, the performance does comply with the complexity analysis”, though

there are some interferences due to the overhead of the data conversion as discussed

in Section 8.2.3 at Page 116.

We report two sets of statistic data. For the first set, we compare the performance

of our new implementations with their existing counterparts in Maple or Magma

(see Subsections 8.5.1, 8.5.2 and 8.5.3). For the second set, we profile the imple-

mentation of our new polynomial solving algorithms to determine for which kind of

algorithms our framework is the most suitable one. The profiling information for

invertibility test is reported in the Section 8.5.3; for the solvers is reported in Sec-

tion 8.5.3. In all examples, the base field is Z/pZ, where p is a machine-word size

FFT prime. In the profiling samples, we only calculate the Maple side conversion

time and ignore the C side since the latter one is mostly negligible.

8.5.1 Bivariate solver

In Figures 8.2, 8.3, 8.4 and 8.5, we consider two bivariate polynomials F1 and F2, with

ordered variables X1 < X2 and with coefficients in a field K. In our experimentation

K is a prime field whose characteristic is a prime number, and its size is less than 32

bit.

The benchmark shown in Figure 8.2 is comparing the performance of libraries all

from Maple: “Triangularize” is the solver from Maple RegularChains library; “Basis”

is the solver from the Maple Groebner library; “Fast Triangularize” is the solver from

our Maple FastArithmeticTools library. Actually we have also tested the solver “Solve”

from the Groebner library which is significantly slower than the other ones. Thus,

we list its data and all the previous ones in Table 8.1. The “degree” in Figure 8.2

(also “deg.” in Table 8.1) is the total degree of each input random dense polynomial.

We compare the computational time. To make the figure more readable, we extract

the comparison between “Basis” and our fast solver into Figure 8.3. In Table 8.1,

“Basis”, “Solve”, “Triang” and “FTriang” are short for “Basis from Groebner”, “Solve

from Groebner”, “Triangularize from RegularChains” and “Fast Triangularize from

FastArithmeticTools”. As shown, our solver from FastArithmeticTools library is the

fastest one. It approximately 20 times faster than lex “Basis” on our biggest input

129

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

T
im

e

Degree

Triangularize
Lex Basis

Fast Triangularize

Figure 8.2: Bivariate solver dense case.

example. While the input size increasing, the ratio of speed-up is more significant.

Recall that the major sub-algorithms of the bivariate solver are subresultant chain and

regular gcd, thus the high performance is also relying the implementation of these two

sub-algorithms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

T
im

e

Degree

Lex Basis
Fast Triangularize

Figure 8.3: Bivariate solver dense case.

The benchmark shown in Figure 8.4 uses the same parameter as defined in Fig-

ure 8.2. Namely the “degree” is the total degree of each input polynomial. However

130

deg Basis Solve Triang FTriang
4 0.020 0.040 0.152 0.020
7 0.020 0.580 0.424 0.016
10 0.064 3.892 0.680 0.020
13 0.136 16.557 1.424 0.024
16 0.232 55.939 2.324 0.032
22 0.552 416.466 13.972 0.044
25 0.804 1116.045 22.346 0.048
28 1.124 2162.271 58.695 0.056

Table 8.1: Bivariate solver dense case.

instead of using dense random polynomials, we generate specific “split” examples in

terms of non-equiprojectability in triangular decomposition. As shown in the figures,

our fast solver is significant faster than the other two. We also provide the data in

Table 8.2 for this benchmark. At the total degree 23 our fast solver is approximately

100 times faster than the “Lex Basis” which is the second fastest one.

 0

 100

 200

 300

 400

 500

 600

 700

 4 6 8 10 12 14 16 18 20 22 24

T
im

e

Degree

Triangularize
Lex Basis

Fast Triangularize

Figure 8.4: Bivariate solver non-equiprojectable case.

Figure 8.5 is generated based on the data from Table 8.3. Here we compare our

Fast Regularize (FTriang in the table) with Magma’s implementation: one is Gröbner

Basis (Abbr. GB in the table); the other one is Triangular Decomposition (Abbr.

Triang in the table). The input polynomials which generate a zero-dimensional ideal

are designed with many split steps during the solving. Again, our solver is the fastest

131

deg Basis Solve Triang FTriang
5 0.014 0.080 0.616 0.016
8 0.152 3.004 3.200 0.048
11 0.908 44.407 10.049 0.124
14 6.837 246.839 25.902 0.428
17 36.581 1266.958 55.014 0.938
20 156.245 6296.301 92.662 1.740
23 627.551 21758.120 222.897 2.625

Table 8.2: Bivariate solver non-equiprojectable, us vs. Maple.

one in terms of running time. For the non-equiprojectable examples, our solver out-

performs Magma’s even more significantly.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 6 8 10 12 14 16 18 20 22 24

T
im

e

Degree

GroebnerBasis() Magma
TriangularDecomposition() Magma

Fast Triangularize

Figure 8.5: Bivariate solver non-equiprojectable case.

8.5.2 Two-equation solver

We consider now the solver of Algorithm 11. For a machine-word size FFT prime

p, we consider a pair of trivariate polynomials F1, F2 ∈ Z/pZ[X1, X2, X3] of total

degrees d1, d2. We compare our code for ModularGenericSolveN (Algorithm 11) to

the Triangularize function of RegularChains library. In Magma there are several

ways to obtain similar outputs: either by a triangular decomposition in K(X1)[X2, X3]

(triangular decompositions in Magma require the ideal to have dimension zero) or

132

deg GB (Magma) Triang (Magma) FTriang (Maple)
5 0.010 010 0.016
8 0.040 070 0.048
11 0.190 0.360 0.124
14 0.730 1.210 0.428
17 2.170 3.300 0.938
20 5.510 7.810 1.740
23 12.430 17.220 2.625

Table 8.3: Bivariate solver non-equiprojectable case.

by computing the GCD of the input polynomials modulo their resultant (assuming

that this resultant is irreducible).

d1 d2 Maple Magma

Triangularize ModularGenericSolveN Tr. dec. Resultant + GCD

2 4 0.3 0.06 0.03 0.01
4 4 1.4 0.15 0.03 0.3
6 4 25 0.27 0.7 12
8 4 257 0.52 6.9 155
10 4 1933 1.02 46.7 1012

Table 8.4: Solving two equations in three variables

Table 8.4 summarizes the timings (in seconds) obtained on random dense polyno-

mials by the approaches above (in the same order). Our new code performs signifi-

cantly better than all other ones. For completeness, we add that on these examples,

computing a lexicographic Gröbner basis in K[X1, X2, X3] in Magma takes time sim-

ilar to that of the triangular decomposition.

8.5.3 Invertibility test

We continue with the operation IsInvertible. Designing good test suites for this

algorithm is not easy: one of the main reasons for the high technicality of these

algorithms is that various kinds of degeneracies need to be handled. Using random

systems, one typically does not meet such degeneracies: a random polynomial is

invertible modulo a random regular chain. Hence, if we want our test suite to address

more than the generic case of our algorithms, the examples must be constructed

ad-hoc.

133

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

tim
e

d

Magma
our code

Figure 8.6: Bivariate case: timings, p = 0.98.

Here, we report on such examples for bivariate and trivariate systems. We con-

struct our regular chain T by Chinese Remaindering, starting from smaller regu-

lar chains T (i) of degree 1 or 2. Then, we interpolate a function f from its values

f (i) = f mod T (i), these values being chosen at random. The probability p that

f (i) 6= 0 is a parameter of our construction. We generated families of examples with

p = 0.5, for which we expect that the invertibility test of f will generate a large

number of splittings. Other families have p = 0.98, for which few splittings should

occur.

The bivariate case. Figure 8.6 gives results for bivariate systems with p = 0.98 and

d = d1 = d2 in abscissa. We compare our implementation with Magma’s counterpart,

that relies on the functions TriangularDecomposition and Saturation (in general,

when using Magma, we always choose the fastest available solution). We also tested

the case p = 0.5 in Figure 8.7. Figure 8.8 profiles the percentage of the conversion

time with respect to the total computation time, for the same set of samples. With

p = 0.98, IsInvertible spends less time on conversions (around 60%) and has fewer

calls to the Maple operations than with p = 0.5 (the conversion ratio with p = 0.5

reaches 83%).

The trivariate case. Table 8.5 uses trivariate polynomials as the input for IsIn-

vertible, with p = 0.98; Table 8.6 has p = 0.5. Figure 8.9 profiles the conversion time

spent on these samples. The conversion time increases dramatically along the input

size. For the largest example, the conversion time reaches 85% of the total computa-

tion time. More than 5% of the time is spent on other Maple computations, so that

134

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

tim
e

d

Magma
our code

Figure 8.7: Bivariate case: timings, p = 0.5.

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40

tim
e

(%
)

degree

p=0.98
p=0.5

Figure 8.8: Bivariate case: time spent in conversions.

the real C computation costs less than 5%. We also provide the timing of the opera-

tion Regularize from the Maple RegularChains library. The pure Maple code,

with no fast arithmetic, is several hundred times slower than our implementation.

The 5 variable case. We performed further tests between the Maple Regular-

ize operation and our IsInvertible function, using random dense polynomials in 5

variables. IsInvertible is significantly faster than Regularize; the speedup reaches

a factor of 300. Similar experiments with sparse polynomials give a speed-up of 100.

135

d1d2 d3 Magma Maple

Regularize IsInvertible

4 3 0.000 1.199 0.091
12 6 0.020 6.569 0.281
24 9 0.050 24.312 0.509
40 12 0.170 73.905 1.293
60 15 0.550 172.931 1.637
84 18 1.990 450.377 5.581
112 21 5.130 871.280 9.490
144 24 12.830 1956.728 12.624
180 27 30.510 3621.394 23.564
220 30 62.180 6457.538 32.675
264 33 129.900 7980.241 89.184

Table 8.5: Trivariate case: timings, p = 0.98.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

tim
e

(%
)

degree

p=0.98
p=0.5

Figure 8.9: Trivariate case: time spent in conversions.

136

d1d2 d3 Magma Maple

Regularize IsInvertible

4 3 0.010 0.773 0.199
12 6 0.020 4.568 0.531
24 9 0.040 17.663 1.082
40 12 0.150 47.767 2.410
60 15 0.480 126.629 5.023
84 18 1.690 284.697 10.405
112 21 4.460 632.539 19.783
144 24 10.960 1255.980 42.487
180 27 26.070 2328.012 69.736
220 30 58.700 4170.468 109.667
264 33 106.140 7605.915 191.514

Table 8.6: Trivariate case: timings, p = 0.5.

8.5.4 Profiling information for the solvers

We conclude this section with profiling information for the bivariate solver and the

two-equation solver. The differences between these algorithms have noticeable conse-

quences regarding profiling time.

Bivariate solver. For this algorithm, there is no risk of data duplication. The

amount of data conversion is bounded by the size of the input plus the size of the

output; hence we expect that data conversions cannot be a bottleneck. Third, the

calls to Maple interpreted code simply perform univariate operations, thus we do

not expect them to become a bottleneck either.

Table 8.7 confirms this expectation, by giving the profiling information for this

algorithm. The input system is dense and contains 400 solutions. The computation

using the RecDen package costs 49% of the total computation time. The C level

subresultant chain computation spends around 34%, and the conversion time is less

than 11%. With larger input systems, the conversion time reduces. For systems with

2,500 and 10,000 solutions, the C computation takes about 40% of the time; RecDen

computations takes roughly 50%; other Maple functions take 5% and the conversion

time is less than 5%.

The profiling information in Figure 8.10 also concerns the bivariate solver; there,

the sample input intends to generate many splittings (we take p = 0.5, as in the

examples in the previous subsection). The conversion time slowly increases but does

not become the bottleneck (28% to 38%).

137

Operation calls time time (%)

Subresultant chain 1 0.238 33.85
Recden 41 0.344 48.93

Conversions 17 0.076 10.81

Table 8.7: Bivariate solver: profiling, p = 0.98.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40

Other time%
Conversion time%

Recden time%
C level time%

Figure 8.10: Bivariate solver: profiling, p = 0.5.

Two-equation solver. This algorithm has properties similar to the bivariate solver,

except that the calls to interpreted code can be expensive since it involves multivariate

arithmetic. Hence, we expect that the overhead of conversion is quite limited. Indeed,

in Table 8.5.4, N is the number of variables and d1, d2 are the degrees of T1, T2

respectively 8.3. The C level computation is the major factor of the total computation

time; it reaches 91% in case N = 4, d1 = 5, d2 = 5.

N d1 d2 C (%) Maple (%) Conversion (%)

3 5 5 56.47 12.96 30.57
4 5 5 91.54 2.64 5.82
8 2 2 83.67 8.02 8.31

Table 8.8: Two-equation solver: profiling.

138

8.6 Summary

The answers to our main questions are mostly positive: we have obtained large per-

formance improvements over existing Maple implementations, and often outperform

Magma’s. Still, some triangular decomposition algorithms are not perfectly suited

to our framework. For instance, we implemented the efficiency-critical operations of

IsInvertible in C, but the main algorithm itself in Maple. This algorithm may

generate large amounts of “external” calls to the C functions, so the data conversion

between Maple and C becomes a dominant cost. For this kind of algorithms, we

suggest either to implement them purely in C or tune the algorithmic structure to

avoid intensive data conversion;

139

Chapter 9

Multithreaded Parallel

Implementation of Arithmetic

Operations Modulo a Triangular

Set

9.1 Overview

In Chapter 6 at Page 65 we have studied arithmetic operations for triangular families

of polynomials, concentrating on multiplication in dimension zero what we called

modular multiplication. As reported previously, this algorithm consists of two major

operations: (1) polynomial multiplication, (2) modular reduction what we called

normal form for convenience. In this chapter, we discuss the parallelization of these

two operations.

When computing modulo a triangular set, multivariate polynomials are regarded

recursively as univariate ones. This recursive data structure leads to several chal-

lenges for obtaining a high performance parallel implementation. The serial modular

multiplication algorithm is reported in Chapter 6. Based the serial one, we have de-

veloped a parallel version of multi-dimensional fast Fourier transform to perform the

polynomial multiplication step. We have also developed several versions of parallel

normal form. Each parallel algorithm and its implementation will be reported in

details in following sections.

The outline of this chapter is as following. In Section 9.2 at Page 140, we review

the top-level algorithm modular multiplication. In Section 9.3 at Page 141, we

140

first specify all the subroutines of the serial version of modular multiplication.

Then, we develop their variants which is still in the serial mode whereas can better

expose the parallelism. Finally, we illustrate the parallelization techniques of each

sub-routine. In Section 9.4 at Page 148, we provide the benchmark result between

the serial and parallel implementation of modular multiplication algorithm. The

parallelized code has satisfactory speed-up, though still potential to be further tuned.

NOTE: This chapter is written based on the published paper [66].

9.2 Algorithms

In this section, we give more simplified definition of modular multiplication algorithm

(see Chapter 6 the more detailed version).

Let L0 = K be a commutative ring with a unit. Let B be a univariate polynomial

in K[x], non-constant, monic and with degree d > 1. We aim at computing modulo

B the product A ∈ K[x] of two polynomials reduced w.r.t. B, that is, with degree

less than d. So, for simplicity, let us assume that A has degree 2d− 2.

The quotient Q and the remainder R in the division of A by B can be computed

as follows, using the trick of Cook-Sieveking-Kung [24, 87, 59]. We summarize this

trick and refer to [43] for details. Let B−1 be the inverse of the reversal of B modulo

xd−1. Let Q be the product AB−1 computed modulo xd−1, where A is the reversal of

A. Then Q is the reversal of Q and we have R = A−BQ.

Consider now T = (T1, . . . , Ts) a set of non-constant polynomials in K[x1, . . . , xs].

Let di be the degree of Ti w.r.t. xi, for all i. We say that T is a triangular set if for all

i, the polynomial Ti lies in K[x1, . . . , xi], is monic in xi and is reduced with respect

to T1, . . . , Ti−1, that is, for all j = 1, . . . , i − 1 the degree of Ti w.r.t. xj is less than

of dj.

Let 1 ≤ i ≤ s and let P ∈ K[x1, . . . , xs]. The normal form of P w.r.t. T1, . . . , Ti,

denoted by NFi(P), is the the unique polynomial R ∈ K[x1, . . . , xs] which is reduced

w.r.t. T1, . . . , Ti, and congruent to P modulo the ideal 〈T1, . . . , Ti〉. Moreover, we

define NF0(P) = P .

For i = 1, . . . , s we define Li = K[x1, . . . , xi]/〈T1, . . . , Ti〉, the residue class ring of

K[x1, . . . , xi] modulo 〈T1, . . . , Ti〉.
Our main goal is to implement arithmetic operations in all Li, leading to normal

form computations for polynomials in K[x1, . . . , xs] modulo 〈T1, . . . , Ti〉. We summa-

rize the algorithm in Chapter 6. We assume that, for all 1 ≤ i ≤ s, the inverse T−1
i

of the reversal of Ti in Li−1[xi]/〈xdi−1
i 〉 has been precomputed. Let P ∈ K[x1, . . . , xs]

141

be such that the degree of P w.r.t. xi is at most 2di − 2 for all 1 ≤ i ≤ s. Then we

compute NFs(P) as follows:

Step 1 Let P ′ := NFs−1(P).

Step 2 Let P ′ be the reversal of P ′ in Ls−1[xs]. Let P ′ := P ′ mod xds−1
s and let

Q := P ′T−1
s mod xds−1

s .

Step 3 Let Q := NFs−1(Q).

Step 4 Let Q be the reversal of Q in Ls−1[xs]. Let R := P −QTs.

Step 5 Return NFs−1(R).

For a polynomial F in K[x1, . . . , xs], with positive degree w.r.t. xs, we compute

NFs−1(F) as a “map” on its coefficients w.r.t. xs.

We parallelize the computation of NFs(P) at two levels. First, for degrees large

enough, we perform the products in Step 2 and Step 4 by means of a parallel multi-

dimensional FFT algorithm (see Section 2.1 at Page 8). From now on, let us regard

these products as atomic operations. Secondly, we focus on the calls to the NFs−1

function performed at Step 1, Step 3 and Step 5. Let G be the task graph or

instruction stream DAG [15] associated with NFs(P). One can use either a depth-

first traversal or a bottom-up level-by-level traversal for G, leading to the two parallel

schemes detailed in Section 9.3.3 at Page 146. Note that our task graph G is not a

fork-join graph and the special techniques developed for this kind of task graphs, see

for instance [89], do not apply here.

In fact, the structure of the algorithm implies several “global synchronisations”.

More precisely, before starting each of Step 2, Step 3, Step 4 and Step 5, all

threaded computations of the previous step must be completed. These constraints

make the parallelization of our normal form computations more challenging than for

more standard “divide & conquer” algorithms. See also [77] on this topic.

9.3 Implementation

9.3.1 Multidimensional FFT

We have already studied the serial multidimensional FFT algorithm in Section 2.1

at Page 8. Multidimensional FFT is a very nice application to parallelize on a SMP

architecture, since the “small” DFTs/IDFTs performed on a given dimension have

142

no data dependency to each other. Therefore, instead of computing these “small”

DFTs/IDFTs one by one in a sequential setting, we create multiple threads and each

of the threads will be in charge of an amount of “small” DFTs/IDFTs’ computations.

Since all the “small” DFTs/IDFTS have similar amount of workloads in a dense

polynomial application, each thread will be in charge of a similar number of “small”

DFTS/IDFTS.

In fact, when implementing multivariate polynomial multiplication in our sequen-

tial mode, we used two approaches. One is the above mentioned multidimensional

FFT, the other is based on Kronecker’s substitution. In this latter method, two in-

put multivariate polynomials are mapped to univariate ones. Then, univariate FFT

can be used to compute the polynomial multiplication. This implies that paral-

lelizing Kronecker’s substitution based FFT multiplication is actually, parallelizing a

univariate FFT. We didn’t try this direction based on three reasons. First, the mul-

tidimensional FFT is much easier to parallelize as we described before. Second, we

implemented Truncated Fourier transform (TFT) [51], and replaced multidimensional

FFT by multidimensional TFT in our package. This brings us a significant improve-

ment of performance comparing to Kronecker’s substitution method as reported in

Section 9.4 at Page 148. Moreover, the multidimensional TFT has the same code

structure as the multidimensional FFT, thus is easy to implement. Third, multidi-

mensional FFT/TFT is more cache friendly comparing to Kronecker’s substitution

method for certain range of input [69].

Therefore, on a multi-processor architecture we prefer multidimensional FFT to

Kronecker’s substitution method. In addition, matrix transposition in multidimen-

sional FFT also can be parallelized. We leave it as a future work, since the compu-

tation time of matrix transposition is generally a small portion of the whole compu-

tation.

9.3.2 Two traversal methods for normal form

By using the names defined in our pseudo-code in this section, we describe the nor-

mal form operation as follows. The normal form operation consists of two major

operations UniFastMod and NormalForm. NormalForm is the “main” function

which recursively reduces the coefficients of the input polynomial f∈K[x1, x2, · · · , xs].
TS is the given triangular set, and s is the number of variables. In addition, we have

following definition of operations for all pseudo-code in this section.

• revn(f) returns xs
nf(1

xs
), where xs is the main variable of f and n≥deg(f).

143

• deg(f) returns the degree of f .

• degree(f, i) returns the partial degree of f in xi.

• coef (f, i) fetches the i-th coefficient of f .

In this chapter, normal form operation only applies to a dense multivariate poly-

nomial f who is encoded in an one dimensional array. we define this operation

as following. For the input polynomial f , we use a data representation based on

Kronecker substitution [65, 69]. Namely, a dense multivariate polynomial will

be encoded in an one dimensional array. The Kronecker map U(f) is an array

of element of K.

U : (x1, x2, · · ·, xs) 7−→ (x1, x1
δ2 , · · · , x1

δs)

where δ1 = 1,

δi =
∏i−1

j=1 (degree(f, j) + 1)

(9.1)

Thus, coef (f, i, s) returns the i-th slot of U(f) regarded as an array where

each slot has size of δs.

Algorithm 13 Normal Form

NormalForm (f, TS, s)

Input: f ∈ K[x1, x2, · · · , xs], TS = {T1, T2, · · · , Ts}, with Ti is monic.

Output: The normal form of f w.r.t. TS.

1 if (s == 0) return f
2 d = deg(f)
3 RC (f, 0, d, TS, s− 1)
4 f =UniFastMod(f, TS, s)

Each reduction step is performed by calling UniFastMod, namely a fast uni-

variate division in Ls−1[xs]. The function RC means to reduce each coefficient of a

polynomial by calling NormalForm and it is an in-place operation.

As we mentioned above, a multivariate polynomial can be encoded by a tree

structure. When reducing its coefficients, we need to have a tree traversal. The nested

recursion in NormalForm performs a depth-first tree traversal. The other way is

what we called “bottom-up level-by-level” (BULL) traversal. The pseudo functions

144

Algorithm 14 Fast Univariate Division

UniFastMod (f, TS, s)

1 n ←− deg f
2 m ←− deg Ts
3 if n < m then
4 q ←− 0
5 r ←− f
6 else
7 q ←− revn(f)T−1

s mod xn−m+1

8 q ←− revn−m(q)
9 RC(q, 0, n−m, TS, s− 1)
10 w = Ts q
11 RC(w, 0, n−m, TS, s− 1)
12 r ←− f − w
13 return r

Algorithm 15 Fast Coefficients Reduction

RC (f, start, end, TS, s)

1 for i from start to end do
2 coef (f, i)=NormalForm (coef (f, i), TS, s)

Algorithm 16 Normal Form 2

NormalForm2 (f, TS, s)

1 if (s == 0) return f
2 size =

∏s
j=1 (degree(f, j) + 1)

3 i = 2
4 while (i≤s) do

5 ss = size /
∏i

j=1 (degree(f, j) + 1)

6 RS (f, 0, ss− 1, TS, i)
7 i = i+ 1

Algorithm 17 Iterative Reduction

RS (f, start, end, TS, s)

1 for i from start to end do
2 coef(f, i, s)=UniFastMod2(coef(f, i, s), TS, s)

145

RS, NormalForm2, UniFastMod2, and RC2 describe the computational steps

for this method.

In brief, we suppose the input multivariate polynomial f is encoded in an

one dimensional array by the Kronecker map U . The size of the array is
∏s

j=1 (degree(f, j) + 1). We start the reduction steps at level 1. That is we view

the given array as an array with size / (degree(f, 1) + 1) slots. Each slot has size

of degree(f, 1) + 1. Each slot actually is encoding an univariate polynomial in L1.

Then we reduce all slots by calling UniFastMod2. Then we continue the reduction

steps on level 2, 3, · · · , i, · · · , s. On level i, the given array is viewed as an array with

size /
∏i

j=1 (degree(f, j) + 1) slots. Each slot has size
∏i

j=1 (degree(f, j) + 1).

We iteratively conduct the reduction steps from level 1 to level s by calling function

RS. In this way, we compute a normal form in a BULL traversal.

Algorithm 18 Fast Univariate Division 2

UniFastMod2 (f, TS, s)

1 n ←− deg f
2 m ←− deg Ts
3 if n < m then
4 q ←− 0
5 r ←− f
6 else
7 q ←− revn(f)T−1

s mod xn−m+1

8 q ←− revn−m(q)
9 RC2(q, 0, n−m, TS, s− 1)
10 w = Ts q
11 RC2(w, 0, n−m, TS, s− 1)
12 r ←− f − w
13 return r

Algorithm 19 Iterative Reduction 2

RC2 (f, start, end, TS, s)

1 for i from start to end do
2 coef(f, i)=NormalForm2(coef(f, i), TS, s)

146

9.3.3 Parallelizing normal form

Both approaches based on either depth-first or bottom-up level-by-level tree traversal

are nice applications to parallelize. In our setting, we suppose input polynomial

are dense, thus the workload of each coefficient reduction is close. We describe our

parallelization strategies as following.

Parallelism in Depth-first Method

Algorithm 20 Parallel Normal Form

NormalForm Para (f, TS, s)

1 if (s == 0) return
2 d = deg(f)
3 for i from 0 to d do
4 Task=NormalForm Para(coef(f, i),TS,s-1)
5 CreateThread (Task)
6 DumpThreadPool()
7 f =UniFastMod(f, TS, s− 1)

In the depth-first method we cursively create a thread for each coefficient re-

duction which we called a “task”. All threads will live in a thread pool. When

the thread pool is full. We will force all threads to finish up before inserting a

new one. To force all threads to finish, we use the function DumpThreadPool.

Function NormalForm Para in above pseudo-code is the parallelized version of the

depth-first multivariate reduction.

Algorithm 21 Creating Tasks

CreateThread (Task)

1 Creat a thread for Task in thread pool
2 if thread pool is full.
3 DumpThreadPool(thread pool)

Algorithm 22 Dump Thread-pool

DumpThreadPool(thread pool)

1 Force all threads in thread pool to finish.

147

In the BULL traversal, we have two slightly different sub-methods. One is that

at each level we create C threads to handle all reductions on this level in parallel,

where C is a constant. Then, we wait them to finish and destroy these C threads

before go to next level. Therefore, the total number of threads being created is

parametrized by the number of variables of the input. This sub-method is presented

by function NormalForm2 Para 1 in above pseudo-code. In the other sub-method,

we will create a fixed number of threads and put them into sleep at the beginning.

Then we start the BULL traversal. When there is a reduction on demanding, we will

push it onto a task queue and send a signal to wake up some thread. The waken

thread will go to fetch a task from the task queue and handle it immediately. If

there are multiple tasks have been pushed on the task queue, multiple threads will

be waken up and run in parallel. After finishing a task, the thread will go back to

sleep or continue to handle another task. This sub-method is presented by function

NormalForm2 Para 2.

Algorithm 23 Parallelism in Bottom-up Level-by-level Method

NormalForm2 Para 1 (f, TS, s)

1 if (s == 0) return f
2 size =

∏s
j=1 (degree(f, j) + 1)

3 i = 2
4 while (i≤s) do

5 ss = size /
∏i

j=1 (degree(f, j) + 1)

// suppose NoOfCPU divides ss.
6 q = ss / NoOfCPU
7 for j from 0 to NoOfCPU-1 repeat
8 Task = RS (f, jq, (j + 1)q, TS, i)
9 CreateThread (Task)
10 i = i+ 1
11 DumpThreadPool()

The first sub-method is very easy to implement. But the overhead of creating

and destroying many threads maybe burdensome in large input cases. The second

sub-method takes a little more coding effort for tasks management and threads syn-

chronization. But it is advantageous by avoiding the potential overhead happened in

the first sub-method.

We used pthread library to implement the parallelization. We tested the per-

formance on a AMD 4 processor machine. We observed a factor of 3.5 speed-up

148

Algorithm 24 Parallelism in Bottom-up Level-by-level Method Variant.

NormalForm2 Para 2 (f, TS, s)

1 Create C threads and put them into sleep.
2 if (s == 0) return f
3 size =

∏s
j=1 (degree(f, j) + 1)

4 i = 2
5 while (i≤s) do

6 ss = size /
∏i

j=1 (degree(f, j) + 1)

// suppose NoOfCPU divides ss.
7 q = ss / NoOfCPU
8 for j from 0 to NoOfCPU-1 repeat
9 Task = RS (f, jq, (j + 1)q, TS, i)
10 Wake up a thread to handle Task.
11 i = i+ 1
12 Finish and terminate all threads.

when the input size is sufficiently large. The experimentation results are reported in

Section 9.4.

9.4 Benchmarks

In Section 9.3, several parallelization strategies have been described. We provide

benchmark results for these methods. The tested operation is modular multiplication

itself and the tested strategies are summarized in below list.

0 Sequential algorithm.
1 Depth-first traversal with a thread pool.
2 BULL traversal with a thread pool.
3 BULL traversal with sleep/wake-up threads.

Table 9.1: List of parallel strategies.

We conducted our benchmark on a AMD Opteron 850 4-Processor machine with

CPU MHZ 2391.537 and cache size 1024 KB for each processor. The input dense

polynomials are randomly generated. The benchmark data can well reflect the per-

formance in real world computation.

We benchmarked 2, 3 and 4 variable cases. We observe a factor of 2 ∼ 3 speed-up

in those examples. Here, we only report the data we collected from the 4 variable ex-

149

ample. In this example, we fixed the partial degrees in x3 and x4 at 4, i.e. the number

of processors. Then by increasing partial degrees in x1 and x2, we obtain a timing

surface for each methods listed in above table. Namely, Figure 9.1 is the benchmark

between the sequential method and the Depth-first traversal parallelization method

with a global thread pool. Figure 9.2 is the benchmark between sequential method

and the BULL traversal parallelization method with a global thread pool. Figure 9.3

is the benchmark between sequential method and the BULL traversal parallelization

method with threads sleep/wake-up strategy. And Table 9.4, 9.4, 9.4 and 9.4 are the

selected data point from Figure 9.1, 9.2, 9.3 and 9.4 respectively.

 4 5 6 7 8 9 10 11 12
 200

 400
 600

 800
 1000

 0
 5

 10
 15
 20
 25
 30
 35
 40

Time
Serial.

Parallel Recursive.

d2

d1

Time

Figure 9.1: Method 0 vs. method 1

d4 d3 d2 d1 method 0 (sec) method 1 (sec)
4 4 4 100 0.926028 0.736449
4 4 6 300 8.104279 6.015184
4 4 8 500 9.642438 7.084307
4 4 10 800 35.232581 25.746897
4 4 12 1000 39.521405 29.216119

Table 9.2: Selected data points from Figure 9.1

According to the benchmark result, the depth-first method does not improve the

performance by big factors w.r.t to the number of processors. The main reason is that

when the coarser grain parallelization is well balanced and processors have been well

150

 4 5 6 7 8 9 10 11 12
 200

 400
 600

 800
 1000

 0
 5

 10
 15
 20
 25
 30
 35
 40

Time
Serial.

BULL, thread-on-demand.

d2

d1

Time

Figure 9.2: Method 0 vs. method 2

d4 d3 d2 d1 method 0 (sec) method 2 (sec)
4 4 4 100 0.926028 0.659218
4 4 6 300 8.104279 3.844373
4 4 8 500 9.642438 4.391355
4 4 10 800 35.232581 13.915399
4 4 12 1000 39.521405 15.650396

Table 9.3: Selected data points from Figure 9.2

utilized, it’s insensible to keep generating finer grain sub-threads recursively for the

sub-tasks, especially when the sub-tasks are small in terms of workload. On the other

hand, the bottom-up level-by-level approach has a factor of 2 ∼ 3 speed up based on

the input size accordingly. The examples with larger degrees have better speed-up

than the smaller ones. The main reason for this is that the overhead generated by

threads and tasks management is still not negligible for smaller input.

For the comparison between methods 2 and 3, we observe that method 2 outper-

forms method 3 for smaller input. The main reason is that in methods 3 the overhead

of managing task queues and synchronizing signals is more expensive than the one in

method 2. When the input is small, the overhead has bigger impact on the overall

computational time. Whereas, method 3 will only generate fixed number of threads.

Thus, the scheduling becomes much simpler. The overhead of creating /destroying

threads in the middle steps has been avoided as well. Thus, for larger input method

3 outperforms method 2 according to our results, though the gap is not big.

151

 4 5 6 7 8 9 10 11 12
 200

 400
 600

 800
 1000

 0
 5

 10
 15
 20
 25
 30
 35
 40

Time
Serial.

BULL, central-thread-pool.

d2

d1

Time

Figure 9.3: Method 0 vs. method 3

d4 d3 d2 d1 method 0 (sec) method 3 (sec)
4 4 4 100 0.926028 0.778774
4 4 6 300 8.104279 4.031646
4 4 8 500 9.642438 4.531477
4 4 10 800 35.232581 13.335127
4 4 12 1000 39.521405 14.952662

Table 9.4: Selected data points from Figure 9.3

Figure 9.4 shows an improved version of method 3. The speed-up is yielded by re-

placing all Fast Fourier Transform by Truncated Fourier Transform (TFT). Although

this improvement seems unrelated to parallelism, the better multiple cache behavior

deserves to be counted in. Namely, TFT requires less memory to store the intermedi-

ate results than FFT. There is a larger chance that these results will be kept in cache

and used in later computation steps on the same processor.

Above benchmarks only show a factor of 2 ∼ 3 speed up on a 4 processor machine.

This is not a satisfying result with considering that polynomials in our applications are

dense ones. Dense polynomial computations usually provide a good opportunity for

work-load balance. However, we have identified the major bottle-neck that impedes

the perform in our benchmark examples. Recall that in previous benchmarks we set

the partial degrees of x4 and x3 as a constant number 4. This leads a situation that

in some of the sub-algorithms such as Coefficient Reduction, there is no enough work-

load to be scheduled evenly to all 4 processors by our current scheduling method.

152

 4 5 6 7 8 9 10 11 12
 200

 400
 600

 800
 1000

 0
 5

 10
 15
 20
 25
 30
 35
 40

Time
Serial.

BULL, central-thread-pool, TFT.

d2

d1

Time

Figure 9.4: Method 0 vs. method 3 with TFT implementation.

d4 d3 d2 d1 method 0 (sec) TFT (sec)
4 4 4 100 0.926028 0.755583
4 4 6 300 8.104279 2.732532
4 4 8 500 9.642438 4.831472
4 4 10 800 35.232581 10.011660
4 4 12 1000 39.521405 13.816763

Table 9.5: Selected data points from Figure 9.4

Therefore, we increase the degrees of x3 and x4 to be 8. Then, we observe a factor

3.2 ∼ 3.3 speed-up between method 1 and method 3. In Table 9.4 we list a few timing

points from the new benchmark result.

d4 d3 d2 d1 method 0 (sec) method 3 (sec)
8 8 8 100 13.770629 4.321261
8 8 8 300 96.117776 18.458235
8 8 8 1000 132.304345 39.757645
8 8 8 1600 277.367573 82.651414

Table 9.6: Larger benchmark 1.

When we increase the partial degrees of x3 and x4 to be 16, 24, 32,· · · . we observe

a factor of 3.4 ∼ 3.6 speed-up between method 1 and method 3 (see Table 9.4).

To summarize, for the larger examples, especially when we increase the partial

153

d4 d3 d2 d1 method 0 (sec) method 3 (sec)
16 16 16 16 15.303748 4.567856
16 16 24 24 56.612566 16.479111
16 16 32 32 63.762428 18.359758
16 16 40 40 236.199680 67.175220
16 16 48 48 252.753472 71.237213
16 16 56 56 265.966837 74.979127

Table 9.7: Larger benchmark 2.

degrees of x3 and x4 in 4-variable case, the performance is reasonably better. By

profiling information, we know the top level division in BULL method is often a

dominant factor. Thus, increasing the degrees of top level variables to some extend

with respect to the number of processors allows a more balanced work-load assignment

thus a better performance. Although, our experiments are conducted on a 4 processor

machine. We believes that our approach will scale on larger parallel SMP system.

Actually, the number of threads in application has been parametrized such that it

can be easily adjusted according to the number of processors or other cut-offs.

9.5 Summary

In conclusion, we studied multithreaded versions of multivariate polynomial arith-

metic modulo a triangular set. In this report, we focused on the normal form opera-

tion. We obtain parallelism from two procedures: a multidimensional FFT algorithm

and our normal form algorithm. Due to the intrinsic data-dependency inside these

operations, we observe a factor of 2∼3 speed up on a 4 processor machine. One major

issue remains: detecting cut-offs between the different possible strategies. This is a

highly complicated task. A cut-off in our application is parametrized by the type of

architectures, the number of processors, the number of variables of the input, and the

shape of the given triangular set, etc.

154

Chapter 10

Conclusion

This thesis has been devoted to the design and implementation of polynomial system

solvers based on symbolic computation. Driven by this motivations, we have de-

veloped new algorithms and implementations to support the technique of triangular

decompositions for polynomial solving.

As reported in Chapters 3, 4 and 5, we have investigated and demonstrated that

with suitable implementation techniques, FFT-based asymptotically fast polynomial

arithmetic in practice can outperform the corresponding classical algorithms in a

significant manner. By integrating our C-level implementation of fast polynomial

arithmetic into AXIOM, the AXIOM higher level existing related libraries has been

sped up in large scale. By using the same implementation technique, we have demon-

strated in Chapter 8 that Maple higher level libraries such as RegularChains have

also been dramatically improved in terms of performance. We have reported in Chap-

ters 6, 7 and 8 our new asymptotically fast algorithms, i.e. fast integer reduction

trick, modular multiplication, regular GCD, bivariate solver, two-equation solver and

regularity test. In Chapter 9, we have investigated the potential parallelism inside

fast algorithms modulo regular chains. All our reported new implementations and al-

gorithms from this thesis have been finalized as a commercial software library Modpn

(see Section 8.2)

In this research, we have focused on algorithms modulo regular chains in

dimension-zero. Higher dimensional asymptotically fast triangular decompositions

algorithms can be developed and implemented based on these results. Therefore, we

expect that the generic triangular decompositions based polynomial solvers can yield

high-performance.

155

Bibliography

[1] Aldor: a computer algebra system. http://www.aldor.org.

[2] AXIOM: a general-purpose commercial computer algebra system.

http://page.axiom-developer.org.

[3] GCL: GNU Common Lisp. http://www.gnu.org/software/gcl.

[4] GMP: GNU Multiple Precision Arithmetic library. http://swox.com/gmp/.

[5] Magma: the computational algebra system for algebra, number theory and

geometry. http://magma.maths.usyd.edu.au/magma/.

[6] NTL: the Number Theory Library. http://www.shoup.net/ntl.

[7] Linbox: exact computational linear algebra. http://www.linalg.org/.

[8] M. Atiyah and L. G. Macdonald. Introduction to Commutative Algebra. Addison-

Wesley, 1969.

[9] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.

J. Symb. Comp., 28(1-2):105–124, 1999.

[10] D. H. Bailey, K. Lee, and H. D. Simon. Using Strassen’s algorithm to accelerate

the solution of linear systems. The Journal of Supercomputing, 4(4):357–371,

1990.

[11] E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The shape of the shape

lemma. In Proc. of the international symposium on Symbolic and algebraic com-

putation, pages 129–133, New York, NY, USA, 1994. ACM Press.

[12] D. Bini. Relations between exact and approximate bilinear algorithms. Applica-

tions. Calcolo, 17(1):87–97, 1980.

156

[13] D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n2.7799) complexity for n× n
approximate matrix multiplication. Inf. Proc. Lett., 8(5):234–235, 1979.

[14] D. Bini, G. Lotti, and F. Romani. Approximate solutions for the bilinear form

computational problem. SIAM J. Comput., 9(4):692–697, 1980.

[15] R. D. Blumofe, M. Frigo, C. F. Joerg, and C. E. Leiserson. An analysis of

dag-consistent distributed shared-memory algorithms. In Proc. SPAA’96, pages

297–308. ACM Press, 1996.

[16] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user

language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[17] A. Bostan and É. Schost. On the complexities of multipoint evaluation and

interpolation. Theor. Comput. Sci., 329:223–235, 2004.

[18] R. Brent. Algorithms for matrix multiplication. Master’s thesis, Stanford Uni-

versity, 1970. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/.

[19] R. Brent, F. Gustavison, and D. Yun. Fast solution of Toeplitz systems of equa-

tions and computations of Padé approximants. Journal of Algorithms, 1:259–295,

1980.

[20] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-

lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Univer-

sity of Innsbruck, 1965.

[21] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbi-

trary algebras. Acta Informatica, 28(7):693–701, 1991.

[22] C. Chen, F. Lemaire, O. Golubitsky, M. Moreno Maza, and W. Pan. Compre-

hensive Triangular Decomposition, volume 4770 of Lecture Notes in Computer

Science, pages 73–101. Springer Verlag, 2007.

[23] G. Collins. The calculation of multivariate polynomial resultants. Journal of the

ACM, 18(4):515–532, 1971.

[24] S. Cook. On the minimum computation time of functions. PhD thesis, Harvard

University, 1966.

[25] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex

Fourier +series. Math. Comp., 19:297–301, 1965.

157

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. McGraw-Hill, 2002.

[27] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques

for triangular decompositions. In ISSAC’05, pages 108–115. ACM Press, 2005.

[28] X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the

D5 principle. In Proc. of Transgressive Computing 2006, Granada, Spain, 2006.

[29] X. Dahan and É. Schost. Sharp estimates for triangular sets. In ISSAC 04, pages

103–110. ACM, 2004.

[30] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing

in algebraic number fields. In Proc. EUROCAL 85 Vol. 2, volume 204 of Lect.

Notes in Comp. Sci., pages 289–290. Springer-Verlag, 1985.

[31] L. Ducos. Effectivité en théorie de Galois. Sous-résultants. PhD thesis, Université

de Poitiers, 1997.

[32] L. Ducos. Optimizations of the subresultant algorithm. Journal of Pure and

Applied Algebra, 145:149–163, 2000.

[33] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines.

ISSAC 02, pages 63–74, 2002.

[34] D. Duval. Questions Relatives au Calcul Formel avec des Nombres Algébriques.

Université de Grenoble, 1987. Thèse d’État.

[35] M. El Kahoui. An elementary approach to subresultants theory. J. Symb. Comp.,

35:281–292, 2003.

[36] I. Z. Emiris and V. Y. Pan. Fast Fourier transform and its applications. In M. J.

Atallah, editor, Handbook of Algorithms and Theory of Computations. CRC Press

Inc, 1999.

[37] T. Färnqvist. Number theory meets cache locality: efficient implementation of

a small prime FFT for the GNU Multiple Precision arithmetic library. Master’s

thesis, Stockholms Universitet, 2005.

[38] R. J. Fateman. Vector-based polynomial recursive representation arithmetic.

http://www.norvig.com/ltd/test/poly.dylan, 1999.

158

[39] J.-C. Faugère. Résolution des systèmes d’équations algébriques. PhD thesis,

Université Paris 6, 1994.

[40] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases. J. Pure

and Appl. Algebra, 139(1-3):61–88, 1999.

[41] A. Filatei, X. Li, M. Moreno Maza, and É. Schost. Implementation techniques

for fast polynomial arithmetic in a high-level programming environment. In

ISSAC’06, pages 93–100. ACM, 2006.

[42] M. Frigo and S. G. Johnson. Fftw. http://www.fftw.org/.

[43] J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, 1999.

[44] J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, 2003.

[45] K. Geddes, S. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer

Academic Publishers, 1992.

[46] T. Gómez Dı́az. Quelques applications de l’évaluation dynamique. PhD thesis,

Université de Limoges, 1994.

[47] L. González Vega, H. Lombardi, T. Recio, and M. Roy. Spécialisation de la suite

de sturm et sous-résultants. Informatique Théorique et Applications, 24(6):561–

588, 1990.

[48] J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors. Computer Algebra

Handbook. Springer, 2003.

[49] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm, I.

Appl. Algebra Engrg. Comm. Comput., 14(6):415–438, 2004.

[50] M. v. Hoeij and M. Monagan. A modular gcd algorithm over number fields

presented with multiple extensions. In T. Mora, editor, Proc. ISSAC 2002, pages

109–116. ACM Press, July 2002.

[51] J. Hoeven. Truncated Fourier transform. In Proc. ISSAC’04. ACM Press, 2004.

[52] R. D. Jenks and R. S. Sutor. AXIOM, The Scientific Computation System.

Springer-Verlag, 1992. AXIOM is a trade mark of NAG Ltd, Oxford UK.

159

[53] J. R. Johnson, W. Krandick, K. Lynch, K. G. Richardson, and A. D. Ruslanov.

High-performance implementations of the descartes method. In ISSAC’06, pages

154–161. ACM, 2006.

[54] J. R. Johnson, W. Krandick, and A. D. Ruslanov. Architecture-aware classical

taylor shift by 1. In ISSAC’05, pages 200–207. ACM, 2005.

[55] M. Kalkbrener. Three contributions to elimination theory. PhD thesis, Johannes

Kepler University, Linz, 1991.

[56] M. Kalkbrener. A generalized euclidean algorithm for computing triangular rep-

resentations of algebraic varieties. J. Symb. Comp., 15:143–167, 1993.

[57] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.

Soviet Physics Doklady, (7):595–596, 1963.

[58] D. E. Knuth. The Art of Computer Programming, volume 2. Addison Wesley,

1999.

[59] H. T. Kung. On computing reciprocals of power series. Numerische Mathematik,

22:341–348, 1974.

[60] L. Langemyr. Algorithms for a multiple algebraic extension. In Effective methods

in algebraic geometry (Castiglioncello, 1990), volume 94 of Progr. Math., pages

235–248. Birkhäuser Boston, 1991.

[61] D. Lazard. A new method for solving algebraic systems of positive dimension.

Discr. App. Math, 33:147–160, 1991.

[62] D. Lazard. Solving zero-dimensional algebraic systems. J. Symb. Comp., 15:117–

132, 1992.

[63] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In I. S.

Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

[64] X. Li. Efficient Management of Symbolic Computations with Polynomials. 2005.

University of Western Ontario.

[65] X. Li and M. Moreno Maza. Efficient implementation of polynomial arithmetic in

a multiple-level programming environment. In ICMS’06, pages 12–23. Springer,

2006.

160

[66] X. Li and M. Moreno Maza. Multithreaded parallel implementation of arithmetic

operations modulo a triangular set. In Proc. PASCO’07, pages 53–59, New York,

NY, USA, 2006. ACM Press.

[67] X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains.

Submitted to ISSAC’09, 2009.

[68] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing

fast polynomial arithmetic into Maple. In MICA’08, 2008.

[69] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: From

theory to practice. In ISSAC’07, pages 269–276. ACM, 2007.

[70] X. Li, M. Moreno Maza, and É. Schost. On the virtues of generic programming for

symbolic computation. In ICCS’07, volume 4488 of Lecture Notes in Computer

Science, pages 251–258. Springer, 2007.

[71] M. van Hoeij and M. Monagan. A modular GCD algorithm over number fields

presented with multiple extensions. In ISSAC’02, pages 109–116. ACM, 2002.

[72] B. Mishra. Algorithmic Algebra. Springer-Verlag, New York, 1993.

[73] R. T. Moenck. Practical fast polynomial multiplication. In SYMSAC ’76: Pro-

ceedings of the third ACM symposium on Symbolic and algebraic computation,

pages 136–148, New York, NY, USA, 1976. ACM Press.

[74] P. L. Montgomery. Modular multiplication without trial division. Mathematics

of Computation, 44(170):519–521, 1985.

[75] M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical

Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-2000

Conference, Bath, England.

[76] M. Moreno Maza and R. Rioboo. Polynomial gcd computations over towers of

algebraic extensions. In Proc. AAECC-11, pages 365–382. Springer, 1995.

[77] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Automatic

inversion generates divide-and-conquer parallel programs. In Proc. PLDI’07,

2007.

[78] V. Y. Pan. Simple multivariate polynomial multiplication. J. Symb. Comp.,

18(3):183–186, 1994.

161

[79] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,

J. Xiong, F. Franchetti, A. Gavcić, Y. Voronenko, K. Chen, R. W. Johnson,

and N. Rizzolo. SPIRAL: Code generation for DSP transforms. Proc’ IEEE,

93(2):232–275, 2005.

[80] R. Rasheed. Modular methods for solving polynomial systems. Master’s thesis,

2007. University of Western Ontario.

[81] J. F. Ritt. Differential Equations from an Algebraic Standpoint, volume 14.

American Mathematical Society, New York, 1932.

[82] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charak-

teristik 2. Acta Informatica, 7:395–398, 1977.

[83] A. Schönhage and V. Strassen. Schnelle Multiplikation groser Zahlen. Comput-

ing, 7:281–292, 1971.

[84] É. Schost. Computing parametric geometric resolutions. Appl. Algebra Engrg.

Comm. Comput., 13(5):349–393, 2003.

[85] É. Schost. Multivariate power series multiplication. In ISSAC’05, pages 293–300.

ACM, 2005.

[86] V. Shoup. A new polynomial factorization algorithm and its implementation. J.

Symb. Comp., 20(4):363–397, 1995.

[87] M. Sieveking. An algorithm for division of powerseries. Computing, 10:153–156,

1972.

[88] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik.,

13:354–356, 1969.

[89] S. Varette and J.-L. Roch. Probabilistic certification of divide & conquer al-

gorithms on global computing platforms. application to fault-tolerant. In Proc.

PASCO’07. ACM Press, 2007.

[90] S. M. Watt. The A# programming language and its compiler. Technical report,

IBM Research, 1993.

[91] W. T. Wu. A zero structure theorem for polynomial equations solving. MM

Research Preprints, 1:2–12, 1987.

162

[92] L. Yang and J. Zhang. Searching dependency between algebraic equations: an

algorithm applied to automated reasoning. Technical Report IC/89/263, Inter-

national Atomic Energy Agency, Miramare, Trieste, Italy, 1991.

[93] C. Yap. Fundamental Problems in Algorithmic Algebra. Princeton University

Press, 1993.

163

Curriculum Vitae

Name: Xin Li

Post-Secondary

Education and

Degrees:

The University of Western Ontario

London, Ontario, Canada

Ph.D. Computer Algebra, Apr. 2009 (expected date)

The University of Western Ontario

London, Ontario, Canada

M.Sc. Computer Science, Sept. 2005

Beijing Information Science & Technology University

Beijing, China

B.E. in Automation, Sept. 1997

Selected Honors

and Awards:

Best Novel Use of Mathematics in Technology Transfer 2009 from

MITACS (See Refereed Software).

NSERC PGS Scholarship, 2007 - 2009

OGSST Scholarship, 2006

Working

Experience:

IBM Canada Ltd.

Compiler backend developer associated student. Apr.2008 -

Apr.2009

164

Refereed

Software:

X. Li, M. Moreno Maza, The Modpn library and its Maple

wrapper package FastArithmeticTools have been integrated in

the Maple RegularChains library and will be distributed with

Maple version 13, 2009.

This software library has won the national level award Best Novel

Use of Mathematics in Technology Transfer 2009 from MITACS

(Mathematics of Information Technology and Complex Systems).

165

Refereed

Papers:

X. Li, M. Moreno Maza and W. Pan Computations modulo

Regular Chains. Accepted by ISSAC’ 2009, Korea Institute for

Advanced Study.

X. Li, M. Moreno Maza, R. Rasheed and É Schost, The Modpn

library: Bringing Fast Polynomial Arithmetic into Maple

(extended version). Submitted to the Journal of Symbolic

Computation. 2008.

X. Li, M. Moreno Maza and É Schost, Fast Arithmetic for

Triangular Sets: from Theory to Practice (extended version).

Journal of Symbolic Computation (to appear). 2009.

X. Li, M. Moreno Maza, R. Rasheed and É Schost,

High-Performance Symbolic Computation in a Hybrid

Compiled-Interprered Programming Environment. In proc. of

CASA’2008, Perugia, Italy, IEEE Press.

X. Li , M. Moreno Maza, R. Rasheed and É Schost, The Modpn

library: Bringing Fast Polynomial Arithmetic into Maple. In

proc. of MICA’2008, Stonehaven Bay, Trinidad and Tobago.

X. Li and M. Moreno Maza, Multithreaded Parallel

Implementation of Arithmetic Operations Modulo a Triangular

Set. In proc. of PASCO’ 2007, UWO, Canada, ACM Press.

X. Li, M. Moreno Maza and É Schost, Fast Arithmetic for

Triangular Sets: From Theory to Practice. In proc. of ISSAC’

2007, Waterloo, Canada, ACM Press.

X. Li, M. Moreno Maza and É Schost, On the Virtues of Generic

Programming for Symbolic Computation. In proc. of CASA’

2007, Beijing, China, ACM Press.

X. Li and M. Moreno Maza, Efficient Implementation of

Polynomial Arithmetic in a Multiple-level Programing

Environment. In proc. of ICMS’ 2006, Spain, ACM Press.

A. Filatei, X. Li, M. Moreno Maza and É Schost, Implementation

Techniques for Fast Polynomial Arithmetic in a High-level

Programming Environment. In proc. of ISSAC’2006, Italy, ACM

Press.

