TOWARD HIGH-PERFORMANCE POLYNOMIAL SYSTEM SOLVERS BASED
ON TRIANGULAR DECOMPOSITIONS

(Spine title: Contributions to Polynomial System Solvers)

(Thesis format: Monograph)

by

Xin Li

Graduate Program
in

Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada
April, 2009

© Xin Li 2009

THE UNIVERSITY OF WESTERN ONTARIO
THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Joint-Supervisor: Examination committee:

Dr. Marc Moreno Maza Dr. Jeremy R. Johnson

Joint-Supervisor:

Dr. Eric Schost

Dr. Stephen M. Watt Dr. Yuri Boykov

Dr. Graham Denham

The thesis by

Xin Li
entitled:

Toward High-performance Polynomial System Solvers Based on

Triangular Decompositions

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Date Chair of the Thesis Examination Board

il

Abstract

This thesis is devoted to the design and implementation of polynomial system solvers
based on symbolic computation. Solving systems of non-linear, algebraic or differ-
ential equations, is a fundamental problem in mathematical sciences. It has been
studied for centuries and still stimulates many research developments, in particular
on the front of high-performance computing.

Triangular decompositions are a highly promising technique with the potential
to produce high-performance polynomial system solvers. This thesis makes several
contributions to this effort.

We propose asymptotically fast algorithms for the core operations on which trian-
gular decompositions rely. Complexity results and comparative implementation show
that these new algorithms provide substantial performance improvements.

We present a fundamental software library for polynomial arithmetic in order to
support the implementation of high-performance solvers based on triangular decom-
positions. We investigate strategies for the integration of this library in high-level pro-
gramming environments where triangular decompositions are usually implemented.

We obtain a high performance library combining highly optimized C routines and
solving procedures written in the MAPLE computer algebra system. The experimental
result shows that our approaches are very effective, since our code often outperforms

pre-existing solvers in a significant manner.

il

Acknowledgments

While my name is the only one that appears on the author list of this thesis, there
are several other people deserving recognition. I would like to express my sincere
appreciation to my supervisors, Dr. Marc Moreno Maza and Dr. Stephen M. Watt,
for their guidance, support, encouragement and friendship through my entire Ph.D.
study. I wish to extend my appreciation and gratitude to Dr. Marc Moreno Maza

for introducing me to these interesting and challenging projects.
I would also like to express my sincere appreciation to my dear colleagues Eric,
Yuzhen, Wei, Changbo, Filatei, Liyun, Raqgeeb, and all the members from the

ORCCA lab for their great help to my research.

Finally, I hope to share my happiness of the achievement from my Ph.D. study with

my dear parents, sister and all my loved ones.

Without anyone of you, I couldn’t reach the point where I am today. Thank you
guys!

v

Contents

Certificate of Examination

Abstract

Acknowledgments

1

Introduction

1.1 Motivation
1.2 Research Directions
1.3 Contributions
1.4 Outline.

Background

2.1 Pre-existing Fast Algorithms

2.2 Implementation Environment

2.3 Triangular Decompositions Lo
2.3.1 Polynomial ideal and radical
2.3.2 Zero-divisor, regular element, zeroset
2.3.3 Triangular set and regular chains
2.3.4 Subresultantso
235 Regular GCD o

Foundational Fast Polynomial Arithmetic and its Implementation
3.1 Overview e e
3.2 High Level Programming Environment
3.2.1 The ALDOR environment
3.2.2 The AXIOM environment
3.3 Implementation Techniques: the Generic Case

3.3.1 Efficiency-critical operations in ALDOR

v

ii

iii

iv

N o W o=

26

3.4

3.5

3.6

3.3.2 Extended Euclidean algorithm 34

Implementation Techniques: the Non-generic Case 35
3.4.1 Data representation 35
3.4.2 The implementation of FFT 36
3.4.3 SSE2, loop unrolling, parallelism 37
Performanceo 40
3.5.1 FFT multiplication 40
3.5.2 Multivariate multiplicationo L. 41
3.5.3 Power series inversion 0 oL 43
3.5.4 Fast extended Euclidean algorithm 44
Summary . .o oL 44

Efficient Implementation of Polynomial Arithmetic in a Multiple-

level Programming Environment 45
4.1 Overview 45
4.2 The SPAD Level 47
4.3 The Lisp Level 48
4.4 The CLevel 50
4.5 The AsSEMBLY Code Level 51
4.5.1 Controlling register allocation 51
4.5.2 Using architecture specific features 52
4.6 Experimentation Lo 52
4.6.1 Benchmarks for the Lisp level implementation 52
4.6.2 Benchmarks for the multi-level implementation 54
4.7 Summary 56

How Much Can We Speed-up the Existing Library Code in AXIOM

with the C Level Implementation? 57
5.1 Overview o7
5.2 Software Overview 58
5.2.1 AXIOM polynomial domain constructors 58
5.2.2 Finite field arithmetic 59
5.2.3 Polynomial arithmetic 61
5.2.4 Code connection 61
5.3 Experimentation oL 61
5.4 Summary ... 64

vi

6 Fast Arithmetic for Triangular Sets: from Theory to Practice 65

6.1 Overview. L 65
6.2 Algorithms. 68
6.2.1 Notation and preliminaries 68
6.2.2 The main algorithm 71
6.2.3 The case of univariate polynomials 73
6.3 Implementation Techniques 79
6.4 Experimental Results 83
6.4.1 Comparing different strategies 83
6.4.2 Comparing implementations 87
6.4.3 The deformation-based algorithm 89
6.5 Summary 89

7 Fast Algorithms for Regular GCD Computations and Regularity

Test 91
7.1 Overview 91
7.2 Specification 94
7.3 Regular GCDs 95
7.4 A Regular GCD Algorithm 98
7.4.1 Case where r € sat(T): the algorithm RGSZR 98
7.4.2 Case where r €sat(T) 100
7.5 Implementation and Complexity 100
7.5.1 Subresultant chain encoding 101
7.5.2 Solving two equationso 102
7.5.3 Implementation of Regularize 103
7.6 Experimentation 105
7.6.1 Resultant and GCD. 106
7.6.2 Regularize L 108
T7 SUMMATY . . . o o o e 109

8 The Modpn Library: Bringing Fast Polynomial Arithmetic into

MAPLE 112
81 Overview. 112
8.2 A Compiled-Interpreted Programming Environment 114
821 The Clevel 115
8.2.2 The MAPLE level 116
8.2.3 MAPLE and C cooperation 116

vil

8.3 Bivariate Solver

8.3.1 Subresultant sequence and GCD sequence
8.3.2 Algorithm
8.3.3 Implementation
8.4 Two-equation Solver and Invertibility Test
8.4.1 Subroutines
8.4.2 Two-equation solver
8.4.3 Invertibility test o0
8.5 Experiments L
8.5.1 Bivariatesolver
8.5.2 Two-equation solver
8.5.3 Invertibility testo

8.5.4 Profiling information for the solvers

8.6 Summary

9 Multithreaded Parallel Implementation of Arithmetic
Modulo a Triangular Set

9.1 Overview. e
9.2 Algorithms.
9.3 Implementation,
9.3.1 Multidimensional FFT
9.3.2 Two traversal methods for normal form
9.3.3 Parallelizing normal form.
9.4 Benchmarks
9.5 Summary

10 Conclusion
Bibliography

Curriculum Vitae

viil

List of Algorithms

© 00 ~J O O = W N =

N NN NN s = s s s
= W NN R OO 00O Ot Wy = O

The Montgomery Integer Division trick 9
Power Series Inversion of f to Precision ¢ 12
Fast Division with Remainder Algorithm 13
Kronecker Multiplication 17
Modular Reduction 72
MulSplit 75
Lift Roots 7
MulUnivariate 78
Modular Generic Solve 121
Modular Solve 123
Modular Generic Solve N-variable 126
Invertibility Test o 127
Normal Form 143
Fast Univariate Division 144
Fast Coefficients Reduction 144
Normal Form 2 144
Iterative Reduction oo 144
Fast Univariate Division 2 145
Iterative Reduction 2 145
Parallel Normal Form 146
Creating Tasks L 146
Dump Thread-pool 146
Parallelism in Bottom-up Level-by-level Method 147
Parallelism in Bottom-up Level-by-level Method Variant. 148

X

List of Figures

2.1

3.1

3.2

3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1

5.1
5.2
5.3
5.4
5.9
5.6

6.1
6.2

Algebraic categories’ hierarchy in AXIOM (partial). 19

Power series inversion: naive vs. optimized implementation vs. multi-

plication, 27-bit prime. L 31
Power series inversion: space usage of naive vs. optimized implemen-

tations, 27-bit prime.o 32
FFT multiplication: GMP functions vs. double precision integer func-

tions vs. CRT, 64 bit prime. 37
FFT multiplication: generic assembly vs. SSE2 assembly, 27-bit prime. 38
FFT multiplication: inlined vs. non-inlined, 27-bit prime. 40
Multiplication modulo a 27-bit prime. 41
Multiplication modulo a 64-bit prime. 41
Bivariate multiplication, 27-bit prime. 42
Bivariate multiplication, 64-bit prime. 42
Four-variable multiplication, 64-bit prime. 43
Power series inversion: Aldor vs. NTL vs. MAGMA, 27-bit prime. . . 43
EEA: ALDOR vs. NTL vs. MAGMA, 27-bit prime. 44
Benchmark of van Hoeij and Monagan’s algorithm %)
Resultant computation in Z/pZ[x] L. 63
Square-free factorization in Z/pZ[x] L. 63
Irreducible factorization in Z/pZlx] L. 63
Resultant computation in (Z/pZ[z|/(m))y] 63
Irreducible factorization in (Z/pZlx]/(m)[y] 64
Square-free factorization in Z/pZ[x] oL 64
TET vs. FFT. oo 81
TFT vs. FET. 84

6.3
6.4

6.5

6.6

6.7
6.8
6.9

6.10

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

9.1
9.2
9.3
9.4

Multiplication in Ly, all strategies, using FFT multiplication. 85

Multiplication in Lo, FAST without precomputations vs. FAST using

precomputations (top) and PLAIN vs. FAST using precomputations. . 85
Multiplication in Lo, time vs. d = dyd2, PLAIN (left) and FAST using

precomputations (right). o Lo 86
Multiplication in L3, PLAIN vs. FAST, patterns 1-3 from top left to

bottom. 86
Multiplication in L3, pattern 3, Magma vs. our code. 87
Inverse in L3, pattern 1, Maple vs. our code. 88
GCD computations L3[Xy|, pure AXIOM code vs. combined C-

AXIOM code. 89
General vs. specialized algorithm. 90
Resultant and GCD random dense 2-variable. 106
Resultant and GCD random dense 3-variable. 108
Resultant and GCD random dense 4 variable. 108
Resultant and GCD random dense 3-variable. 109
The polynomial data representations in modpn. 115
Bivariate solver dense case. Lo 129
Bivariate solver dense case. 129
Bivariate solver non-equiprojectable case. 130
Bivariate solver non-equiprojectable case. 131
Bivariate case: timings, p =0.98. oo 133
Bivariate case: timings, p=0.5. 134
Bivariate case: time spent in conversions. 134
Trivariate case: time spent in conversions. 135
Bivariate solver: profiling, p=0.5. 137
Method O vs. method 1 149
Method 0 vs. method 2 150
Method 0 vs. method 3 151
Method 0 vs. method 3 with TFT implementation. 152

xi

List of Tables

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Random dense 2-variable case.
Random dense 3-variable case.
Non-equiprojectable 2-variable case.

Non-equiprojectable 3-variable case.

Bivariate solver dense case.
Bivariate solver non-equiprojectable, us vs. Maple.
Bivariate solver non-equiprojectable case.

Solving two equations in three variables

List of parallel strategies. L.
Selected data points from Figure 9.1
Selected data points from Figure 9.2
Selected data points from Figure 9.3
Selected data points from Figure 9.400
Larger benchmark 1.

Larger benchmark 2. o000

xii

110
110

Chapter 1

Introduction

1.1 Motivation

This thesis is devoted to the design and implementation of polynomial system solvers
based on symbolic computation. Solving systems of non-linear, algebraic or differen-
tial equations is a fundamental problem in mathematical sciences. It has been studied
for centuries and still continues to stimulate research.

Solving polynomial systems is also a driving subject for symbolic computation.
In many computer algebra systems, the solve command involves nearly all libraries
in the system, challenging the most advanced operations on matrices, polynomials,
algebraic numbers, polynomial ideals, etc.

Symbolic solvers are powerful tools in scientific computing: they are well suited
for problems where the desired output must be exact and they have been applied
successfully in mathematics, physics, engineering, chemistry and education, with im-
portant outcomes. See Chapter 3 in [48] for an overview of these applications. While
the existing computer algebra systems have met with some practical success, symbolic
computation is still under-utilized in areas like mathematical modeling and computer
simulation. Part of this is due to the fact that much larger and more complex com-
puters are required - often beyond the scope of existing systems.

The implementation of symbolic solvers is, indeed, a highly difficult task. Sym-
bolic solvers are extremely time-consuming when applied to large problems. Even
worse, intermediate expressions can grow to enormous size and may halt the com-
putations, even if the result is of moderate size [45]. Therefore, the implementation
of symbolic solvers requires techniques that go far beyond the manipulation of al-
gebraic or differential equations; these include efficient memory management, data

compression, parallel and distributed computing, etc.

The development of polynomial system solvers, as computer programs based on
symbolic computation, started four decades ago with the discovery of Grobner bases
in the Ph.D. thesis of B. Bucherger [20], whereas efficient implementation capable of
tackling real-world applications is very recent [39].

Triangular decompositions are an alternative way for solving systems of algebraic
equations symbolically. They focus on extracting geometrical information from the
solution set V' (F') of the input polynomial system F rather than insisting on revealing
algebraic properties as Grobner bases do. A triangular decomposition of V' (F') is given
by finitely many polynomial sets, each of them with a triangular shape and so-called a
triangular set!; these sets describe the different components of V(F), such as points,
curves, surfaces, etc. Triangular decompositions were invented by J.F. Ritt in the 30’s
for systems of differential polynomials [81]. Their stride started in the late 80’s with
the method of W.T. Wu dedicated to algebraic systems [91]. Different concepts and
algorithms extended the work of Wu. At the end of 90’s the notion of a regular chain,
introduced independently by M. Kalkbrener in [55] and by L. Yang and J. Zhang
in [92], led to important algorithmic improvements, such as the Triade algorithm (for
TRIAngular Decompositions) by M. Moreno Maza [75]. The era of polynomial system
solvers based on triangular decompositions could commence.

Since 2000, exciting complexity results [29] and algorithms [27] have boosted the
development of implementation techniques. From these works, triangular decomposi-
tions appear at the start of this Ph.D. thesis as highly promising techniques with the
potential to produce high-performance solvers. The goals of the proposed research

were then the following ones.

(1) Develop a high performance software library for polynomial arithmetic in order
to support the implementation of high-performance solvers based on triangular

decompositions.

(2) Integrate these routines in high-level programming environments where trian-

gular decompositions are implemented.

(3) Design theoretically and /or practically efficient algorithms, based on the asymp-
totically fast algorithms and modular methods, for the key routines on which

triangular decompositions rely.

(4) Evaluate the performances, including speed-up factors and bottlenecks, of this

approach and compare it with the pre-existing polynomial system solvers.

IThis notion extends to non-linear systems that of a triangular system, well-known in linear
algebra.

With these goals in mind, we have developed the research directions described in

the next section.

1.2 Research Directions

Polynomial arithmetic is at the foundation of our research subject. Since the early
days of computer algebra systems, one of the main focuses has been on sparse polyno-
mial arithmetic and classical algorithms (by opposition to asymptotically fast ones).
A tentative explanation for this historical fact is given in the overview of Chapter 3. In
the last decade, asymptotically fast algorithms for dense polynomial arithmetic have
been proved to be practically efficient. Among them are FFT-based algorithms which
are well adapted for supporting operations like the Euclidean division, Euclidean Al-
gorithm and their variants which are at the core of methods for computing triangular
decompositions. Indeed, these types of calculations tend to make intermediate data
dense even if input and output polynomials are sparse; thus “dense methods” like
FFT-based polynomial multiplication and division fit well in this context. It was,
therefore, necessary to invest significant effort on these algorithms, which we actually
started in the Masters thesis [64]. The theoretical and experimental results from this
thesis are beyond our initial expectation.

Certainly, fast algorithms and high-performance are always popular topics. The
SPIRAL [79] and FFTW [42] projects are well-known high-performance software
packages based on FFT techniques for numerical computation and with application
to areas like digital signal processing. A central feature of these packages is automatic
code tuning for generating architecture-aware highly efficient code. In the case of our
library for symbolic computation with polynomials, this feature remains future work.
FFTs in computer algebra are primarily performed over finite fields leading to a range
of difficulties which do not occur over the field of complex numbers. For instance,
primitive roots of unity of large orders may not always exist in finite fields, making
the use of the Cooley-Tukey Algorithm [25] not always possible. For this reason and
others, such as performance considerations, each FFT-based polynomial operation
(multiplication, division, evaluation, interpolation, etc.) has several implementations.
Although we have not reached yet the level of automatic tuning, hand-tuning was
used a lot. We have considered specific hardware features such as memory hierarchy,
pipelining, vector instructions. We tried to write compiler-friendly code, relying on
compiler optimization to generate highly efficient code. We have also considered

the parallelization of polynomial arithmetic (mainly multiplication) and higher-level

operations (normal form computations). Section 3.3 and Section 3.4 describe our
implementation whereas Section 3.5 at Page 40 presents comparative experimental
results. Chapter 9 is dedicated to the parallelism study.

Developing a fundamental high-performance software library for polynomial arith-
metic appeared to be a necessary task. At the time of starting this work, there were
no such packages that we could extend or build on. All the existing related software
had either technical limitations (as was the case for the NTL [6] library, limited by its
univariate arithmetic and the characteristic of its fields of coefficients) or availability
issues (as was the case for the MAGMA [5] computer algebra system, that doesn’t
make it a research tool which is not open source). Developing this fundamental high-
performance software library was also motivated by the desire of adapting it to our
needs. For instance, when we started to develop higher-level algorithms, such as nor-
mal form computations, see Chapter 6, adjustments in our multivariate multiplication
had to be done.

Implementing a polynomial system solver based on triangular decompositions from
scratch was, however, out of question. First, because better subroutines for these de-
compositions had to be designed, such as those presented in Chapters 6 and 7, before
engaging an implementation effort. Secondly, because the amount of coding would
simply be too large for work of this scale. Polynomial system solvers such as FGb [40]
or the command Triangularize in the RegularChains library [63] are the results of
20 and 16 years of continuous work respectively! Last, but not least, implementation
techniques and programing environments are evolving quickly these days, stimulated
by progress in hardware acceleration technologies. In order to avoid developing code
that could quickly become obsolete, we were looking into strategies driven by code
modularity and reusability. This led us to consider integrating our fundamental high-
performance software library for polynomial arithmetic, written in the C programing
language, into higher-level algorithms written in the computer algebra systems AX-
IOM and MAPLE. (These are presented in Section 3.2.2 and Section 8.2.3 respec-
tively.) The overhead of data conversion between different polynomial representations
from different language levels may be significant enough to slow down the whole com-
putation. Thus, this technique of mizing code brings extra difficulties to achieve high
performance for those applications involving frequent cross language-level data map-
ping (see Section 3.4.1 and Section 8.2 for details). Each of AXIOM and MAPLE
has its specifies on this front.

AXIOM is a multiple-language-level system (see Section 2.2 for details). We took

advantage of this feature for combining in the same application different polynomial

data types realized at different language levels. Chapter 4 reports on this investigation
and stresses the fact that selecting suitable polynomial data types is essential toward
high performance implementation.

With MAPLE, we have focused on the integration of our C library with high-level
algorithms. Our goal was to provide support and speed-up for the RegularChains
library and its commands for computing triangular decompositions of polynomial
systems. Since the technique of mizing code is much more challenging in the context
of MAPLE than within AXIOM (See Chapter 8 for details) this objective is not
guaranteed to be successful. In fact, we asked ourselves the following questions while
designing this mizing code framework: to which extent can triangular decomposition
algorithms (implemented in the MAPLE RegularChains library) take advantage of
fast polynomial arithmetic (implemented in C)? What is a good design for such hybrid
applications? Can an implementation based on this strategy outperform other highly
efficient computer algebra packages? Does the performance of this hybrid C-MAPLE
application comply to its complexity analysis? In Chapter 8, we will provide the
answers to these questions.

Once our fundamental high-performance software library for polynomial arith-
metic and its interface with AXIOM and MAPLE have been in place, we could start
investigating the third objective of this PhD work: developing more efficient algo-
rithms for the core operations involved in computing triangular decompositions, with
an emphasis in dimension zero. (see Section 2.3 for the definition of triangular de-
compositions). We started with multiplication modulo a triangular set in Chapter 6,
followed by regular GCD computations and regularity test with respect to a regular
chain, see Chapter 7.

Triangular decompositions rely intensively on polynomial arithmetic operations
(addition, subtraction, multiplication and division) modulo ideals given by triangu-
lar sets in dimension zero or regular chains in positive dimension. (see Chapter 2 for
these terms.) Modular multiplication and division are expensive (often dominant) op-
erations in terms of computational time when computing triangular decompositions.
Under certain assumptions, the modular division can be achieved by two modular
multiplications as reported in Section 2.1 in the fast division algorithm. Thus, mod-
ular multiplication is unarguably a “core” operation.

Triangular decompositions rely also on an univariate and recursive representation
of polynomials. The motivation is to reduce solving systems of multivariate polyno-
mials to univariate polynomials GCD computations. This reduction is achieved at

the price of working over non-standard algebraic structures, more precisely modulo

the so-called regular chains. We have designed and implemented the first algorithm
for this kind of GCD computations which is based on asymptotically fast polynomial
arithmetic and modular techniques, while not making any restrictive assumptions on
the input. Chapter 7 presents this algorithm.

We designed these high-level operations in a way that our previous fast polynomial
arithmetic implementation could efficiently be used. Certainly, these new algorithms
are also better than existing ones in terms of complexity. All our reported new
implementations and algorithms from this thesis have been finalized as a solid software
library modpn with its MAPLE-level wrapper FastArithmeticTools (see Section 8.2):
a C-MAPLE library dedicated to fast arithmetic for multivariate polynomials over
prime field including fundamental operations modulo regular chains in dimension

Zero.

1.3 Contributions

As mentioned in Section 1.1 one of our motivations of this research is to design effi-
cient algorithms, based on asymptotically fast algorithms and modular methods for
the key routines. At the end of this research we have designed a set of asymptoti-
cally fast algorithms for core operations supporting polynomial system solvers based
on triangular decompositions. These are fast multiplication modulo a triangular set
(modular multiplication, see Chapter 6), fast regular GCD computation and regular-
ity test, see Chapter 7. As a byproduct, we have obtained highly efficient algorithms
for solving bivariate polynomial systems and multivariate systems of two equations,
see Chapters 7 and 8. Our implementation effort for polynomial arithmetic over fi-
nite fields has led to an improved version of the so-called Montgomery’s trick [74].
More precisely, we have obtained a fast integer reduction trick when the modulus is
a Fourier prime number (see Section 6.3).

We have systematically investigated and documented a set of suitable implementa-
tion techniques adapted for asymptotically fast polynomial algorithms and operations
supporting triangular decompositions (see Section 3.3, Section 3.4; Section 4.2-4.5;
Section 5.2, Section 6.3, Section 8.2, and Chapter 9).

As mentioned in Section 1.1 another motivation for this research is to develop
a foundational software library for polynomial arithmetic in order to support the
implementation of high-performance solvers. At the end of this work, besides the
theoretical contributions we have also provided a solid software result: the modpn

library. The library modpn consists of a set of highly optimized C implementations

including the base-level routines and operations modulo regular chains. Essentially,
all the research results reported in this thesis have been implemented in the modpn
library. The modpn library has been integrated into the computer algebra system
MAPLE (version 13). Concretely, this provides MAPLE users with fast arithmetic for
multivariate polynomials over the prime fields F,, where p is a machine word-size
prime number. While being easy to use, it mainly focuses on high performance.

We present the experimental results in Chapter 7 and in Chapter 8 to compare
our library with pre-existing MAPLE and MAGMA implementations. The experimen-
tal result show that our approaches are very effective, since they often significantly
outperform pre-existing implementations. The experimentation effort meets our last
motive mentioned in Section 1.1. Namely, we have systematically evaluated the per-
formance, including speed-up factors and bottlenecks, of this approach and compared
it with the pre-existing polynomial system solvers. For operations such as Regular
GCD, Regularity Test, our new algorithm implementation has a factor of hundreds

faster than pre-existing ones.

1.4 Outline

In Chapter 2, we provide an overview of the background knowledge related to this re-
search, including implementation environment and existing asymptotically fast poly-
nomial algorithms. Chapter 3 is the starting point of this research. In this chapter
we investigate the existing fundamental fast polynomial algorithms; we demonstrate
that by using suitable implementation techniques, these fast algorithms can outper-
form the classical ones in a significant manner; moreover, the new implementation can
directly support existing popular computer algebra systems such as AXIOM (see Sec-
tion 2.2), thus can speed up related higher-level packages. In Chapter 4 and Chapter 5
we focus on our new implementation strategies for asymptotically fast polynomial al-
gorithms. More specifically, we investigate the implementation techniques suited to
the multiple-level language environment in AXIOM. In Chapters 6, 7, and 8, we
present the new fast algorithms we have developed and their implementation result
which is integrated in MAPLE version 13. The new algorithms include modular mul-
tiplication, reqular GCD, bivariate solver, two-equation solver and reqularity test. In
Chapter 9, we present our parallel implementation of efficiency-critical operations for

fast polynomial arithmetic.

Chapter 2
Background

In this chapter we introduce asymptotically fast polynomial arithmetic, our imple-

mentation environment and the concept of a triangular decomposition.

2.1 Pre-existing Fast Algorithms

In this section, we describe, or give references to, a set of basic fast algorithms we have
implemented. These algorithms are low-level operations in the sense that they will
be used in almost all upper level algorithms reported in this thesis. We will describe
our new asymptotically fast algorithms in Chapters 6, 7, and 8. In the following
text, all rings are commutative with unity; we denote by M a multiplication time in
Definition 1.

Definition 1. A multiplication time is @ map M : N — R, where R s the field of

real numbers, such that:

e For any ring R, polynomials of degree less than d in R[X]| can be multiplied in
at most M(d) operations (+, x) in R.

e Forany d < d, the inequality % < Mc(lfl/) holds.
Examples of multiplication times are:
e Classical: 2d?;

e Karatsuba: C d°%23) with some C' > 9;

e FFT over an arbitrary ring: C dlog(d) log(log(d)) for some C' > 64 [21].

Note that the FFT-based multiplication in degree d over a ring that supports the
FFT (that is, possessing primitive n-th root of unity, where n is a power of 2 greater
than 2d) can run in C dlog(d) operations in R, with some C' > 18.

The Montgomery integer division trick. Montgomery integer division trick [74] is a
fast way to compute integer division. Since our algorithms are mostly over Z/pZ,
operations modulo prime number p are essential. We have designed various versions
of this trick in order to improve performances as reported in Sections 5.2.2 and 6.3.
Here we give the original Montgomery trick. The principle of this trick is that instead
of computing an Euclidean division, it reduces the input integer w.r.t to a number
which is power of 2. In machine arithmetic, an integer can be divided by a power of

2 can simply by bitwise operations which are very cheap.

Algorithm 1 The Montgomery Integer Division trick

INnpUT: Z, R, v, VEZ, where v is the modulus and V-v= — 1 mod R, assume
Z < R-w, R < v, R usually chosen to be some power of 2, and GCD(R, v) = 1.

OurpuT: T = Z-R~ ' rem v.

A =VZ
B = Arem R
C = Bw

T =7 4 CquoR
Hfv<TthenT=T—v
return T’

SO W N -

Fast Fourier transform and truncated Fourier transform. The fast Fourier transform
(FFT) is a fast algorithm for calculating the discrete Fourier transform (DFT) of a
function, see [44] for details.

This algorithm was essentially known to Gauss and was rediscovered by Cooley
and Turkey in 1965. In symbolic computations, the FFT algorithm has many appli-
cations [36]. The most famous one is the fast multiplication of polynomials. Even if
the principles of these calculations are quite simple, their practical implementation is
still an active area of investigation.

The principle of FFT-based univariate polynomial multiplication is the following.
We consider two polynomials f = Z’Zig_lakxk and g = zig_lbkxk over some field
K. We do not need to assume that they have the same degree; if they do not have

the same degree, we add a “zero leading coefficient” to the one of smaller degree.

10
We want to compute the product fg = Zzgn_zck. The classical algorithm would

compute the coefficient ¢, of fg by

i=k
Cr — Zizoaibkfi (21)

for k=0,...,2n — 2, amounting to O(n?) operations in K.

If the values of f and g are known at 2n—1 different points of K, say zg, ..., xon_o,
then we can obtain the product fg by computing f(x¢)g(zo),. .., f(Z2n—2)g(T2,_2)
amounting to O(n) operations in K. The second idea is to use points xg, ..., T9,_1 in
K such that

(1) evaluating f and g at these points can be done in nearly linear time cost, such

as O(nlog(n)),

(77) interpolating the values f(zo)g(zo), ..., f(22,-2)g9(z2,—2) can be done in nearly
)

linear time, that is O(nlog(n)) again.

Such points xg, . .., T2, 2 do not always exist in K. However, there are techniques to
overcome this limitation (essentially by considering a field extension of K where the
desired points can be found). In the end, this leads to an algorithm for FFT-based
univariate polynomial multiplication which runs in O(nlog(n)log(log(n))) operations
in K [21]. This is the best known algorithm for arbitrary K.

In this thesis, we restrict ourselves to the case where we can find points
xg, ..., T, in K satisfying the above (i) and (iz). Most finite fields possess such
points for n small enough. (Obviously n must be at most equal to the cardinality of
the field.) More precisely, for n, p > 1, where p is a prime, the finite field Z/pZ has
a primitive m-th root of unity if and only if m divides p — 1. (Recall that w € K is
a primitive m-th root of unity of the field K if and only if w™ = 1 and w* # 1 for
0 <k <m). If Z/pZ has a primitive m-th root of unity w, m > 2n — 2

e then we use z, = w* for k=0,...,2n — 2,

e Step (i) is the FFT of f and g at w (to be detailed in the next section),
e Step (ii) is the FFT of L2 at w™!.

Again, we refer to [44] for more details.
In [51], J. van der Hoeven reported a truncated version of the classical fast
Fourier transform. It is referred as the truncated Fourier transform (TFT) in the

literature. When applied to polynomial multiplication, this algorithm has the nice

11

property of eliminating the jumps in the complexity at powers of two. Essentially,
this algorithm avoids computing the leading zeros during the DFT /evaluation and
inverse-DFT /interpolation stages. We have implemented this algorithm which in-
deed removed the stair-case like timing curves from FFT based methods. However,
this algorithm requires more complicated programming structures which may curb
compilers to apply certain loop optimization techniques, whereas the standard itera-
tive FFT implementation has a much simpler nested loop structure which is easy for

compiler to optimize the code.

Power series inversion. Power series inversion using Newton iteration method pro-
vides a fast method of computing multiplicative inverses. Given a commutative ring
R with a 1 and ¢ € N, it computes the inverse of the polynomial f € R[z], such that,
f(0) =1 and deg f < ¢, modulo 2. The Newton iteration is used in numerical anal-
ysis to compute successive approximations to solutions of ¢(g) = 0. From a suitable

initial approximation gy, subsequent approximations are computed using:

_ 9(9:)
¢' (i)

Gi+1 =i (2.2)
where ¢ is the derivative of ¢. This corresponds to intersecting the tangent with an
axis or, in other words, replacing ¢ by its linearization at that point. If we apply
this to the problem of finding a g € R[z], given ¢ € N with f(0) = 1, satisfying
fg=1mod z*, we want to approximate a root of 1/g— f = 0. The Newton iteration

step becomes:

Vgi—f
git1 = gi — /_1—/92 =29 —fg; (2.3)

%

Proposition 1 shows that this method converges quickly to a solution, also in this

algebraic setting.

Proposition 1. Let R be a ring (commutative with 1), f,go,91,... € Rlz], with
f0)=1, go=1, and gis1 = 2g; — f g2 mod 22", for alli. Then fg; =1 mod z*
for all i > 0.

PrOOF. The proof is by induction on i. For ¢ = 0 we have

fa0=f(0)go=11=1mod 2* (2.4)

12

For the induction step, we find

2i+l

1= fgm=1-fQRau—fe)=1-2fg+f¢*=(1~-fg)=0moda®" (2.5)

O
Based on the above, we obtain the following Algorithm 2 for computing the inverse

of f mod z*.

Algorithm 2 Power Series Inversion of f to Precision ¢

INPUT: f € R[z] such that f(0) =1, ¢ € N such that deg(f) < ¢ and R[z] in variable

x is a ring of power series.

OUTPUT: g € R[z] such that f g =1 mod ‘. Runs in 3M(¢) + 0(£) operations in R.
Recall from Definition 1 that M is multiplication time whose value is dependent
on the multiplication algorithm used.

Inv(f,0) ==
1 g0 1
2 7= logy(t)] |
3 fori = 1.r repeat g; := (2¢i_1 — fgi_1>) mod z*
4 return g,

Proposition 2. If ¢ is a power of 2, then Algorithm 2 uses at most 3M(£) + O({) €
O(M(l)) arithmetic operations in R [44, Ch. 9].

PrROOF. The correctness stems from Proposition 1 which concludes that
fg:=1mod z* (2.6)

for all ¢ > 0. In line 3, all powers of z greater than 2 can be dropped, and since,

9 = gio1 (2 — fgic1) = gi1 mod 22 (2.7)

the powers of x less than 2:=! can also be dropped.

The cost for one iteration of line 3 is M(2°~1) for the computation of g; 12, M(2°) for
the product f g;_12 mod z%', and then the negative of the upper half of fg;_1% modulo
2" is the upper half g;, taking 2°~* operations. Thus we have M(2?)+M(2i~1)+2-1 <

3M(27) + 271, resulting in a total running time:

13

> oM@ 427 < (g M(27) +2771) Y 27 < 3M(27) +2" = 3M(0) + £ (2.8)

1<i<r 1<i<r

MIOO

since 2M(n) < M(2n) for all n € N (see Definition 1 at Page 8) O

Fast division. Using fast multiplication enables us to write a fast Euclidean division
for polynomials, using Cook-Sieveking-Kung’s approach through power series inver-
sion [43, Chapter 9]. Given two polynomials a and b, both € R[z] and b monic, where
R is a ring (commutative with 1); assuming that a and b have respective degrees
m and n, with m > n, we can compute the polynomials ¢ and r in R[z| satisfying
a = qb+r and deg(r) < deg(b). Using standard techniques this takes O(n?) op-
erations in R. Equipped with a fast power series inversion, it can be improved to
O(M(n)) operations in R [44].

We define A and B as the reversals of a and b:

A(z) =2™a(l/x) (2.9)

B(z) = 2" b(1/x) (2.10)

With the inverse C' = 1/B(x) mod z™ "1, we obtain ¢ as the reversal of @) from the

subsequent multiplication:

Q(z) = A(x) C(x) mod z™ ™! (2.11)

The full algorithm is shown in Algorithm 3.

Algorithm 3 Fast Division with Remainder Algorithm

INPUT: a,b € R|x], where R is a ring (commutative, with 1) and b # 0 is monic

OUTPUT: ¢,r € R[x| such that a = gb+ r and degr < deg b

FDiv(a,b) =
1. s:= Rev() ' mod gdes(a)—deg(b)+1
2: = Rev(a)s mod gdee(4)—des(T1)+1
3: q = Rev()

4 r:=a—bgq

5. return (¢, r)

14

Kronecker’s substitution. Let A be a commutative ring with units. Let z; < 29 <

- < x, be n ordered variables and let aq, as,...,a, be n positive integers with
a; = 1. We consider the ideal Z of Alxq,xs,...,z,| generated by xs — 272, 23 —
B, x, — xf". Define a = (g, 9,03,...,a,). Let ¥, be the canonical map
from Alzy,xs,..., 2, to Alxy, z9,...,x,]/Z, which substitutes the variables xq, 3,
oy T, with 272, 2, ... 2] respectively. We call it the Kronecker map of a.
This map transforms a multivariate polynomial of A[zy, zs, ..., x,] into an univariate

polynomial of A[z;]. It has the following immediate property.

Proposition 3. The map ¥, is a ring-homomorphism. In particular, for all a,b €
Alxy, z9, ..., x,] we have
U, (ab) = Uy(a)V,(b). (2.12)

Therefore, if the product ¥,(a)V¥,(b) has only one pre-image by V¥,, one can
compute the product of the multivariate polynomials a and b via the product of the
univariate polynomials ¥, (a) and W, (b). This is advantageous, when one has at hand
a fast univariate multiplication. In order to study the pre-images of W, (a)¥,(b) we
introduce additional material.

Let dy,ds, . ..,d, be non-negative integers. We write d = (dy,dy, . ..,d,) and we
denote by A,, the set of the n-tuple e = (ey, es,...,e,) of non-negative integers such
that we have e; < d; for all : = 1,...,n. We define

O0p = di + aady + -+ - + ad,, and 9y =1, (2.13)

and we consider the map 14 defined by

An — [075n]

(e1,€2,...,6n) —— €1+ eyt -+ e,

Ya (2.14)

that we call the packing exponent map.

Proposition 4. The packing exponent map g s one-to-one map if and only if the

following relations holds:

oy = 1+d1
a3 = 1+d1+0¢2dg

i=n—1
a, = 1+4+di+ Z._2 a;d;.

15

that we call the packing relations.

Proor. We proceed by induction on n > 1. For n = 1 we have §; = d; and
a(e1) = ep for all 0 < e; < dy. Thus the packing exponent map 14 is clearly one-to-
one map in this case. Since the packing relations trivially hold for n = 1, the property
is proved in this case. We consider now n > 1 and we assume that the property holds
for n — 1. We look for necessary and sufficient conditions for ¢q to be a one-to-one

map. We observe that the partial function

An—l — [Oa(sn—l]

(2.15)
(e1,€9,...,en1) — wa(er,ea,...,€,.1,0)

¢(d17---7dn—1) :

of 14 needs to be a one-to-one map for 1)y to be a one-to-one map. Therefore, by

induction hypothesis, we can assume that the following relations hold.
Qo = 1 -+ d1
3 = 1+d1+Q2d2
S
ap—1 = l+d+ Zi:Z oGl
Observe that the last relation writes
p1 =1+ 0, o. (2.16)

We consider now f € [0,0,]. Let ¢ and r be the quotient and the remainder r of the

Euclidean division of f by «,,. Hence, we have
f=qo, +7 and 0<7r < q,. (2.17)

Moreover, the couple (g, r) is unique with these properties. Assume that a,, = 146,,_4

holds then f has a unique pre-image in A, by ;' which is

¢Jl(f) = (1/’(:11,._.,(1,1,1)(7’)7 q)- (2.18)

If a, > 1+, 1 holds, then f = 1+ &, ; has no pre-images in A, by ¢;*. If

o, < 1+ 6,1 holds, then f = «, has two pre-images in A,,, namely

(0,...,0,1) and ¥y, (o). (2.19)

16

Finally, the map 14 is one-to-one if and only if the packing relations hold. U
Proposition 5. Let e = (ey,e9,...,¢€,) be in A, and X = z{'x5? -+ - x5 be a mono-
mial of Alxy, za, ..., x,]. We have

U, (X) = 204, (2.20)

Moreover, for all f =73 y. ¢ cxX

U (f) = ZXGS exUo(X). (2.21)

where S s the support of f, that is the set of the monomials occurring in p.

PROOF. Relation (2.20) follows easily from the definition of ¥,. Relation (2.21)
follows from Proposition 3. O
We denote by A[A,] the set of the polynomials p € Alzy,xo,...,z,] such that

— €1 .62
for every X = z{'25’ -

€n
n

in the support of p we have (e, es,...,¢e,) € A,. The
set A[A,] is not closed under multiplication, obviously. Hence it is only a A-module.
The same remark holds for the set A[d,] of univariate polynomials over A with degree

equal or less than ¢,,.

Kronecker’s substitution based multivariate multiplication. Following the previous
notations and definitions from Kronecker’s substitution, we investigate Kronecker’s
substitution based multivariate multiplication as follows. Although the restriction
of the map V¥, to A[A,] is not a ring isomorphism, it can be used for multiplying
multivariate polynomial as follows. Let f,¢g € Az, x9,...,2,] and let p be their

product. For all 1 <7 < n we choose
d; = deg(p,), (2.22)
that is the partial degree of p w.r.t. x;. Observe that for all 1 < i <n we have

deg(p, z;) = deg(f, x;) + deg(g, x;). (2.23)

It follows that the three polynomials f, g, p belong to A[A,]. Moreover, from Propo-

sition 3, we have

\Ila(p) = \Ija(f)\lja(g)- (2‘24>

Therefore, we can compute p using the simple following algorithm . Let us assume

that we have at hand a quasi-linear algorithm for multiplying in A[z;], that is an

17

Algorithm 4 Kronecker Multiplication

Input: f,g € A[A,] such that fg € A[A,] holds.

Output: fg

1 Uyr 1= \Ifa(f)
2wy, = V,(9)
3 Upg = Usly
4 pi=V uyy)
5 returnp

algorithm such that the product of two polynomials of degree less that k£ can be
computed in O(k'*¢) operations in A. Such algorithm exists over any ring A [21]. It
follows that step 3 of the above algorithm can be performed in O(4,'") for every

€ > 0. Therefore, we have:

Proposition 6. For every € > 0, Algorithm 4 runs in O(((dy + 1) -+ (d, + 1))

operations in A.

2.2 Implementation Environment

In this section, we introduce the computer algebra systems and their programming
languages on which we rely to implement our algorithm and test the performance.
We use two systems: AXIOM and MAPLE.

AXIOM [52] is a comprehensive Computer Algebra System which has been in de-
velopment since 1971. It was originally developed by IBM under the direction of
Richard Jenks. AXIOM has a very high level programming language called SPAD,
the abbreviation of Scratchpad. It can be compiled into COMMON LISP by its own
built-in compiler. There is an external stand-alone compiler implemented in C which
also accepts the SPAD language, called ALDOR [1]. AXIOM has both an interactive
mode for user interactions and a programming language for building library modules.
The typical way of programming in AXIOM is as follows. The programmer creates
an input file defining some functions for his or her application. Then, the programmer
runs the file and tries the functions. Once everything works well, the programmer
may want to add the functions to the local AXTIOM library. To do so, the program-
mer needs to integrate his or her code in AXIOM type constructors and then invoke

the compiler.

18

By definition, an AXIOM type constructor is a function that returns a type which
can be either a category, a domain, or a package. Roughly speaking, a domain is a class
of objects. For example, Polynomial domain denotes polynomials, Matrix domain
denotes matrices. A category is a class of domains which has common properties. For
example, the AXIOM category Ring designates the class of all rings with units, any
AXIOM domain that has this property belongs to the category Ring. The source

code for the category Ring is shown below.

Ring(): Category == Join(Rng,Monoid,LeftModule(%)) with

—--operations

characteristic: () -> NonNegativelnteger
++ characteristic() returns the characteristic of the ring
++ this is the smallest positive integer n such that
++ \spad{n*x=0} for all x in the ring, or zero if no such n
++ exists.
—-- We can not make this a constant, since some domains are
-- mutable

coerce: Integer ->
++ coerce(i) converts the integer i to a member of
++ the given domain.

unitsKnown
++ recip truly yields
++ reciprocal or "failed" if not a unit.
++ Note: \spad{recip(0) = "failed"}.

add
n:Integer

coerce(n) == n * 1$%

From the above AXIOM source code we can observe another important concept:
categories form a hierarchy. We can see that Ring is extended from the categories

Rng, Monoid and LeftModule. In addition, we can observe that Ring has
e 2 operations: characteristic, coerce
e 1 attribute unitsKnown,

e and 1 default implementation for the operation coerce: Integer -> %.

19

The programmer can construct her/his own categories by extending existing cat-
egories. This requires knowledge of the existing hierarchies. Figure 2.1 shows a

fragment of the hierarchy of the AXIOM algebraic categories.

SetCategor

OrderedSet

SemiGroup

Ordered OrderedMonoid
Abelian

SemiGroup

AbelianGroup

} OrderedRing

Figure 2.1: Algebraic categories’ hierarchy in AXIOM (partial).

Next to the concept of category, domain is easier to understand. It actually
corresponds to the notion of data type. When a domain is defined, it is asserted to
belong to one or more categories and promises to implement the set of operations
defined in these categories. After an newly defined domain is compiled, it becomes
an AXIOM data type which can be used just like a system-provided data type. The
programmer usually needs to design a lower level data structure to represent the
objects of the domain. When a domain is instantiated, the AXIOM system will

allocate memory for those data structures.

MAPLE is one of the most popular computer algebra systems. It was first developed
by the Symbolic Computation Group at the University of Waterloo in 1980. Maple in-
corporates a dynamically typed imperative-style interpreted programming language.

The language permits variables of lexical scope. There are also interfaces to other

20

languages (C, Fortran, Java, Matlab, and Visual Basic). Maple is based around a
small kernel, written in C, which provides the Maple language. Most functionality
is provided by libraries. Most of the libraries are written in the Maple language.
Symbolic expressions including polynomials are stored in memory as directed acyclic
graphs. MAPLE has a set of powerful symbolic polynomial computation libraries.
The related existing polynomial packages are RegularChains, PolynomialIldeals.
MAPLE language is interpreted and easy to use. As reported in later chapters (Chap-
ters 7, 8), the previous triangular decomposition technique based implementation in
MAPLE relies on the MAPLE interpreted high level language and classical polynomial
arithmetic. Our new MAPLE library modpn is developed based asymptotically fast
polynomial arithmetic and the majority part written in C. Therefore, the new algo-
rithms and implementation from this thesis practically have sped up the triangular
decomposition packages in MAPLE. In Chapter 8 we will report the C/MAPLE code

integration procedure in details.

2.3 Triangular Decompositions

2.3.1 Polynomial ideal and radical

Let K be a field and let K[x] = K]z, ..., z,]| be the ring of polynomials with coeffi-
cients in K, with ordered variables z; < --- < z,. Let K be the algebraic closure of
K. If u is a subset of x then K(u) denotes the fraction field of K[u].

Definition 1. Let F' = {fi,..., fm} be a finite subset of K[xy,...,x,]. The ideal
generated by F in Kz, ..., x,], denoted by (F) or (fi,..., fm), is the set of all
polynomials of the form

hifi+ -4 hpfm

where hy, ..., hy are in Klzy, ..., x,]. If the ideal (F) is not equal to the entire

polynomial ring K[xq, ..., x,], then (F') is said to be a proper ideal.

Definition 2. The radical of the ideal generated by F, denoted by \/(F), is the set
of polynomials p € K[z, ..., x,] such that there exists a positive integer e satisfying
p¢ € (F). The ideal (F) is said to be radical if we have (F) = /(F).

Remark 1. Let f1,..., fm € K[z1] be univariate polynomials. The Euclidean Algo-
rithm for computing greatest common divisors implies that the ideal (f1,..., fm) is

equal to (g), where g = ged(f1, ..., fm). This means that there exists polynomials

21
A1y .y Ay by, .o by € Klxg] such that we have
arfi+-+amfm =g and fi=0bg for i=1,... e.

Therefore, every ideal of K|xy] is generated by a single element.

Definition 3. A univariate polynomial f € Klx1] is said to be squarefree if for all

non-constant polynomials g € K[z the polynomial g* does not divide f.

Remark 2. Let f € Klx1] be non-constant. It is not hard to see that the ideal
(f) € K[zq] is radical if and only if f is squarefree.

2.3.2 Zero-divisor, regular element, zero set

For a subset F' of K[x], let h be a polynomial in K[x], the saturated ideal of (F') with
respect to h, denoted by (F') : h*, is the ideal

{q € K[x| | 3m € N such that h"q € (F)}.

A polynomial p € K[x] is a zero-divisor modulo (F) if there exists a polynomial ¢
such that pg € (F'), and neither p nor ¢ belongs to (F'). The polynomial p is regular
modulo (F') if it is neither zero, nor a zero-divisor modulo (F'). Geometrically, we
denote by V(F) the zero set (or solution set, or variety) of Fin K. For a subset
W c K", we denote by W its closure in the Zariski topology.

2.3.3 Triangular set and regular chains

Main variable and initial. If p € K|[x| is a non-constant polynomial, the largest
variable appearing in p is called the main variable of p and is denoted by mvar(p).
The leading coefficient of p w.r.t. mvar(p) (p is viewed as an univariate polynomial
in mvar(p)) is its initial, written init(p) whereas lc(p, v) is the leading coefficient of p
w.r.t. v € x. For example, let p be the polynomial 2y%z? + 3yz +1 € K[z,y], = > v,
init(p) = 2y3 but lc(p,y) = 22°.

Triangular Set. A subset T' of non-constant polynomials of K[x] is a triangular set if
the polynomials in T have pairwise distinct main variables. Denote by mvar(7') the
set of the main variables of the polynomials in 7. A variable v € x is algebraic with

respect to T if v € mvar(7'); otherwise it is free. For a variable v € x we denote by

22

T, (resp. T-,) the subsets of T" consisting of the polynomials with main variable less
than (resp. greater than) v. If v € mvar(7T'), we denote by T, the polynomial in T’
with main variable v. If T" is not empty, we denote by T),.x the polynomial of T" with

largest main variable.

Quasi-component and saturated ideal. Given a triangular set 7' in K([x], denote by
hr the product of the init(p) for all p € T. The quasi-component W(T) of T is
V(T)\ V(hr), that is, the set of the points of V(T") which do not cancel any of the
initials of 7. We denote by sat(T") the saturated ideal of T, defined as follows: if T is
empty then sat(7") is the trivial ideal (0); otherwise it is the ideal (T) : h3®.

For the given regular chain T = {zy — 2%, y* — 25}, the quasi-component W (T) =
Viey — 2% y* — 25\V(y) is W(T) = {(z,y,2)|zy — 2% = 0,y* — 2° = 0,y#£0}. The
5

saturate ideal of T is sat(T) =< 23 — yz, 2y — 2%, y* — 2%, 023 — 3, 22% — 9* >.

Regular chain. A triangular set T'is a regular chain if either T'is empty, or T'—{T}0. }
is a regular chain and the initial of T},,, is regular with respect to sat(T" — {T,az})-
In this latter case, sat(7') is a proper ideal of K[x]. From now on T C K[x] is a regular
chain; moreover we write m = |T|, s = mvar(7) and u = x \ s. The ideal sat(7T)
enjoys several properties. First, its zero-set equals W Second, the ideal sat(7)
is unmixed with dimension n — m. Moreover, any prime ideal p associate to sat(T)
satisfies p N K[u] = (0). Third, if n = m, then sat(T") is simply (7). Given p € K[x]
the pseudo-remainder (resp. iterated resultant) of p w.r.t. T, denoted by prem(p,T)
(resp. res(p,T)) is defined as follows. If p € K or no variables of p is algebraic
w.r.t. T, then prem(p,T) = p (resp. res(p,T) = p). Otherwise, we set prem(p,T) =
prem(r,T,) (resp. res(p,T) = res(r,T,)) where v is the largest variable of p which
is algebraic w.r.t. 7 and r is the pseudo-remainder (resp. resultant) of p and 7,

w.r.t. v. The following holds: p is null (resp. regular) w.r.t. sat(7T') if and only if
prem(p, T) = 0 (resp. res(p,T) # 0).

2.3.4 Subresultants

We follow the presentation of [31]. Other references that we have used are [47, 93, 35].

Determinantal polynomial. Let A be a commutative ring with identity and let m < n
be positive integers. Let M be a m X n matrix with coefficients in A. Let M; be
the square submatrix of M consisting of the first m — 1 columns of M and the i-th
column of M, for © = m---n; let det M; be the determinant of M;. We denote by

23
dpol(M) the element of A[X], called the determinantal polynomial of M, given by
det M, X™™™ +det M, 1 X" ™1 4+ ... 4 det M,,.

Note that if dpol(M) is not zero then its degree is at most n —m. Let Py,..., P, be
polynomials of A[X] of degree less than n. We denote by mat(P, ..., Py,) the m xn
matrix whose i-th row contains the coefficients of P;, sorting in order of decreasing
degree, and such that P; is treated as a polynomial of degree n — 1. We denote by
dpol(Py, ..., B,) the determinantal polynomial of mat(Py, ..., Py,).

Subresultant. Let P, € A[X] be non-constant polynomials of respective degrees p, g
with ¢ < p. Let d be an integer with 0 < d < ¢q. Then the d-th subresultant of P and
@, denoted by Sy(P,Q), is

dpol(X9-d-1p, Xe=d=2p . P, XP-4-1Q, ..., Q).

This is a polynomial which belongs to the ideal generated by P and @ in A[X]. In
particular, Sy(P, Q) is res(P, Q), the resultant of P and Q). Observe that if Sy(P, Q)
is not zero then its degree is at most d. When S;(P, Q) has degree d, it is said
non-defective or reqular; when Sy(P, Q) # 0 and deg(Sy(P,Q)) < d, S4(P, Q) is said
defective. We denote by s; the coefficient of Sy(P,Q) in X<¢. For convenience, we

extend the definition to the g-th subresultant as follows:

7(Q)Q, if p> qorle(Q) € A is regular
undefined, otherwise

Sq(Pa Q) = {

where 7(Q) = 1¢(Q)” ~471 Note that when p equals ¢ and le(Q) is a regular element
in A, S,(P,Q) = 1c(Q) '@ is in fact a polynomial over the total fraction ring of A.

We call specialization property of subresultant sequence the following statement.
Let B be another commutative ring with identity and ¥ a ring homomorphism from
A to B such that we have ¥(lc(P)) # 0 and U(lc(Q)) # 0. Then we have

Sa(U(P), ¥(Q)) = ¥(5a(P, Q).

For example, the subresultant chain of F; = xé + x129 + 1 and F5 = 4:10% + x; 1S as

24

follows:
S4:JI%+ZE1I2+1

Sy = 43 + 1,

Sy = —4(3z122 + 4)

S1 = —1221(3x129 + 4)
So = —27a* + 256

Divisibility relations of subresultants. The subresultants S,_1(P,Q), S;—2(P,Q),
..., 50(P, Q) satisfy relations which induce an Euclidean-like algorithm for comput-
ing them. Following [31] we first assume that A is an integral domain. In the above,
we simply write Sy instead of Sy(P,Q), for d = ¢—1,...,0. We write A ~ B for
A, B € A[X] whenever they are associated. A is associated with B if and only if the
following condition hold

aA =bB, a,beA

Ford=q—1,...,1, we have:
(rg—1) Sg—1 = prem(P, —@Q), the pseudo-remainder of P by —(Q),

(req—1) if Sg—1 # 0, with e = deg(S,-1), then the following holds: prem(Q,—S,—1) =
1 (P-a)(g—e)+lg
C(Q) e—1;

(re) if Sq—1 # 0, with e = deg(Sy—1) < d — 1, thus Sy_; is defective, and we have
(i) deg(Sq4) = d, thus S, is non-defective,
(i) Sq—1 ~ S, and lc(Sd_l)dfeflSd_l = 54%7¢71S,, thus S, is non-defective,
(i61) Syo = Sy5 =" = Ses1 =0,

(re—1) if Sy, Sq-1 are non zero, with respective degrees d and e then we have
prem(Sy, —Sa 1) = le(Sg) TS, 4,

We consider now the case where A is an arbitrary commutative ring, following The-
orem 4.3 in [35]. If Sy, S;_1 are non zero, with respective degrees d and e and if s4
is regular in A then we have lc(Sd_l)dfeflSd_l = 54%7¢71S,; moreover, there exists
Cq € A[X] such that we have:

(=1 Me(Sy 1)coeff(S., X€)Sy + CySa1 = 1¢(S4)*Se_s.

In addition Sy_o = S;.3="---= S.y1 = 0 also holds.

25

2.3.5 Regular GCD

Regular GCD. Let I be the ideal generated by \/m in K[zy,...,7,1][zn]. Then
L(T) := K(u)[s]/I is a direct product of fields. It follows that every pair of univariate
polynomials p,t € L(T)[y] possesses a GCD in the sense of [76]. The following
GCD notion [75] is convenient since it avoids considering radical ideals. Let T' C
K[z1,...,2,_1] be aregular chain and let p, ¢ € K[x] be two non-constant polynomials
with the same main variable x,. Assume that the initials of p and ¢ are regular
modulo sat(7"). A non-zero polynomial g € K[x] is a reqular GCD of p,t w.r.t. T if
the following conditions hold:

(1) lc(g, z,) is regular with respect to sat(T);
(1) there exist u,v € K[x] such that g — up — vt € sat(7T);
(231) if g ¢ K and mvar(g) = x, hold, then (p,t) C sat(T'U g).

In this case, the polynomial g has several properties. First, it is regular with
respect to sat(T"). Moreover, if sat(T') is radical and g has positive degree in z,,, then
the ideals (p,t) and (g) of L(T")[x,] are equal, so that g is a GCD of (p,t) w.r.t. T in
the sense of [76]. The notion of regular GCD can be used to compute intersections of
algebraic varieties. As an example we will make use of the following formula which
follows from Theorem 32 in [75]. Assume that the regular chain 7" is simply {r} where
r = res(p,t,z,), for r € K, and let h is the product of the initials of p and ¢. Then,

we have:
Vip,t) =Wi(r,g) U V(h,p,t). (2.25)

where W(r, g) is the algebraic closure of the quasi-component of r and g.

Splitting. Two polynomials p,¢ may not necessarily admit a regular GCD w.r.t. a
regular chain 7', unless sat(7') is prime, see our Example 1 of Section 7.3 at Page 95.

4

However, if T' is “split” into several regular chains, then p,¢ may admit a regular
GCD w.r.t. each of them. To this end, we need a notation. For non-empty regular
chains T, T4, ..., T. C K[x| we write T'— (11, ..., T.) whenever we have mvar(T') =
mvar(T;) for all 1 < i < e, sat(T) C sat(T;) and \/sat(T) = /sat(Ty)N- - -Ny/sat(T,).
If this holds, observe that any polynomial h regular w.r.t sat(7") is also regular w.r.t.

sat(T;) for all 1 <i <e.

26

Chapter 3

Foundational Fast Polynomial

Arithmetic and its Implementation

3.1 Overview

As mentioned in Section 1.2, one of the major contributions of this thesis is that we
have developed a set of highly efficient implementation operations of asymptotically
fast polynomial arithmetic and integrated it into several computer algebra systems.
The existing fast polynomial arithmetic such as fast multiplication, division, fast
GCD are the efficiency-critical ones. We report the implementation effort on these
operations in this chapter and Chapters 4, 5, 9. Based on these implementations, we
have developed new higher level polynomial operations for polynomial system solving.
The new algorithms and new implementation result will be reported in Chapters 6,
7 and 8.

Asymptotically fast algorithms for polynomial arithmetic have been known for
more than forty years. Among others, the work of Karatsuba [57], Cooley and
Tukey [25], and Strassen [88] has initiated an intense activity in this area. Unfortu-
nately, its impact on computer algebra systems has been reduced until recently. One
reason was, probably, the belief that these algorithms were of very limited practical
interest. In [45] p. 132, referring to [73], the authors state that the FFT-based uni-
variate polynomial multiplication is “better than the classical method approximately
when n +m > 600", where n and m are the degrees of the input polynomials. In
[58] p. 501, quoting [18], Knuth writes “He (R. P. Brent) estimated that Strassen’s

scheme would not begin to excel over Winograd’s until n ~ 250 and such enormous

27

matrices rarely occur in practice unless they are very sparse, when other techniques
apply.”

Moreover, the implementation of asymptotically fast arithmetic was not the pri-
mary concern of the early computer algebra systems, which had many other challenges
to face. For instance, one of the main motivations for the development of the AX-
IOM computer algebra system [52] was the design of a language where mathematical
properties and algorithms could be expressed in a natural and efficient manner. Nev-
ertheless, successful implementations of the FFT-based univariate polynomial multi-
plication [73] and Strassen’s matrix multiplication [10] have been reported for several
decades.

In the last decade, several software for performing symbolic computations have put
a great deal of effort in providing outstanding performances, including successful im-
plementation of asymptotically fast arithmetic. As a result, the general-purpose com-
puter algebra system MAGMA [5] and the Number Theory Library NTL [6] have set
world records for polynomial factorization and determining orders of elliptic curves.
The book Modern Computer Algebra [44] has also contributed to increase the gen-
eral interest of the computer algebra community for these algorithms. As to linear
algebra, in addition to MAGMA, let us mention the C++ template library LinBox [7]
for exact linear algebra computation with dense, sparse, and structured matrices over
the integers and over finite fields. A cornerstone of this library is the use of BLAS
libraries such as ATLAS to provide high-speed routines for matrices over small finite
fields, through floating-point computations [33].

However little has been reported on the details of such effort. In this chapter, we
mainly discuss how we achieve high performance for some well-studied fast polynomial
algorithms in two high-level programming environments, ALDOR and AXIOM. Two
approaches are investigated. With ALDOR we rely only on high-level generic code,
whereas with AXIOM we endeavor to mix high-level, middle-level and low-level
specialized code. We show that our implementations are satisfactory compared to
other well-known computer algebra systems or libraries such as MAGMA v2.11-2 and
NTL v5.4.

The outline of this chapter is as follows. Section 3.2 is an overview of the language
features of AXIOM and ALDOR systems. In Sections 3.3 and 3.4, we discuss our
implementation techniques in the ALDOR and AXIOM. In Section 3.5 we report
our experimentation result. Our implementations in ALDOR generic code are only
approximately twice slower than the highly optimized C++ implementation in of

NTL. Our specialized implementation in AXIOM leads to comparable performance

28

and sometimes outperforms those of MAGMA and NTL. All timings given in this
chapter are obtained on a bi-Pentium 4, 2.80 GHz machine, with 1 Gb of RAM.

NOTE: This chapter is written based on the published paper [65].

3.2 High Level Programming Environment

AXIOM and ALDOR are the first two computer algebra systems on which we conduct
our experimentation. We use the word “experimentation” since we have tried a
few methods to speed up polynomial packages in these two systems by plugging in
our new asymptotically fast implementation. The most appropriate methods and
implementation are finally integrated in MAPLE as reported in Chapter 7 and 8.

Recall that in Section 2.2 at Page 17 we have provided a brief introduction of
AXIOM and an example of its type system. Originally ALDOR is an extension lan-
guage from AXIOM, thus it shares many language features. In the following text
we describe the language features of these two systems. Primarily, AXIOM and
ALDOR designers attempted to surmount the challenges of providing an environment
for implementing the extremely rich relationships among mathematical structures.
Hence, their design is of somewhat different direction than that of other contempo-
rary programming languages. They have a two-level object model of categories (see
the example: the AXIOM Ring category in Section 2.2) and domains that is sim-
ilar to Interfaces and Classes in Java. They provide a type system that allows the
programmer the flexibility to extend or build on existing types or create new type
categories as is usually required in algebra.

In AXIOM and ALDOR, types and functions can be constructed and manipu-
lated within programs dynamically like the way values are manipulated. This makes
it easy to create generic programs in which independently developed components
are combined in many useful ways. For instance, for a given AXIOM or ALDOR
ring R, the domains SUP(R) and DUP(R), for sparse and dense univariate polyno-
mials respectively, provide exactly the same operations; that is they have the same
user interface, which is defined by the category UnivariatePolynomialCategory (R).
But, of course, the implementation of the operations of SUP(R) and DUP(R) is quite
different. While SUP(R) implements polynomials with linked lists of terms, DUP(R)
implements them with arrays of coefficients indexed by their degrees. This allows us
to specify a package, FFTPolynomialMultiplication(R, U), parametrized by R, an
FFTRing, that is, a ring supporting the FF'T; and by U, a domain of UnivariatePoly-

29

nomialCategory(R). After discussing the common part in AXIOM and ALDOR, we
illustrate the unique features in each system environment. Based on the uniqueness
we have developed suitable implementation techniques for each system respectively
(see Section 3.3 and 3.4 for detail).

3.2.1 The ALDOR environment

ALDOR can be used both as a compiled and interpreted language. Code optimization
is however only available in the compiled mode. An ALDOR program can be compiled
into: stand-alone executable programs; object libraries in native operating system
formats; portable byte code libraries; and C or Lisp source [1]. Code improvement by
techniques such as program specialization, cross-file procedural integration and data

structure elimination, is performed at the optimization stage of the compilation [90].

3.2.2 The AXIOM environment

The general introduction of AXIOM has been given in Section 2.2. In this section, we
provide more technical details. Based on these details, we can better understand how
to make the lower level (GCL, C and ASSEMBLY) implementation packages available
for AXIOM system. Recall that in Section 2.2, we have mentioned that AXIOM
has both an interactive mode for user interactions and a high level programming
language, called SPAD, for building library modules. Concretely, the compilation
process in AXIOM is as follows:

e The SPAD code will be translated into COMMON LISP code by a built-in com-
piler.

e Then the COMMON LiSP code will be translated into C code by the GCL

compiler.

e Finally, GCL makes use of a native C compiler, such as GCC, to generate

machine code.

Since these compilers can generate fairly efficient code, programmers can concentrate
on their mathematical algorithms and write them in SPAD.

However, to achieve higher performance, our implementation also involves LisP,
C, and assembly level code. By modifying the AXIOM makefiles, new LiSp functions
can be compiled and made available at SPAD level. Moreover, by using the GCL

system provided make-function, one can add new C implementation in the format

30

of functions into the GCL kernel. These new functionality will be available at the
GCL and SPAD level. Finally ASSEMBLY code can either be inlined into C code or
compiled into LisP kernel images, and so available for LisP and SPAD level.

3.3 Implementation Techniques: the GGeneric Case

Our goal in the generic case is to implement algorithms with quasi-linear time com-
plexities in a high-level programming environment(ALDOR), without resorting to low-
level techniques. The primary focus is not to outperform other implementations of
similar algorithms on other platforms, but rather to ensure that we achieve our best in
terms of space and time complexities in our target environment. For instance, in the
ALDOR high level programming environment we write optimizer-friendly and garbage
collector (GC)-friendly code without compromising the high-level nature of our imple-
mentations. The practically result shows that our efforts are effective. In Section 3.3.1
we describe the implementation techniques we developed for the efficiency-critical op-
erations, and in Section 3.3.2 we show that the higher level algorithms in ALDOR can

be sped up in large scale consequently.

3.3.1 Efficiency-critical operations in ALDOR

We first discuss the techniques and results of our ALDOR implementation of two
efficiency-critical algorithms: FFT and power series inversion as defined in Section 2.1

at Page 8.

FFT. We specify a FFT multiplication package that accepts a generic polynomial
type, but performs all operations on arrays of coefficients, which are pre-allocated and
released when necessary, without using the compiler’s garbage collector. For coeffi-
cient fields Z/pZ, ALDOR’s optimizer produces code comparable to hand-optimized
C code.

Power series inversion. We have implemented two versions of the power series
inversion algorithm: a “naive” version without optimization and a space-efficient

version. The latter implementation uses the following ideas:

e We pre-determine all array sizes and pre-allocate all needed buffers, so that

there is no memory allocation in the loop.

31

e Even though we accept a generic polynomial type, we change the data repre-
sentation to arrays of coefficients, work only with these arrays, and reuse DFT

as much as possible.

e As in NTL, we use wrapped convolution to compute the n middle coefficients

of a (2n — 1) x n full product (this is the middle-product operation of [49]).

Figure 3.1 shows the running time of our two implementations, together with
the time for a single multiplication, in a field of the form Z/pZ. We measured the
maximum resident set size; Figure 3.2 shows that the naive version used a total of
over 16000 Kb to invert a polynomial of degree 8000 while the space efficient version
used less than 2500 Kb for the same polynomial. For examples with higher degrees,

the factor of improvement is larger.

3 ‘ ‘ ‘
_Naive -~
Optimized
25 Poly Multiplication
2
)
[0
2,
o 15
E
|_
1
0.5
JMMM-’
0 I I [

1K 2K 3K 4K 5K 6K 7K 8K
Degree (K=1000)

Figure 3.1: Power series inversion: naive vs. optimized implementation vs. multipli-
cation, 27-bit prime.

We first give the source code of the naive version as follows:

modularInversion(f:U,n:Z):U ==
assert(one?(trailingCoefficient(£)));
local m,g0,g__old,g__new,mi:U;

m: == monom;

g0:U:=1; g__o0ld:U:=1; g__new:U:=1;
local r,mii:MI;

if PowerOfTwo?(n) then r := length(n)-1;

32

18000

Naive —l—
Optimized ++1du

16000
14000
12000 /
10000

8000 /
6000 /

4000

RSS: Resident Set Size (in KB)

4K 5K 6K 7K 8K
Degree (K=1000)

Figure 3.2: Power series inversion: space usage of naive vs. optimized implementa-
tions, 27-bit prime.

else r := length(n);

for i in 1..r repeat {

mi := m~(271);

g__new := (2*(g__old)-(£*x((g__old)*(g__0ld)))) mod mi;
g__old := g__new;

}

return (g__new);

¥

Then follows the source code of the efficient version:

macro {
U == DenseUnivariatePolynomial (K:Field);
Z == AldorInteger;

}

fastModInverse(f:U,n:Z):U ==
import from Z,MI;
local dftf,dftg,Y,G,workspace,dftw,op,coeff:AK;

local di__1,di,r,mii:MI; local res:U; local wi:K;

if PowerOfTwo?(n) then r := length(n)-1;
else r := length(n);
nn:MI := shift(1,r); -- 2°r

— allocate storage

dftg := new(un,0$K);

Y := new(nn,0$K);
G := new(nn,0$K);
workspace := new(nn,O0$K);

op := new(nn,0$K);
— stores g;_1

G.0 := 1$K;
dftg.0 := 1$K;

— stores truncated f

coeff := new(nn,O0$K);

dftf := new(ann,0$K);
dftw := new(ann,0$K);
kk:MI := 0;

for k in coefficients(f) repeat {
kk = nn => break;

coeff.kk := k; kk := next(kk);
}

for i in 1..r repeat {
mii := shift(1,i); -- 271

— degree of g;

di :=mii - 1;
w:Partial K := primitiveRootOfUnity(mii);

wi := retract(w);
— op stores OmegaPowers up to mii

OmegaPowers! (op,wi,mii) ;

dftg := dft!(dftg,mii,i,op,workspace);
— f mod X2': truncates f

for j in 0..di repeat dftf.j := coeff.j;
dftf := dft!(dftf,mii,i,op,workspace);

— dftf*dftg pointwise

33

34

for j in 0..di repeat dftf.j := dftf.j*xdftg.j;
dftf := idft!(dftf,mii,i,op,workspace); -- invert dft
di__1 := shift(1,i-1) - 1; -- degree of g_i_1

ndi__1 := next di__1;

— takes the end part

kk:=0;
for j in ndi__1..di repeat {
dftw.kk := dftf.j; kk:=next kk;
}
dftw := dft!(dftw,mii,i,op,workspace);
for j in 0..di repeat dftg.j := dftg.j*dftw.j;
dftg := idft!(dftg,mii,i,op,workspace);

— X241 4 ¥Y: the middle product

for j in 0..di__1 repeat Y.(j+(ndi__1)) := dftg.j;

for j in ndi__1..di repeat G.j :=G.j - Y.j;
— to allow dft! in-place of G, save G

for j in 0..di repeat dftg.j := G.j;
b

— convert to polynomial

res := unvectorize(dftg,nn);
free! (dftg); free!(dftf); free!(dftw); free! (workspace);
free! (op); free!(coeff);

return res;

3.3.2 Extended Euclidean algorithm

We implemented the Half-GCD algorithms of [93] and [19], adapted to yield monic
remainders. The algorithms given in Section 2.1 at Page 8 contain the adaptation we
made. Our implementation of Euclidean division uses power series inversion [43, Ch.
9], when the degree difference between two consecutive remainders is large enough. We
use Strassen’s algorithm [43, Ch. 13] for the 2 x 2 polynomial matrix multiplication;
This implementation outperforms the standard FEuclidean algorithm by a factor of 8
at degree 3000.

35

3.4 Implementation Techniques: the Non-generic

Case

For AXIOM the non-generic case, we put additional efforts on investigating the
efficiency of the compiled code. The reasons are as following. First, we are curious
that, to what extend, a compiler optimizes our polynomial applications. Second,
our work is largely motivated by the implementation of modular methods. High
performance for these methods relies on appropriately utilizing machine arithmetic
as well as carefully constructing underlying data representation. This leads us to look
into machine-level questions, such as machine integer arithmetic, memory hierarchy,
and processor architecture. At this level, C is preferred and assembly is used if
necessary. Third, we are interested in parallel programming, which is not available
at SPAD level, but can be achieved in Lisp and C (see Chapter 9 at Page 139 for
our parallel implementation result). In the following text, we focus on the major
efforts: suitable data representation, SIMD instructions, loop unrolling and thread-

level parallelism.

3.4.1 Data representation

We use dense polynomials as the data representation. We have in mind to implement
algorithms for solving polynomial systems by modular methods over Z/pZ. Polyno-
mials appearing in such applications tend to become “densified” due to intensive use
of Euclidean algorithm, Hensel lifting techniques, etc.

In concrete terms, elements of the prime field Z/pZ are encoded by integers in
the range 0,...,p — 1. This allows us to use C-like arrays such as fixnum-array in
L1sP to encode polynomials in Z/pZ[X]. If p is small enough, we tell the compiler to
use machine integer arithmetic; for large p, we use the Gnu Multiple Precision library
(GMP).

To test the best performance, we write C and assembly code for the operations
such as univariate polynomial addition, multiplication : we pass the array of refer-
ences to our C and assembly code, then return the result back to AXIOM. In the
final implementation as reported in later chapters, we avoid using assembly code for
maintaining the good code portability.

We compare the performance of two univariate polynomial constructors SUP and
UMA. SUP is a pure SPAD level implementation, and UMA is written in Lisp, C and
assembly with a SPAD level wrapper. UMA means Univariate Modular Arithmetic,

36

since it is designed for polynomials in Z/pZ[z]. Over a 64-bit prime field, UMA addi-
tion of polynomials is up to 20 times faster than SUP addition, in degree 30000; the
quadratic UMA implementation of polynomial multiplication is up to 10 times faster
than SUP multiplication, in degree 5000. The FFT multiplication will be discussed
in later text. The UMA implementation is integrated into AXIOM library and used
in an user-transparent way, thanks to the concept of conditional implementation in
AXIOM. Namely, on the condition where polynomial computation is over Z/pZ, UMA
will be automatically used.

Similarly, we have implemented a specialized multivariate polynomial domain over
Z/pZ. The operations in this domain are mostly implemented at the Lisp level
which offers us more flexibility (less type checking, better support from the machine
arithmetic) than at the SPAD level. We follow the vector-based approach proposed
by Fateman [38] where a polynomial is either a number or a vector: If a coefficient is
a polynomial, then the corresponding slot of the “parent” vector keeps a reference to
that polynomial or, say, another vector; otherwise, if the coefficient is a number, the

slot keeps that number.

3.4.2 The implementation of FFT

Our implementation of FFT-based univariate polynomial multiplication in Z/pZ[X]
distinguishes the cases of small (single-precision) primes and big (multiple-precision)
primes. For the big prime case, one can either directly use the big integer arith-
metic, Or use the Chinese Remainder Theorem (CRT) based approach. The general
principle of CRT is to reduce the big integer problem into 2 or more smaller integer
problems [86, 43].

For both small and big prime cases, we used the algorithm of [26] and techniques
discussed in Subsection 3.4.3 below. Figure 3.3 shows a comparison between these
two approaches. We put special effort on the big prime case. We rewrite some GMP
low-level functions for double word size prime arithmetic which is the most useful
case in our polynomial computation. Figure 3.3 shows that the specialized double
precision big prime functions and CRT approaches are faster than the generic GMP
functions. The CRT recombination part spends a negligible 0.06% to 0.07% percent
of the time in the whole FFT algorithm.

37

0.07

CRT ——
Specialized KXXXX
GMP ez

0.06

0.05

0.04

Time [sec]

0.03

0.02

0.01

5

2,000 4,000 8,000
Degree

Figure 3.3: FFT multiplication: GMP functions vs. double precision integer functions
vs. CRT, 64 bit prime.

3.4.3 SSE2, loop unrolling, parallelism

Modern compilers can generate highly efficient code, however for some cases the hand-
tuned code still outperforms the compiler optimization. We show three examples of

hand-tuned improvement from our FFT implementation.

Single precision integer division with SSE2. The single precision modular
reduction uses floating point arithmetic, based on the formula a = a—|a* 1/p|*p [86].
We have implemented this idea in assembly for the Pentium TA-32 architecture with
SSE2 support. This set of instructions is Single Instruction Multiple Data (SIMD);
they make use of XMM registers which pack 2 double floats or 4 single floats/integers

in one single register. The following sample code computes (a*b) mod p with SSE2

instructions.
1 | movl RPTR, %edx 11 | movups (%eax), %oxmmO0
2 | movl WD1, %eax 12 | cvttpd2pi %xmm?2, %mm?2
3 | movl WPD1, %ecx 13 | evtpi2pd %mm?2, %xmm2
4 | movq (%edx), %mmO0 14 | mulpd %xmm2, %xmm0
5 | movups (%eax), %xmml | 15 | subpd %xmm0, %xmml
6 | cvtpi2pd %mm0, %xmmO | 16 | cvttpd2pi %xmml, %mml
7 | movups (%ecx), %xmm2 | 17 | movq %mml, (%edx)
8 | movl PD, %eax 18 | emms
9 | mulpd %xmm0, %xmml | 19 | ret
10 | mulpd %xmm0, %xmm?2

38

Figure 3.4 shows that our SSE2-based FFT implementation is significantly faster

than our generic assembly version.

0.1

FPU —
SSE2 EXXXX

0.08

0.06

Time [sec]

0.04

LT |

0 1,000 2,000 4,000 8,000 16,000 32,000
Degree

Figure 3.4: FFT multiplication: generic assembly vs. SSE2 assembly, 27-bit prime.

Reducing loops overhead. Many algorithms operating on dense polynomials have
an iterative structure. One major overhead for such algorithms is loop indexing
and loop condition testing. We can reduce this overhead by unrolling loops. This
technique is provided by some compilers. For example GCC has a compiler option
funroll-loops which may unroll the loops when certain conditions are satisfied.
However, there is a trade-off: although the overhead mentioned above can be
reduced after loop unrolling, the transformed code may suffer from code size growth
which will aggravate the burden of instruction caching. If the loop body contains
branching statements, increased number of branches in each iteration will have a
negative impact on branch prediction. Hence, compilers and interpreters usually do
static or run-time analysis to decide how much to unroll a loop. However, the analysis
may not be precise when loops become complex and nested. Moreover, compilers
usually do not check if there is a possibility to combine the unrolled straight line
statements for better performance. Therefore, we have unrolled some loop structures
by hand to better control the trade-off mentioned above. We have also recombined
the “flat” code (after the unrolling) into small assembly functions. This allows us
to keep some values in registers or evict those unwanted ones at the most suitable
time. Our purpose is to investigate how much the hand-tuned code outperforms the
compiler optimized code. The assembly implementation is not a part of our final

library implementation due to the portability and maintainability issue.

39

The following is a fragment of our implementation of the FFT-based univariate

polynomial multiplication.

#include "fftdfttab_4.h"
typedef void (* F) (long int *, long int, long int,
long int *, long int, int);
typedef void (* G) (long int *, long int *,
long int *, long int, int);
inline void
fftdftTAB_4(long int * a, long int * b, long int * w,
long int p, F f, G g1, G g2){
long int wO0=1, wé=w[4], * w8=w+8;
f(a, w0, w4, a+2, p, 8); g2(a+d4, w8, at+8, p, 4);
g2(a+12, w8, a+l6, p, 4); gl(a+8, w8, a+l6, p, 8);
f(b, wO, w4, b+2, p, 8); g2(b+4, w8, b+8, p, 4);
g2(b+12, w8, b+16, p, 4); gl(b+8, w8, b+16, p, 8); return;}

This function is dedicated to compute the case where n = 4 (see Section 2.1 at
Page 8 in the FFT algorithm. The functions £, gl, g2 are small assembly functions
which recombine the “flat” (straight-line) statements for higher efficiency. We also
developed similar functions for the cases from n = 5 to 8. However, starting for
n > 6, these straight-line functions are less efficient than the ones using original loop
structure, for the reason of code growth. Figure 3.5 shows that for the small degree
examples, the loop-unrolling version may gain about 10% of the running time of the
complete FFT computation. Actually, this is a significant improvement, since there

are at least 50% time spending on integer division which is irrelevant to loop-unrolling.

Parallelism. Parallelism is a fundamental technique used to achieve high perfor-
mance. In the FFT-based polynomial multiplication, the DFT of the input polynomi-
als are independent, hence, they can be computed simultaneously. Another example is
the (standard) Chinese remaindering algorithm, where the computations w.r.t. each
modulo can be performed in parallel. This can be achieved by thread-level parallelism.
However, AXIOM compiler doesn’t generate parallel code. Therefore, we directly
use the native Posix Thread Library to achieve explicit thread-level parallelism. In

Chapter 9 we report our parallel implementation for more complex algorithms.

40

0.1

Inlined C——1
Non-inlined EXXX=

0.08

KRN
KRN
KRR

3%
:’:’
R
KRR

0.06

>
020
XX

<
X

SO0

XXX
totee!

LR

Time [Milli. Sec.]

0.04

XXX
2K
KKK

XXX
SRR
RRRKK

0.02

L

0 7 15 31 63
Degree

T
S

LS
R

23S
5058

%!
R

%
:’
O
X

TS
3K
%S
X

%
O

<]

Figure 3.5: FFT multiplication: inlined vs. non-inlined, 27-bit prime.

3.5 Performance

In this section, we provide a set of benchmark results. These benchmark programs are
implemented either in ALDOR high level code, or in AXIOM mixing code or in both.
The performance of our code demonstrates that by using suitable implementation
techniques asymptotically fast polynomial arithmetic can outperform the classical

one with relatively low cut-off.

3.5.1 FFT multiplication

We compared our implementations with their counterparts in NTL and MAGMA. For
NTL-v5.4, we used the functions FFTMul in the classes zz_p and ZZ_p, respectively
for small and big primes. For MAGMA-v2.11-2, we used the general multiplication
function “*” over GF(p), the prime field with the prime number p. The input polyno-
mials are randomly generated, with no zero term. In the non-generic case, as shown
in Figures 3.6 and 3.7, our AXIOM implementation is faster than N'TL’s over small
primes, but slower than N'TL over big primes; but we are faster than MAGMA and
other known computer algebra systems in both cases. One possible reason is that
NTL re-arranges the computations in a more “cache-friendly” way. In the generic
case, the ALDOR implementation is comparable to (generally slightly slower than)
MAGMA’s counterpart. ALDOR’s implementation is at pure high level with high level

abstraction of coding, thus, the performance is still satisfactory.

41

0.3

0.25 FAXIOM

0.2

0.15 ;

Time [sec]

0.1 : J_,—'J_r
0.05 o
0 5000 10000 15000 20000 25000 30000 35000

Degree

Figure 3.6: Multiplication modulo a 27-bit prime.

Time [sec]

0 5000 10000 15000 20000 25000 30000 35000
Degree

Figure 3.7: Multiplication modulo a 64-bit prime.

3.5.2 Multivariate multiplication

We compute the product of multivariate polynomials via the Kronecker substitu-
tion (see the appendix). Recall that we use vector-based recursive representation for
multivariate polynomials, and one-dimensional arrays for univariate ones. So, the for-
ward substitution simply copies coefficients from the coefficient tree of a multivariate
polynomial to the coefficient array of an univariate polynomial. We use a recursive
depth first tree walk to compute all the univariate polynomial exponents from the
corresponding multivariate monomials’ exponents; at the same time, according to this
correspondence we conduct the forward substitution. We use the same idea for the

backward substitution. The comparisons between MAGMA and our AXIOM code

42

are given in Figures 3.8 to 3.10, where “degree” denotes the degree of the univari-
ate polynomials obtained through Kronecker’s substitution. We used random inputs,

with no zero terms.

0.2

VAGMA ——
AXIOM —— .

0.18

0.16 MV/LJ
0.14

0.12 '/M/

7’ o -
PR]
= 008 jj

0.06

H Ve

0.04 /'LHHAUJ J

0.02

0

0 2000 4000 6000 8000 10000 12000

Degree

Figure 3.8: Bivariate multiplication, 27-bit prime.

2 ‘
MAGMA ——
L5 |AXIOM —— —
1.6
1.4
_ 12
8
I 1
E
& os
J,_..._——/———f—’_’“’“’—“‘/r.ﬁm,
0.6 l
04 Al
02 r’/j
0
0 2000 4000 6000 8000 10000 12000

Degree

Figure 3.9: Bivariate multiplication, 64-bit prime.

Our FFT-based multivariate polynomial multiplication over Z/pZ outperforms
MAGMA’s in these cases. Figure 3.8 may infer that MAGMA is in the “classical multi-
plication” stage; our FFT-based implementation is already faster. From Figures 3.9,
3.10 we observe that both our and MAGMA’s FFT’s show the FFT staircase-like

curves.

43

IAGMA —a—
AXIOM —A— m

Time [sec]
IS

A A

4 /T y ' S
, il)/ AL /

0 2000 4000 6000 8000 10000 12000 14000 16000
Degree

Figure 3.10: Four-variable multiplication, 64-bit prime.

3.5.3 Power series inversion

We compare here the power series inversion, in the optimized ALDOR version, with
NTL’s and MAGMA’s implementations. MAGMA offers a built-in InverseMod function
(called “builtin” in the figure), but the behavior of this generic function is that of an
extended GCD computation. We have also compared the MAGMA PowerSeriesRing
domain inversion (called “powerseries” in the figure) with our own implementation
of the Newton iteration. Figure 3.11 shows the relative performances: NTL is the

fastest one in this case, and ALDOR is the second, within a factor of 2 slower.

1.2

T T
MAGMA (powerseries)

MAGMA (our impl)

0.8

0.6

Time [sec]

0.4

0.2

1K 2K 3K 4K 5K 6K 7K
Degree (K=1000)

Figure 3.11: Power series inversion: Aldor vs. NTL vs. MAGMA, 27-bit prime.

44

3.5.4 Fast extended Euclidean algorithm

35

T T
IAGMA XGCD ----------

ALDOR

MAGMA GCD

NTL
25

Time [sec]

15

A
) e P T L
. e e
ot npnafin
\inum\l\mun\
0 _ﬂ‘mﬂﬁ@'_f_\
1K 2K 3K 4K 5K 6K 7K 8K

Degree (K=1000)

Figure 3.12: EEA: ALDOR vs. NTL vs. MAGMA, 27-bit prime.

In Section 3.3.2 we have reported the relative performance between the existing
standard (non-fast) Euclidean algorithm in ALDOR and the implementation of the fast
algorithm. We have also compared our ALDOR generic fast algorithm with the existing
implementations in NTL and MAGMA. In the following benchmark, we compare our
fast extended Euclidean algorithm implementation in ALDOR with NTL and MAGMA
again. Unlike ours, the NTL implementation is not over a generic field but over a
finite field, and uses improvement like FFT-based polynomial matrix multiplication.
MaGMmA’s performance differs, according to whether the GCD or XGCD commands are
used. Figure 3.12 shows the relative performances; our input is degree d polynomials,
with a GCD of degree d/2. Again, NTL is the fastest and ALDOR’s performance is
in between two flavors of MAGMA’s implementation (using GCD or XGCD).

3.6 Summary

The work reported in this chapter is the beginning of a large scale effort; The re-
sult from this chapter demonstrates that asymptotically fast polynomial arithmetic
can outperform the classical one with relatively low cut-off. The implementation
technique is highly important for reducing the overhead in these fast methods. Af-
ter replacing the classical polynomial arithmetic by the fast ones, the higher level

algorithms can be sped up in a significant manner.

45

Chapter 4

Efficient Implementation of
Polynomial Arithmetic in a
Multiple-level Programming

Environment

4.1 Overview

In Chapter 3 we have discussed the asymptotically fast polynomial arithmetic and
our preliminary implementation effort towards high performance. In this chapter we
proceed to more intensive investigation on the implementation technique itself. More
specifically, we investigate the implementation techniques suited to the multiple-level
language environment in AXIOM. We target on the implementation for polynomial
arithmetic in this chapter. Indeed, some polynomial data types and algorithms can
further take advantage of the unique features in lower level languages, such as the
specialized data structures or the direct accessing to machine level arithmetic. On
the other hand, some data types or algorithms maybe more abstract and suited to be
implemented in a very expressive high level languages. Therefore, we are interested
in the integration of polynomial data type and implementation realized at different
language levels. In particular, we consider the situation for which code from different
language levels can be combined together within the same application.

However, linkage to specialized code is a substantial bonus when low-level imple-
mentation can take advantage of special software or hardware features. The purpose

of this study is to investigate implementation techniques for polynomial arithmetic

46

in a multiple-level programming environment. We are interested in the integration of
polynomial data type implementations realized at the different code levels. In par-
ticular, we consider situations for which code from different levels can be combined
together within the same application in order to achieve high-performance. As a
driving example, we use the modular algorithm of van Hoeij and Monagan [50]. We
recall its specifications. Let K = Q(aq, as, ..., a.) be an algebraic number field over
the field Q of the rational numbers. Let fi, fo € K[y] be univariate polynomials over
K. The algorithm of van Hoeij and Monagan computes ged(f1, f2). To do so, for
several prime numbers p, a tower of simple algebraic extensions K, of the prime field
Z/pZ is used. Arithmetic operations in K, are performed by means of operations on
multivariate polynomials over Z/pZ, whereas the operations on the images of f, fo
modulo p are performed in the univariate polynomial ring K,[y]. Therefore, several
types of polynomials are used simultaneously in this algorithm. This is why it is a
good candidate for our study. We chose AXIOM as our implementation environ-
ment based on the following observations. AXIOM has a high-level programming
language, called SPAD, which possesses all the essential features of object-oriented
languages. Libraries written in SPAD implement a hierarchy of algebraic structures
(groups, rings, fields, ...) and a hierarchy of algebraic domains (Q, A[x] for a given
ring A, ...).

As mentioned in Section 2.2 at Page 2.2, the SPAD compiler translates SPAD
code into COMMON LiIsP, then invokes the underlying LisP compiler to generate
machine code. Today, GCL [3] (GNU CoMMON Lisp) is the underlying Lisp of
AXIOM [2]. The design of GCL makes use of the native C compiler for compiling
to native machine code. In addition, GCL employs the GNU Multi-Precision library
(GMP) [4] for its arbitrary precision number arithmetic. Therefore, AXIOM is an
efficient multiple language level system. Moreover, the complete AXIOM system is
open-source. Hence, we can implement our packages at any language level and even
modify the AXIOM kernel. This allows us to take advantage of each language level’s
strength and access machine arithmetic directly when necessary. Therefore, we believe
that AXIOM, with its different implementation levels, all in open source, provides
an exceptional development environment among all computer algebra systems, for
the purpose of our study.

The outline of this chapter is as following. In Sections 4.2, 4.3 and 4.4 we discuss
the unique features (in view of our objectives) of the SPAD, Lisp, C and ASSEMBLY
level from AXIOM. Implementation techniques at each level are also discussed re-

spectively. In Section 4.6, we report our experimentation result. Our result suggests

A7

that choosing adapted data structures and writing code at suitable language level are

essential for high-performance for our polynomial applications.

NOTE: This chapter is written based on the published paper [65].

4.2 The SPAD Level

From Section 3.2 at Page 28, we know that the SPAD language of AXIOM has a
two-level object model of categories and domains. In fact, the user can define an
new category or domain and add it into the library modules. The new definition
is called an AXIOM type constructor. An AXIOM type constructor is simply a
function which returns an AXIOM type, that is a category or a domain. For in-
stance, SparseUnivariatePolynomial, abbreviated to SUP, is a type constructor,
which takes an argument R of type Ring and returns an instance of the type: univari-
ate polynomials over R, with an underlying sparse polynomial data representation.
The interface (in sense of Java) of SUP(R) is UnivariatePolynomialCategory (R)
where UnivariatePolynomialCategory is a category constructor.

The SPAD language supports conditional exports. This permits to implement the
following statement: if R has type Field then SUP(R) implements EuclideanDomain.
SPAD also supports conditional implementation. This is similar to the concept of
generics in Java. For instance, if R has type PrimeFieldCategory, The specialized
“modular integer arithmetic” package can be automatically chosen. These features of
the SPAD language are important for combining different data types and achieving
high-performance.

To implement an new domain constructor, the programmer may have to choose
a data representation for this domain type. For example SUP uses sparse polynomial
data representation and DUP uses dense polynomial data representation. After an
newly defined domain or category is compiled, it becomes an AXIOM data type
which can be used just like any system provided data type.

In the light of these properties of the SPAD language, we describe briefly the
polynomial type constructors that we use in this study. Please, see [52] and [64] for
more details. Let R be an AXIOM Ring and V be an AXIOM 0OrderedSet.

SUP or UP. As mentioned above, the domain SUP(R) implements the ring of uni-
variate polynomials with coefficients in R. More precisely, it satisfies the
AXIOM category UnivariatePolynomialCategory (R). The representation of

these polynomials is sparse, that is, only non-zero terms are encoded.

48

DUP. The domain DUP(R) implements UnivariatePolynomialCategory(R) as well.

The representation is dense: all terms, null or not, are encoded.

NSMP. The domain NSMP(R,V) implements the ring of multivariate polynomials with
coefficients in R and variables in V. (To be precise, it implements the AXIOM
category RecursivePolynomialCategory(R, V).) A non-constant polynomial
f of NSMP (R), with greatest variable v, is regarded as an univariate polynomial
in v implemented as an element of SUP (NSMP (R)). Therefore, the representation

is recursive and sparse.

DRMP. The domain DRMP(R,V) implements the same category as NSMP(R,V). The

representation is also recursive. However, it is based on DUP rather than SUP.

The constructors SUP and NSMP are provided by the AXIOM standard distribu-
tion, whereas DUP and DRMP are our implementation. As mentioned in Section 1.2
modular methods tend to “densify” the polynomial computation. Therefore, dense
polynomial representation is the most suitable one for this kind of methods. Our
algorithms in this thesis are mostly related to modular arithmetic, thus dense poly-
nomials is our canonical data representation in our implementation. One example of
modular algorithms we implemented as a benchmark program in this Chapter is van
Hoeij and Monagan’s modular GCD algorithm [50]. We will use this implementation
as the principle benchmark program to test the performance of all the polynomial

data types and their combination.

4.3 The Lispr Level

The domain constructors SUP, DUP, NSMP and DRMP allow the user to construct polyno-
mials over any AXIOM Ring. So we say that their code is generic. Ideally, one would
like to use also conditional data representations. For instance, one could think of a
domain U(R) implementing univariate polynomials over R such that sparse polynomi-
als have a sparse representation and dense polynomials have a dense representation.
In addition, if R implements a prime field Z/pZ for a machine word size prime p, one
could encode each dense polynomial of U(R) by an array of machine words (such that
the slot of index ¢ contains the coefficient in the term of degree 7). But this ideal type
constructor U would be very difficult to be analyzed by the run-time system. Indeed,
many tests would be needed for selecting the appropriate representation for the right
computation, at the right moment. Therefore, we use specialized domain construc-

tors (say, dense univariate polynomials over a prime field) canonically for a specific

49

algorithm (for instance, the modular GCD algorithm by van Hoeij and Monagan).
By experimentation, we observe that this approach is more effective than switching
data representation at run-time for our application due to the overhead mentioned
above.

For these reasons, we have defined at the SPAD level a specialized polynomial
type constructor MultivariateModularArithmetic, abbreviated to MMA. It takes a
prime integer p and V an OrderedSet as its arguments. MMA(p,V) implements the
same interface as DRMP (PF (p),V) does where PF(p) is a prime field of characteristic
p. In fact, all the concrete operations of MMA(p,V) have been implemented at LiSP
level. The SPAD level MMA (p,V) domain is just a wrapper. The reason we write MMA
at Lisp level instead at SPAD level is as following:

In MMA, we have used the vector-based recursive dense representation proposed by
Richard J. Fateman [38]: a multivariate polynomial f is encoded by a number (to be
precise, an integer modulo p) if f is constant and, otherwise, by a LiSP vector storing
the coefficients of f w.r.t its leading variable. At the SPAD level, such disjunction has
to be implemented by an union type bringing an extra indirectness. However, this can
be avoided at the Lisp level. Not like SPAD doing strict compile time type-checking,
Lisp only does run-time type-checking. Moreover, for the Lisp implementation such
as GCL, the run-time type-checking can be switched off manually. Thus, f can be
assigned by a number or a vector in LISP without any compilation error and run-time
overhead optionally.

In addition, in Lisp for the machine integer size prime case we can decorate the
code to force the LIsP compiler to use machine integer array (fixnum-array). However
this is a non-easy task in SPAD language. Even we decorate the code at SPAD level,
the array type used is an array of reference to the machine integers. This array type is
far less efficient than the C-like array “fixnum-array” while the dense polynomials are
over Z/pZ with p a machine integer prime. Therefore, for certain applications such as
our example the LiSP level code may yield more efficient implementation comparing
to the SPAD level.

We have defined at the SPAD level an univariate type constructor
UnivariateModularArithmetic, abbreviated to UMA, taking a prime integer p as
argument and implementing the same operations as DUP(PF(p)). It is also a SPAD
level wrapper for two LISP level implementations: one for the machine prime case
and one for the big prime case. In both cases, univariate polynomials are again en-
coded by fixnum-array. It is possible directly using C arrays to encode univariate

polynomials over Z/pZ, but we prefer, at this experimentation stage, the Lisp level

20

garbage collection system which is more convenient. For the machine prime case,
each entry in fixnum-array is a coefficient. For the big prime case, two or more
entries encode one coefficient up to the size the prime number. All these specialized
implementations at the LisP level yield significant speed up comparing to the original

SPAD level packages. The benchmark result is reported in Section 4.6 at Page 52.

4.4 The C Level

GCL is implemented in C language and uses the native optimizing C compiler to
generate native machine code. This allows us to extend the functionality of the Lisp
level in AXIOM by writing new C code. For example, we can integrate an new C
function into the GCL kernel image, or add it into a GCL library.

This interoperability between Lisp and C has at least two benefits. First, our
ASSEMBLY code (written for some efficiency critical operation previously, see Sec-
tion 4.5 below) can be inlined in the C code, thus available for Lisp function. Sec-
ond, we can directly use existing C libraries such as GMP library [4] or NTL [6] to
speed up LisP level implementation. We illustrate these two benefits by an important
example: the implementation of dense univariate polynomial domain over the prime
field Z/pZ, i.e the UMA domain constructor (see Section 4.3 at Page 48).

Recall that we have two implementation cases for UMA: one for small primes p (that
fits in single precious machine word) and one for big primes p (that is bigger than
the biggest single precious machine word). For both the small and big prime cases,

we have the following code which has been integrated into the GCL kernel:

e classical multiplication, addition and Chinese remaindering algorithm written

in ASSEMBLY,
o FFT-based multiplication written in C with ASSEMBLY sub-routines.

Moreover, in the big prime case, we have developed a highly efficient double precision
big integer arithmetic package by modifying GMP multiprecision subroutines. This
is motivated by the importance of the double precision integer computation in our
application. For instance, most prime numbers used in the modular method of [27]

are of that size.

51

4.5 The AsseMBLY Code Level

Primarily, our ASSEMBLY level implementation is for univariate polynomial addition
and multiplication. As we know that big integer arithmetic is basically the same as
univariate polynomial arithmetic modulo a prime number. The only difference is the
“carry” issue. So we can directly modify the existing big integer libraries such as
GMP to perform univarivate polynomial arithmetic over Z/pZ. Since the related
GMP operations are implemented in assembly, we directly modify their ASSEMBLY
level operations and link the modified operations into AXIOM. In this way, we have
avoided extra encoding effort and obtained highly efficient ASSEMBLY level polyno-
mial operations. Besides this, there are two other reasons to use ASSEMBLY code in
our AXIOM environment: “controlling register allocation” and “using architecture

specific features”.

4.5.1 Controlling register allocation

In a modern computer architecture, CPU registers sit at the top level of the memory
hierarchy. Although optimizing compilers devote special efforts to make good use of
the target machine’s register set, this effort can be constrained by numerous factors,

such as:
e difficulty to estimate the execution frequencies of each part of the program,
e difficulty to allocate or evict ambiguous values,
e difficulty to take advantage of some new hardware features on specific platforms.

Therefore, some high-performance oriented applications require programmers to bet-
ter exploit the power of registers on a target machine. In fact, we have spent a
great effort in this direction in our implementation. First, we directly program the
efficiency-critical parts in ASSEMBLY language in order to explicitly manipulate data
in registers. For example, for dense univariate polynomials over Z/pZ, we write the
classical multiplication algorithm in both C and ASSEMBLY language. The ASSEMBLY
version is faster than the C version since we always try to keep frequently used vari-
ables in registers instead of a memory location. Although in C we can declare a
variable to be of “register” type as in GCC, this does not guarantee that the register
is reserved for this variable. According to our benchmark results, our explicit register

allocation method is always faster than the C compiler’s optimization.

52

Besides the general purpose registers, we also can use MMX, XMM registers if they
are available. Keeping the working set in registers will yield significant performance

improvement comparing to keeping them in the main memory.

4.5.2 Using architecture specific features

Polynomial arithmetic in Z/pZ[z] makes an intensive use of integer division. This
integer operation has a dominant cost in crucial polynomial operations like the FFT-
based multiplication over Z/pZ. Therefore, improving the performance of integer
division is one of the key issues in our implementation.

In Section 3.4.3 at Page 37, we have introduced the fast integer division trick
by using assembly code with SIMD instructions. Our implementation of the FFT-
based polynomial multiplication over Z/pZ uses this technique. It is faster than using
FPU unit, as reported in Section 4.6 at Page 52. In Section 5.2.2 at Page 59 and
Section 6.3 at Page 79. we present other integer division tricks we have developed

whereas implemented at C level.

4.6 Experimentation

4.6.1 Benchmarks for the Lisp level implementation

The goal of these benchmarks is to measure the performance improvements obtained
by our specialized dense multivariate polynomial domain constructor MMA imple-
mented at the LIsP level and described in Section 4.3 of this chapter. We are also
curious about measuring the practical benefit of dense recursive polynomial domains
in a situation (polynomial GCD computations over algebraic number fields) where
AXIOM libraries traditionally use sparse recursive polynomials.

As mentioned in the introduction, our test algorithm is that of van Hoeij and
Monagan [50]. Recall that, given an algebraic number field K = Q(ay, as, . .., ae),
this algorithm computes GCDs in K[y] by means of a small prime modular algorithm,
leading to computations over a tower of simple algebraic extensions K, of Z/pZ.

Recall also that the algorithm involves two polynomial data types:

e a multivariate one for the elements of K and K,

e a univariate one for the polynomials in Ky| and K,[y].

Figure 4.1 shows the different combinations that we have used.

23

Q(ay,as, ..., a.) K[y]
NSMP in SPAD | SUP in SPAD
DMPR in SPAD DUP in SPAD
MMA in Lisp SUP in SPAD
MMA in LISP DUP in SPAD

Note that:

e the first two combinations, that is NSMP + SUP (sparse polynomial domains)

and DMPR + DUP (dense polynomial domains), involve only SPAD code,

e the other two combinations use MMA - our dense multivariate polynomials
implemented at the Lisp level and SUP/DUP - univariate polynomials written
at the SPAD level.

We would like to stress the following facts:

e the algorithms for addition, multiplication, division of DRMP and MMA are iden-

tical,

e none of the above polynomial types uses fast arithmetic, such as FFT-based or

Karatsuba multiplication.
Remember also that:

e the SPAD constructors NSMP, DMPR, UP, and DUP are generic constructors, i.e.
they work over any AXIOM ring,

e however, our dense multivariate polynomials implemented at the Lisp level

(provided by the MMA constructor) only work over a prime field.
Therefore, we are comparing here is the performances of
e specialized code at the Lisp level versus generic code at the SPAD level,
e sparse representation versus dense representation.
We have set the benchmark of van Hoeij and Monagan’s algorithm for
e different degrees of the extension Q — K,
o different degrees of the input polynomials

o and different sizes for their coefficients.

54

Figure 4.1 p. 55 shows our benchmark results. First, we fix the coefficient size bound
to 5 and increase the total degree (degree of the extension plus maximum degree
of an input polynomial). The charts (a), (b) and (c) correspond to towers of 3, 4
and 5 simple extensions respectively. Second, we fix the total degree to 2000 and
increase the coefficient bound. The charts (d), (e) and (f) correspond to towers of 3,
4 and 5 simple extensions respectively. In (a), (b) and (c) fixing the coefficient size
bound, and increase the total degree of input polynomials. Conversely in (d), (e),
and (f) fixing the total degree and increase the coefficient size bound. We observe

the following facts.

Charts (a), (b), (c). For univariate polynomial data types, DUP outperforms SUP
and, for the multivariate polynomial data types, MMA outperforms DRMP, which
outperforms NSMP. For the largest degrees, the timing ratio between the best
combination, DUP + MMA, and the worst one, SUP + NSMP is in the range 2-- - 3.

Charts (d), (e), (f). The best and the worst combinations are the same as
above, however the timing ratio is in the range 3---4. Interestingly, the sec-
ond best combination is SUP + MMA for small coefficients and DUP + DRMP for
larger ones. This fact maybe explained by following reasons: First, the SUP
constructor relies on some fast routines which allows it to compete with the
DUP constructor for small input data. Second, memory allocation and garbage
collection of polynomials built with DUP + DRMP appears to be more efficient
than for SUP + MMA polynomials, for large size data.

4.6.2 Benchmarks for the multi-level implementation

In the previous chapter, we have already demonstrated that our AXIOM fast mul-
tivariate multiplication based Kronecker substitution is competitive and often out-
performs its counterpart - a similar computer algebra system, namely MAGMA. This
implementation involves code from SPAD, Lisp, C and ASSEMBLY level. For the
Kronecker substitution part, we write code at SPAD and LisP levels. However, for
the FFT-based univariate multiplication, we write code at C and ASSEMBLY level as
reported in Section 3.4.2 at Page 36, since the optimized grouping of machine level
operations has a huge impact on the performance. As shown in Figures 3.7, this

mix-code approach yields high-performance result.

Time [sec]

Time [sec]

Time [sec]

250
UP(NSMIP(Q.[wxy.z]) - - -
DUP(DMP(Q,[W,X,y,z])) — .
UP(MMA(Q,[w.x,y,2l)) —— P
DUP(MMA(Q [w.xy.z)) = = .-
200 -
» / =
150 B /
b
7
100
'
50
0
0 5000 10000 15000 20000 25000
Total Degree
(a)
120 T T T T
UP(NSMP(Q,[u,v,w.X,y,z|
100 DUPMMAQuywxye)) = = e
.7 -~
N . / -
60 sl
L / /f
- / _—
40 /’ =
, / _ - - -
/ — - -
20 17 =
=
z
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Total Degree
(c)
140 : r T ~
UP(NSMP(Q,[v.w.x,y.z])) - - -
DUP(DMP(Q,[V,W,X,y,Z])) se— P
1o L UP(MMA(Q,[v,w,x,y.21)) .
- DUP(MMA(Q,[v.W,X,y.z])) = = .
100 ’
80 o
60 . e
o
M - -
" -
—=
0
0 5 10 15 20 25 30

Coefficients bound

Time [sec]

Time [sec]

Time [sec]

250
"UP(NSMP(Q.[v.w.x.y.z])) - - -
DUP(DMP(Q,[VW.Xy.7])) = .
UP(MMA(Q,[v,w,x,y,z])) -7
DUP(MMA(Q.[v.w.xy.z) = = .-
200 -
. —
150 . e =
. //
. //
R —
100 /
L7 — - -
50
P =
) -
L4

0
0 2000 4000

6000 8000 10000 12000 14000 16000 18000
Total Degree
140 T T T T
UP(NSMP(Q.[w.x,y.z])) - - -
DUP(DMP(Q.[w.x.y.z])) == L
10 L UP(MMA(Q[w.x.y.2])) —— .
DUP(MMA(Q.[w.x.y.z])) = = P
100 P
80 5
60
40 =
20 froe e
= -
0
0 5 10 15 20 25 30 35 40 45
Coefficients bound
450 T T
UP(NSMP(Q,[u,v,w.x,y.z])) - - - B
[U.V,W.X,y,7])) .
400 | W.x.y.zl))
UP(MMA(Q.[uv.wox,y.z) = = .
350
300
250 -
200 st
150 D
100 -
50 / e ERn =
0
0 5 10 15 20 25

Coefficients bound

Figure 4.1: Benchmark of van Hoeij and Monagan’s algorithm

5}

26

4.7 Summary

We have investigated implementation techniques for polynomial arithmetic in the
multiple-level programming environment of the AXIOM computer algebra system.
Our benchmark results show that careful integration of data structures and code
from different levels can improve the performances in a significant manner (a ratio
of 2-4 speed up reported in Section 4.6). The integration process requires deep un-
derstanding of polynomial arithmetic, machine arithmetic and compiler optimization
techniques. However, we believe that it should be implemented in a transparent way

for the end-user.

o7

Chapter 5

How Much Can We Speed-up the
Existing Library Code in AXIOM

with the C Level Implementation?

5.1 Overview

In Chapter 4 we use van Hoeij and Monagan’s modular GCD algorithm as a benchmark
example. By choosing different polynomial data type and implementation technique
at different language level, the performance on the same algorithm are obviously dif-
ferent. Based on this experimentation, we believe that the appropriate combination
of lower level language implementations are the most efficient way to realize high
performance packages for our dense classical and asymptotically fast polynomial ap-
plications. However, one problem of this strategy is that the multiple language level
implementation is difficult to maintain and has limited portability. Therefore, we try
to compress the multiple level code into a single level - the C level. From LiSp level
to C level, the code becomes more complex. However, for our application, this step is
relatively simple since our LIiSP level code doesn’t use too much functional language
features. We also carefully study the C compiler optimization technique. We try
to write highly efficient C code which is close to the performance of our previous
ASSEMBLY level code. Therefore, similarly to Chapter 4 we need to systematically
measure the performance improvement for SPAD level algorithms after supplied with
C level support. More precisely, in this chapter our experimentation examples can
be formulated as following: given a high-level AXIOM package P parametrized by a

univariate polynomial domain U, we compare the performances of P when applied to

o8

different U’s. One of the Us is our C asymptotically fast polynomial arithmetic im-
plementation wrapped in a SPAD level domain constructor. The rest Us are existing
AXIOM domain constructors implemented at SPAD level.

Our experiments show that when P relies our C level fast arithmetic implementa-
tion a significant speed-up observed comparing to those relying on other Us. We also
compare with other systems. For instance, the square-free factorization in AXIOM
with the new support is 7 times faster than the one in MAPLE and very close to the one
in MAGMA. Therefore, we believe our asymptotically fast algorithm implementation
in C can speed up high level language interfaces generally.

The outline of this chapter is as following. In Section 5.2.1, we review the AXIOM
polynomial domain constructors used in our experimentation. In Section 5.2.2 and
5.2.3, we discuss finite field arithmetic and polynomial arithmetic. In Section 5.3, we

compare the benchmark results.

NOTE: This chapter is written based on the published paper [70].

5.2 Software Overview

5.2.1 AXIOM polynomial domain constructors

In Section 4.2 at Page 47, we have introduced AXIOM univariate and multivariate
polynomial domain constructors. In this section, we introduce an new univariate
polynomial domain constructor DUP2(R) (DenseUnivariatePolynomialDomain version
two of the base ring R) DUP2(R) is designed for the one whose base ring R is a prime
field. In Section 5.2.1 at Page 58 we will review all the related AXIOM constructors,
then illustrate DUP2(R). In Section 5.3 at Page 61 we will provide the benchmark
between DUP2(R) and other constructors. Let R be an AXIOM Ring. The domain
SUP(R) implements the ring of univariate polynomials with coefficients in R. The data
representation of SUP(R) is sparse: only non-zero terms are encoded. The domain
constructor SUP is written in the SPAD language.

The domain DUP(R) implements exactly the same operations in SUP(R). More
precisely, these two domains satisfy the same category UnivariatePolynomial-
Category(R) (or interface in the sense of Java). However, the representation of the
latter domain is dense: all terms, null or not, are encoded. The domain constructor
DUP is also implemented in the SPAD language, see [64] for details.

Another important domain constructor in our study is PF: for a prime num-
ber p, the domain PF(p) implements the prime field Z/pZ. Our C code is ded-

29

icated to polynomial computation over Z/pZ with dense polynomial representa-
tion. To make this code available at the AXIOM level, we have implemented a
wrapper domain constructor DUP2 to wrap up our C code. For a prime number
p, the domain DUP2(p) implements the same category as DUP(FP(p)) does , i.e.
UnivariatePolynomialCategory (PF(p)).

5.2.2 Finite field arithmetic

As mentioned in previous chapters, finite field arithmetic is especially important for
our modular fast algorithms. Thus, we have put great effort on it. On the one hand,
we design more efficient tricks for finite field arithmetic as reported in this section
(and later an new trick in Section 6.3 at Page 79), on the other hand we implement
these tricks in C code. The C implementation of the new tricks has even better
performance comparing to the previous ASSEMBLY level implementation (the one
reported in Section 3.4.3 at Page 37). There are two reasons: better arithmetic and
highly optimized C code.

In this section, we focus on some special small finite fields. By a small finite field,
we mean a field of the form K = Z/pZ, for p a prime that fits in a 26-bit word (so that
the product of two elements reduced modulo p fits into a double floating-point
register). Furthermore, the primes p we consider have the form k2° + 1, with &k a
special small odd integer (typically & < 7), which enables us to write specific code for
integer Euclidean division. Although this is a trick for special prime numbers, it is
good enough for the most of our polynomial applications where we have the freedom
to choose prime numbers.

The elements of Z/pZ are represented by integers from 0 to p — 1. Additions and
subtractions in Z/pZ are performed in a straightforward way: we perform integer
operations, and the result is then reduced modulo p. Since the result of additions and
subtractions is always in —(p — 1),...,2(p — 1), modular reduction requires at most
a single addition or subtraction of p; for the reduction, we use routines from Shoup’s
NTL library [6, 86]. Multiplication in Z/pZ requires more work. A popular solution
implemented in NTL conducts a multiplication in double precision floating-point
registers, computes numerically the quotient appearing in the Euclidean division by
p, and finally deduces the remainder.

Using the special form of the prime p, we have designed the following faster “ap-
proximate” Euclidean division, that shares similarities with Montgomery’s REDC

algorithm [74]; for another use of arithmetic modulo special primes, see [37]. Let

60

thus Z be in 0,..., (p — 1)%; in actual computations, Z is obtained as the product of
two integers less than p. The following algorithm computes an approximation of the
remainder of kZ by p, where we recall that p has the form k2¢ + 1:

1. Compute ¢ = | Z].

2. Compute r = k(Z — ¢2%) — q.

Proposition 5.2.1. Let r be as above and let ro < p be the remainder of kZ by p.
Then r = ro mod p and r = ry — dp, with 0 < § < k + 1.

PRrROOF. Let us write the Euclidean division of kZ by p as kZ = qop + ro. This
implies that

QO—H”OJ

:quﬁ k2!

holds. From the equality qp + r = qop + 1o, we deduce that we have

: Qo +To
=7r9—9 th =
r=rg—0p wi { oY J
The assumption Z < (p — 1)? enables us to conclude that § < k + 1 holds. O

In terms of operations, this reduction is faster than the usual algorithms which rely
on either Montgomery’s REDC or Shoup’s floating-point techniques. The computa-
tion of ¢ is done by a logical shift; that of r requires a logical and (to obtain Z —2¢q),
and a single multiplication by the constant c. Classical reduction algorithms involve 2
multiplications, and other operations (additions and logical operations). Accordingly,
in practical terms, our approach turns out to be the most efficient one.

There are however drawbacks to this approach. First, the algorithm above does
not compute Z mod p, but a number congruent to £Z modulo p (this multiplication
by a constant is also present in Montgomery’s approach). This is however easy to
circumvent in several cases, for instance when doing multiplications by precomputed
constants (this is the case in FFT polynomial multiplication, see below), since a
correcting factor k! mod p can be incorporated in these constants. The second
drawback is that the output of our reduction routine is not reduced modulo p. When
results are reused in several computations, errors accumulate, so it is necessary to
perform some error reduction regularly which is an overhead.

In Section 6.3 at Page 79, we extend this special prime reduction trick into a more
generic method. The trick presented in this section has approximation steps in the
middle stage, and obtain the exact result in the end after removing the “errors”. The
more generic trick will maintain all intermediate results exact and it works for all

Fourier prime numbers.

61

5.2.3 Polynomial arithmetic

In Section 2.1 at Page 8 we have introduced a set of FFT-based algorithms. In this
section, we briefly review the fast division and Half-GCD algorithms. We use these
two as benchmark programs in Section 5.3 of at Page 61.

Our implementation of fast Euclidean division is based on Cook-Sieveking-Kung’s
approach [43, Chapter 9]. One of the major steps in this approach is to compute New-
ton’s iteration. We have implemented Newton’s iteration with the support of middle
product technique [49]. This technique can reduce the cost of a direct implementation
by a constant factor. For the GCD computation, we have implemented both the
classical Euclidean algorithm and the faster Half-GCD techniques [43, Chapter 11].
The classical one has complexity in O(d?), whereas the latter one is in O(dlog(d)?)

with a large multiplicative constant factor.

5.2.4 Code connection

Recall that in Section 3.2.2 at Page 29, we have described the way to integrate multiple
level code in AXTOM. Actually, the crucial step is converting different polynomial
data representations between AXIOM and the ones in our C library via GCL level.
The overhead of these conversions may significantly reduce the effectiveness of our C
implementation. Thus, good understanding of data structures in AXIOM and GCL

is a necessity to establish an efficient code connection.

5.3 Experimentation

In this section, we compare our specialized domain constructor DUP2 with our generic
domain constructor DUP and the existing (default) AXIOM domain constructor SUP.
Our experimental computations are in the polynomial rings:

o 4, = Z/pllx],

o B, = (Z/pZla]/(m)l),
for a machine word prime number p and an irreducible polynomial m € Z/pZ[z|. The
ring A, can be implemented by any of the three domain constructors DUP2, DUP and
SUP applied to PF(p), whereas B, is implemented by either DUP and SUP applied to
A,. In both A, and B,, we compare the performances of factorization and resultant

computation. We have two goals for this experimentation:

(G1) When a large portion of the running time spends on computing products, re-

mainders, quotients, GCDs in A,, we believe that there are opportunities for

62

significant speed-up when using DUP2 and we want to measure this speed-up
w.r.t. SUP and DUP.

(G2) Otherwise, when there is a little portion spends on computing products, re-
mainders, quotients, GCDs in A,, we want to check whether using DUP2 is still
better than using SUP and DUP.

For computing univariate polynomial resultants over a field, AXIOM calls the
package PseudoRemainderSequence (using the algorithms of Ducos [32]). This pack-
age takes R: IntegralDomain and polR: UnivariatePolynomialCategory(R) as
parameters. However, this code has its private divide operation and does not rely
on the one provided by the domain polR. In fact, the only non-trivial operation will
be used from polR is polynomial addition. Therefore, the package PseudoRemain-
derSequence does not take advantage of our fast division even it’s available. Hence,
for this example, there is very little speedup when using DUP2 instead SUP and DUP.

For square-free factorization over a finite field, AXIOM calls the package
UnivariatePolynomialSquareFree. It takes RC: IntegralDomain and P: Univa-
riatePolynomialCategory(RC) as parameters. In this case, the code relies on the
operations gcd and exquo provided by P. Hence, if P provides fast GCD computations
and fast divisions, UnivariatePolynomialSquareFree can use them. In this case,
DUP2 does help.

We start the description of our experimental results with resultant computations
in A, = Z/pZ[z]. As mentioned above, this is not a good example for significant
performance improvement. Figure 5.1 shows that computations with DUP2 are just
slightly faster than those with SUP. In fact, it is satisfactory to verify that using DUP2,
which implies data-type conversions between the AXIOM and C data-structures,
does not slow down computations.

We continue with square-free factorization and irreducible factorization in A,.
Figure 5.2 (resp. Figure 5.3) shows that DUP2 provides a speed-up ratio of 8 (resp. 7)
for polynomial with degrees about 9000 (resp. 400). This shows that the combination
of the fast arithmetic (FFT-based multiplication, Fast division, Half-GCD) and highly
optimized code from DUP2 does help.

In the case of irreducible factorization, we could have obtained a better ra-
tio if the code was more generic. Indeed, the irreducible factorization over finite
fields in AXIOM involves a package which has its private univariate polynomial

arithmetic, leading to a problem similar to that observed with resultant computa-

63

tions. The package in question is ModMonic, parametrized by R: Ring and Rep:

UnivariatePolynomialCategory(R), which implements the Frobenius map.

SUPFP(p) - - -

SUP(FP(p))
DUP2(FP(p)) ——— DUP2(FP(p))

N . [
- - —
Sles ;// \ . -

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Degree Degree

Figure 5.1: Resultant computation in Figure 5.2: Square-free factorization

Z/pZ|z] in Z/pZ]z]
250 . - 4 - . |
SUP(FP(p) - - - SUPGSUP(FP(p))) - - -
S] SR —
200 3 //
3
7
ERREY - //
3 ! 2, /
£ - g /
0 G o // -
. -
50 -
A /__/‘/‘/\ 05 A~ >
0 S — 0 =

0 50 100 150 200 250 300 350 400 1020 30 40 50 6 70 8 90 100
Degree Total Degree

Figure 5.3: Irreducible factorization in Figure 5.4: Resultant computation in
Z/pZz] (Z/pZlz]/(m))[y]

We conclude this section with our benchmarks in B, = (Z/pZ[x]/(m))[y]. For
resultant computations in B, the speed-up ratio obtained with DUP2 is better than
in the case of A,. This is because the arithmetic operations of DUP2 (addition, multi-
plication, inversion) perform better than those of SUP or DUP. Finally, for irreducible
factorization in B, the results are quite surprising. Indeed, AXIOM uses Trager’s
algorithm (which reduces computations to resultants in B, irreducible factorization
in A, and GCDs in B,) and, based on our previous results, we could have antici-
pated a good speed-up ratio. Unfortunately, the package AlgFactor, which is used
for algebraic factorization, has its private arithmetic. More precisely, it “re-defines”
B, with SUP and factorizes the input polynomial over this new B,. Therefore, there

is no impressive speed-up at all.

64

3000

SUPGSUP(ER(p))) - - -
DUP(DUP(FP(p))) s—
DUP(DUP2(FP(p))) ——— 30 Maple-9.5 ———

2500
/ 25

2000 [

o 1500 <

2)

1000 //'
’ 10

/e B

500 ‘ / S)

‘grg:/,," “’__,,.———‘i” T e

o -
0 1 2 3 4 5 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Total Degree Total Degree

AXIOM-Apr-06 - - -
Magma-2.11-2 e

Figure 5.5: Irreducible factorization in Figure 5.6: Square-free factorization
(Z/pZlz]/(m))[y] in Z/pZlz]

5.4 Summary

The purpose of this Chapter is to measure the impact of our C level specialized
implementation for fast polynomial arithmetic on the performances of AXIOM high-
level algorithms. Generic programming is well designed in the AXIOM system.
The experimental results demonstrate that by replacing a few important operations
in DUP(PF(p)) with our C level implementation, the original AXIOM univariate
polynomial arithmetic over Z/pZ has been sped up by a large factor in general. For
algorithm such as univariate polynomial square free factorization over Z/pZ, the
improved AXIOM code is 7 times faster than the one in MAPLE and very close to
the one in MAGMA (see Figure 5.6 at Page 64).

65

Chapter 6

Fast Arithmetic for Triangular

Sets: from Theory to Practice

6.1 Overview

In Chapters 3, 4 and 5 we have presented implementation techniques for both asymp-
totically fast and classical polynomial arithmetic. From this chapter to Chapter 8 we
focus on developing faster algorithms with comparing to the best known algorithms
in terms of complexity for triangular decompositions technique (see Section 2.3 at
Page 20).

For each new algorithm, we have realized a high performance implementation
based on our previous techniques. The benchmark result for each implementation
will be reported at the end of each chapter. As a starting point of our new algorithms
development, we study those “core” operations. In this chapter, we have identified,
improved and implemented one of these operations: modular multiplication. Indeed,
all triangular decomposition technique based methods involve polynomial arithmetic
operations (addition, subtraction, multiplication and division) modulo a triangular
set. We call them modular operations. As we explained in this chapter, modular
multiplication and division are expensive (often dominant) operations in terms of
computational time in triangular decompositions based polynomial solving. Under
certain assumptions, the modular division can be achieved by two modular multi-
plications as described in this chapter. Thus, modular multiplication is unarguably
the “core” operation and at the base level to support all triangular decompositions

based algorithms such as Regular GCD, Bivariate Solver, regqularity test reported in

66

Chapters 7 and 8. In the following text, we will give an overview of the concepts of

triangular set, modular multiplication, and our contributions in this chapter.

Triangular sets. Triangular set is an useful data structure for dealing with a variety
of problems, from computations with algebraic numbers to the symbolic solution of
polynomial or differential systems. At the core of the algorithms for these objects, one
finds a few basic operations, such as multiplication and division in dimension zero.
Higher-level algorithms can be built on these subroutines, using for instance modular
algorithms and lifting techniques [27]. The zero-dimensional case is discussed in
detail (with worked-out examples) in [62]; a general introduction (including positive
dimensional situations) is given in Section 2.3 at Page 20 (also see [9]). In this
chapter, we adopt the following convention: a monic triangular set is a family of
polynomials T'= (T3,...,T,) in R[Xy,...,X,], where R is a commutative ring with
1. For all ¢, we impose that T; is in R[X7, ..., X;], is monic in X; and reduced with
respect to T1,...,T;_1. Since all our triangular sets will be monic, we simply call
them triangular sets.

The natural approach to arithmetic modulo triangular sets is recursive: to work in
the residue class ring Ly = R[Xy,..., X,]/(T},...,T,), we regard it as Ly [X,,|/(T,),
where Ly is the ring R[X, ..., X,1]/(T4,...,T,—1). This point of view allows one
to design elegant recursive algorithms, whose complexity is often easy to analyze,
and which can be implemented in a straightforward manner in high-level languages
such as AXIOM or MAPLE [63]. However, as shown below, this approach is not

necessarily optimal, regarding both complexity and practical performance.

Complexity issues. The core of our problematic is modular multiplication: given A
and B in the residue class ring Ly, compute their product; here, one assumes that the
input and output are reduced with respect to the polynomials 7'. Besides, one can
safely suppose that all degrees are at least 2 (see the discussion in the next section).

In one variable, the usual approach consists in multiplying A and B and re-
ducing them by Euclidean division. Using classical arithmetic, the cost is about
2d? multiplications and 2d? additions in R, with d; = deg(T}, X;). Using fast
arithmetic, polynomial multiplication becomes essentially linear, the best known re-
sult ([21], after [83, 82]) being of the form kd; lg(dy)lglg(d;), with k a constant and
lg(z) = log, max(2,z). A Euclidean division can then be reduced to two polynomial
multiplications, using Cook-Sieveking-Kung’s algorithm [24, 87, 59]. In n variables,
the measure of complexity is dr = deg(T, X;) - - -deg(7T,, X,,), since representing a

polynomial modulo T requires storing dr elements. Then, applying the previous

67

results recursively leads to bounds of order 2"§2 for the standard approach, and
(3k + 1)"6r for the fast one, neglecting logarithmic factors and lower-order terms.
An important difference with the univariate case is the presence of the overheads 2"
and (3k 4+ 1)", which cannot be absorbed in a big-Oh estimate anymore (unless n is
bounded).

Improved algorithms and the advantages of fast arithmetic. Our first con-
tribution is the design and implementation of a faster algorithm: while still relying
on the techniques of fast Euclidean division, we show in Theorem 6.2.1 that a mixed
dense / recursive approach yields a cost of order 4”7, neglecting again all lower order
terms and logarithmic factors; this is better than the previous bound for ér > 2".
Building upon previous work [41], the implementation is done in C, and is dedicated
to small finite field arithmetic.

The algorithm uses fast polynomial multiplication and Euclidean division. For
univariate polynomials over IF,,, such fast algorithms become advantageous for degrees
of approximately 100. In a worst-case scenario, this may suggest that for multivariate
polynomials, fast algorithms become useful when the partial degree in each variable
is at least 100, which would be a severe restriction. Our second contribution is to
contradict this expectation, by showing that the cut-off values for which the fast

algorithm becomes advantageous decrease with the number of variables.

A quasi-linear algorithm for a special case. We next discuss a particular case,
where all polynomials in the triangular set are actually univariate, that is, with T;
in K[X;] for all 4. Despite its apparent simplicity, this problem already contains non-
trivial questions, such as power series multiplication modulo (X fl, o, X taking
T, = Xid". For the question of power series multiplication, no quasi-linear algorithm
was known until [85]. We extend this result to the case of arbitrary 7; € K[X|], the
crucial question being how to avoid expanding the (polynomial) product AB before
reducing it. Precisely, we prove that for K of cardinality greater than, or equal to,
max;<y d;, and for ¢ > 0, there exists a constant K. such that for all n, products
modulo (T3(X}),...,Tn(X,)) can be done in at most K.d;:" operations, with dr as
before.

Following [13, 14, 12, 85|, the algorithm uses deformation techniques, and is un-
fortunately not expected to be very practical, except for example. when all degrees
equal 2. However, this shows that for a substantial family of examples, and in suit-
able (large enough) fields, one can suppress the exponential overhead seen above.

Generalizing this result to an arbitrary 7" is a major open problem.

68

Applications to higher-level algorithms. Fast arithmetic for basic operations
modulo a triangular set is fundamental for a variety of higher-level operations. By
embedding fast arithmetic in high-level environments like AXIOM (see [41, 65]) or
MAPLE, one can obtain a substantial speed-up for questions ranging from computa-
tions with algebraic numbers (GCD, factorization) to polynomial system solving via
triangular decomposition, such as in the algorithm of [75], which is implemented in
AXIOM and MAPLE [63].

Our last contribution is to demonstrate such a speed-up on the example of van
Hoeij and Monagan’s algorithm for GCD computation over number fields. This algo-
rithm is modular, most of the effort consisting in GCD computations over small finite
fields. We compare a direct AXIOM implementation to one relying on our low-level

C implementation, and obtain improvement of orders of magnitude.

Outline of this chapter. Section 6.2 presents our multiplication algorithms, for
general triangular sets and triangular sets consisting of univariate polynomials. We
next describe our implementation in Section 6.3; experiments and comparisons with

other systems are given in Section 6.4.

NOTE: This chapter is written based on the published paper [69].

6.2 Algorithms

We describe here our main algorithm. It relies on the Cook-Sieveking-Kung idea but
differs from a direct recursive implementation: recalling that we handle multivariate
polynomials makes it possible to base our algorithm on fast multivariate multiplica-

tion.

6.2.1 Notation and preliminaries

Notation. Triangular sets will be written as T'= (T, ..., T,). The multi-degree of a
triangular set T" is the n-tuple d; = deg(T;, X;)1<i<n. We will write o = d; -+ - d,; in
Subsection 6.2.3 at Page 73, we will use the notation rp = Y | (d; — 1) + 1. Writing
X = Xj,...,X,, we let Ly be the residue class ring R[X]/(T’), where R is our base
ring. Let My be the set of monomials My = {X{'--- X | 0 < ¢; < d; for all i };
then, because of our monicity assumption, the free R-submodule generated by Mr in
R[X], written
Span(My) = { Z amm | am € R },

meMr

69

is isomorphic to Ly. Hence, in our algorithms, elements of L7 are represented on the
monomial basis Mp. Without loss of generality, we always assume that all degrees
d; are at least 2. Indeed, if T; has degree 1 in X;, the variable X; appears neither in
the monomial basis M7 nor in the other polynomials T}, so one can express it as a

function of the other variables, and T; can be discarded.

Standard and fast modular multiplication. As said before, standard algorithms
have a cost of roughly 2"§2 operations in R for multiplication in Ly. This bound
seems not even polynomial in d7, due to the exponential overhead in n. However,
since all degrees d; are at least 2, dr is at least 2"; hence, any bound of the form K"6%
is actually polynomial in dr, since it is upper-bounded by 51T0g2(K)+Z.

Our goal is to obtain bounds of the form K"d7 (up to logarithmic factors), that are
thus softly linear in d for fixed n; of course, we want the constant K as small as pos-
sible. We will use fast polynomial multiplication, denoting by M : N — N a function
such that over any ring, polynomials of degree less than d can be multiplied in M(d)
operations, and which satisfies the super-linearity conditions of [43, Chapter 8|. Us-
ing the algorithm of Cantor-Kaltofen [21], one can take M(d) € O(dlog(d) loglog(d)).
Precisely, we will denote by k a constant such that M(d) < kdlg(d)lglg(d) holds for
all d, with lg(d) = log, max(d, 2)

In one variable, fast modular multiplication is done using the Cook-Sieveking-
Kung algorithm [24, 87, 59]. Given 77 monic of degree d; in R[X;] and A, B of
degrees less than dy, one computes first the product AB. To perform the Euclidean
division AB = QT} + C, one first computes the inverse S; = U; ' mod Xflfl, where
U, = X'Ty(1/X,) is the reciprocal polynomial of T;. This is done using Newton
iteration, and can be performed as a precomputation, for a cost of 3M(d;) + O(d,).
One recovers first the reciprocal of (), then the remainder C, using two polynomial
products. Taking into account the cost of computing AB, but leaving out precompu-
tations, these operations have cost 3M(d;)+d;. Applying this result recursively leads
to a rough upper bound of [[.. (3M(d;) + d;) for a product in Ly, without taking
into account the similar cost of_precomputation (see [60] for similar considerations);
this gives a total estimate of roughly (3k + 1)"d7, neglecting logarithmic factors.

One can reduce the (3k 4+ 1)™ overhead: since additions and constant multipli-
cations in Ly can be done in linear time, it is the bilinear cost of univariate mul-
tiplication which governs the overall cost. Over a field of large enough cardinality,
using evaluation / interpolation techniques, univariate multiplication in degree less
than d can be done using 2d — 1 bilinear multiplications; this yields estimates of

rough order (3 x 2)"07 = 6"dr. Studying more precisely the multiplication pro-

70

cess, we prove in Theorem 6.2.1 that one can compute products in Ly using at most
K467 1g(dr) 1glg(dr) operations, for an universal constant K. This is a synthetic
but rough upper bound; we give more precise estimates within the proof. Obtaining
results linear in 07, without an exponential factor in n, is a major open problem.
When the base ring is a field of large enough cardinality, we obtain first results in
this direction in Theorem 6.2.2: in the case of families of univariate polynomials, we

present an algorithm of quasi-linear complexity K. 67 for all ¢.

Basic complexity considerations. Since we are estimating costs that depend on
an a priori unbounded number of parameters, big-Oh notation is delicate to handle.
We rather use explicit inequalities when possible, all the more as an explicit control
is required in the proof of Theorem 6.2.2. For similar reasons, we do not use O~
notation.

We denote by Cgyal (resp. Cinterp) functions such that over any ring R, a polynomial
of degree less than d can be evaluated (resp. interpolated) at d points ag,...,a4-1
in Cgyal(d) (resp. Cinterp(d)) operations, assuming a; — a; is a unit for i # j for
interpolation. From [43, Chapter 10], we can take both quantities in O(M(d)lg(d)),
where the constant in the big-Oh is universal. In Subsection 6.2.3, we will assume
without loss of generality that M(d) < Cgyai(d) for all d.

Recall that k is such that M(d) is bounded by kdlg(d)lglg(d) for all d. Up to
maybe increasing k, we will thus assume that both Cgyai(d) and Cipterp(d) are bounded
by kdlg®(d)lglg(d). Finally, we let MM(dy,...,d,) be such that over any ring R,
polynomials in R[Xj, ..., X,] of degree in X; less than d; for all i can be multiplied
in MM(dy, ..., d,) operations. One can take

MM(dy,....d,) < M((2d; — 1) - - (2d,, — 1))

using Kronecker’s substitution. Let 0 = d;---d,. Assuming d; > 2 for all i, we

deduce the inequalities
(2d, —1)---(2d,, — 1) < 2"6 < 62,
which imply that MM(dy, ..., d,) admits the upper bound

k2"01g(2"9) 1glg(2"d) < 4k2"51g(d)1glg(d).

71

Up to replacing k by 4k, we thus have
d < MM(dy,...,d,) < k2"51g(d)1glg(d). (6.1)

Pan [78] proposed an alternative algorithm, that requires the existence of interpolation
points in the base ring. This algorithm is more efficient when for example d; are fixed
and n — oo. However, using it below would not bring any improvement, due to our

simplifications.

6.2.2 The main algorithm

Theorem 6.2.1. There exists a constant K such that the following holds. Let R be
a ring and let T be a triangular set in R[X]. Given A, B in Ly, one can compute
AB € Ly in at most K4"97 1g(07) 1glg(d7) operations (4, x) in R.

Proor. Let T'= (11,...,T,) be a triangular set of multi-degree (di,...,d,) in
R[X] = R[Xy,...,X,]. We then introduce the following objects:

o We write T_ = (T1,...,T,-1), so that Ly = R[Xy,..., X,_1]/(T-).

e For i < n, the polynomial U; = Xz-d"’E»(Xl,...,Xi_l,l/Xi) is the reciprocal
polynomial of T;; S; is the inverse of U; modulo (T3, ..., T; 1, Xz-d"_1>. We write
S = (S]_,. . .,Sn) and S_ = (S]_,. . .,Sn,]_).

Two subroutines are used, which we describe in Figure 5. In these subroutines, we

use the following notation:

e For Din R[X,...,X;] such that deg(D, X;) < e, Rev(D, X;, e) is the reciprocal
polynomial XfD(Xy,...,X;1,1/X;).

e For D in R[X], Coeff(D, X;, e) is the coefficient of X¥.

We can now give the specification of these auxiliary algorithms. These algorithms
make some assumptions, that will be satisfied when we call them from our main

routine.

e The first one is Rem(A,T,S), with A in R[X]. This algorithm computes the
normal form of A modulo T, assuming that deg(A, X;) < 2d; — 2 holds for all
i. When n =0, Aisin R, T is empty and Rem(A,T,S) = A.

72

e The next subroutine is MulTrunc(A, B, T, S,dp+1), with A, B in R[X, X,,41]; it
computes the product AB modulo (T Xsi?% assuming that deg(A, X;) and
deg(B, X;) are bounded by d; — 1 for i < n+ 1. If n = 0, T is empty, so this

function return AB mod Xfll.

To compute Rem(A,T,S), we use the Cook-Sieveking-Kung idea in Ly [X,]: we
reduce all coefficients of A modulo 7_ and perform two truncated products in Ly [X,,]
using MulTrunc. The operation MulTrunc is performed by multiplying A and B as

polynomials, truncating in X, ,; and reducing all coefficients modulo 7', using Rem.

Algorithm 5 Modular Reduction
Rem(A,T,S)
1 ifn=0return A

2 A Y22 Rem(Coeff(A, X,,,4),T_,S_)X},
3 B — Rev(A', X,,, 2d, — 2) mod Xd-1
4 P «— MulTrunc(B, S,,T-,S_,d, — 1)

5 @ < Rev(P, X,,d, — 2)
6 return A’ mod X% — MulTrunc(Q,T;,,T-,S_,dy)

MulTrunc(A, B, T,S,dn41)

1 C«+ AB
2 if n = 0 return C mod X!
3 return Zjigl_l Rem(Coeff(C, X,,41,1), T, S)X1 4

For the complexity analysis, assuming for a start that all inverses S have been pre-
computed, we write Crem(dy, ..., d,) for an upper bound on the cost of Rem(A, T, S)
and CymuiTrunc(di, - - -, dpy1) for a bound on the cost of MulTrunc(A, B, T,S,dy.1). Set-

ting Crem() = 0, the previous algorithms imply the estimates

CRem(dla s 7dn> S (2dn - 1)CRem<d17 e adn—l) + CMuITrunc(dh s 7dn - 1)
+ CMuIT|runc(d17 .. adn) + dl e dn;
CMuITrunc(dla'~->dn) S MM(dlaadn) +CRem(d1a~-->dn—1)dn'

Assuming that Cyyrune is non-decreasing in each d;, we deduce the upper bound

CRem(dla-”;dn) < 4CRem(d17~'7dn—1)dn + 2MM(d177dn) + dl"'dn,

73

for n > 1. Write MM'(dy, . .. ,d,) = 2MM(d,, ..., d,) + d; - - - d,,. This yields
Crem(dr, . dn) <) 4" MM(dy,. .., di)disy -~ dn,
i=1

since Crem() = 0. In view of the bound on MM given in Equation (6.1), we obtain
MM/(dD vy d)dip - dy, < 3k2'67 lg(dr)1glg(dr).

Taking e.g. K = 3k gives the bound Crem(ds, ..., d,) < K467 1g(dr)lglg(dr). The
product A, B +— AB in Lt is performed by multiplying A and B as polynomials and
returning Rem(AB, T, S). Hence, the cost of this operation admits a similar bound,
up to replacing K by K + k. This concludes our cost analysis, excluding the cost
of the precomputations. We now estimate the cost of precomputing the inverses S:
supposing that Sy, ..., S5,_1 are known, we detail the cost of computing S,,. Our upper
bound on Cpyrune shows that, assuming Sy, ...,S,_1 are known, one multiplication

modulo X2 in Ly [X,] can be performed in
k26" 1g(8") 1glg(0") + K4™d" 1g(or) 1glg(dr)

operations, with 0 = dy---d,—1 and ' = 07 d,. Up to replacing K by K + k,
and assuming d/, < d,,, this yields the upper bound K4"" lg(d7)lglg(dr). Let now
¢ = [logy(d,, — 1)]. Using Newton iteration in Ly [X,], we obtain S,, by performing
2 multiplications in Ly [X,,] in degrees less than m and m/2 negations, for m =
2,4,...,271 see [43, Chapter 9]. By the remark above, the cost is at most

tn) = Y 3K4%y---dyymlg(5r)1glg(6r) < 3K4"71g(6r)1g1g(dr).

The sum ¢(1) + --- 4 t(n) bounds the total precomputation time; one sees that it
admits a similar form of upper bound. Up to increasing K, this gives the desired
result. [

6.2.3 The case of univariate polynomials

To suppress the exponential overhead, it is necessary to avoid expanding the product
AB. We discuss here the case of triangular sets consisting of univariate polynomials,

where this is possible. We provide a quasi-linear algorithm, that works under mild

74

assumptions. However, the techniques used (deformation ideas, coming from fast

matrix multiplication algorithms [13, 14, 12]) induce large sub-linear factors.

Theorem 6.2.2. For any € > 0, there exists a constant K. such that the following
holds. Let K be a field and T = (T1,...,T,) be a triangular set of multi-degree
(dy,...,dy) in K[X3] x - x K[X,,], with 2 < d; < |K] for all i. Given A, B in Ly,

one can compute AB € Ly using at most K. 05:t° operations (+, x, <) in K.

Step 1. We start by a special case. Let T' = (T3,...,7T,) be a triangular set of
multi-degree (di, ..., d,); for later applications, we suppose that it has coefficients in

a ring R. Our main assumption is that for all ¢, T; is in R[X;] and factors as
T, = (Xi - Oéi,o) s (Xi - Oéi,drl%
with a; ; — o a unit in R for j # 5°. Let V' C R" be the grid
V=1 (a1, sang) | 0< < d;],

which is the zero-set of (T1,...,T,) (when the base ring is a domain). Remark that
T; and T} can have non-trivial common factors: all that matters is that for a given ¢,

evaluation and interpolation at the roots of T; is possible.

Proposition 6.2.3. Given A, B in Ly, as well as the set of points V', one can compute

AB € Ly using at most

5T (]_ + Z 2CEva|(di) ;l|— C'ﬂterp(di)>

1<n

operations (+, X, +) in R.

In view of our remarks on the costs of evaluation and interpolation, this latter cost
is at most K’ dp1g?(d7)1glg(dr), for an universal constant K’, which can be taken as
K' =3k +1.
PROOF. The proof uses an evaluation / interpolation process. Define the evalu-
ation map
Eval : Span(Mp) — ROT
F — [F(a) |aeV].

Since all o;; — o are units, the map Eval is invertible. To perform evalua-

tion and interpolation, we use the algorithm in [78, Section 2|, which general-

75

izes the multidimensional Fourier transform: to evaluate F', we see it as a poly-
nomial in K[Xy,...,X,,1][X,], and evaluate recursively its coefficients at V' =
[(a1ys- s Qno1g, ,) | 0 < 4 < d;]. We conclude by performing d; - - - d,,—; univariate
evaluations in X,, in degree d,.

Extending our previous notation, we immediately deduce the recursion for the

cost Cgyal of multivariate evaluation

C:Eval(dla <. 7dn) S C:Eval(dla v 7dn71) dn + dl T dnflcEvaI(dn)a

Ceval(d;)
so that Cgpal(dy,...,d,) < Op ; 4
The inverse map of Eval is the interpolation map Interp. Again, we use Pan’s algo-

rithm; the recursion and the bounds for the cost are the same, yielding

CInterp(di)

Clnterp(dla s 7dn> S 6T Z d

i<n

To compute AB mod T, it suffices to evaluate A and B on V', multiply the dr pairs
of values thus obtained, and interpolate the result. The cost estimate follows. [l
This algorithm is summarized in Figure 6, under the name MulSplit (since it refers

to triangular sets which completely split into linear factors).

Algorithm 6 MulSplit
MulSplit(A, B, V)

1 Valy < Eval(A)

2 Valg < Eval(B)

3 Valg « [Vala(a)Valp(a) | a € V']
4 return Interp(Vale)

Step 2. We continue with the case where the polynomials 7; do not split anymore.
Recall our definition of the integer ro = > ,(d; — 1) + 1; since the polynomials
T form a Grobner basis for any order, ry is the regularity of the ideal (T'). In the
following, the previous exponential overhead disappears, but we introduce a quasi-
linear dependency in rp: these bounds are good for triangular sets made of many

polynomials of low degree.

76

Proposition 6.2.4. Under the assumptions of Theorem 6.2.2, given A, B in L, one

can compute the product AB € Ly using at most

/ Cva dz +Cner dz
< or M(rp) 37 el >d, el)

i<n

operations (+, x,+) in K, for an universal constant K'.

As before, there exists an universal constant K” such that this estimate simplifies as
K" 6770 (18(87) 1g(rr))’. (6.2)

Proor. Let T = (T1,...,T,) be a triangular set with 7; in K[X;] of degree d;
for all i. Let U = (Uy,...,U,) be the polynomials

U, = (Xi - ai,O) te (Xi - ai,di—1)7

where for fixed i, the values a;; are pairwise distinct (these values exist due to our
assumption on the cardinality of K). Let finally n be a new variable, and define
VO = (Vi,..., Vo) C K[n][X] by V; = nT; + (1 — n)U;, so that V; is monic of degree
d; in K[n][X;]. Remark that the monomial bases My, My and M} are all the same,
that specializing n at 1 in V° yields T and that specializing n at 0 in V? yields U.

Lemma 6.2.5. Let A, B be in Span(Myr) in K[X] and let C = AB mod (V) in
K[n][X]. Then C has degree in n at most rr — 1, and C(1,X) equals AB modulo (T').

PROOF. Fix an arbitrary order on the elements of My, and let Mat(X;, V?) and
Mat(X;, T') be the multiplication matrices of X; modulo respectively (V°) and (T) in
this basis. Hence, Mat(X;, V?) has entries in K[n] of degree at most 1, and Mat(X;, T')
has entries in K. Besides, specializing 7 at 1 in Mat(X;, V°) yields Mat(X;,T). The
coordinates of C' = AB mod (V) on the basis My are obtained by multiplying the
coordinates of B by the matrix Mat(A, V?) of multiplication by A modulo (V°). This
matrix equals A(Mat(X;,V?), ..., Mat(X,,V?)); hence, specializing its entries at 1
gives the matrix Mat(A,T'), proving our last assertion. To conclude, observe that
since A has total degree at most r — 1, the entries of Mat(A, V?) have degree at most
rp — 1 as well. O
Let R be the ring K[n]/(n"") and let A, B be in Span(My) in K[X]. Define C, =
AB mod (V) in R[X] and let C' be its canonical preimage in K[n][X]. By the previous
lemma, C(1,X) equals AB mod (T"). To compute C,, we will use the evaluation /

7

interpolation techniques of Step 1, as the following lemma shows that the polynomials
V0 split in R[X]. The corresponding algorithm is in Figure 7; it uses a Newton-Hensel

lifting algorithm, called Lift, whose last argument indicates the target precision.

Lemma 6.2.6. Leti bein {1,...,n}. Given a;y,...,a;q4,—1 and T;, one can compute

QGgy -y Qg1 1N R% | with o, j — ;. invertible for j # j', and such that
Vi= (Xi - Oéi,o) T (Xi - ai,difl)

holds in R[X;], using O(M(r1)Ceval(d;)) operations in K. The constant in the big-Oh

estimate s universal.

PROOF. As shown in [17, Section 5], the cost of computing U; from its roots is
Ceval(d;) + O(M(d;)), which is in O(Cgyai(d;)) by our assumption on Cg,; from this,
one deduces V; with O(d;) operations. The polynomial U; = V;(0, X;) splits into a
product of linear terms in K[X;], with no repeated root, so V; splits into R[X;], by
Hensel’s lemma. The power series roots «; ; are computed by applying Newton-Hensel
lifting to the constants a; ;, for j = 0,...,d; — 1. Each lifting step then boils down to
evaluate the polynomial V; and its derivative on the current d;-tuple of approximate
solutions and deducing the required correction. Hence, as in [43, Chapter 15|, the
total cost is O(M(r1)Cegval(d;)) operations; one easily checks that the constant hidden
in this big-Oh is universal. O]

Algorithm 7 Lift Roots
LiftRoots(aiyo, N T T;)

1 Uz — (Xz — (17;7()) te (Xz - ai,di—l)
2VienTi+ (1 -nU

3 return Lift(a,o, ..., a;4,-1, Vi, n'")

We can finally prove Proposition 6.2.4. To compute AB mod (T'), we compute
C, = AB mod (V°) in R[X], deduce C' € K[n|[X] and evaluate it at 1. By the
previous lemma, we can use Proposition 6.2.3 over the coefficient ring R to compute
C,. An operation (+, x,+) in R has cost O(M(rr)). Taking into account the costs
of Step 1 and Lemma 6.2.6, one sees that there exists a constant k’ such that the cost

is bounded by
k' 67 M(rr) Z Ceval (ds) ;C.nterp(di).

i<n

78

O
The algorithm is given in Figure 8, under the name MulUnivariate; we use a func-

tion called Choose(K, d), which returns d pairwise distinct elements from K.

Algorithm 8 MulUnivariate

MulUnivariate(A, B, T')

1 fori=1,...,n do

1.1 ai0,...,0;4,—1 < Choose(K, d;)

1.2 a0y, QGd,—1 < |_i'[:tROOtS(aZ‘707 sy Qid—1, E)

2V «— [(051751,...,04717(") | 0 Sél < dz]

3 C, < MulSplit(A, B,V) (computations done mod 7'7)
4 return C,(1,X) (Cy, is seen in K[n][X])

Step 3: conclusion. To prove Theorem 6.2.2, we combine the previous two ap-
proaches (the general case and the deformation approach), using the former for large
degrees and the latter for smaller ones. Let € be a positive real, and define w = 2/e.
We can assume that the degrees in T" are ordered as 2 < d; - - - < d,,, with in particular
07 > 2". Define an index ¢ by the condition that d, < 4“ < dy, 4, taking dy = 0 and

d,+1 = oo for definiteness, and let
T =(Ty,....,T,) and T" = (T)11,...,T,).

Then the quotient Ly equals R[X1, ..., X,]/(T"), with R = K[X}, ..., X,]/(T"). By
Equation (6.2), a product in R can be done in K" 87 ro (1g(d77) lg(rT/))3 operations
in K; additions are cheaper, since they can be done in time d7+. By Theorem 6.2.1,
one multiplication in L can be done in K4"“dpn 1g(67+)1glg(d7) operations in R.
Hence, taking into account that ér = d7dr~, the total cost for one operation in Ly

can be roughly upper-bounded by
1" gn—~e 3
K K 4 5T T (lg((sT/) lg(?"T/) 1g<6T”)) .

Now, observe that ry is upper-bounded by dyn < 4“1g(dr). This implies that the

factor
T (lg((ST/) lg<7"T/) lg((sT//))s

is bounded by H1g'(d7), for a constant H depending on e. Next, (474« = (4<)»~¢
is bounded by dyy; - - - d,, < 6. Raising to the power &/2 yields 4"~¢ < 5;/2; thus, the

79

previous estimate admits the upper bounds
KK"Hop % 1g0(0r) < KK HH/6L,

where H" depends on ¢.

6.3 Implementation Techniques

The previous algorithms were implemented in C; most efforts were devoted to the
generic algorithm of Section 6.2.2. As in Chapter 5 (or see Papers [41, 65]), the C

code was interfaced with AXIOM. In this section, we describe this implementation.

Arithmetic in F,. Our implementation is devoted to small finite fields F,, with p a
machine word prime of the form ¢2" + 1, for ¢ < 2". Multiplications in [F,, are done
using Montgomery’s REDC routine [74]. A straightforward implementation does not
bring better performance than the floating point techniques of Shoup [86]. We use
an improved scheme, adapted to our special primes, presented below. Compared to a
direct implementation of Montgomery’s algorithm, it lowers the operation count by
2 double word shifts and 2 single word shifts. This approach performs better on our
experimentation platform (Pentium 4) than Shoup’s implementation, the gain being
of 32%. Tt is also more efficient and more portable than the one in [41], which explicitly
relied on special machine features like SSE registers of late IA-32 architectures. We
formally describe this scheme as following:

Let p be a prime of the form p = ¢2" + 1, for ¢ < 2" (in our code, n ranges from
20 to 23 and c is less than 1000). Let ¢ = [log,(p)] and let R = 2¢. Given a and
w, both reduced modulo p, Montgomery’s REDC algorithm computes aw/R mod p.
We present our tailor-made version here. Precomputations will be authorized for
the argument w (this is not a limitation for our main application, FFT polynomial

multiplication). We compute

1. M = aw

2. (q1,m1) = (M, div R, M; mod R)
3. My =1r1c2"

4. (q2,72) = (My div R, M3 mod R)

5. M3 =ryc2"

80

6. g3 = M3 div R

7. A=q — ¢+ gs.

Proposition 6.3.1. Suppose that ¢ < 2". Then A satisfies A = aw/R mod p and
—(p—1)<A<2p-1).

ProOOF. By construction, we have the equalities Rq; = M; — r; and Rgy, =
My — 1. Remark next that 2" divides M,, and thus ry (since R is a power of two
larger than 2"). Tt follows that 22" divides M3. Since we have ¢ < 2", p is at most
227 5o R is at most 22" as well. Hence, R divides M3, so that Rgs = Ms. Putting
this together yields

RA =M, —r; — My + 19+ Ms.

Recall that My = 712", so that My = —r; mod p. Similarly, M3 = ryc2", so
M3 = —ry mod p. Hence, RA = M; mod p, which means that A = aw/R mod p,
as claimed. As to the bounds on A, we start by remarking that M; < (p — 1), so
that ¢1 < p — 1. Next, since r; < R, we deduce that My < ¢2" R which implies that
g2 < 2™ = p — 1. Similarly, we obtain that ¢3 < p — 1, which implies the requested
inequalities. [l

Let us now describe our implementation on 32-bit x86 processors. We use an as-
sembly macro MulHiLo(a, b) from the GMP library; this macro computes the product
d of two word-length integers a and b and puts the high part of the result (d div 2%?)
in the register AX and the lower part (d mod 23?) in the register DX, avoiding shifts.

232 However, since we allow precomputations on w, we

In our case, R does not equal
will actually store and use ' = 2%2~‘w instead of w; hence, MulHiLo(a,w') directly
gives us ¢ and r} = 2327%,. Similarly, we do not compute the product 7¢2"; in-
stead, we use MulHiLo(r], ¢’), where ¢ is the precomputed constant ¢2", to get ¢ and
rh = 2327y,

To compute g3, it turned out to be better to do as follows. We write gz as roc/27™.
Now, recall from the proof of the previous proposition that 2™ divides 7. Under the
assumption that ¢ < 2", we saw in the proof that ¢ < 2n, so that 2= divides 7.
Hence, we obtain g3 by right-shifting 5 by ¢ —n places, or, equivalently, 7} by 32 —n
places, and multiplying the result by c¢. Eventually, we need to bring the result A
between 0 and p — 1. As in NTL [86], we avoid if statements: using the sign bit of
A as a mask, one can add p to A in the case A < 0; by subtracting p and correcting

once more, we obtain the correct remainder.

81

In the following benchmark we compare our specialized trick versus the standard
Montgomery trick when applying them into a FFT computation over a 32 bit FFT
prime number. The specialized trick outperforms the standard one. Note that our
specialized trick utilizes an assembly subroutine for multiplying machine integers

whereas the standard one is implemented in pure C language.

0.18

" Specialized Mont. - - - -
Standard Mont.

USRI ER e |
0.16 | 4

0.14 |

0.12

01

Time

0.08

0 A L L L L L L L L L
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Partial degree

Figure 6.1: TFT vs. FFT.

Arithmetic in F,[X]. Univariate polynomial arithmetic is crucial: multiplication
modulo a triangular set boils down to multivariate polynomial multiplications, which
can then be reduced to univariate multiplications through Kronecker’s substitution.
We use classical and FF'T multiplication for univariate polynomials over IF,. We use
two FFT multiplication routines: the first one is that from [26]; its implementation
is essentially the one described in [41], up to a few modifications to improve cache-
friendliness. The second one is van der Hoeven’s TFT (Truncated Fourier Trans-
form) [51], which is less straightforward but can perform better for transform sizes
that are not powers of 2. We tried several data accessing patterns; the most suitable
solution is platform-dependent, since cache size, associativity properties and register
sets have huge impact. Going further in that direction will require automatic code

tuning techniques, as in [54, 53, 79].

Multivariate arithmetic over IF,. We use a dense representation for multivariate
polynomials: important applications of modular multiplication (GCD computations,
Hensel lifting for triangular sets) tend to produce dense polynomials. We use multi-
dimensional arrays (encoded as a contiguous memory block of machine integers) to

represent our polynomials, where the size in each dimension is bounded by the cor-

82

responding degree deg(T;, X;), or twice that much for intermediate products. Multi-
variate arithmetic is done using either Kronecker’s substitution as in [41] or standard
multidimensional FF'T. While the two approaches share similarities, they do not ac-
cess data in the same manner. In our experiments, multidimensional FFT performed
better by 10-15% for bivariate cases, but was slower for larger number of variables

with small FFT size in each dimension.

Triangular sets over [F,. Triangular sets are represented in C by an array of
multivariate polynomials. For the algorithm of Subsection 6.2.3, we only implemented
the case where all degrees are 2; this mostly boils down to evaluation and interpolation
on n-dimensional grids of size 2", over a power series coefficient ring.

More work was devoted to the algorithm of Subsection 6.2.2. Two strategies for
modular multiplication were implemented, a plain one and that of Subsection 6.2.2.
Both first perform a multivariate multiplication then do a multivariate reduction;
the plain reduction method performs a recursive Euclidean division, while the faster
one implements both algorithms Rem and MulTrunc of Subsection 6.2.2. Remark in
particular that even the plain approach is not the entirely naive, as it uses fast mul-
tivariate multiplication for the initial multiplication. Both approaches are recursive,
which makes it possible to interleave them. At each level i = n,...,1, a cut-off
point decides whether to use the plain or fast algorithm for multiplication modulo
(T, ...,T;). These cut-offs are experimentally determined: as showed in Section 6.4,
they are surprisingly low for ¢ > 1.

The fast algorithm uses precomputations (of the power series inverses of the re-
ciprocals of the polynomials T;). In practice, it is of course better to store and reuse
these elements: in situations such as GCD computation or Hensel lifting, we expect
to do several multiplications modulo the same triangular set. We could push further

these precomputations, by storing Fourier transforms; this is not done yet.

GCD’s. One of the first applications of fast modular multiplication is GCD com-
putation modulo a triangular set, which itself is central to higher-level algorithms
for solving systems of equations. Hence, we implemented a preliminary version of
such GCD computations using a plain recursive version of Euclid’s algorithm. This
implementation has not been thoroughly optimized. In particular, we have not in-
corporated any half-GCD technique, except for univariate GCD’s; this univariate
half-GCD is far from optimal.

The AXIOM level. Integrating our fast arithmetic into AXIOM is straightforward,
after dealing with the following two problems. First, AXIOM is a Lisp-based system,

83

whereas our package is implemented in C. Second, in AXIOM, dense multivariate
polynomials are represented by recursive trees, but in our C package, they are encoded
as multidimensional arrays. Both problems are solved by modifying the GCL kernel.
For the first issue, we integrate our C package into the GCL kernel, so that our C-
level functions from can be used by AXIOM at run-time. For the second problem,
we realized a tree / array polynomial data converter. This converter is also linked to

GCL kernel; the conversations, happening at run-time, have negligible cost.

6.4 Experimental Results

The main part of this section describes experimental results attached to our main
algorithm of Subsection 6.2.2; we discuss the algorithm of Subsection 6.2.3 in the last
paragraphs. For the entire set of benchmarks, we use random dense polynomials. Our
experiments were done on a 2.80 GHz Pentium 4 PC, with 1GB memory and 1024
KB cache.

6.4.1 Comparing different strategies

We start by experiments comparing different strategies for computing products mod-

ulo triangular sets in n = 1,2, 3 variables, using our general algorithm.

Strategies. Let Ly = F, be a small prime field and let L,, be Lo[X3, ..., X,]/(T),
with 7" a n-variate triangular set of multi-degree (di,...,d,). To compute a prod-
uct C = AB € L, we first expand P = AB € Ly[X], then reduce it modulo 7.
The product P is always computed by the same method; we use three strategies for

computing C'.

e PLAIN. We use univariate Euclidean division; computations are done recursively
in L, 1[X;] fori=mn,... 1

e FAST, USING PRECOMPUTATIONS. We apply the algorithm Rem(C,T,S) of

Algorithm 5, assuming that the inverses S have been precomputed.

e FAST, WITHOUT PRECOMPUTATIONS. We apply the algorithm Rem(C, T, S) of

Algorithm 5, but recompute the required inverses on the fly.

Our ultimate goal is to obtain a highly efficient implementation of the multiplication

in IL,,. To do so, we want to compare our strategies in IL;, Lo, ..., L,,. In this report

84

we give details for n < 3 and leave for future work the case of n > 3, as the driving
idea is to tune our implementation in LL; before investigating that of L, ;. This ap-
proach leads to determine cut-offs between our different strategies. The alternative
is between PLAIN and FAST strategies, depending on the assumption regarding pre-
computations. For applications discussed before (quasi-inverses, polynomial GCDs

modulo a triangular set), using precomputations is realistic.

Univariate multiplication. Figure 6.2 compares our implementation of the Trun-
cated Fourier Transform (TFT) multiplication to the classical Fast Fourier Transform
(FFT). Because the algorithm is more complex, especially the interpolation phase,

the TF'T approach does not outperform the classical FFT multiplication in all cases.

0.0004

FFT e

0.00035 ¢
0.0003 r
0.00025 ¢
0.0002

Time

0.00015 ¢
0.0001 ¢

5e-05

0

0 50 100 150 200 250 300 350
Degree

Figure 6.2: TFT vs. FFT.

Univariate triangular sets. Finding the cut-offs between our strategies is straight-
forward. Figure 6.3 shows the result using classical FF'T multiplication; the cut-off
point is about 150. If precomputations are not assumed, then this cut-off doubles.

Using Truncated Fourier Transform, one obtains roughly similar results.

Bivariate triangular sets. For n = 2, we let in Figure 6.4 d; and dy vary in the
ranges 4,...,304 and 2,...,102. This allows us to determine a cut-off for d, as a
function of dy. Surprisingly, this cut-off is essentially independent of d; and can be
chosen equal to 5. We discuss this point below. To continue our benchmarks in L,
we would like the product d;dy to play the role in LLs that d; did in Ls, so as to
determine the cut-off for ds as a function of didy. This leads to the question: for a

fized product dids, does the running time of the multiplication in Ly stay constant

85

0.0025 —
Plain - - -
Fast without precomputation s
0.002 | Fast using precomputat , |
0.0015 r i J
q') d
,E 4
}_ 7,
0.001 r:; i V‘ J
0.0005 ¢ “ 1
0 = T L L L L L

0 50 100 150 200 250 300 350
Degree

Figure 6.3: Multiplication in Ly, all strategies, using FF'T multiplication.

Time . . Time
Fast without precomputation

Fast using precomputation

Plain
Fast using precomputation

Figure 6.4: Multiplication in Ly, FAST without precomputations vs. FAST using
precomputations (top) and PLAIN vs. FAST using precomputations.

when (dj,ds) varies in the region 4 < d; < 304 and 2 < dy < 1027 Figure 6.5
gives timings obtained for this sample set; it shows that the time varies mostly for
the PLAIN strategy (the levels in the FAST case are due to our FFT multiplication).

These results guided our experiments in LLs.

Trivariate triangular sets. For our experiments with L3, we consider three patterns
for (di,ds). Pattern 1 has d; = 2, Pattern 2 has d; = dy and Pattern 3 has dy =
2. Then, we let dids vary from 4 to 304 and d3 from 2 to 102. For simplicity,
we also report only the comparison between the strategies PLAIN and FAST USING
PRECOMPUTATIONS. The timings are in Figure 6.6; they show an impressive speed-
up for the FAST strategy. We also observe that the cut-off between the two strategies
can be set to 3 for each of the patterns. Experiments as in Figure 6.5 gives similar
conclusion: the timing depends not only on d;ds and d3 but also on the ratios between

these degrees.

86

6 1
A 09 ,.‘.C‘,‘It“‘:* g
R AL P IS
5 08|
al | 0.7 t
0.6
[Q
E 3 1 E 05}

04 | L) SRS
03}

i o1 | A
0 ‘ﬁ A 0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 35000
d d

Figure 6.5: Multiplication in Lo, time vs. d = dyds, PLAIN (left) and FAST using
precomputations (right).

Figure 6.6: Multiplication in L3, PLAIN vs. FAST, patterns 1-3 from top left to
bottom.

Discussion of the cut-offs. To understand the low cut-off points we observe, we
have a closer look at the costs of several strategies for multiplication in LLy. For a ring
R, classical polynomial multiplication in R[X] in degree less than d uses about (d?, d?)
operations (x,4) respectively (we omit linear terms in d). Euclidean division of a
polynomial of degree 2d — 2 by a monic polynomial 7" of degree d has essentially the
same cost. Hence, classical modular multiplication uses about (2d?,2d*) operations
(x,4) in R. Additions modulo (T') take d operations.

Thus, a pure recursive approach for multiplication in Ly uses about (4d?d3, 4d3d3)
operations (X, +) in K. Our PLAIN approach is less naive. We first perform a bivariate

product in degrees (dy, dy). Then, we reduce all coefficients modulo (7;) and perform

87

Euclidean division in LL;[X5], for a cost of about (2d2d3, 2d?d3) operations. Hence, we
can already make some advantage of fast FFT-based multiplication, since we traded
2d2d3 base ring multiplications and as many additions for a bivariate product.
Using precomputations, the FAST approach performs 3 bivariate products in de-
grees about (dy, ds) and about 4ds reductions modulo (77). Even for moderate (dy, ds)
such as in the range 20-30, bivariate products can already be done efficiently by FFT
multiplication, for a cost much inferior to d?d3. Then, even if reductions modulo (T})
are done by the PLAIN algorithm, our approach performs better: the total cost of
these reductions will be about (4d3dy, 4d?ds,), so we save a factor ~ do/2 on them.

This explains why we observe very low cut-offs in favor of the FAST algorithm.

6.4.2 Comparing implementations

Comparison with Magma. To evaluate the quality of our implementation of
modular multiplication, we compared it with MAGMA v. 2-11 [16], which has set
a standard of efficient implementation of low-level algorithms. We compared multi-
plication in IL3 for the previous three patterns, in the same degree ranges. Figure 6.7
gives the timings for Pattern 3. The MAGMA code uses iterated quo constructs over
UnivariatePolynomial’s, which was the most efficient configuration we found. For
our code, we use the strategy PLAIN USING PRECOMPUTATIONS. On this exam-
ple, our code outperforms MAGMA by factors up to 7.4; other patterns yield similar

behavior.

Magma
Our code

Figure 6.7: Multiplication in L3, pattern 3, Magma vs. our code.

Comparison with Maple. Our future goal is to obtain high-performance implemen-
tations of higher-level algorithms in higher-level languages, replacing built-in arith-

metic by our C implementation. Doing it within MAPLE is not straightforward; our

88

MAPLE experiments stayed at the level of GCD and inversions in L3, for which we
compared our code with MAPLE’s recden library. We used the same degree pat-
terns as before, but we were led to reduce the degree ranges to 4 < dyds < 204 and
2 < dsz < 20. Our code uses the strategy FAST USING PRECOMPUTATIONS. The
MAPLE recden library implements multivariate dense recursive polynomials and can
be called from the MAPLE interpreter via the Algebraic wrapper library. Our MAPLE
timings, however, do not include the necessary time for converting MAPLE objects
into the recden format: we just measured the time spent by the function invpoly
of recden. Figure 6.8 gives the timings for Pattern 3 (the other results are similar).
There is a significant performance gap (our timing surface is very close the bottom).
When using our PLAIN strategy, our code remains faster, but the ratio diminishes by

a factor of about 4 for the largest configurations.

Figure 6.8: Inverse in IL3, pattern 1, Maple vs. our code.

Comparison with AXIOM. Using our arithmetic in AXIOM is made easy by the
C/GCL structure. In [65], the modular algorithm by van Hoeij and Monagan [71] was
used as a driving example to show strategies for such multiple-level language imple-
mentations. This algorithm computes GCD’s of univariate polynomials with coeffi-
cients in a number field by modular techniques. The coefficient field is described by a
tower of simple algebraic extensions of Q; we are thus led to compute GCD’s modulo
triangular sets over I, for several primes p. We implemented the top-level algorithm
in AXTIOM. Then, two strategies were used: one relying on the built-in AXIOM
modular arithmetic, and the other on our C code; the only difference between the
two strategies at the top-level resides in which GCD function to call. The results
are given in Figure 6.9. We use polynomials A, B in Q[X;, X, X3|/(T1, Ts, T5)[X4],
with coefficients of absolute value bounded by 2. As shown in Figure 6.9 the gap is

dramatic.

89

1400 : ‘
~ Pure AXIOM
1200 | Combined C-AXIOM
1000 r
o 800 r
£
F 600 |
400 r
200 r
0 —— I I
0 5 10 15 20 25 30 35
Degree

Figure 6.9: GCD computations L3[Xy], pure AXIOM code vs. combined C-AXIOM
code.

6.4.3 The deformation-based algorithm

We conclude with the implementation of the algorithm of Subsection 6.2.3, devoted to
triangular sets made of univariate polynomials only. We focus on the most favorable
case for this algorithm, when all degrees d; are 2: in this case, in n variables, the
cost reported in Proposition 6.2.4 becomes O(2"nM(n)). This extreme situation is
actually potentially useful, see for instance an application to the addition of algebraic
numbers in characteristic 2 in [85]. For most practical purposes, n should be in the
range of about 1,...,20; for such sizes, multiplication in degree n will rely on naive
or at best Karatsuba multiplication; hence, a reasonable practical estimate for the
previous bound is O(2"n?), which we can rewrite as O(d7log(dr)?). We compare
in Figure 6.10 the behavior of this algorithm to the general one. As expected, the
former behaves better: the general algorithm starts by multiplying the two input
polynomials, before reducing them. The number of monomials in the product before

(%?gz (3)

reduction is 3" = . Hence, for this family of problems, the general algorithm

has a non-linear complexity.

6.5 Summary

We have provided new estimates for the cost of multiplication modulo a triangu-

lar set. The outstanding challenge for this question remains the suppression of ex-

general (Subsection 6.2.2)

specialized (Subsection 6.2.3)

90

variables or
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048

0.000188
0.001288
0.007888
0.045804
0.254427
1.434127
7.682161
40.519331
204.719505

0.000043
0.000126
0.000337
0.000983
0.002720
0.008141
0.019928
0.052337
0.131778

Figure 6.10: General vs. specialized algorithm.

ponential overheads; a tempting approach is a higher-dimensional extension of the

Cook-Sieveking-Kung idea, or the related Montgomery approach.

On the software level, our experiments show the importance of both fast algo-

rithms and implementation techniques. While most of our efforts were limited to

multiplication, the next steps are well-tuned inversion and GCD computations. The-

ory and practice revealed that, as far as multivariate multiplication is concerned, fast

algorithms become faster than plain ones for very low degrees.

91

Chapter 7

Fast Algorithms for Regular GCD
Computations and Regularity Test

Recall that in Chapters 3, 4 and 5 we have studies and implemented a set of asymp-
totically fast operations such as univariate/multivariate polynomial multiplication,
division, GCD. In chapter 6 we have advanced our study further by considering
operations modulo triangular sets, i.e. polynomial multiplication, inversion, GCD
modulo a monic triangular set. In this and next chapters we develop new higher-level
algorithms. They are fundamental subroutines for triangular decompositions based
polynomial solving. Besides the algorithmic design, their high performance rely on
the highly efficient implementations reported in previous chapters. In following sec-
tions, we report two new algorithms: polynomial GCDs modulo regular chains and

regularize modulo saturated ideals.

NOTE: This chapter is written based on the submitted Paper [67].

7.1 Overview

A triangular decomposition of a set F' C Kz, ..., x,] is a list of polynomial systems
T,...,T,., called regular chains (or regular systems, see Section 2.3) at Page 20 and
representing the zero set V(F') of F. Each regular chain 7; may encode several
irreducible components of V(F') provided that those share some properties (same
dimension, same free variables, ...).

Triangular decomposition methods are based on an univariate and recursive vision
of multivariate polynomials. Most of their routines manipulate polynomial remainder

sequences (PRS). Moreover, these methods are usually “factorization free”, which ex-

92

plains why two different irreducible components may be represented the same regular
chain. An essential routine is then to check whether a hyper-surface f = 0 contains
one of the irreducible components encoded by a regular chain 7. This is achieved
by testing whether the polynomial f is a zero-divisor modulo the so-called saturated
ideal (see Section 2.3) of T'. The univariate approach allows to perform this regularity
test by means of GCD computations. However, since the saturated ideal of 7" may
not be prime, the concept of a GCD used here is not standard.

The first formal definition of this type of GCDs was given by Kalkbrener in his
PhD thesis [55]. However GCDs over non-integral domains were already used in
several papers [34, 62, 46] since the introduction of the celebrated D5 Principle [30]
by Della Dora, Dicrescenzo and Duval. Indeed, this brilliant and simple observation
allows one to carry out over direct product of fields computations that are usually
conducted over fields. For instance, computing univariate polynomial GCDs by means
of the Euclidean Algorithm.

To define a polynomial GCD of two (or more) polynomials modulo a regular chain
T, Kalkbrener refers to the irreducible components that 7" represents. In order to
improve the practical efficiency of those GCD computations by means of subresultant
techniques, Rioboo and the second author proposed a more abstract definition in [76].
Their GCD algorithm is, however, limited to regular chains with zero-dimensional
saturated ideals.

While Kalkbrener’s definition cover the positive dimensional case, his approach
cannot support triangular decomposition methods solving polynomial systems incre-
mentally, that is, by solving one equation after another. This is a serious limitation
since incremental solving is a powerful way to control the complexity of intermediate
computations and develop efficient sub-algorithms, by means of geometrical consid-
eration. The first incremental triangular decomposition method was proposed by
Lazard in [61], without proof nor a GCD definition. Another such method was pre-
sented and established by the second author in [75] together with a formal notion of
GCD adapted to the needs of incremental solving. This concept, called reqular GCD,
is reviewed in Section 2.3.5 of this Chapter. It is stated there in the context of regular
chains. A more abstract definition is as follows.

Let A be a commutative ring with unity. Let p, ¢, ¢ be non-zero univariate polyno-
mials in A[z]. We say that g is a reqular GCD of p,t if the following three conditions
hold: (i) the leading coefficient of g in = is a regular element of A,

(17) g belongs to the ideal generated by p and ¢ in A[x], and

93

(i) if g has positive degree w.r.t. z, then g pseudo-divides both of p and ¢, that is,
the pseudo-remainders prem(p, g) and prem(t, g) are null.

In the context of regular chains, the ring A is the residue class ring of a polynomial
ring K[z1, ..., z,] (over a field K) by the saturated ideal sat(7) of a regular chain 7.
Even if the leading coefficients of p, t are regular and sat(7’) is radical, the polynomials
p, t may not necessarily admit a regular GCD (unless sat(7’) is prime). However, by
splitting 7" into several regular chains 77, ..., T, (in a sense specified in Section 2.3.5)
one can compute a regular GCD of p, ¢ over each of the ring K[xy,...,z,]/sat(T;),
as shown in [75].

In this chapter, we propose an new algorithm for this task, together with a the-
oretical study and implementation report, providing significant improvements w.r.t.
previous work [55, 75]. First, we aim at understanding when does a pair of polynomi-
als p,t admit a regular GCD w.r.t. a regular chain T". In Section 7.3 of this Chapter
we exhibit sufficient conditions for a subresultant of p,¢ (regarded as univariate poly-
nomials in) to be a regular GCD of p,t w.r.t. T. Some of these results are probably
not new, but we could not find a reference for them, in particular when sat(T") is not
radical.

Secondly, we aim at making use of fast polynomial arithmetic and in particu-
lar FFT-based multivariate arithmetic. (Indeed, Euclidean-like algorithms tend to
densify computations.) In addition, we observe that, when computing triangular de-
composition, whenever a regular GCD of p and t w.r.t. T is needed, the resultant
of p and t w.r.t. z is likely to be computed too. This suggests to organize calcula-
tions in a way that a PRS of p and ¢ is computed only once. Moreover, we wish to
follow a successful strategy introduced in [69]: compute in K[zq,...,x,] instead of
Klxy,...,x,]/sat(T), as much as possible, while controlling expression swell. These
three requirements targeting efficiency are satisfied by the regular GCD algorithm
proposed in Section 7.4. The use of fast arithmetic for computing regular GCDs
was proposed in [28] in the case of regular chains with zero-dimensional radical satu-
rated ideals. However this method does not meet our two other requirements. Some
complexity results for the algorithms of this chapter are given in Sections 7.5.1 and
7.5.2.

Efficient implementation is also a main objective of our work. We discuss our
implementation techniques in Sections 7.5.1 and 7.5.3. In particular, we explain how
we create opportunities for using modular methods and fast arithmetic in operations
modulo regular chains, such as regular GCD computation and regularity test. The

experimental results reported in Section 7.6 illustrate the high efficiency of our pro-

94

posed algorithms. We obtain speed-up factors of several orders of magnitude w.r.t.
the algorithms of [75] for regular GCD computations and regularize. In addition, our
code compares and often outperforms packages with similar specifications in MAPLE
and MAGMA.

7.2 Specification

In this chapter, we follow the notations used in Section 2.3:

e Let K be a field and let K[x| = K|z, ...,x,] be the ring of polynomials with

coefficients in K, with ordered variables 1 < --- < x,,.
e The main variable of p € K[x] is denoted by mvar(p).
e The leading coefficient of p in x;,i = 1...n is denoted by lc(p, x;) in lc(p, x,).
e The partial degree of p in x; is denoted by deg(p, x;).
e The partial degree of p in its main variable is denoted by mdeg(p).
e The initial of p is le(p, z,,) denoted by init(p).
e Given a triangular set 7" in K[x]|, We denote by sat(T) the saturated ideal of T.

e Given p € K[x| the pseudo-remainder (resp. iterated resultant) of p w.rt. T,

denoted by prem(p, T).

We list below the specifications of the fundamental operations on regular chains
used in this chapter. The names of these operations are the same as in the

RegularChains library in MAPLE.

NormalForm. Let T be a zero-dimensional normalized regular chain, that is, a
regular chain whose saturated ideal is zero-dimensional and whose initials are all in
the base field K. Observe that T is a lexicographic Grébner basis. Then, for p € K[x],
the operation NormalForm(p,T") returns the normal form of p w.r.t. T in the sense

of Grobner bases.

Normalize. Let T be a regular chain such that all variables occurring in 7" are
algebraic w.r.t. T. Let p € K[x] a non-constant polynomial whose initial h is reg-

ular w.r.t. sat(7) and such that all variables occurring in h are algebraic w.r.t.

95

T. Then h is invertible modulo sat(7") and the operation Normalize(p,T) returns
NormalForm(h~!p, T') where h™! is the inverse of A modulo sat(T).

RegularGced. Let T be a regular chain and let p,t € K[x| be non-constant poly-
nomials with mvar(p) = mvar(¢) and such that both init(p) and init(¢) are regular
w.r.t. sat(T). Then, the operation RegularGed(p,t,T) returns a sequence of pairs
(91,T1),- -, (ge, Tt), called a regular GCD sequence, where gy, . .., g. are polynomials
and 71, ..., T, are regular chains of K[x|, such that T— (T, ...,T,) holds and g; is
a regular GCD of p,t w.r.t. T; for all 1 <1 <e.

Regularize. For a regular chain 77 C Ki[x] and p in K[x], the operation
Regularize(p, T') returns regular chains T, . . ., T, of K[x] such that, for each 1 <1 <'e,

p is either zero or regular modulo sat(7;) and we have T—(T1,...,T¢).

7.3 Regular GCDs

Throughout this section, we assume n > 2 and we consider p,t € Klzy,...,z,]
non-constant polynomials with the same main variable z,, and such that mdeg(t) <
mdeg(p) holds. We denote by r the resultant of p and ¢ wrt. =z, Let T C
K[z1,...,2,_1] be a non-empty regular chain such that r € sat(T") and the initials of
p, t are regular w.r.t. sat(7"). We denote by A and B the ring of univariate polynomi-
als in z,, with coefficients in K[z, ..., z,-1] and Kz, ..., z,-1]/sat(T"), respectively.
Let ¥ be the canonical homomorphism from A to B. For 0 < j < mdeg(t), we denote
by S; the j-th subresultant of p,t in Afz,].

Let d be an index in the range 1---mdeg(t) such that lc(Sg, x,,) is regular modulo
sat(T") and S; € sat(T) for all 0 < j < d. Lemma 3, Lemma 4 and Corollary 1 exhibit

conditions under which Sy is a regular GCD of p and ¢t w.r.t. T
Lemma 1. Under the above assumptions, the polynomial Sy is a non-defective sub-

resultant of p and t over A. Consequently, since 1c(Sq, x,) is reqular modulo sat(T),

U(Sy) is a non-defective subresultant of V(p) and V(t) in Blx,].
PROOF. When d = mdeg(t) holds, we are done. Hence, we assume d < mdeg(t).

Suppose that S, is defective, that is, deg(Sy, x,) = e < d. According to item (r.)
in the divisibility relations of subresultants, there exists a non-defective subresultant
Sa41 such that

le(Sa, 20)" S = 89755

where s4.1 is the leading coefficient of Sy in z,. By our assumptions, S, belongs
to sat(T), thus le(Sy, 2,)*“S, € sat(T) holds. It follows from the fact le(Sy, @) is

96

regular modulo sat(7") that Sy is also in sat(7"). However the fact that lc(Sg, z,) =
init(Sy) is regular modulo sat(7) also implies that S; is regular modulo sat(7"). A
contradiction. O

The following lemma justifies the assumption that lc(Sg, z,) is regular modulo
sat(7T).

Lemma 2. With the same setting as Lemma 1, if 1c(Sq,) is contained in sat(T),
then all the coefficients of Sq regarded as a univariate polynomial in x, are nilpotent

modulo sat(T).
PROOF. If the leading coefficient lc(Sy, x,,) is in sat(7T’), then lc(Sy, x,,) € p holds for

all the associated primes p of sat(7"). By the Block Structure Theorem of subresultants
(Theorem 7.9.1 of [72]) over an integral domain K[z, ..., z,_1]/p, Sq must belong to
p. Hence we have Sy € (/sat(T), since VI equals the intersection of all associated
primes of I for any ideal I. That is to say, Sy is nilpotent modulo sat(T"). It follows
from Exercise 2 of [8] that all the coefficients of S; in z,, are also nilpotent modulo
sat(7T). O

The above lemma says, when lc(Sg, x,) is in sat(7T'), Sy will vanish on all the
components after splitting sat(7T") sufficiently. This is the key reason that Lemma 1
can be applied for computing regular GCD modulo sat(7"). To be more precise, there

are following cases:

(1) if le(Sq,) is regular modulo sat(7'), then Lemma 1 directly applies;
(2) if 1e(Sy, z,,) is in sat(T"), then S; must not be a regular GCD;

(3) if le(Sy, x,,) is a zero-divisor modulo sat(7), then it reduces to case (1) or (2)

after regularizing the leading coefficient of S; w.r.t sat(7).

The subresultant S; in Lemma 1 shall be referred as the candidate reqular GCD of p

and ¢ modulo sat(T").
Example 1. If lc(Sy, x,) is not reqular modulo sat(T) then Sy may be defective.

Consider for instance the following polynomials p and t in Q|xy, za, x3].

_ 2,2 4 _ 2,2 4
p=x5x5 —x; and t = x5 — T).

We have

prem(p, —t) = (a:? — xg) and r = (a:? — xg)2.

Let T = {r}. Then the last subresultant of p,t modulo sat(T) is prem(p, —t), which
has degree 0 w.r.t x3, although its index is 1. Note that prem(p, —t) is nilpotent
modulo sat(T).

97

In what follows, we give sufficient conditions for the subresultant S; to be a regular
GCD of p and t w.r.t. 7. When sat(7") is a radical ideal, Lemma 4 states that the
assumptions of Lemma 1 are sufficient. This lemma validates the search for a regular
GCD of pand t w.r.t. T in a bottom-up style, from Sy up to S, for some d. Corollary 1
covers the case where sat(T') is not radical and states that Sy is a regular GCD of p
and t modulo 7', provided that S, satisfies the conditions of Lemma 1 and provided
that, for all d < k < mdeg(t), the coefficient s;, of 2* in Sy is either null or regular
modulo sat(7").

Lemma 3. Under the assumptions of Lemma 1, assume further that, for all d < j <
mdeg(t), the j-th subresultant S; of p,t is either null modulo sat(T") or lc(S;, z,) is
reqular modulo sat(T). Then, Sy is a reqular GCD of p,t w.r.t. T.

PROOF. The assumptions and Lemma 1 imply that 7'U {S;} is a regular chain.
Note also that, Sy is in the ideal generated by p,t, since Sy is a subresultant of these
two polynomials. Hence, to prove that Sy is a regular GCD of p, t w.r.t. T, it suffices to
check that both p and ¢ belong to sat(T"U Sy). When d = mdeg(t) holds, we conclude
by applying Property (r,_1) from the divisibility relations of subresultants over an
integral domain. Hence, we assume d < mdeg(t). Let S; be the non-zero subresultant
of smallest index ¢ such that mdeg(t) > j > d. The divisibility relations (either
(r<q—1) or (r.—1)) imply that prem(S;, S4) € sat(T") holds, that is, S; € sat(T'U S,).
If j < mdeg(t), let S; be the non-zero subresultant of smallest j such that i > j. The
divisibility relations imply now that prem(S;, S;) € sat(T'U Sy) holds. By assumption
init(S;) = 1c(S;,) is regular modulo sat(7'). Hence, we deduce S; € sat(1 U Sy).
Continuing in this manner, we obtained the desired result. ([l
Corollary 1. We reuse the notations and assumptions of Lemma 1. Then Sy is a
reqular GCD of p and t modulo sat(T), if for all d < k < mdeg(t), the coefficient sy
of x¥ in Sy is either null or reqular modulo sat(T).

PROOF. Let us assume that for all d < k& < mdeg(t), the coefficient sy is either
null or regular modulo sat(7). It follows from Lemma 3 that we only need to prove
that every defective subresultant W(S;) of ¥(p) and W¥(¢) in Bz,| has a leading
coefficient which is regular w.r.t. sat(7"). So let d < j < mdeg(t) such that U(S;) # 0
and deg(¥(S;),z,) < j hold. Let k = deg(¥(S;),x,). The divisibility relations of
subresultants over an arbitrary commutative ring, together with the assumption that
init(¢) is regular w.r.t. sat(7'), imply that the non-zero subresultants W(S;;;) and

U (Sk) are non-defective and we have:

le(W(S;)) "W (S)) = W(sj1)’ "W(S).

98

This implies that 1c(W(S;)) is regular modulo sat(7'). O
Lemma 4. Under the assumptions of Lemma 1, assume further that sat(T) is radical.
Then, Sq is a reqular GCD of p,t w.r.t. T.

PROOF. As in the proof of Lemma 3, it suffices to check that both p and t belong
to sat(T"U{Sz}). Let p be any prime ideal associated with sat(7"). Define D =
K[z1,...,z,)/p and let L be the fraction field of the integral domain D. Clearly Sy is
the last subresultant of p,t in D[z,] and thus in L|x,]. Hence Sy is a GCD of p,t in
L[z,]. Thus Sy divides p,t in L]z,] and pseudo-divides p, ¢ in D[z,]. Therefore both
prem(p, Sy) and prem(t, Sy) belong to p. Finally prem(p, S;) and prem(t, Sy) belong
to sat(T). Indeed, sat(T") being radical, it is the intersection of its associated primes.
0

7.4 A Regular GCD Algorithm

Following the notations and assumptions of Section 7.3 we propose an algorithm for
computing a regular GCD sequence of p,t w.r.t. T, as specified in Section 2.3.5. This
algorithm is called RGSZR for regular ged sequence with zero resultant. In Section 7.4.2
we show how to relax the assumption r € sat(7).

There are three main ideas behind the RGSZR algorithm. Firstly, the subresultants
of p,t in Afz,] are assumed to be known. We shall explain in Section 7.5 how we
compute them in our implementation. Secondly, we rely on the Regularize operation
specified in Section 2.3.5. Lastly, we inspect the subresultant chain of p,t in Alx,]
in a bottom-up manner. Therefore, we view Sy, S5, ... has successive candidates and

apply Lemma 4, if sat(7) is known to be radical, otherwise we apply Corollary 1.

7.4.1 Case where r € sat(7T): the algorithm RGSZR

Calling sequence. RGSZR(p, ¢, z,,,T)
Input: p,t,x,,T as in Section 7.3.

Output: Same output specification as RegularGed(p, t,T), see Section 2.3.5

S1: Compute the subresultants of p and t in x,. See Section 7.5.1 for details.

S2: Initializing the search for a regular GCD. Let i = 1. The index i represents
the smallest possible index of a subresultant S; of p, ¢ (regarded in A[z,]) such that
S; ¢ sat(T'). Recall that Sy = res(p,t,z,) € sat(T). The algorithm manages three
sets Tasks, Candidates and Results. Define

Tasks = {[i, T}, Candidates =), Results = 0.

99

Each item in Tasks or Candidates is a pair [¢,C] where ¢ is a subresultant index
in the range 1---mdeg(t) and where C is a regular chain such that |T'| = |C| and
sat(7T") C sat(C') hold. Each item in Tasks or Candidates is the input data of some
computation, whereas Results is the value returned by the algorithm. Each task
[0, C] € Tasks satisfies the following: for each 0 < j < ¢ we have S; € sat(C').

S3: If T'asks = () then go to S6, otherwise continue to S4.

S4: Searching for a candidate. Take an item [¢,C] out of Tasks. If £ = mdeg(t)
then set j = ¢ and go to S5. Otherwise, let j < ¢ be the smallest index of a
subresultant S; of p and ¢ such that S; ¢ sat(C'). Observe that j exists since init(t)
regular w.r.t. sat(7") implies ¢ & sat(C).

S5: Checking the candidate. Denote by c, the leading coefficient of S; in z,. If
¢, € sat(C) holds, then for each D € Regularize(S;, C') do the following:

Tasks = Tasks U {[j + 1, D]}.

If ¢, ¢ sat(C) holds, then for each D € Regularize(c,, C') do the following:
(a) if ¢, & sat(D) then

Candidates := Candidates U {[j, D]};

(b) if ¢, € sat(D) then
Tasks := Tasks U {[j, D]}.
Go back to S3.

We make two comments. When ¢, € sat(C) holds, by Lemma 2, S; is nilpotent
modulo sat(C'). Hence after regularizing S;, S; belongs to sat(D) for each D and we
can proceed to the next level j + 1. When ¢, & sat(C), we split C' by regularizing
¢y. In case (a), the polynomial ¢, is regular modulo sat(D) and, by Lemma 1, S; is
non-defective. We regard S; as a candidate regular GCD of p,t w.r.t. D. In case (b),
the polynomial ¢, is in sat(D), we simply add it back to the task pool.

S6: Applying Lemma 4. If sat(T) is not known to be radical then go to S7. Other-
wise, for all [j, D] € Candidates set

Results := Results U {[S;, D]}

and return Results. Observe that for all [j, D] € Candidates the ideal sat(D) is
radical too. Thus, Lemma 4 shows that S; is a regular GCD of p,t w.r.t D.
S7: Applying Corollary 1. For each [j, D] in Candidates,

100

(a) Set Tasks = {[j, D]} and Split = 0.
(b) while Tasks # () do

(b.1) Take an element [¢, E] out of Tasks.

(b.2) Let £ < k < mdeg(t) be the smallest index of a subresultant Sy such that

k
n

(b.3) If k = mdeg(t) then Split := Split U {E}. Otherwise, for each F' €
Regularize(sy, F) do Tasks := Tasks U {[{ + 1, F|}.

sk (the coefficient of S in) is non-zero modulo sat(F).

(c¢) For each regular chain E € Split

Results := Results U {[S;, El}.

Finally, we return Results.

7.4.2 Case where r ¢ sat(7T)

We explain how to relax the assumption r € sat(7") and thus obtain a general
algorithm for the operation RegularGed. The principle is straightforward. Let
r = res(p,t,z,). Then, we call Regularize(r,T") obtaining regular chains 73,...,T,
such that T — (T, ...,T.). For each 1 < i < e we compute a regular GCD sequence
of p and ¢t w.r.t. T; as follows: If r € sat(7}) holds then we call RGSZR(p, t, z,, T;);
otherwise r ¢ sat(T;), the resultant r is actually a regular GCD of p and t w.r.t. T;
by the definition. Observe that in the case where r € sat(7;) holds the subresultant
chain of p and ¢ in z,, is used to compute their regular GCD w.r.t. T;. This is one of

the motivations for the implementation techniques described in Section 7.5.

7.5 Implementation and Complexity

In this section we address implementation techniques and complexity issues. We
follow the notations introduced in Section 7.3. However we do not assume that
r = res(p, t, ;) belongs to the saturated ideal of the regular chain 7'

In Section 7.5.1 we describe our encoding of the subresultant chain of p, t in
K[z1,...,2,_1][z,]. This representation is used in our implementation and complexity
results. For simplicity our analysis is restricted to the case where K is a finite field
whose “characteristic is large enough”. The case where K is the field Q of rational

numbers could be handled in a similar fashion, with the necessary adjustments.

101

One motivation for the design of the techniques presented in this chapter is the
solving of systems of two equations, say p = ¢t = 0. Indeed, this can be seen as
a fundamental operation in incremental methods for solving systems of polynomial
equations, such as the one of [75]. We make two simple key observations. Formula 2.25
p. 25 shows that solving this system reduces “essentially” to computing r and a
regular GCD sequence of p,t modulo {r}, when r is not constant. This is particularly
true when n = 2 since in this case the variety V'(h,p,t) is likely to be empty for
“generic” polynomials p,t. The second observation is that, under the same genericity
assumptions, a regular GCD g of p, ¢t w.r.t. {r} is likely to exist and to have degree
one w.r.t. x,. Therefore, once the subresultant chain of p,¢t w.r.t. x, is calculated,
one can obtain g “essentially” at no cost. Section 7.5.2 extends these observations
with two complexity results.

In Section 7.5.3 an algorithm for the operation Regularize and its implementation
are discussed. We show how to create opportunities for making use of fast polynomial
arithmetic and modular techniques, bringing a significant improvement w.r.t. other

algorithms for the same operation, as illustrated in Section 7.6.

7.5.1 Subresultant chain encoding

Following [23], we evaluate (xi,...,2,-1) at sufficiently many points such that the
subresultants of p and ¢ (regarded as univariate polynomials in z,,) can be computed
by interpolation. To be more precise, we need some notations. We denote by d; the
maximum of the degrees of p and t in x;, for all 7 = 1,...,n. Observe that b; := 2d;d,
is an upper bound for the degree of r (or any subresultant of p and t) in x;, for all
i=1,...,n. Let B be the product (by +1)--- (b,_1 + 1).

We proceed by evaluation/interpolation; our sample points are chosen on an
(n — 1)-dimensional rectangular grid. We call “Scale” the evaluation of the sub-
resultant chain of p,t on this grid, which is how the subresultants of p,t are encoded
in our implementation. Of course, the validity of this approach requires that our
evaluation points cancel no leading term in p or ¢. Even though finding such points
deterministically is a difficult problem, this created no issue in our implementation.
Whenever possible (typically, over suitable finite fields), we choose roots of unity
as sample points, so that we can use FFT (or van der Hoeven’s Truncated Fourier
Transform [51]); otherwise, the standard fast evaluation/interpolation algorithms are

used. We have O(d,) evaluations and O(d?) interpolations to perform. Since our

102

evaluation points lie on a grid, the total cost becomes

n—1 n—1
M(be) log(b)
O | Bd2) log(b; or O|Bd2Y —2 =Y,
(55 ws) or 0 3210
depending on the choice of the sample points (see e.g. [78] for similar estimates).
Here, as usual, M(b) stands for the cost of multiplying polynomials of degree less
than b, see [43, Chap. 8]. Using the estimate M(b) € O(blog(b) loglog(b)) from [21],

this respectively gives the bounds
O(d?Blog(B)) and O(d?Blog*(B)loglog(B)).

These estimates are far from optimal. A first improvement (present in our code) con-
sists in interpolating only the leading coefficients of the subresultants in a first time,
and recover all other coefficients when needed. This is sufficient for the algorithms of

Section 7.3. For instance, in the FF'T case, the cost is reduced to
O(d?B + d,Blog(B)).

Another desirable improvement would of course consist in using fast arithmetic based
on Half-GCD techniques [43], with the goal of reducing the total cost to O7(d,B),
which is the best known bound for computing the resultant, or a given subresultant.

However, as of now, we do not have such a result, due to the possible splittings.

7.5.2 Solving two equations

Our goal now is to estimate the cost of computing the polynomials » and ¢ in the
context of Formula 2.25 p. 25. We propose an approach where the computation of g
essentially comes free, once r has been computed. This is a substantial improvement
compared to traditional methods, such as [56, 75|, which compute g without recycling
the calculation of r. With the assumptions and notations of Section 7.5.1, we saw
that the resultant r can be computed in at most O(d,, Blog(B) + d? B) operations in
K. In many cases (typically with random systems), g has degree one in v = x,,. Then,
the GCD ¢ can be computed within the same bound as the resultant. Besides, in this
case, one can use the Half-GCD approach instead of computing all subresultants of p

and t. This leads to the following result in the bivariate case; we omit its proof here.

Corollary 2. With n = 2, assuming that V(h,p,t) is empty, and assuming

103

deg(g,v) = 1, solving the input system p =t = 0 can be done in O~(d3d,) oper-

ations in K.

7.5.3 Implementation of Regularize

Regularizing a polynomial w.r.t regular chain is a fundamental operation in methods
computing triangular decompositions. It has been used in the algorithms presented
in Section 7.4 and its specification can be found in Section 2.3.5. Algorithms for this
operation appear in [56, 75].

The purpose of this section is to show how to realize efficiently this operation.
For simplicity, we restrict ourselves to regular chains with zero-dimensional saturated
ideals, in which case the separate operation of [56] and the regularize operation [75] are
similar. For such a regular chain 7" in K[x] and a polynomial p € K[x] we denote by
RegularizeDim0(p, T') the function call Regularize(p, 7). In broad terms, it “separates”
the points of V(7T') that cancel p from those which do not. The output is a set of
regular chains {7, ..., T¢} such that the points of V(T') which cancel p are given by
the T%’s modulo which p; is null.

Algorithm 1 differs from those with similar specification in [56, 75] by the fact
it creates opportunities for using modular methods and fast polynomial arithmetic.
Our first trick is based on the following result (Theorem 1 in [22]): the polynomial p
is invertible modulo 7" if and only if the iterated resultant of p with respect to T' is
non-zero. The correctness of Algorithm 1 follows from this result, the specification of
the algorithm of RGSZR and an inductive process. Similar proofs appear in [56, 75].

The main novelty of Algorithm 1 is to employ the fast evaluation/interpolation
strategy described in Section 7.5.1. In our implementation of Algorithm 1, at Step
(6), we compute the “Scube” representing the subresultant chain of ¢ and C,. This
allows us to compute the resultant r and then to compute the regular GCDs (g, F)
at Step (12) from the same “Scube”. In this way, intermediate computations are
recycled. Moreover, fast polynomial arithmetic is involved through the manipulation
of the “Scube”.

Algorithm 1.

Input: T a normalized zero-dimensional regular chain and p a polynomial, both in
Klz1, ...,z

104

Output: See specification in Section 2.3.5.

RegularizeDim0(p, T') ==

(1) Results :=();

(2) for (gq,C) € RegularizelnitDim0(p, T') do

(3) if ¢ € K then

(4) Results := {C} U Results

(5) else v := mvar(q)

(6) r :=res(q,Cy,0v)

(7) for D € RegularizeDim0(r, C,) do

(8) s := NormalForm(r, D)

(9) if s # 0 then

(10) U:={DU{C,}UCs.}

(11) Results :== {U} U Results

(12) else for (g, F) € RegularGed(q, C,, D) do

(13) g := NormalForm(g, F)

(14) U= {EU{g}UD..}

(15) Results := {U} U Results

(16) ¢ := NormalForm(quo(C,, g), F)

(17) if deg(c,v) > 0 then

(18) Results :=
RegularizeDim0(q, £ U c U Csv)
U Results

(19) return Results

In Algorithm 1, a routine RegularizelnitialDim0 is called, whose specification and
pseudo-code are given below. Briefly speaking, this routine splits a regular chain T’
according to the initial of a polynomial p such that p either is a constant or has a

regular initial over each component of sat(T’).

Algorithm 2.

Input: T a normalized zero-dimensional reqular chain and p a polynomial, both in
Klzy, ...,z

105
Output: A set of pairs {(p;,T;) | i = 1---e}, in which p; is a polynomial and T; is
a reqular chain, such that either p; is a constant or its initial is reqular modulo

sat(T;), and p = p; mod sat(T;) holds.

RegularizelnitDim0(p,T') ==

(1) p := NormalForm(p,T')

(2) Tasks :={(p,T)}

(3) Results := 1)

(4) while Tasks # () do

(5) Take a pair (q,C) out of Tasks

(6) if ¢ € K then

(7) Results :={(¢q,C)} U Results

(8) else for D € RegularizeDim0(init(q), C') do
(9) t := NormalForm(tail(q), D)

(10) h := NormalForm(init(q), D)

(11) if A # 0 then

(12) Results := {(hrank(q) +t, D)} U Results
(13) else Tasks := {(t,D)} U Tasks

(14) return Results

7.6 Experimentation

We have implemented in C language all the algorithms reported in the previous
sections. The new implementations rely on the set of asymptotically fast polynomial
arithmetic operations from our modpn library [68] as their base level sub-routines. We
also provide a Maple interface FastArithmeticTools calling these new implementations
and our previous ones reported in [68]. In this section, we compare the performance
of our algorithms and their implementation with Maple’s and/or Magma’s existing
counterparts. For Maple, we use its latest distribution version 13; For Magma we
ordered its latest version V2.15-4 however the performance for the algorithms we
have benchmarked on such as TriangularDecomposition and Saturation is slower than
the ones in the previous version, thus we still use Magma’s Version V2.14-8. We
focus on Resultant and GCD in Section 7.3 and Regularize in Section 7.5.3. All the

106

benchmarks are conducted on Intel Pentium VI, Quad CPU 2.40 GHZ machines with
4 MB cache and 3 GB main memory.

7.6.1 Resultant and GCD

In Figure 7.1 we benchmark our Resultant and GCD algorithm. The “degree” shown
in the figure is the partial degree of each input polynomial in its main variable. The
input polynomials are random dense polynomial in two variables and each of them
has a totally degree of the square of “degree” (see the first line of definition of “de-
gree”). This is one of the so-called “internal” benchmarks. Namely we compare two
flavor of implementations of our Resultant and GCD algorithm. One is based on
the subproduct-tree interpolation method, the other is based on the DFT interpola-
tion. Obviously the DFT based approach is faster in this benchmark. However the
subproduct-tree is more generally applicable since it does not require the character-
istic p to be a Fourier prime. Figures 7.2 and 7.3 have the same setting except they

are the 3-variable and 4-variable cases respectively.

12

SubProduct-Tree - - - -
DFT —— ,
10 H

Time
()]

0 5 10 15 20 25 30 35 40
Degree

Figure 7.1: Resultant and GCD random dense 2-variable.

Figure 7.4 is one of so-called “external” benchmarks. We are comparing our
Resultant and GCD algorithm with Magma’s counterpart. In Figure 7.4 we use the
same “degree” as defined in previous Resultant and GCD benchmark. As shown our

performance is way beyond Magma’s.

dy. | dy | Regularize | Fast Regularize | Magma
2 | 2 0.000 0.004 0.000
4 | 6 0.044 0.000 0.010
6 | 10 1.256 0.012 0.020
8 | 14 6.932 0.020 0.070
10 | 18 35.242 0.048 0.160
12 | 22 | > 100.000 0.052 0.370
14 | 26 | > 100.000 0.100 0.900
16 | 30 | > 100.000 0.132 1.760
18 | 34 | > 100.000 0.240 3.260
20 | 38 | > 100.000 0.472 6.400
22 142 | > 100.000 0.428 11.150
24 | 46 | > 100.000 0.668 18.890
26 | 50 | > 100.000 1.304 29.120
28 | 54 | > 100.000 1.052 44.770
30 | 58 | > 100.000 1.260 74.450
32 | 62 | > 100.000 2.408 97.380
34 | 66 | > 100.000 3.768 183.930
Table 7.1: Random dense 2-variable case.
dy | dy | d3 | Regularize | Fast Regularize | Magma
21213 0.032 0.004 0.010
31416 0.160 0.016 0.020
4169 0.404 0.024 0.060
51 8 |12 >100 0.129 0.330
6 [10| 15 >100 0.272 1.300
711218 >100 0.704 5.100
8 (14|21 >100 1.276 14.530
9 |16 | 24 >100 5.836 40.770
10 | 18 | 27 >100 9.332 107.280
11 20 | 30 >100 15.904 229.950
12| 22 | 33 >100 33.146 493.490

Table 7.2: Random dense 3-variable case.

107

108

350 . . . : :
SubProduct-Tree - - - -
300 | DFT ——]
250 r
o 200t
£
F 150 |)
100 /
50 | » /
O L L " e . 1 I L L

2 4 6 8 10 12 14 16 18 20
Degree

Figure 7.2: Resultant and GCD random dense 3-variable.

900 : : ‘ :
SubProduct-Tree - - - -
800 |- DFT —

700
600 r
500 r
400 r
300
200 r
100 ¢

Time

2 3 4 5 6 7 8 9 10
Degree

Figure 7.3: Resultant and GCD random dense 4 variable.

7.6.2 Regularize

In the following benchmarks (Tables 7.1, 7.2, and 7.4), we compare our fast regularize
algorithm with “Regularize” from Maple RegularChains library and Magma’s coun-
terpart. Namely, in Magma we first saturate the ideal generated by the triangular set
with an input polynomial by using the Saturation command. Then we use Triangu-
larDecomposition command to decompose the output from the first step. The total
degree of the input polynomial 7 is d;. In Table 7.1, we generate two random dense
polynomials with 2 variables for each, thus we are generally in the equiprojectable
case and the “split” step in terms of triangular decomposition rarely happen. Simi-

larly in Table 7.2, we generate three random dense polynomials with 3 variables for

109

Time
w N (6]

Degree

Figure 7.4: Resultant and GCD random dense 3-variable.

each. In this “non-splitting” (equiprojectable) case, our fast regularize algorithm is
significantly faster than the other two implementations. For the three variables case,
we are more than 150 times faster than both Magma’s and RegularChains “Regular-
ize” for the larger input examples. However, in the “splitting” (non-equiprojectable)
case where we design the input systems with large number of “split” in terms of trian-
gular decomposition, our fast regularize is slightly slower than Magma’s counterpart,
but still much faster than “Regularize” from RegularChains. Table 7.3 shows the run
time of the “split” case with two input bivariate polynomials. Table 7.4 shows the

run time of the “split” case with three input trivariate polynomials.

7.7 Summary

The concept of a regular GCD extends the usual notion of polynomial GCD from
polynomial rings over fields to polynomial rings modulo saturated ideals of regular
chains. Regular GCDs play a central role in triangular decomposition methods. Tra-
ditionally, regular GCDs are computed in a top-down manner, by adapting standard
PRS techniques (Euclidean algorithm, subresultant algorithms, etc.).

In this chapter, we have examined the properties of regular GCDs of two poly-
nomials w.r.t a regular chain. With the Algorithm RGSZR presented in Section 7.3,
our main theoretical result, one can proceed in a bottom-up manner. This has three
benefits described in Section 7.5. Firstly, this algorithm is well-suited to employ
modular methods and fast polynomial arithmetic. Secondly, we avoid the repetition

of (potentially expensive) intermediate computations. Lastly, we avoid, as much as

dy. | dy | Regularize | Fast Regularize | Magma
2 | 2 0.024 0.004 0.000
4 |6 0.232 0.012 0.000
6 | 10 1.144 0.016 0.010
8 | 14 7.244 0.040 0.030
10 | 18 25.281 0.080 0.050
12 | 22 | > 100.000 0.176 0.090
14 | 26 | > 100.000 0.340 0.250
16 | 30 | > 100.000 0.516 0.280
18 | 34 | > 100.000 1.196 0.630
20 | 38 | > 100.000 1.540 0.920
22 | 42 | > 100.000 2.696 1.450
24 | 46 | > 100.000 3.592 2.540
26 | 50 | > 100.000 4.328 4.700
28 | 54 | > 100.000 6.536 4.790
30 | 58 | > 100.000 10.644 6.570
32 | 62 | > 100.000 10.028 9.360
34 | 66 | > 100.000 15.648 11.540
Table 7.3: Non-equiprojectable 2-variable case.
dy | dy | d3 | Regularize | Fast Regularize | Magma
21213 0.292 0.012 0.000
31416 1.732 0.028 0.010
41619 68.972 0.072 0.030
51 8 | 12| 328.296 0.204 0.150
6 [10|15 >1000 0.652 0.370
7112 |18 >1000 2.284 1.790
8 | 14 | 21 >1000 5.108 2.890
9 |16 | 24 >1000 18.501 10.950
10 | 18 | 27 >1000 31.349 19.180
11 120 | 30 >1000 55.931 56.850
12 1 22| 33 >1000 101.642 76.340

Table 7.4: Non-equiprojectable 3-variable case.

110

111

possible, computing modulo regular chains and use polynomial computations over
the base field instead, while controlling expression swell. The experimental results

reported in Section 7.6 illustrate the high efficiency of our algorithms.

112

Chapter 8

The Modpn Library: Bringing Fast
Polynomial Arithmetic into MAPLE

8.1 Overview

In Chapter 7 at Page 91, we have reported our new algorithms for the Regular GCD
and Regularize operations. The latter can be regarded as an application of the former.
We also mentioned briefly another application of Regular GCD, i.e two-equation solver.
In this chapter, besides explaining in greater details for the two-equation solver, we
report two other based on the operation Regular GCD based algorithms: Bivariate
Solver and Invertibility Test. We are restricted to the two variable case for Bivariate
Solver, thus more specialized tricks can be applied as described in Section 8.3 at
Page 118. Invertibility Test is also a specialized algorithm with respect to Regularize
since it assumes that the input regular chain is zero-dimensional and generates a
radical ideal.

Besides the theoretical result, we are more interested in the implementation strat-
egy for computations modulo regular chains. Therefore, while reporting the new
algorithms, we will combine the practical programming consideration. Moreover, we
have also conducted new experimentation in terms of programming environment. Re-
call that in Chapter 3 at Page 26, Chapter 4 at Page 45, Chapter 5 at Page 57, and
Chapter 6 at Page 65, we use AXIOM as the experimentation environment. In this
chapter, we investigate the integration of fast arithmetic operations implemented in
C into MAPLE. Most of MAPLE library functions are high-level interpreted code such
as the Regularchains library. Our objective is to let these high-level triangular com-

position library benefit from our C-level fast routines. However, to reach this goal, we

113

have to handle the following facts in a careful manner. To our knowledge, the standard
method to connect C code into MAPLE is simple but quite rudimentary. The only
structured data which can be recognized by the both sides are the simple ones such as
strings, arrays, tables. This leads to potential conversion overheads. Indeed, generally,
MAPLE polynomials are represented by sparse data structures whereas those used by
fast arithmetic operations are dense. Thus, we have to convert MAPLE sparse object
into our dense object. This situation implies a second downside factor: Since conver-
sions from MAPLE to C objects must be performed on the MAPLE side as interpreted
code, the overhead of conversion is significant. Clearly, one would like to implement
them on the C side, as compiled and optimized code. However, this requires a lot
expertise of OpenMaple (see Maple help page) which is huge amount of efforts. The
third disadvantage is that the MAPLE language does not enforce “modular program-
ming” or “generic programming” compared to AXIOM integration. Only providing
a MAPLE connection-package capable of calling our C routines will not be sufficient
to speed up all MAPLE triangular decomposition libraries. Clearly, high-level MAPLE
code also needs to be carefully rewritten to call this connection-package in a delicate
manner. The “top-level” algorithms such as bivariate solver, two-equation solver,
invertibility test, are written in MAPLE and relies on our C routines of different tasks
such as the computation of subresultant chain, normal form of a polynomial w.r.t. a
zero-dimensional regular chain, etc. These three applications are actually part of the
new module of the RegularChains library, called FastArithmeticTools, which pro-
vides operations on regular chains (in prime characteristic and mainly in dimensions
zero or one) based on modular methods and fast polynomial arithmetic. Therefore,
these three applications are well representatives and simple enough such that their
performance can be sharply evaluated.

After the success of this experimentation, we have collected selectively all our past
C level implementation as a complete library called modpn (Multivariate Polynomial
Arithmetic Modulo a prime number with N variables). As mentioned in Section 1.2,
this library is in features of asymptotically fast polynomial arithmetic and their highly
efficient implementation. This library targets on supporting symbolic polynomial
solving via triangular decomposition techniques. modpn has already been accepted
and integrated into the latest MAPLE distribution, version 13 (at the time writing
this thesis).

The outline of this chapter is as following: In Section 8.2 at Page 114, we inves-
tigate the integration of asymptotically fast arithmetic operations implemented in C

into MAPLE. In Sections 8.3 at Page 118 and 8.4 at Page 124, we present our new al-

114

gorithms Two-equation Solver and Invertibility Test and their implementation.
In Section 8.5 at Page 127, we show the performance result of our new algorithms.
We demonstrate that with suitable implementation strategies, our new algorithms

are highly effective methods.
NOTE: This chapter is written based on the published Paper [68].

8.2 A Compiled-Interpreted Programming Envi-

ronment

Our library, modpn, contains two levels of implementation: MAPLE code (interpreted)
and C code (compiled); our purpose is to reach high performance while spending a
reasonable amount of development time. Relying on asymptotically fast algorithms
and code optimization, the C level routines are very solid result. The “core” oper-
ations consist of modular multiplication/inversion 6, lifting techniques [84]), GCD’s,
resultants and fast interpolation, etc. At the MAPLE level, we write more abstract
algorithms; typically, they are higher level polynomial solvers. The major trade-off
between two levels is language abstraction and high performance.

We use multiple polynomial data encoding at each level, showed in Figure 8.1.
The Maple-Dag and Maple-Recursive-Dense polynomials are MAPLE built-in types;
the C-Dag, C-Cube and C-2-Vector polynomials are written in C by us. Each encoding
will be used in certain computation; for instance C-Cube will be used in the fast dense
computation at C level and Maple-Dag will be used in regular chain computation at
MAPLE level. Our polynomial solving algorithms are each composed by such different
computations. Therefore, at run time in the same algorithm a polynomial may need
to be represented differently. Consequently, how to efficiently map one encoding to
another, especially from MAPLE level ones to C level ones (or vice versa) is highly

important.

For the four questions regarding C/MAPLE integration mentioned in Section 1.2,

we try to answer the first two in Sections 8.2.1, 8.2.2 and 8.2.3:

e To what extent triangular decomposition algorithms can take advantage of fast

polynomial arithmetic implemented in C?

e What is a good design for a hybrid C-MAPLE application?

115

Maple Level

Maple-Dag Recursive-

C level

Figure 8.1: The polynomial data representations in modpn.

8.2.1 The C level

Primarily, our C code targets on the best performance. All operations are based
on asymptotically fast algorithms rooted at fast Fourier transform (FFT) and its
variant truncated Fourier transform (TFT) [51]. These operations are optimized with
respect to crucial features of hardware architecture: memory hierarchy, instruction
pipe-lining, and vector instructions. As reported in Chapters 5, 6, and 7 (or see
Papers [69, 65]), our C library often outperforms the best known implementations
such as MAGMA and NTL [5, 6].

Large portion of the C code is dedicated to regular chain operations modulo a
machine size prime number, mainly in dimension zero. Such computation typically
generates dense polynomials in the middle stages; thus, we use multidimensional
arrays as the canonical encoding for polynomials, and we call them C-Cubes This
encoding is the most appropriate one for FFT-based modular multiplication, inver-
sion, interpolation, etc. For this encoding, we can pre-allocate the working buffer
since all the partial degrees of a polynomial are bounded by the given regular chain.
Then, in-place operations can be easy conducted on these buffers whenever they are
applicable. Moreover, tracing coefficients and degrees also becomes trivial constant
operations.

Besides C-Cube, we have another polynomial encoding called C-Dag. It’s designed
for triangular lifting algorithms [84, 27]. in which we use a Directed Acyclic Graph
(DAG) to encode a polynomial. Actually, DAG polynomials is the default data

116

presentation in MAPLE. Our C-Dag polynomials are used at C level only. This
data representation has its unique properties, such as by setting flags in the nodes of
these Dags, we can track their visibility and aliveness in constant time.

In addition to C-Cube and C-Dag, we have implemented a third data structure
at C level called C-2-Vector. At the beginning of this chapter, we mentioned that
the overhead of data conversion between MAPLE and C can be significant. Thus, we

designed C-2-Vector to ease this problem (see 8.2.3 for explanation).

8.2.2 The MAPLE level

Many complex algorithms for triangular decompositions are highly abstract, so it is
sensible to implement them in a well equipped high-level language environment like
MapPLE. First, the implementation effort is much less intensive than that in C or
C++; Second, MAPLE has a comprehensive mathematical library, so it is possible to
directly use other existing algorithms to verify our results. In our case, we use MAPLE
RegularChains library [63] to verify the result of our new algorithms and their imple-
mentation. At the MAPLE level, we use two types of polynomials: MAPLE Dags and
RecDen (recursive dense) polynomials. As mentioned previously, Dags are the default
data representation for polynomials in MAPLE. For example, MAPLE RegularChains
library uses it uniformly. Thus, for the hybrid MAPLE/C implementation, we need
to convert the C level polynomials to Maple Dag’s (vice versa).

RecDen is an efficient MAPLE library for doing dense polynomial computation. It
has its own data representation for polynomials; we call it RecDen polynomials. In
our hybrid implementation we use some RecDen operations, thus we need the data

representation conversion.

8.2.3 MAPLE and C cooperation

When designing polynomial solving algorithms such as the ones reported in Section 8.3
at Page 118 and 8.4 at Page 124, we try to rely on the fast arithmetic in our C library.
Recall our first question: is this an effective approach? Our answer is a conditional
yes: if the code integration process is careful, our C code provides a large speed-up to
the MAPLE code. This has been demonstrated in Section 8.5 at Page 127. However,
if the overall overhead of data conversion between C and MAPLE is significant this
might not be a good approach. This observation naturally leads we to investigate
this overhead and the methods to reduce it.

For general users, MAPLE ExternalCalling package is the only standard way

117

to link in externally C functions. The procedure of linking is not complicated: the
user just needs to carefully map MAPLE level data onto C level ones. For example,
a MAPLE rtable type can be directly mapped to a C level array. However, if the
MAPLE data encoding is very different from the C one, the data conversion might be
an issue. Actually, there are only a small group of simple MAPLE data structures,
such as integers, floats or tables, can be automatically converted into C responding
ones. For other compound data structures, such as converting from a MAPLE Dag
polynomial to a C Dag polynomial, we have to manually pack the data into a MAPLE
rtable, and unpack it at C level. In other words, we need to “encode” the data at
MAPLE level and “decode” it at the C level. This encoding/decoding process maybe
expensive especially at the MAPLE end. There are two major ways to reduce this

overhead:
1. to minimize the amount of conversions at the algorithm design level,
2. to minimize the amount of time for each conversion at the implementation level.

The amount of conversions is application dependent; it turns out that it happens

4

quite often in the implementation of our new algorithms. Many conversions are “vol-
untary”: namely, we are willing to conduct them, expecting that better algorithms or
better implementations can be used after converting to suitable data representation.
For example, in the triangular lifting algorithm we use C-Dag as the default represen-
tation since it is more efficient for the sub operations such as differentiation, variable
substitution and variable lifting. However, we need to convert the C-Dag polynomials
into C-Cube polynomials in the middle stage to use our FFT based fast arithmetic.
We are willing to pay this overhead since the speed-up from FFT outweighs the extra
cost from the data conversion. However, some conversions are “involuntary”. Indeed,
we would like all the computational intensive operations are implemented at the C
level. However, this is unrealistic due to the complexity of implementation. Thus,
there are often cases that we have to convert polynomials from C to MAPLE to use
MAPLE level operations. As mentioned previously, the data conversion of polynomials
might be very expensive. Therefore, we need to carefully study both the “voluntary”
and “involuntary” conversions and decide 2 things: (1) what kind polynomial arith-
metic or which sub-algorithm should be used. (2) which portion of the code should
rely on MAPLE code or instead on the C code.

The amount of time for each conversion can be reduced by carefully designed
data converters. For example, as mentioned previously we designed a so-called C-2-

Vector polynomial representation: one vector we called degree vector recursively

118

encodes the degrees of all polynomial coefficients, and the other vector we called
number coefficients vector encodes all the base number coefficients. Two vectors
use the same traversal order to encode information. To be specific, the recursive
dense polynomial representation [64] uses a tree structure to encode a multivariate
polynomial. The root itself represents the given polynomial. Its children nodes are
its coefficients which may have their own children nodes, i.e. their coefficients. The
leaves in the tree are numbers from the base ring. We call the nodes between the
root and the leaves are polynomial coefficients. Therefore, by choosing a fixed
tree traversal order we encode the degrees of those polynomial coefficients into
the degree vector. Then accordingly, we use the same traversal order to encode the
number coefficients into the number coefficients vector.

This data representation in our library does not participate to any real compu-
tation: it is specifically designed for facilitating the data conversion from C-Cube
to RecDen encoding. The C-2-Vector encoding has the same recursive structure as
RecDen, so the data conversion become easier. Moreover, the C-2-Vector encoding
use flattened polynomial tree structures (a tree encodes in an 1-dimensional array),

which are convenient to pass from C to MAPLE.

8.3 Bivariate Solver

The first application we used to evaluate our framework is the solving of bivariate
polynomial systems by means of triangular decompositions. We consider two bivariate
polynomials F; and F3, with ordered variables X; < X, and with coefficients in a
field K. We assume that K is perfect; in our experimentation K is a prime field whose
characteristic is a machine word size prime.

We rely on an algorithm introduced in [80] and based on the following well-known
fact [11]. The common roots of F; and F; over an algebraic closure K of K are “likely”

to be described by the common roots of a system with a triangular shape:

Ti(Xy) =
T2 (X17 XQ) =
such that the leading coefficient of Ty w.r.t. X, is invertible modulo 77; moreover the

degree of T, w.r.t. Xy is “likely” to be 1. For instance, the system

X2+ Xo+1 = 0
Xi+X24+1 =0

119

is solved by the triangular system

X +2XP+ X1 +2 =
X+ X741 =

In general, though, more complex situations can arise, where more than one triangular
system is needed. The goal of this section is to show that this algorithm can easily
be implemented in our framework while providing high-performance. Section 8.3.2 at
Page 121 and Section 8.3.3 at Page 122 contain the algorithm and the corresponding

code, respectively.

8.3.1 Subresultant sequence and GCD sequence

In Sections 2.3.4 and 2.3.5 at Page 22, We have studied subresultant theory and reqular

GCD. Here we define subresultant sequence and GCD sequence in the bivariate case.

Subresult sequence. In Euclidean domains such as K[X;], polynomial GCD’s
can be computed by the Euclidean algorithm and by the subresultant algorithm (we
refer here to the algorithm presented in [32]). Consider next more general rings,
such as K[X1, X5]. Assume F}, F, are non-constant polynomials with deg(F7, Xs) >
deg(Fy, X), and deg(Fs, X3) = ¢q. The polynomials computed by the subresultant
algorithm form a sequence, called the subresultant chain of Fy and F, and denoted
by src(Fy, Fy). This sequence consists of g+ 1 polynomials, starting at lc(Fy, X2)5 s,
with 0 = deg(F, Xo) — deg(Fs, X3), and ending at Ry := res(F}, Fy), the resultant
of F1 by F, wr.t. X, We write this sequence S, ..., Sy where the polynomial
S; = S;(F1, Fy) is called the subresultant (of Fi, Fy) of index j. Let j be an index
such that 0 < j <gq. If S; is not zero, it turns out that its degree is at most j and 5}
is said regular when deg(S;, X2) = j holds.

The subresultant chain of F; and F; satisfies a fundamental property, called the
block structure, which implies the following fact: if the subresultant S; of index j,
with j < deg(F», X3) — 1, is not zero and not regular, then there exists a non-zero
subresultant S; with index ¢ < j such that S; is regular, has the same degree as S;
and for all ¢« < £ < j the subresultant .S, is null.

The subresultant chain of F} and F5 satisfies another fundamental property, called

the specialization property, which plays a central in our algorithm. Let ® be a ho-
momorphism from K[X;, X,] to K[X;], with ®(X;) € K. Assume ®(a) # 0 where

120

a = lc(f1, X2). Then we have:
O(S;(F1, Fy)) = @(a)" " S;(D(F), B(F)) (8.1)

where ¢ = deg(F2, X2) and k = deg(P(F3), Xs).

GCD sequence Let 77 € K[X;]\ K and T, € K[X, X5] \ K[X}] be two polynomials.
Note that T; has a positive degree in X;, for i = 1,2. The pair {11,T5} is a reqular
chain if the leading coefficient lc(Ty, X3) of Ty in Xy is invertible modulo 7). By
definition, the set {T}} is also a regular chain. For simplicity, we will require T to
be squarefree, which has the following benefit: the residue class ring L = K[X;]/(T})
is a direct product of fields. For instance, with 7} = X;(X; + 1), we have:

KXa)/(Th) =~ K[Xi]/(X1) © K[Xq]/(X1 + 1)
~ KoK.

Let Fy, Fy, G € K[X; X5] be non-zero. We say G is a reqular GCD of Fy, F» modulo
T if the following conditions hold:

1. lIe(G, X3) is invertible modulo 77,
2. there exist A, Ay € K[X, X5] such that G = A f1 + Ay fo mod T3,
3. if deg(G, X3) > 0 then G divides F; and Fy in L[X5].

The polynomials £}, F, may not have a regular GCD in the previous sense. How-

ever the following holds.

Proposition 7. There exists polynomials A, ..., Ae in K[X;] and polynomials
By, ..., B. in K[X1, Xs] such that the following properties hold:

e the product Ay --- A, equals T,
o forall1 <i<e, the polynomials B; is a reqular GCD of Fy, F5 modulo A;.

The sequence (Aq, B1), ..., (A, Be) is called a GCD sequence of Fy and Fy modulo
T;.

Consider for instance T} = X;(X; + 1),
F1:X1X2+(X1+1)(X2+1) and FQZXl(X2+]_)+(X1+1)(X2+1)

Then (X7, Xo +1),(X; + 1,1) is a GCD sequence of F; and F, modulo T7.

121

8.3.2 Algorithm

Recall that we aim at computing the set V(F}, Fy) of the common roots of F; and
F, over K. For simplicity, we assume that both F; and F, have a positive degree in
Xo; we define hy = le(f1, Xa), he = le(f2, X2) and h = ged(hy, h2). Recall also that
R, denotes the resultant of F; and F; in X,. Since h divides R;, we define R} to be
the quotient of the squarefree part of Ry by the squarefree part of h. Our algorithm

relies on the following observation.

Theorem 1. Assume that V (Fy, Fy) is finite and not empty. Then R} is not constant.
Moreover, for any GCD sequence (A1, By), ..., (Ae, Be) of F1 and Fy modulo R}, we

have

V(F, F) =|JV(A, B) UV(h, Fy, F). (8.2)
i=1
and for all 1 < i < e the polynomial B; has a positive degree in Xo and thus V(A;, B;)

18 not empty.

This theorem implies that the points of V(F}, Fy) which do not cancel h can
be computed by means of one GCD sequence computation. This is the purpose of
Algorithm 9. The entire set V(F}, Fy) is computed by Algorithm 10.

Algorithm 9 Modular Generic Solve

Input: I, F; as in Theorem 1.

Output: (A, By),..., (A, B.) as in Theorem 1.

ModularGenericSolve2(Fy, Fy, h) ==

Let S; € src(Fy, Fy) regular with j > ¢ minimum
if 1c(S;, X5) =0 mod Ry’
then i := i+ 1; goto (5)
(7) G = ged(Ry', le(S;, Xa))
8) ifGeK
then output (R, S;); exit
(9) output (R’ quo G, S;)
(10) R/ :=G;i:=i+1

(

(2)

(3)

(4) while R,’ € K repeat
(5)

(6)

The following comments justify Algorithm 9 and are essential in view of our imple-

122

mentation. In Step (1) we compute the subresultant chain of Fj, F5 in the following

lazy fashion:

1. B := 2d;ds is a bound for the degree of Ry, where d; = max(deg(F;, X;)) and
dy = max(deg(F;, X3)). We evaluate F; and F» at B + 1 different values of

Xy, say xo,...,xp, such that none of these specializations cancels lc(F7, X3) or
lC(FQ, XQ)

2. For each i = 0,..., B, we compute the subresultant chain of F}(X; = z;, X5)
and FQ(Xl = Ty, X2)

3. We interpolate the resultant R; and do not interpolate any other subresultants
in SI‘C(Fl, FQ)

In Step (5) we consider S; the regular subresultant of Fy, F5 with minimum index
J greater or equal to i. We view S; as a “candidate GCD” of Fi, F5, modulo R} and we
interpolate its leading coefficient w.r.t. X5 only. In Step (6) we test whether lc(S, X5)
is null modulo RY; if this is the case, then it follows from the block structure property
that S; is null modulo R} and we go to the next candidate. In Step (8), if G € K then
we have proved that S; is a GCD of Fj, F; modulo R}; in this case we interpolate
S; completely and return the pair (R{,S;). In Steps (9)-(10) lc(S;, Xs2) has been
proved to be a zero-divisor. Since R] is squarefree, we apply the D5 Principle and

the computation splits into two branches:
1. (S}, X3) is invertible modulo R} quo G, so we output the pair (R} quo G, S})
2. le(S, X2) = 0 mod G; we go to the next candidate.

The following comments justify Algorithm 10. Recall that V(F, F») is assumed
to be non-empty and finite. Steps (1)-(2) handle the case where one input polynomial
is univariate in Xj; the only motivation of the trick used here is to keep pseudo-code
simple. Step (4) computes the points of V(F}, F,) which do not cancel h. From Step
(6) one computes the points of V' (F}, F») which do cancel h, so we replace F, F, by
their reductums w.r.t. X,. In Steps (8)-(10) we filter out the solutions computed at
Step (7), discarding those which do not cancel h.

8.3.3 Implementation

We explain now how Algorithms 9 and 10 are implemented in MAPLE interpreted
code, using the functions of the modpn library. We start with Algorithm 9. The

123

Algorithm 10 Modular Solve

Input: £, F; as in Theorem 1.
Output: regular chains (Ay, By), ..., (A, Be) such that V(F, Fy) = Uzj V(A;, B;).

ModularSolve2(F, Fy) ==

1) if Fy € K[X;] then return ModularSolve2(F; + Fy, F»)
) if I, € K[X;] then return ModularSolve2(Fy, F; + F})
) h = ng(lC(Fl,XQ),IC(FQ,XQ))
) G := ModularGenericSolve2(Fy, F, h)
) if h =1return G

) (F1, Fy) := (reductum(F}, X3), reductum(Fy, X5))
) D := ModularSolve2(F}, F3)

) for (A(X,), B(Xi,X3)) € D repeat

) g:=gcd(A,n)

0) if deg(g,X1) > 0then G:=GU{(g,B)}

1) return G

dominant cost is at Step (1) and it is desirable to perform this step entirely at the
C level in one “function call’. On the other hand the data computed at Step (1)
must be accessible on the MAPLE side, in particular at Step (5). Recall that the only
structured data that the C and MAPLE levels can share are arrays. Fortunately, there

is a natural efficient method for implementing Step (1) under these constraints:

e We represent Fy (resp. Fy) by a (B + 1) X dy array (or “cube”) C (resp. Cy)
where C1[i, j] (resp. Csli, j]) is the coefficient of Fy (resp. F3) of X& evaluated
at x;; if Fy (resp. Fy) is given over the monomial basis of K[X7, X5], then the

“cube” C (resp. Cy) is obtained by fast evaluation techniques.

e For each i = 0,..., B, the subresultant chain of F}(X; = x;, X5) and F»(X; =
x;, Xo) is computed and stored in an (B 4 1) X dy X dy array, that we call
“Scube”; this array is allocated on the MAPLE side and is available at the C

level without any data conversions.

e The resultant R; of (F; and F, w.r.t. X5) is obtained from the “Scube” by fast

interpolation techniques.

In Step (5) the “Scube” is passed to a C function which computes the index j and in-
terpolates the leading coefficient lc(.S;, X3) of S;, the candidate GCD. Testing whether
lc(S;, X>) is zero or invertible modulo R} is done at the MAPLE level using the RecDen

124

module. Finally, in Step (8), when lc(S;, X2) has been proved to be invertible modulo
1, the “Scube” is passed to a C function in order to interpolate S;.
The implementation of Algorithm 10 is much more straightforward, since
the operation ModularSolve2 consists mainly of recursive calls and calls to
ModularGenericSolve2. The only place where computations take place “locally” is at

Step (9) where the RecDen module is called for performing GCD computations.

8.4 Two-equation Solver and Invertibility Test

In this section, we present the two other applications used to evaluate the framework
reported in Section 8.2. In Subsection 8.4.1, we specify the main subroutines on which
these algorithms rely; we also include there the specifications of the invertibility test
for convenience. The top-level algorithms are presented in Subsections 8.4.2 and
8.4.3.

As we shall see in Section 8.5 at Page 127, under certain circumstances, the data
conversions implied by the calling of subroutines can become a bottleneck. It is thus
useful to have a clear picture of these subroutines.

In this chapter, however, we do not assume a preliminary knowledge on triangular
decomposition algorithms. To this end, the presentation of our bivariate solver in
Section 8.3 at Page 118 was relatively self-contained, while omitting proofs; this was
made easy by the bivariate nature of this application. In this section, we deal with
polynomials with an arbitrary number of variables. In Section 2.3 at Page 2.3 we have
introduced the notion of a regular chain and that of a regular GCD (modulo a regular
chain) for bivariate polynomials. In the sequel, we rely on “natural” generalizations of

these notions: we recall them briefly and refer to [9, 22| for introductory presentations.

8.4.1 Subroutines

Note that we restrict ourselves here to zero-dimensional regular chains. In this set-
ting, observe that a normalized regular chain is a lexicographical Grobner basis. In
the specification of our subroutines below, we denote by T a normalized regular
chain and p, ¢ polynomials in K[X7, ..., X,]. We reuse the notations mvar(p), initp,
NormalForm(p, T'), Normalize(p, T') and RegularGed(p, ¢, T') as defined in Section 7.2

at Page 94 and add two more notations as following;:

IsInvertible(p, T): returns pairs (py, T7), ..., (pe, T¢) where py, . .., p. are polynomials
and T, ..., T are normalized regular chains, such that V(T) = V(T*) U --- U

125

V(7T°) holds and such that for all i = 1,. .. e, the polynomial p; is either null or
invertible modulo 7% and p = p; mod T*. The algorithm and implementation

of this operation are described in Section 8.4.3 at Page 126.

T.,,T,,T-,: these denote respectively the polynomials in 7" with main variable less
than v, the polynomial in 7" with main variable v and the polynomials in T’

with main variable greater than v, where v € {X7,..., X, }.

8.4.2 Two-equation solver

Let F1, Fy € K[X,...,X,] be non-constant polynomials with MainVariable(F}) =
MainVariable(Fy) = X,,. We assume that Ry = res(F}, Fy, X,,) is non-constant. Algo-
rithm 11 below is simply the adaptation of Algorithm 9 to the case where F}, F» are
n-variate polynomials instead of bivariate polynomials. The relevance of Algorithm 11
to our study is based on the following observation.

As we shall see in Section 8.5, the implementation of Algorithm 9 at Page 121 in
our framework is quite successful. It is, therefore, natural to check how these results
are affected when some of its parameters are modified. A natural parameter is the
number of variables. Increasing it makes some routine calls more expensive and could
raise some overheads. In broad terms, Algorithm 11 computes the “generic solutions”

of Fi, F5. Formally speaking, it computes regular chains 7" ..., T such that we have

V(Fl, FQ) - W(Tl) U---uJ W(T6> U V(Fl, FQ, hth) (83)

where hyhs is the product Initial(F})Initial(F,) and where W (T%) denotes the Zariski
closure of the quasi-component of T". It is out of the scope of this chapter to expand
on the theoretical background of Algorithm 11; this can be found in [75]. Instead, as
mentioned above, our goal is to measure how Algorithm 9 scales when the number of

variable increases.

The implementation plan of Algorithm 11 is exactly the same as that of Algo-
rithm 9. In particular, the computations of squarefree parts, primitive parts and
the GCDs at Steps (1) and (7) are performed on the MAPLE side, whereas the sub-
resultant chain src(Fi, Fy) is computed on the C side. In the complexity analysis
of Algorithm 11 the dominant cost is given by src(Fy, F») and a natural question is
whether this is verified experimentally. If this is the case, this will be a positive point

for our framework.

126

Algorithm 11 Modular Generic Solve N-variable

Input: Fi,F, € K[Xi,...,X,] with deg(F,X,) > 0,deg(F, X,) > 0 and
res(F1, By, X,,) € K.

Output: 7' = (A1, By),...,T¢ = (A, B.) as in (8.3).

ModularGenericSolveN(F, Fy) ==
(1) Compute src(Fy, Fy); Ry := res(Fy, Fy, X,,)
h := ged(Initial(F}), Initial(F3))
(2) R} := squarefreePart(R;) quo squarefreePart(h)
v := MainVariable(R;);
R := primitivePart(Ry, v)
1:=1
while deg(R},v) > 0 repeat
Let S; € src(Fy, F3) regular with j > 4 minimum
if 1¢(S;, X,,) =0 mod R}
then i := i+ 1; goto (5)
G = ged(R), 1e(S;, X2))
if deg(G,v) =0
then output (R}, 5;); exit
9) output (R} quo G, S;)
(10) R =G i=1+1

(3)
(4)
(5)
(6)

(7
(

~— —

8.4.3 Invertibility test

Invertibility test modulo a regular chain is a fundamental operation in algorithms
computing triangular decompositions. The precise specification of this operation has
been given in Section 8.4.1 at Page 124. In broad terms, for a regular chain 7" =
T1(Xy),...,Th(Xy,...,X,) and a polynomial p the call IsInvertible(p, T") “separates”
the points of V' (7T') that cancel p from those which do not. The output is a list of pairs
(p1,,TY), ..., (pe, T¢) where py, ..., p. are polynomials and T, ... T are normalized
regular chains: the points of V(T') which cancel p are given by the T%’s such that p;
is null.

Algorithm 12 is in the spirit of those in [76, 75] implementing this invertibility test.
However, it offers more opportunities for using modular methods and fast polynomial
arithmetic. The trick is based on the following result (Theorem 1 in [22]): the poly-
nomial p is invertible modulo 7" if and only if the iterated resultant of p with respect
to T is non-zero. Iterated resultants can be computed efficiently by evaluation and
interpolation, following the same implementation techniques as those of Algorithm 9.

Our implementation of Algorithm 12 employs this strategy. In particular the resul-

127

tant 7 (computed at Step (4)) and the regular GCDs (g, D) (computed at Step (7))
are obtained from the same “Scube”.

The calls to NormalForm(p, T') (Step (1)), NormalForm(quo(7,, g), D) (Step (10))
and Normalize(g, D) (Step (8)) are performed on the C side: they require the con-
versions of regular chains encoded by MAPLE polynomials to regular chains encoded
by C-Cube polynomials. If the call to RegularGed(p, T, C') (Step (7)) outputs many
cases, that is, if computations split in many branches, these conversions could become
a bottleneck as we shall see in Section 8.5. Finally, for simplicity, we restrict Algo-

rithm 12 to the case of (zero-dimensional) regular chains generating radical ideals.

Algorithm 12 Invertibility Test

Input: T a normalized regular chain generating a radical ideal and p a polynomial,

both in K[X1,..., X,].
Output: See specification in Section 8.4.1 at Page 124.

sInvertible(p, T') ==

1) p := NormalForm(p,T')

) if p € K then return [p, T

) v := mvar(p)

) 1 :=res(p,T,,v)

) for (q,C) € Islnvertible(r, T.,) repeat

) if ¢ # 0 then output [p, CUT,UT,]

) else for (g, D) € RegularGed(p, T, C) repeat
) g := Normalize(g, D)

) output [0, DUgUT.,,]

0) q := NormalForm(quo(T,, g), D)

1) if deg(q,v) # 0 then output [p, DUqUTS,]

I
(
(
(
(
(
(
(
(
(
(
(

8.5 Experiments

We discuss here the last two questions mentioned in the Section 3:

e Can our implementation based on the MAPLE/C hybrid model outperforms
other highly efficient systems?

e Does the performance of the implementation of the new algorithms comply with

the theoretical complexity?

128

Our answer for the first one is “yes, if the application is well suitable for our frame-
work”. As shown below, we have improved the performance of triangular decompo-
sition based computation in MAPLE. On the example of the invertibility test, our
code is competitive with MAGMA and often outperforms it. The answer to the last
question is “yes, the performance does comply with the complexity analysis”, though
there are some interferences due to the overhead of the data conversion as discussed
in Section 8.2.3 at Page 116.

We report two sets of statistic data. For the first set, we compare the performance
of our new implementations with their existing counterparts in MAPLE or MAGMA
(see Subsections 8.5.1, 8.5.2 and 8.5.3). For the second set, we profile the imple-
mentation of our new polynomial solving algorithms to determine for which kind of
algorithms our framework is the most suitable one. The profiling information for
invertibility test is reported in the Section 8.5.3; for the solvers is reported in Sec-
tion 8.5.3. In all examples, the base field is Z/pZ, where p is a machine-word size
FFT prime. In the profiling samples, we only calculate the MAPLE side conversion

time and ignore the C side since the latter one is mostly negligible.

8.5.1 Bivariate solver

In Figures 8.2, 8.3, 8.4 and 8.5, we consider two bivariate polynomials F; and Fj, with
ordered variables X; < X, and with coefficients in a field K. In our experimentation
K is a prime field whose characteristic is a prime number, and its size is less than 32
bit.

The benchmark shown in Figure 8.2 is comparing the performance of libraries all
from Maple: “Triangularize” is the solver from Maple RegularChains library; “Basis”
is the solver from the Maple Groebner library; “Fast Triangularize” is the solver from
our Maple FastArithmeticTools library. Actually we have also tested the solver “Solve”
from the Groebner library which is significantly slower than the other ones. Thus,
we list its data and all the previous ones in Table 8.1. The “degree” in Figure 8.2
(also “deg.” in Table 8.1) is the total degree of each input random dense polynomial.
We compare the computational time. To make the figure more readable, we extract
the comparison between “Basis” and our fast solver into Figure 8.3. In Table 8.1,
“Basis”, “Solve”, “Triang” and “F'Triang” are short for “Basis from Groebner”, “Solve
from Groebner”, “Iriangularize from RegularChains” and “Fast Triangularize from
FastArithmeticTools”. As shown, our solver from FastArithmeticTools library is the

fastest one. It approximately 20 times faster than lex “Basis” on our biggest input

129

60 _ - |
Triangularize -+
Lex Basis i
0T Fast Triangularize
40
[}
E 30°F
|_
20 +
10
oL
0 5 10 15 20 - .

Degree

Figure 8.2: Bivariate solver dense case.

example. While the input size increasing, the ratio of speed-up is more significant.
Recall that the major sub-algorithms of the bivariate solver are subresultant chain and
reqular gcd, thus the high performance is also relying the implementation of these two

sub-algorithms.

1.2 T N T
Lex Basis - - - ;
Fast Triangularize —

’

0.6

Time

04

0.2 r Lo

Degree

Figure 8.3: Bivariate solver dense case.

The benchmark shown in Figure 8.4 uses the same parameter as defined in Fig-

ure 8.2. Namely the “degree” is the total degree of each input polynomial. However

130

deg | Basis | Solve | Triang | FTriang
4 10.020 | 0.040 0.152 0.020
7 10.020 | 0.580 0.424 0.016
10 | 0.064 | 3.892 0.680 0.020
13 | 0.136 | 16.557 | 1.424 0.024
16 | 0.232 | 55.939 | 2.324 0.032
22 | 0.552 | 416.466 | 13.972 0.044
25 1 0.804 | 1116.045 | 22.346 0.048
28 | 1.124 | 2162.271 | 58.695 | 0.056

Table 8.1: Bivariate solver dense case.

instead of using dense random polynomials, we generate specific “split” examples in
terms of non-equiprojectability in triangular decomposition. As shown in the figures,
our fast solver is significant faster than the other two. We also provide the data in
Table 8.2 for this benchmark. At the total degree 23 our fast solver is approximately

100 times faster than the “Lex Basis” which is the second fastest one.

700

Tfiangdlarizé
Lex Basis
Fast Triangularize

600 r

500 r

400 r

Time

300 r

200 r

100

ol
4 6 8§ 10 12 14 16 18 20 22 24

Degree

Figure 8.4: Bivariate solver non-equiprojectable case.

Figure 8.5 is generated based on the data from Table 8.3. Here we compare our
Fast Regularize (FTriang in the table) with Magma’s implementation: one is Gréobner
Basis (Abbr. GB in the table); the other one is Triangular Decomposition (Abbr.
Triang in the table). The input polynomials which generate a zero-dimensional ideal

are designed with many split steps during the solving. Again, our solver is the fastest

deg | Basis Solve Triang | FTriang
5 0.014 0.080 0.616 0.016
8 0.152 3.004 3.200 0.048
11 0.908 44.407 10.049 0.124
14 | 6.837 246.839 | 25.902 0.428
17 | 36.581 | 1266.958 | 55.014 0.938
20 | 156.245 | 6296.301 | 92.662 1.740
23 | 627.551 | 21758.120 | 222.897 2.625

Table 8.2: Bivariate solver non-equiprojectable, us vs. Maple.

131

one in terms of running time. For the non-equiprojectable examples, our solver out-

performs Magma’s even more significantly.

18

16
14
12
10

Time

Figure 8.5: Bivariate solver non-equiprojectable case.

o N b o
T T T T

Gr‘oebnérBas‘is() I\/Iagmé -
TriangularDecomposition() Magma -
Fast Triangularize .

4

6 8 10 12 14 16 18 20 22 24

Degree

8.5.2 Two-equation solver

We consider now the solver of Algorithm 11. For a machine-word size FF'T prime

p, we consider a pair of trivariate polynomials Fy, Fy € Z/pZ[X;, Xs, X3] of total

degrees dy,ds. We compare our code for ModularGenericSolveN (Algorithm 11) to

the Triangularize function of RegularChains library. In MAGMA there are several

ways to obtain similar outputs: either by a triangular decomposition in K(X7)[Xs, X3]

(triangular decompositions in MAGMA require the ideal to have dimension zero) or

deg | GB (Magma) | Triang (Magma) | FTriang (Maple)
) 0.010 010 0.016

8 0.040 070 0.048

11 0.190 0.360 0.124

14 0.730 1.210 0.428

17 2.170 3.300 0.938

20 5.010 7.810 1.740

23 12.430 17.220 2.625

132

Table 8.3: Bivariate solver non-equiprojectable case.

by computing the GCD of the input polynomials modulo their resultant (assuming

that this resultant is irreducible).

dy | do MAPLE MAaGMA
Triangularize \ ModularGenericSolveN | Tr. dec. \ Resultant + GCD

2 | 4 0.3 0.06 0.03 0.01

4 |4 1.4 0.15 0.03 0.3

6 | 4 25 0.27 0.7 12

8 | 4 257 0.52 6.9 155

10| 4 1933 1.02 46.7 1012

Table 8.4: Solving two equations in three variables

Table 8.4 summarizes the timings (in seconds) obtained on random dense polyno-
mials by the approaches above (in the same order). Our new code performs signifi-
cantly better than all other ones. For completeness, we add that on these examples,
computing a lexicographic Grébner basis in K[X7, X5, X3] in MAGMA takes time sim-

ilar to that of the triangular decomposition.

8.5.3 Invertibility test

We continue with the operation IsInvertible. Designing good test suites for this
algorithm is not easy: one of the main reasons for the high technicality of these
algorithms is that various kinds of degeneracies need to be handled. Using random
systems, one typically does not meet such degeneracies: a random polynomial is
invertible modulo a random regular chain. Hence, if we want our test suite to address

more than the generic case of our algorithms, the examples must be constructed
ad-hoc.

133

80 | |
Magma ------ P
0r our code —*—

60 |
50 KR

40

time

10 4

O L - Il Il Il
0 5 10 15 20 25 30 35 40

Figure 8.6: Bivariate case: timings, p = 0.98.

Here, we report on such examples for bivariate and trivariate systems. We con-
struct our regular chain 7" by Chinese Remaindering, starting from smaller regu-
lar chains T of degree 1 or 2. Then, we interpolate a function f from its values
f@ = fmod T®, these values being chosen at random. The probability p that
f@ =£ 0 is a parameter of our construction. We generated families of examples with
p = 0.5, for which we expect that the invertibility test of f will generate a large
number of splittings. Other families have p = 0.98, for which few splittings should

occur.

The bivariate case. Figure 8.6 gives results for bivariate systems with p = 0.98 and
d = d; = dy in abscissa. We compare our implementation with MAGMA’s counterpart,
that relies on the functions TriangularDecomposition and Saturation (in general,
when using MAGMA, we always choose the fastest available solution). We also tested
the case p = 0.5 in Figure 8.7. Figure 8.8 profiles the percentage of the conversion
time with respect to the total computation time, for the same set of samples. With
p = 0.98, IsInvertible spends less time on conversions (around 60%) and has fewer
calls to the MAPLE operations than with p = 0.5 (the conversion ratio with p = 0.5
reaches 83%).

The trivariate case. Table 8.5 uses trivariate polynomials as the input for IsIn-
vertible, with p = 0.98; Table 8.6 has p = 0.5. Figure 8.9 profiles the conversion time
spent on these samples. The conversion time increases dramatically along the input
size. For the largest example, the conversion time reaches 85% of the total computa-

tion time. More than 5% of the time is spent on other MAPLE computations, so that

134

Madma ‘... ;
B our code —w—

time
N
o

Figure 8.7: Bivariate case: timings, p = 0.5.

100 ‘ ‘
p=0.98 ——
p=0.5 ——
80 r
g 60 L
£
= 40
20 +
O L L L L L

10 15 20 25 30 35 40

degree

Figure 8.8: Bivariate case: time spent in conversions.

the real C computation costs less than 5%. We also provide the timing of the opera-
tion REGULARIZE from the MAPLE RegularChains library. The pure MAPLE code,

with no fast arithmetic, is several hundred times slower than our implementation.

The 5 variable case. We performed further tests between the MAPLE REGULAR-
IZE operation and our IsInvertible function, using random dense polynomials in 5
variables. IsInvertible is significantly faster than REGULARIZE; the speedup reaches

a factor of 300. Similar experiments with sparse polynomials give a speed-up of 100.

dids | ds || MAGMA MAPLE
REGULARIZE | IsInvertible
4 3 0.000 1.199 0.091
12 | 6 0.020 6.569 0.281
24 | 9 0.050 24.312 0.509
40 | 12 0.170 73.905 1.293
60 |15 0.550 172.931 1.637
84 | 18 1.990 450.377 5.581
112 | 21 5.130 871.280 9.490
144 | 24 || 12.830 1956.728 12.624
180 | 27 || 30.510 3621.394 23.564
220 | 30 || 62.180 6457.538 32.675
264 | 33 || 129.900 7980.241 89.184

Table 8.5: Trivariate case: timings, p = 0.98.

100

time (%)

20 r

Figure 8.9: Trivariate case: time spent in conversions.

p=0.98 ——

degree

10 12

135

136

didy | d3 || MAGMA MAPLE
REGULARIZE | IsInvertible
4 3 0.010 0.773 0.199
12 6 0.020 4.568 0.531
24 9 0.040 17.663 1.082
40 |12 0.150 47.767 2.410
60 | 15 0.480 126.629 5.023
84 | 18 1.690 284.697 10.405
112 | 21 4.460 632.539 19.783
144 | 24 10.960 1255.980 42.487
180 | 27 26.070 2328.012 69.736
220 | 30 58.700 4170.468 109.667
264 | 33 || 106.140 7605.915 191.514

Table 8.6: Trivariate case: timings, p = 0.5.

8.5.4 Profiling information for the solvers

We conclude this section with profiling information for the bivariate solver and the
two-equation solver. The differences between these algorithms have noticeable conse-

quences regarding profiling time.

Bivariate solver. For this algorithm, there is no risk of data duplication. The
amount of data conversion is bounded by the size of the input plus the size of the
output; hence we expect that data conversions cannot be a bottleneck. Third, the
calls to MAPLE interpreted code simply perform univariate operations, thus we do
not expect them to become a bottleneck either.

Table 8.7 confirms this expectation, by giving the profiling information for this
algorithm. The input system is dense and contains 400 solutions. The computation
using the RecDen package costs 49% of the total computation time. The C level
subresultant chain computation spends around 34%, and the conversion time is less
than 11%. With larger input systems, the conversion time reduces. For systems with
2,500 and 10,000 solutions, the C computation takes about 40% of the time; RecDen
computations takes roughly 50%; other MAPLE functions take 5% and the conversion

time is less than 5%.

The profiling information in Figure 8.10 also concerns the bivariate solver; there,
the sample input intends to generate many splittings (we take p = 0.5, as in the
examples in the previous subsection). The conversion time slowly increases but does
not become the bottleneck (28% to 38%).

137

Operation | calls | time | time (%)
Subresultant chain 1 0.238 33.85
Recden 41 | 0.344 48.93
Conversions 17 | 0.076 10.81

Table 8.7: Bivariate solver: profiling, p = 0.98.

100
90
80
70
60
50
40
30
20
10

0

Other time%
Conversion time%
Recden time%

C level time%

10 20 30 40

Figure 8.10: Bivariate solver: profiling, p = 0.5.

Two-equation solver. This algorithm has properties similar to the bivariate solver,
except that the calls to interpreted code can be expensive since it involves multivariate
arithmetic. Hence, we expect that the overhead of conversion is quite limited. Indeed,
in Table 8.5.4, N is the number of variables and d;, dy are the degrees of T, T5
respectively 8.3. The C level computation is the major factor of the total computation
time; it reaches 91% in case N =4, d; =5, dy = 5.

N |di|ds| C (%) | MaPLE (%) | Conversion (%)
315 | 5| 5647 12.96 30.57
415 15| 91.54 2.64 5.82
81 2| 2| 8.67 8.02 8.31

Table 8.8: Two-equation solver: profiling.

138

8.6 Summary

The answers to our main questions are mostly positive: we have obtained large per-
formance improvements over existing MAPLE implementations, and often outperform
MAaGMA’s. Still, some triangular decomposition algorithms are not perfectly suited
to our framework. For instance, we implemented the efficiency-critical operations of
ISINVERTIBLE in C, but the main algorithm itself in MAPLE. This algorithm may
generate large amounts of “external” calls to the C functions, so the data conversion
between MAPLE and C becomes a dominant cost. For this kind of algorithms, we
suggest either to implement them purely in C or tune the algorithmic structure to

avoid intensive data conversion;

139

Chapter 9

Multithreaded Parallel
Implementation of Arithmetic

Operations Modulo a Triangular
Set

9.1 Overview

In Chapter 6 at Page 65 we have studied arithmetic operations for triangular families
of polynomials, concentrating on multiplication in dimension zero what we called
modular multiplication. As reported previously, this algorithm consists of two major
operations: (1) polynomial multiplication, (2) modular reduction what we called
normal form for convenience. In this chapter, we discuss the parallelization of these
two operations.

When computing modulo a triangular set, multivariate polynomials are regarded
recursively as univariate ones. This recursive data structure leads to several chal-
lenges for obtaining a high performance parallel implementation. The serial modular
multiplication algorithm is reported in Chapter 6. Based the serial one, we have de-
veloped a parallel version of multi-dimensional fast Fourier transform to perform the
polynomial multiplication step. We have also developed several versions of parallel
normal form. Each parallel algorithm and its implementation will be reported in
details in following sections.

The outline of this chapter is as following. In Section 9.2 at Page 140, we review

the top-level algorithm modular multiplication. In Section 9.3 at Page 141, we

140

first specify all the subroutines of the serial version of modular multiplication.
Then, we develop their variants which is still in the serial mode whereas can better
expose the parallelism. Finally, we illustrate the parallelization techniques of each
sub-routine. In Section 9.4 at Page 148, we provide the benchmark result between
the serial and parallel implementation of modular multiplication algorithm. The

parallelized code has satisfactory speed-up, though still potential to be further tuned.
NOTE: This chapter is written based on the published paper [66].

9.2 Algorithms

In this section, we give more simplified definition of modular multiplication algorithm
(see Chapter 6 the more detailed version).

Let Ly = K be a commutative ring with a unit. Let B be a univariate polynomial
in K[z], non-constant, monic and with degree d > 1. We aim at computing modulo
B the product A € K[z] of two polynomials reduced w.r.t. B, that is, with degree
less than d. So, for simplicity, let us assume that A has degree 2d — 2.

The quotient) and the remainder R in the division of A by B can be computed
as follows, using the trick of Cook-Sieveking-Kung [24, 87, 59]. We summarize this
trick and refer to [43] for details. Let B~! be the inverse of the reversal of B modulo
291, Let Q be the product AB~! computed modulo 24!, where A is the reversal of
A. Then Q is the reversal of Q and we have R = A — BQ.

Consider now T = (71,...,T}) a set of non-constant polynomials in K[z, ..., z].

Let d; be the degree of T; w.r.t. z;, for all i. We say that 7' is a triangular set if for all

i, the polynomial T; lies in K[z1,...,2;], is monic in x; and is reduced with respect
to Ti,...,T;—q, that is, for all j = 1,...,7 — 1 the degree of T; w.r.t. z; is less than
of dj.

Let 1 <i¢<sandlet P e Klxy,...,zs. The normal form of P w.r.t. Ty,...,T;,
denoted by NF;(P), is the the unique polynomial R € K|xy,..., x| which is reduced
w.r.t. Ti,...,T;, and congruent to P modulo the ideal (T%,...,T;). Moreover, we
define NFy(P) = P.

Fori=1,...,s we define L, = K[xy,...,2;]/(T1,...,T;), the residue class ring of
K[z, ..., 2;] modulo (Ty,...,T;).

Our main goal is to implement arithmetic operations in all L;, leading to normal
form computations for polynomials in K[z, ...,z modulo (T}, ...,7T;). We summa-
rize the algorithm in Chapter 6. We assume that, for all 1 < ¢ < s, the inverse T[l
of the reversal of T} in L;_y[x;] /(%) has been precomputed. Let P € K[zy,.. ., x]

141

be such that the degree of P w.r.t. x; is at most 2d; — 2 for all 1 <17 < s. Then we
compute NF(P) as follows:

Step 1 Let P':= NF,_,(P).

Step 2 Let P’ be the reversal of P’ in L, [z,]. Let P’ := P’ mod 2%~ and let
Q:=PT;! mod z%~1

Step 3 Let Q := NF, ,(Q).
Step 4 Let @ be the reversal of Q in Ly [z,]. Let R := P — QT,.
Step 5 Return NF,_(R).

For a polynomial F' in K[zy,...,x,], with positive degree w.r.t. z,, we compute
NF;_1(F) as a “map” on its coefficients w.r.t. ;.

We parallelize the computation of NF¢(P) at two levels. First, for degrees large
enough, we perform the products in Step 2 and Step 4 by means of a parallel multi-
dimensional FFT algorithm (see Section 2.1 at Page 8). From now on, let us regard
these products as atomic operations. Secondly, we focus on the calls to the NF_;
function performed at Step 1, Step 3 and Step 5. Let G be the task graph or
instruction stream DAG [15] associated with NF4(P). One can use either a depth-
first traversal or a bottom-up level-by-level traversal for GG, leading to the two parallel
schemes detailed in Section 9.3.3 at Page 146. Note that our task graph G is not a
fork-join graph and the special techniques developed for this kind of task graphs, see
for instance [89], do not apply here.

In fact, the structure of the algorithm implies several “global synchronisations”.
More precisely, before starting each of Step 2, Step 3, Step 4 and Step 5, all
threaded computations of the previous step must be completed. These constraints
make the parallelization of our normal form computations more challenging than for

more standard “divide & conquer” algorithms. See also [77] on this topic.

9.3 Implementation

9.3.1 Multidimensional FFT

We have already studied the serial multidimensional FFT algorithm in Section 2.1
at Page 8. Multidimensional FFT is a very nice application to parallelize on a SMP

architecture, since the “small” DFTs/IDFTs performed on a given dimension have

142

no data dependency to each other. Therefore, instead of computing these “small”
DFTs/IDFTs one by one in a sequential setting, we create multiple threads and each
of the threads will be in charge of an amount of “small” DFTs/IDFTs’ computations.
Since all the “small” DFTs/IDFTS have similar amount of workloads in a dense
polynomial application, each thread will be in charge of a similar number of “small”
DFTS/IDFTS.

In fact, when implementing multivariate polynomial multiplication in our sequen-
tial mode, we used two approaches. One is the above mentioned multidimensional
FFT, the other is based on Kronecker’s substitution. In this latter method, two in-
put multivariate polynomials are mapped to univariate ones. Then, univariate FF'T
can be used to compute the polynomial multiplication. This implies that paral-
lelizing Kronecker’s substitution based FFT multiplication is actually, parallelizing a
univariate FFT. We didn’t try this direction based on three reasons. First, the mul-
tidimensional FFT is much easier to parallelize as we described before. Second, we
implemented Truncated Fourier transform (TFT) [51], and replaced multidimensional
FFT by multidimensional TFT in our package. This brings us a significant improve-
ment of performance comparing to Kronecker’s substitution method as reported in
Section 9.4 at Page 148. Moreover, the multidimensional TFT has the same code
structure as the multidimensional FFT, thus is easy to implement. Third, multidi-
mensional FFT/TFT is more cache friendly comparing to Kronecker’s substitution
method for certain range of input [69].

Therefore, on a multi-processor architecture we prefer multidimensional FFT to
Kronecker’s substitution method. In addition, matrix transposition in multidimen-
sional FFT also can be parallelized. We leave it as a future work, since the compu-
tation time of matrix transposition is generally a small portion of the whole compu-

tation.

9.3.2 Two traversal methods for normal form

By using the names defined in our pseudo-code in this section, we describe the nor-
mal form operation as follows. The normal form operation consists of two major
operations UniFastMod and NormalForm. NormalForm is the “main” function
which recursively reduces the coefficients of the input polynomial feK[zy, xq,- -, xs].
TS is the given triangular set, and s is the number of variables. In addition, we have

following definition of operations for all pseudo-code in this section.

e rev,(f) returns z," f(=), where x, is the main variable of f and n>deg(f).

1
Ts

143

e deg(f) returns the degree of f.
e degree(f, i) returns the partial degree of f in x;.

e coef (f, i) fetches the i-th coefficient of f.

In this chapter, normal form operation only applies to a dense multivariate poly-
nomial f who is encoded in an one dimensional array. we define this operation
as following. For the input polynomial f, we use a data representation based on
Kronecker substitution [65, 69]. Namely, a dense multivariate polynomial will
be encoded in an one dimensional array. The Kronecker map U(f) is an array

of element of K.

U: (.fl'l, To, -, xs) — (xb xléza"') x165>
where 07 =1, (9.1)
6 = TI=) (degree(f, j) + 1)

Thus, coef (f, i, s) returns the i-th slot of U(f) regarded as an array where

each slot has size of d;.

Algorithm 13 Normal Form
NormalForm (f, TS, s)

Input: f € Klzi,z2, - ,zs], TS ={T1,T>,---,Ts}, with T; is monic.

Output: The normal form of f w.r.t. T'S.

f,0,d, TS, s—1)
UniFastMod(f, TS, s)

Each reduction step is performed by calling UniFastMod, namely a fast uni-
variate division in Ls_q[zs]. The function RC means to reduce each coefficient of a

polynomial by calling NormalForm and it is an in-place operation.

As we mentioned above, a multivariate polynomial can be encoded by a tree
structure. When reducing its coefficients, we need to have a tree traversal. The nested
recursion in NormalForm performs a depth-first tree traversal. The other way is

what we called “bottom-up level-by-level” (BULL) traversal. The pseudo functions

144

Algorithm 14 Fast Univariate Division
UniFastMod (f, TS, s)

1 n+—degf
2 m «—— degT;
3 if n <m then
4 q—20
5 r«——f
6 else

7 q+—revy(f)T7 mod x
8 g« rev, nu(q)

9 RC(q, 0, n—m, TS, s—1)
10 w="Tsq

11 RC(w, 0, n—m, TS, s—1)
12 r—f—-w

13 return r

n—m-+1

Algorithm 15 Fast Coefficients Reduction
RC (f, start, end, TS, s)

1 for ¢ from start to end do
2 coef (f, i)=NormalForm (coef (f, i), TS, s)

Algorithm 16 Normal Form 2
NormalForm?2 (f, T'S, s)

1 if (s ==0) return f

2 size = szl (degree(f, j) + 1)
31=2

4 while (i<s) do

5 ss=size/ H;':I (degree(f, j) + 1)
6 RS(f,0,ss—1, TS, 1)

7T 1=1+1

Algorithm 17 Iterative Reduction
RS (f, start, end, TS, s)

1 for ¢ from start to end do
2 coef(f,i,s)=UniFastMod2(coef(f,i,s),TS,s)

145

RS, NormalForm2, UniFastMod2, and RC2 describe the computational steps
for this method.

In brief, we suppose the input multivariate polynomial f is encoded in an
one dimensional array by the Kronecker map U. The size of the array is
[[;-, (degree(f, j) + 1). We start the reduction steps at level 1. That is we view
the given array as an array with size / (degree(f, 1) + 1) slots. Each slot has size
of degree(f, 1) + 1. Each slot actually is encoding an univariate polynomial in L;.
Then we reduce all slots by calling UniFastMod2. Then we continue the reduction
steps on level 2, 3, -+, 4, ---, 5. On level i, the given array is viewed as an array with
size |/ H§:1 (degree(f, j) + 1) slots. Each slot has size Hé‘:1 (degree(f, j) + 1).
We iteratively conduct the reduction steps from level 1 to level s by calling function

RS. In this way, we compute a normal form in a BULL traversal.

Algorithm 18 Fast Univariate Division 2
UniFastMod2 (f, T'S, s)

n «— deg f
m «—— degT,
if n < m then
q<—70
r——:Ff
else
q— rev,(f)T;! mod =
q —— 1eVn_m(q)
RC2(q, 0, n—m, TS, s—1)
10 w="Tsq
11 RC2(w, 0, n—m, TS, s—1)
12 r«— f—w
13 return r

n—m-+1

0 1 O O i W N

Ne)

Algorithm 19 Iterative Reduction 2
RC2 (f, start, end, TS, s)

1 for 7 from start to end do
2 coef(f,i)=NormalForm2(coef(f,1), TS, s)

146

9.3.3 Parallelizing normal form

Both approaches based on either depth-first or bottom-up level-by-level tree traversal
are nice applications to parallelize. In our setting, we suppose input polynomial
are dense, thus the workload of each coefficient reduction is close. We describe our
parallelization strategies as following.

Parallelism in Depth-first Method

Algorithm 20 Parallel Normal Form
NormalForm_Para (f, TS, s)

1 if (s ==0) return
2 d=deg(f)

3 for i from 0 to d do

4 Task=NormalForm Para(coef(f,i),1S,s-1)
5 CreateThread (Task)

6 DumpThreadPool()

7 f =UniFastMod(f, T'S, s —1)

In the depth-first method we cursively create a thread for each coefficient re-
duction which we called a “task”. All threads will live in a thread_pool. When
the thread_pool is full. We will force all threads to finish up before inserting a
new one. To force all threads to finish, we use the function DumpThreadPool.
Function NormalForm_Para in above pseudo-code is the parallelized version of the

depth-first multivariate reduction.

Algorithm 21 Creating Tasks
CreateThread (Task)

1 Creat a thread for Task in thread_pool
2 if thread_pool is full.
3 DumpThreadPool(thread_pool)

Algorithm 22 Dump Thread-pool
DumpThreadPool(thread_pool)

1 Force all threads in thread_pool to finish.

147

In the BULL traversal, we have two slightly different sub-methods. One is that
at each level we create C' threads to handle all reductions on this level in parallel,
where C' is a constant. Then, we wait them to finish and destroy these C' threads
before go to next level. Therefore, the total number of threads being created is
parametrized by the number of variables of the input. This sub-method is presented
by function NormalForm2_Para_1 in above pseudo-code. In the other sub-method,
we will create a fixed number of threads and put them into sleep at the beginning.
Then we start the BULL traversal. When there is a reduction on demanding, we will
push it onto a task queue and send a signal to wake up some thread. The waken
thread will go to fetch a task from the task queue and handle it immediately. If
there are multiple tasks have been pushed on the task queue, multiple threads will
be waken up and run in parallel. After finishing a task, the thread will go back to
sleep or continue to handle another task. This sub-method is presented by function

NormalForm2 Para_2.

Algorithm 23 Parallelism in Bottom-up Level-by-level Method
NormalForm?2 Para 1 (f, T'S, s)

if (s ==0) return f
size = [[;_, (degree(f, j) + 1)
1=2
while (i<s) do
ss = size /| szl (degree(f, j) + 1)
// suppose NoOfCPU divides ss.
6 ¢g=ss/ NoOfCPU
7 for j from 0 to NoOfCPU-1 repeat
8 Task = RS (f, jq, (j+1)q, TS, i)
9 CreateThread (Task)
10 1=1+1
11 DumpThreadPool()

O > W N~

The first sub-method is very easy to implement. But the overhead of creating
and destroying many threads maybe burdensome in large input cases. The second
sub-method takes a little more coding effort for tasks management and threads syn-
chronization. But it is advantageous by avoiding the potential overhead happened in
the first sub-method.

We used pthread library to implement the parallelization. We tested the per-

formance on a AMD 4 processor machine. We observed a factor of 3.5 speed-up

148

Algorithm 24 Parallelism in Bottom-up Level-by-level Method Variant.

NormalForm?2 Para 2 (f, TS, s)

DO W N

7
8
9

10
11

Create C' threads and put them into sleep.
if (s ==0) return f
size = [[;_, (degree(f, j) + 1)
1 =2
while (i<s) do
ss = size /| H;Zl (degree(f, j) + 1)
// suppose NoOfCPU divides ss.
g =ss /| NoOfCPU
for 5 from 0 to NoOfCPU-1 repeat
Task = RS (f, jq, (j+1)q, TS, i)
Wake up a thread to handle Task.
1=1+1

12 Finish and terminate all threads.

when the input size is sufficiently large. The experimentation results are reported in
Section 9.4.

9.4 Benchmarks

In Section 9.3, several parallelization strategies have been described. We provide

benchmark results for these methods. The tested operation is modular multiplication

itself and the tested strategies are summarized in below list.

Sequential algorithm.
Depth-first traversal with a thread pool.
BULL traversal with a thread pool.
BULL traversal with sleep/wake-up threads.

WIN|—=O

Table 9.1: List of parallel strategies.

We conducted our benchmark on a AMD Opteron 850 4-Processor machine with
CPU MHZ 2391.537 and cache size 1024 KB for each processor. The input dense

polynomials are randomly generated. The benchmark data can well reflect the per-

formance in real world computation.

We benchmarked 2, 3 and 4 variable cases. We observe a factor of 2 ~ 3 speed-up

in those examples. Here, we only report the data we collected from the 4 variable ex-

149

ample. In this example, we fixed the partial degrees in x3 and x4 at 4, i.e. the number
of processors. Then by increasing partial degrees in x; and z, we obtain a timing
surface for each methods listed in above table. Namely, Figure 9.1 is the benchmark
between the sequential method and the Depth-first traversal parallelization method
with a global thread pool. Figure 9.2 is the benchmark between sequential method
and the BULL traversal parallelization method with a global thread pool. Figure 9.3
is the benchmark between sequential method and the BULL traversal parallelization
method with threads sleep/wake-up strategy. And Table 9.4, 9.4, 9.4 and 9.4 are the
selected data point from Figure 9.1, 9.2, 9.3 and 9.4 respectively.

i Serial.
Time Parallel Recursive.

Figure 9.1: Method 0 vs. method 1

dy | ds | dy | dy | method O (sec) | method 1 (sec)
4 14| 4 | 100 0.926028 0.736449
41416 | 300 8.104279 6.015184
4141 8] 500 9.642438 7.084307
4 14 10| 800 35.232581 25.746897
4 14 121000 39.521405 29.216119

Table 9.2: Selected data points from Figure 9.1

According to the benchmark result, the depth-first method does not improve the
performance by big factors w.r.t to the number of processors. The main reason is that

when the coarser grain parallelization is well balanced and processors have been well

150

) Serial.
Time BULL, thread-on-demand.. ——

Figure 9.2: Method 0 vs. method 2

dy | ds | dy | di | method O (sec) | method 2 (sec)
4 | 41| 4 | 100 0.926028 0.659218
4 141 6 | 300 8.104279 3.844373
4 | 4| 8 | 500 9.642438 4.391355
4 | 4|10 800 35.232581 13.915399
4 | 4 |12 | 1000 39.521405 15.650396

Table 9.3: Selected data points from Figure 9.2

utilized, it’s insensible to keep generating finer grain sub-threads recursively for the
sub-tasks, especially when the sub-tasks are small in terms of workload. On the other
hand, the bottom-up level-by-level approach has a factor of 2 ~ 3 speed up based on
the input size accordingly. The examples with larger degrees have better speed-up
than the smaller ones. The main reason for this is that the overhead generated by
threads and tasks management is still not negligible for smaller input.

For the comparison between methods 2 and 3, we observe that method 2 outper-
forms method 3 for smaller input. The main reason is that in methods 3 the overhead
of managing task queues and synchronizing signals is more expensive than the one in
method 2. When the input is small, the overhead has bigger impact on the overall
computational time. Whereas, method 3 will only generate fixed number of threads.
Thus, the scheduling becomes much simpler. The overhead of creating /destroying
threads in the middle steps has been avoided as well. Thus, for larger input method

3 outperforms method 2 according to our results, though the gap is not big.

151

) Serial.
Time BULL, central-thread-pool.

Figure 9.3: Method 0 vs. method 3

dy | ds | dy | dy | method O (sec) | method 3 (sec)
4 14| 4 | 100 0.926028 0.778774
4 1416 | 300 8.104279 4.031646
4141 8] 500 9.642438 4.531477
414 10| 800 35.232581 13.335127
4 | 4 |12 | 1000 39.521405 14.952662

Table 9.4: Selected data points from Figure 9.3

Figure 9.4 shows an improved version of method 3. The speed-up is yielded by re-
placing all Fast Fourier Transform by Truncated Fourier Transform (TFT). Although
this improvement seems unrelated to parallelism, the better multiple cache behavior
deserves to be counted in. Namely, TFT requires less memory to store the intermedi-
ate results than FFT. There is a larger chance that these results will be kept in cache
and used in later computation steps on the same processor.

Above benchmarks only show a factor of 2 ~ 3 speed up on a 4 processor machine.
This is not a satisfying result with considering that polynomials in our applications are
dense ones. Dense polynomial computations usually provide a good opportunity for
work-load balance. However, we have identified the major bottle-neck that impedes
the perform in our benchmark examples. Recall that in previous benchmarks we set
the partial degrees of x4 and x5 as a constant number 4. This leads a situation that
in some of the sub-algorithms such as Coefficient Reduction, there is no enough work-

load to be scheduled evenly to all 4 processors by our current scheduling method.

Serial.
BULL, central-thread-pool, TFT.

T T T T T T T 1

o
~

d2

Figure 9.4: Method 0 vs. method 3 with TFT implementation.

dy | d3 | do | dy | method O (sec) | TFT (sec)
4 14| 4| 100 0.926028 0.755583
4 1416 | 300 8.104279 2.732532
4141 8| 500 9.642438 4.831472
414 110 800 35.232581 10.011660
4 14 |12 1000 39.521405 13.816763

Table 9.5: Selected data points from Figure 9.4

Therefore, we increase the degrees of x3 and x4 to be 8. Then, we observe a factor

3.2 ~ 3.3 speed-up between method 1 and method 3. In Table 9.4 we list a few timing

points from the new benchmark result.

dy | d3 | dy| di | method 0 (sec) | method 3 (sec)
8 | 8 | 8| 100 13.770629 4.321261
8 | 8| 8| 300 96.117776 18.458235
8 | 8 | 8 | 1000 132.304345 39.757645
8 | 8| 8 | 1600 277.367573 82.651414

Table 9.6: Larger benchmark 1.

When we increase the partial degrees of 3 and x4 to be 16, 24, 32,- - -
a factor of 3.4 ~ 3.6 speed-up between method 1 and method 3 (see Table 9.4).

To summarize, for the larger examples, especially when we increase the partial

. 'we observe

153

dy | d3 | do | dy | method O (sec) | method 3 (sec)
16 | 16 | 16 | 16 15.303748 4.567856
16 | 16 | 24 | 24 56.612566 16.479111
16 | 16 | 32 | 32 63.762428 18.359758
16 | 16 | 40 | 40 236.199680 67.175220
16 | 16 | 48 | 48 252.753472 71.237213
16 | 16 | 56 | 56 265.966837 74.979127

Table 9.7: Larger benchmark 2.

degrees of x3 and x4 in 4-variable case, the performance is reasonably better. By
profiling information, we know the top level division in BULL method is often a
dominant factor. Thus, increasing the degrees of top level variables to some extend
with respect to the number of processors allows a more balanced work-load assignment
thus a better performance. Although, our experiments are conducted on a 4 processor
machine. We believes that our approach will scale on larger parallel SMP system.
Actually, the number of threads in application has been parametrized such that it

can be easily adjusted according to the number of processors or other cut-offs.

9.5 Summary

In conclusion, we studied multithreaded versions of multivariate polynomial arith-
metic modulo a triangular set. In this report, we focused on the normal form opera-
tion. We obtain parallelism from two procedures: a multidimensional FFT algorithm
and our normal form algorithm. Due to the intrinsic data-dependency inside these
operations, we observe a factor of 2~3 speed up on a 4 processor machine. One major
issue remains: detecting cut-offs between the different possible strategies. This is a
highly complicated task. A cut-off in our application is parametrized by the type of
architectures, the number of processors, the number of variables of the input, and the

shape of the given triangular set, etc.

154

Chapter 10
Conclusion

This thesis has been devoted to the design and implementation of polynomial system
solvers based on symbolic computation. Driven by this motivations, we have de-
veloped new algorithms and implementations to support the technique of triangular
decompositions for polynomial solving.

As reported in Chapters 3, 4 and 5, we have investigated and demonstrated that
with suitable implementation techniques, FFT-based asymptotically fast polynomial
arithmetic in practice can outperform the corresponding classical algorithms in a
significant manner. By integrating our C-level implementation of fast polynomial
arithmetic into AXTIOM, the AXIOM higher level existing related libraries has been
sped up in large scale. By using the same implementation technique, we have demon-
strated in Chapter 8 that MAPLE higher level libraries such as RegularChains have
also been dramatically improved in terms of performance. We have reported in Chap-
ters 6, 7 and 8 our new asymptotically fast algorithms, i.e. fast integer reduction
trick, modular multiplication, reqular GCD, bivariate solver, two-equation solver and
reqularity test. In Chapter 9, we have investigated the potential parallelism inside
fast algorithms modulo regular chains. All our reported new implementations and al-
gorithms from this thesis have been finalized as a commercial software library Modpn
(see Section 8.2)

In this research, we have focused on algorithms modulo regular chains in
dimension-zero. Higher dimensional asymptotically fast triangular decompositions
algorithms can be developed and implemented based on these results. Therefore, we
expect that the generic triangular decompositions based polynomial solvers can yield

high-performance.

155

Bibliography

1]
2]

[10]

[11]

[12]

ALDOR: a computer algebra system. http://www.aldor.org.

AXIOM: a general-purpose commercial computer algebra system.

http://page.axiom-developer.org.
GCL: GNU Common Lisp. http://www.gnu.org/software/gcl.
GMP: GNU Multiple Precision Arithmetic library. http://swox.com/gmp/.

MAGMA: the computational algebra system for algebra, number theory and
geometry. http://magma.maths.usyd.edu.au/magma/.

NTL: the Number Theory Library. http://www.shoup.net/ntl.
Linbox: exact computational linear algebra. http://www.linalg.org/.

M. Atiyah and L. G. Macdonald. Introduction to Commutative Algebra. Addison-
Wesley, 1969.

P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.
J. Symb. Comp., 28(1-2):105-124, 1999.

D. H. Bailey, K. Lee, and H. D. Simon. Using Strassen’s algorithm to accelerate
the solution of linear systems. The Journal of Supercomputing, 4(4):357-371,
1990.

E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The shape of the shape
lemma. In Proc. of the international symposium on Symbolic and algebraic com-
putation, pages 129-133, New York, NY, USA, 1994. ACM Press.

D. Bini. Relations between exact and approximate bilinear algorithms. Applica-

tions. Calcolo, 17(1):87-97, 1980.

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

156

D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n*"™?) complexity for n x n
approximate matrix multiplication. Inf. Proc. Lett., 8(5):234-235, 1979.

D. Bini, G. Lotti, and F. Romani. Approximate solutions for the bilinear form
computational problem. SIAM J. Comput., 9(4):692-697, 1980.

R. D. Blumofe, M. Frigo, C. F. Joerg, and C. E. Leiserson. An analysis of
dag-consistent distributed shared-memory algorithms. In Proc. SPAA 96, pages
297-308. ACM Press, 1996.

W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235-265, 1997.

A. Bostan and E. Schost. On the complexities of multipoint evaluation and
interpolation. Theor. Comput. Sci., 329:223-235, 2004.

R. Brent. Algorithms for matrix multiplication. Master’s thesis, Stanford Uni-
versity, 1970. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/.

R. Brent, F. Gustavison, and D. Yun. Fast solution of Toeplitz systems of equa-
tions and computations of Padé approximants. Journal of Algorithms, 1:259-295,
1980.

B. Buchberger. Fin Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Univer-
sity of Innsbruck, 1965.

D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbi-
trary algebras. Acta Informatica, 28(7):693-701, 1991.

C. Chen, F. Lemaire, O. Golubitsky, M. Moreno Maza, and W. Pan. Compre-
hensive Triangular Decomposition, volume 4770 of Lecture Notes in Computer

Science, pages 73—-101. Springer Verlag, 2007.

G. Collins. The calculation of multivariate polynomial resultants. Journal of the
ACM, 18(4):515-532, 1971.

S. Cook. On the minimum computation time of functions. PhD thesis, Harvard
University, 1966.

J. Cooley and J. Tukey. An algorithm for the machine calculation of complex
Fourier +series. Math. Comp., 19:297-301, 1965.

[20]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

157

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. McGraw-Hill, 2002.

X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. Lifting techniques
for triangular decompositions. In ISSAC 05, pages 108-115. ACM Press, 2005.

X. Dahan, M. Moreno Maza, BE. Schost, and Y. Xie. On the complexity of the
D5 principle. In Proc. of Transgressive Computing 2006, Granada, Spain, 2006.

X. Dahan and E. Schost. Sharp estimates for triangular sets. In ISSAC' 0/, pages
103-110. ACM, 2004.

J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing
in algebraic number fields. In Proc. EUROCAL 85 Vol. 2, volume 204 of Lect.
Notes in Comp. Sci., pages 289-290. Springer-Verlag, 1985.

L. Ducos. Effectivité en théorie de Galois. Sous-résultants. PhD thesis, Université
de Poitiers, 1997.

L. Ducos. Optimizations of the subresultant algorithm. Journal of Pure and
Applied Algebra, 145:149-163, 2000.

J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines.
ISSAC 02, pages 63-74, 2002.

D. Duval. Questions Relatives au Calcul Formel avec des Nombres Algébriques.
Université de Grenoble, 1987. These d’Etat.

M. El Kahoui. An elementary approach to subresultants theory. J. Symb. Comp.,
35:281-292, 2003.

[. Z. Emiris and V. Y. Pan. Fast Fourier transform and its applications. In M. J.
Atallah, editor, Handbook of Algorithms and Theory of Computations. CRC Press
Inc, 1999.

T. Farnqvist. Number theory meets cache locality: efficient implementation of
a small prime FFT for the GNU Multiple Precision arithmetic library. Master’s
thesis, Stockholms Universitet, 2005.

R. J. Fateman. Vector-based polynomial recursive representation arithmetic.
http://www.norvig.com/1td/test/poly.dylan, 1999.

[39]

[40]

[42]

[43]

[44]

[46]

[47]

[51]

[52]

158

J.-C. Faugere. Résolution des systéemes d’équations algébriques. PhD thesis,
Université Paris 6, 1994.

J.-C. Faugere. A new efficient algorithm for computing Grobner bases. J. Pure
and Appl. Algebra, 139(1-3):61-88, 1999.

A. Filatei, X. Li, M. Moreno Maza, and E. Schost. Implementation techniques
for fast polynomial arithmetic in a high-level programming environment. In

ISSAC 06, pages 93-100. ACM, 2006.
M. Frigo and S. G. Johnson. Fftw. http://www.fftw.org/.

J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 1999.

J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2003.

K. Geddes, S. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer
Academic Publishers, 1992.

T. Gémez Diaz. Quelques applications de ’évaluation dynamique. PhD thesis,

Université de Limoges, 1994.

L. Gonzalez Vega, H. Lombardi, T. Recio, and M. Roy. Spécialisation de la suite
de sturm et sous-résultants. Informatique Théorique et Applications, 24(6):561—
588, 1990.

J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors. Computer Algebra
Handbook. Springer, 2003.

G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm, I.
Appl. Algebra Engrg. Comm. Comput., 14(6):415-438, 2004.

M. v. Hoeij and M. Monagan. A modular gcd algorithm over number fields
presented with multiple extensions. In T. Mora, editor, Proc. ISSAC 2002, pages
109-116. ACM Press, July 2002.

J. Hoeven. Truncated Fourier transform. In Proc. ISSAC’04. ACM Press, 2004.

R. D. Jenks and R. S. Sutor. AXIOM, The Scientific Computation System.
Springer-Verlag, 1992. AXIOM is a trade mark of NAG Ltd, Oxford UK.

[53]

[54]

[55]

[59]

[60]

[64]

[65]

159

J. R. Johnson, W. Krandick, K. Lynch, K. G. Richardson, and A. D. Ruslanov.
High-performance implementations of the descartes method. In ISSAC’06, pages
154-161. ACM, 2006.

J. R. Johnson, W. Krandick, and A. D. Ruslanov. Architecture-aware classical

taylor shift by 1. In ISSAC’05, pages 200-207. ACM, 2005.

M. Kalkbrener. Three contributions to elimination theory. PhD thesis, Johannes

Kepler University, Linz, 1991.

M. Kalkbrener. A generalized euclidean algorithm for computing triangular rep-

resentations of algebraic varieties. J. Symb. Comp., 15:143-167, 1993.

A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
Soviet Physics Doklady, (7):595-596, 1963.

D. E. Knuth. The Art of Computer Programming, volume 2. Addison Wesley,
1999.

H. T. Kung. On computing reciprocals of power series. Numerische Mathematik,
22:341-348, 1974.

L. Langemyr. Algorithms for a multiple algebraic extension. In Effective methods
in algebraic geometry (Castiglioncello, 1990), volume 94 of Progr. Math., pages
235-248. Birkhauser Boston, 1991.

D. Lazard. A new method for solving algebraic systems of positive dimension.

Discr. App. Math, 33:147-160, 1991.

D. Lazard. Solving zero-dimensional algebraic systems. J. Symb. Comp., 15:117—
132, 1992.

F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In I. S.
Kotsireas, editor, Maple Conference 2005, pages 355-368, 2005.

X. Li. Efficient Management of Symbolic Computations with Polynomials. 2005.

University of Western Ontario.

X. Li and M. Moreno Maza. Efficient implementation of polynomial arithmetic in
a multiple-level programming environment. In ICMS’06, pages 12-23. Springer,
2006.

[66]

[68]

[69]

[70]

[76]

[77]

160

X. Li and M. Moreno Maza. Multithreaded parallel implementation of arithmetic
operations modulo a triangular set. In Proc. PASCO’07, pages 53-59, New York,
NY, USA, 2006. ACM Press.

X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains.
Submitted to ISSAC’09, 2009.

X. Li, M. Moreno Maza, R. Rasheed, and E. Schost. The modpn library: Bringing
fast polynomial arithmetic into MAPLE. In MICA 08, 2008.

X. Li, M. Moreno Maza, and E. Schost. Fast arithmetic for triangular sets: From
theory to practice. In ISSAC 07, pages 269-276. ACM, 2007.

X. Li, M. Moreno Maza, and E. Schost. On the virtues of generic programming for
symbolic computation. In ICCS’07, volume 4488 of Lecture Notes in Computer
Science, pages 251-258. Springer, 2007.

M. van Hoeij and M. Monagan. A modular GCD algorithm over number fields
presented with multiple extensions. In ISSAC’02, pages 109-116. ACM, 2002.

B. Mishra. Algorithmic Algebra. Springer-Verlag, New York, 1993.

R. T. Moenck. Practical fast polynomial multiplication. In SYMSAC "76: Pro-
ceedings of the third ACM symposium on Symbolic and algebraic computation,
pages 136-148, New York, NY, USA, 1976. ACM Press.

P. L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519-521, 1985.

M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical
Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-2000
Conference, Bath, England.

M. Moreno Maza and R. Rioboo. Polynomial gcd computations over towers of
algebraic extensions. In Proc. AAECC-11, pages 365-382. Springer, 1995.

K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Automatic
inversion generates divide-and-conquer parallel programs. In Proc. PLDI’07,
2007.

[78] V. Y. Pan. Simple multivariate polynomial multiplication. J. Symb. Comp.,

18(3):183-186, 1994.

161

[79] M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gavci¢, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo. SPIRAL: Code generation for DSP transforms. Proc’ IEEFE,
93(2):232-275, 2005.

[80] R. Rasheed. Modular methods for solving polynomial systems. Master’s thesis,
2007. University of Western Ontario.

[81] J. F. Ritt. Differential Equations from an Algebraic Standpoint, volume 14.
American Mathematical Society, New York, 1932.

[82] A. Schénhage. Schnelle Multiplikation von Polynomen tiber Kérpern der Charak-
teristik 2. Acta Informatica, 7:395-398, 1977.

[83] A. Schénhage and V. Strassen. Schnelle Multiplikation groser Zahlen. Comput-
ing, 7:281-292, 1971.

[84] E. Schost. Computing parametric geometric resolutions. Appl. Algebra Engrg.
Comm. Comput., 13(5):349-393, 2003.

[85] E. Schost. Multivariate power series multiplication. In ISSAC"05, pages 293-300.
ACM, 2005.

[86] V. Shoup. A new polynomial factorization algorithm and its implementation. J.
Symb. Comp., 20(4):363-397, 1995.

[87] M. Sieveking. An algorithm for division of powerseries. Computing, 10:153-156,
1972.

[88] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik.,

13:354-356, 1969.

[89] S. Varette and J.-L. Roch. Probabilistic certification of divide & conquer al-
gorithms on global computing platforms. application to fault-tolerant. In Proc.
PASCO’07. ACM Press, 2007.

[90] S. M. Watt. The A# programming language and its compiler. Technical report,
IBM Research, 1993.

91] W. T. Wu. A zero structure theorem for polynomial equations solving. MM
Research Preprints, 1:2—12, 1987.

162

[92] L. Yang and J. Zhang. Searching dependency between algebraic equations: an
algorithm applied to automated reasoning. Technical Report 1C/89/263, Inter-
national Atomic Energy Agency, Miramare, Trieste, Italy, 1991.

93] C. Yap. Fundamental Problems in Algorithmic Algebra. Princeton University
Press, 1993.

163

Curriculum Vitae

Name:

Post-Secondary
Education and

Degrees:

Selected Honors

and Awards:

Working

Experience:

Xin Li

The University of Western Ontario
London, Ontario, Canada
Ph.D. Computer Algebra, Apr. 2009 (expected date)

The University of Western Ontario
London, Ontario, Canada
M.Sc. Computer Science, Sept. 2005

Beijing Information Science & Technology University
Beijing, China

B.E. in Automation, Sept. 1997

Best Novel Use of Mathematics in Technology Transfer 2009 from
MITACS (See Refereed Software).

NSERC PGS Scholarship, 2007 - 2009

OGSST Scholarship, 2006

IBM Canada Ltd.

Compiler backend developer associated student. Apr.2008 -
Apr.2009

Refereed

Software:

164

X. Li, M. Moreno Maza, The Modpn library and its Maple
wrapper package FastArithmeticTools have been integrated in
the MAPLE RegularChains library and will be distributed with
Maple version 13, 2009.

This software library has won the national level award Best Nowvel
Use of Mathematics in Technology Transfer 2009 from MITACS

(Mathematics of Information Technology and Complex Systems).

165

Refereed X. Li, M. Moreno Maza and W. Pan Computations modulo
Papers: Regular Chains. Accepted by ISSAC’ 2009, Korea Institute for
Advanced Study.

X. Li, M. Moreno Maza, R. Rasheed and E Schost, The Modpn
library: Bringing Fast Polynomial Arithmetic into Maple
(extended version). Submitted to the Journal of Symbolic
Computation. 2008.

X. Li, M. Moreno Maza and E Schost, Fast Arithmetic for
Triangular Sets: from Theory to Practice (extended version).

Journal of Symbolic Computation (to appear). 2009.

X. Li, M. Moreno Maza, R. Rasheed and E Schost,
High-Performance Symbolic Computation in a Hybrid
Compiled-Interprered Programming Environment. In proc. of
CASA’2008, Perugia, Italy, IEEE Press.

X. Li, M. Moreno Maza, R. Rasheed and E Schost, The Modpn
library: Bringing Fast Polynomial Arithmetic into Maple. In
proc. of MICA’2008, Stonehaven Bay, Trinidad and Tobago.

X. Li and M. Moreno Maza, Multithreaded Parallel
Implementation of Arithmetic Operations Modulo a Triangular

Set. In proc. of PASCO’ 2007, UWO, Canada, ACM Press.

X. Li, M. Moreno Maza and E Schost, Fast Arithmetic for
Triangular Sets: From Theory to Practice. In proc. of ISSAC’
2007, Waterloo, Canada, ACM Press.

X. Li, M. Moreno Maza and E Schost, On the Virtues of Generic
Programming for Symbolic Computation. In proc. of CASA’
2007, Beijing, China, ACM Press.

X. Li and M. Moreno Maza, Efficient Implementation of
Polynomial Arithmetic in a Multiple-level Programing
Environment. In proc. of ICMS’ 2006, Spain, ACM Press.

A. Filatei, X. Li, M. Moreno Maza and E Schost, Implementation
Techniques for Fast Polynomial Arithmetic in a High-level
Programming Environment. In proc. of ISSAC’2006, Italy, ACM

Press.

