
XML

and the

COMMUNICATION OF MATHEMATICAL OBJECTS

by

Xuehong Li

Graduate Program in Computer Science

Submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Faculty of Graduate Studies

The University of Western Ontario

London, Ontario

April 1999

© Xuehong Li 1999

Abstract

Software programs of various sorts must exchange mathematical formulas and ob­
jects as data. This thesis examines the emerging standards for this type of exchange,
including MathML and OpenMath. Both of these standards are based on the Exten­
sible Markup Language (XML) and address different aspects of this data exchange
problem. One of the most significant gaps in these Mathematical Markup Languages
is the lack of a macro mechanism to handle abbreviations and to abstract new con­
cepts. In this thesis, we examine the suitability of XSL, a stylesheet language for
XML, as a means of macro extension in these mathematical markup domains.

We have implemented an XSL processor and several trial stylesheets to convert
MathML content markup to MathML presentation markup annotated with Open­
Math semantics. This models the general process of extending the content tags of
MathML via macros relying on OpenMath. On the basis of these experiments, we
conclude that XSL draft recommendation of December 16, 1998, with minor exten­
sions detailed here, could be a suitable basis for macro processing in MathML.

Key words: XML, MathML, OpenMath, XSL, communication of mathematical
objects, macro mechanism.

iii

Acknowledgements

I would like to thank my supervisor Dr. Stephen Watt for his encouragement and
endless enthusiasm not only for this thesis but also all research activities, for his
invaluable and enlightening advice, and for his relentless help.

Thanks as well to faculty, staff and fellow graduate students in this department
for all the constructive discussions and challenging questions as well as their encour­
agement and help, especially to the friends of the Symbolic Computation Lab for
their endless help.

Finally I would also like to thank my family, especially my wife, for her love and
support.

Without the help of these people, completing this thesis would not have been
possible.

iv

Contents

Certificate of Examination

Abstract

Acknowledgements

Contents

Nomenclature & Acronyms

1 Introduction

2 An Overview of XML
2.1 What Is XML?

2.1.1 Logical Structure and Physical Structure
2.1.2 DTD, Valid Document and Well-formed Document

2.2 The Origins of XML
2.3 The Applications of XML

2.3.1 Data Exchange Applications
2.3.2 Document Publishing Applications

3 OpenMath
3.1 What Is OpenMath?
3.2 Why OpenMath?
3.3 How Was OpenMath Developed?

3.3.1 The History of OpenMath
3.3.2 Design Goals of OpenMath .
3.3.3 Mathematical Object Representations in OpenMath .

v

ii

iii

iv

v

viii

1

3
3
4
5
8

10
10
10

12
12
12
13
13
14
16

4 MathML
4.1 What is MathML?
4.2 Why MathML?
4.3 How Does MathML Work? .

4.3.1 Mathematical Notations and Content
4.3.2 MathML Presentation Elements .
4.3.3 MathML Content Elements . . .
4.3.4 The Top-level Interface Element .

24
24
24
26

26

27
32

36

5 The Relationship Between MathML and OpenMath 38
5.1 General Concepts 38
5.2 Using OpenMath Annotation in MathML . 38
5.3 Using MathML Annotation in OpenMath . 41

6 An Overview of XSL 43
6.1 The Structure of A Style Sheet 44
6.2 How to Form a Template? . . . 45
6.3 What Are the Patterns in XSL? 46
6.4 Examples 49

7 A Macro Mechanism for MathML 56
7.1 Macros for Abstracting Different Notational Styles . 57
7.2 Macros for Expanding Abbreviations 58
7.3 Macros for Combined Presentation-Semantics Markup . 60
7.4 Realization of the Macro Mechanism 62

7.5 Realization of Macros for Abstracting Different Notational Style 64
7.6 Realization of Macros for Expanding Abbreviations 64
7.7 Realization of the Macros for Combined Markup . 66
7.8 Remarks in Writing Stylesheets 70

7.9 Extension of XSL 73
7.10 More Examples 76
7.11 Future Work . 82

8 Conclusion 89

Appendix 90

vi

A Stylesheets for OpenMath CDs 90
A.1 Limit.xsl .. 90
A.2 Sumprod.xsl 93
A.3 Calculus.xsl 96
A.4 Transc.xsl . 100
A.5 Quant.xsl . 102
A.6 Interval.xsl 103
A.7 Arith.xsl 105
A.8 List.xsl .. 106
A.9 Logic.xsl 107
A.10 Integer.xsl . 108
A.11 Set.xsl ... 108
A.12 Relation.xsl . 110
A.13 Stat.xsl .. 113

A.14 Fns.xsl ... 114
A.15 La-mml.xsl . 114
A.16 A Stylesheet for Common Elements 115

Bibliography 117

vii

Nomenclature & Acronyms

XML

DTD

SGML

MathML

OpenMath

Extensible Markup Language

Document Type Definition

Standard General Markup Language

Mathematical Markup Language

A platform-independent standard for the
representation of semantically-rich mathematical
objects so that they may be exchanged in a
meaningful way between various software tools.

OM OpenMath

CD Content Dictionary

XSL Extensible Stylesheet Language

viii

Chapter 1

Introduction

The need for communication of mathematical objects has appeared in several com­
munities including the computer algebra field, mathematics, teaching and commercial
publishing.

Mathematicians want to make their research works available on the World-Wide
Web in an efficient way. Similarly, students and teachers may want to place scientific
curriculum materials on the Web. Furthermore, commercial publishers are also in­
volved with mathematics on the Web at all levels - from electronic versions of print
books, to interactive textbooks, to academic journals. For example, the reader of a
digital mathematical document may want to transfer the content from the document
into a mathematical program such as Maple or Mathematica to further investigate
examples. Users of computer algebra systems may want their examples to run in sev­
eral computer algebra systems, and to make use of the advantages of each system. An
underlying issue in all these examples is the need for communication of mathematical
objects.

How can we communicate mathematical objects? Or, more accurately, how can
we effectively communicate mathematical objects? Mathematical objects generally
have a complex structure with two independent aspects: the presentation notation
and the semantic content. Dealing with both of these equally or emphasizing one of
them so that special purposes are satisfied leads to different designs. Much work has
been done in this area in recent years:

The OpenMath Society has designed OpenMath [1], a platform-independent stan­
dard for the representation of semantically-rich mathematical objects so that they
may be exchanged in a meaningful way between various software tools. The core of
this standard is to supply a collection of CDs (Content Dictionaries) and data ex­
change formats. A CD defines a set of related mathematical concepts and operations

1

2

as a set of symbols, each symbol has a name and is attached some information. One
of the data transfer encoding in OpenMath is XML (Extensible Markup Language)
[2].

The W3C (World Wide Web Consortium) Math Working Group has released a
formal recommendation of MathML (Mathematical Markup Language) [3]. This is
an application of XML intended to facilitate the use of mathematical and scientific
content on the Web. MathML supplies presentation elements and content elements,
aiming to capture both the mathematical notation and the meaning.

These two standards' emphases are different: OpenMath is primarily for semantics
and MathML is primarily for presentation. They address different aspects of the
problem of representing mathematical objects and transmitting.

One of the most significant gaps in these two Mathematical Markup Languages is
the lack of a macro mechanism to handle abbreviation and to abstract new concepts.
Therefore, it is necessary to develop such a macro mechanism. This macro mechanism
could make the communication of mathematical objects more effective.

XSL [4],[5], a stylesheet language for XML, is designed to construct trees of for­
matting objects for display. It can also be used for general XML transformation. We
have implemented an XSL processor and an XML parser. Using these tools, we have
experimented with many stylesheets to examine and experiment with XSL as a means
of the macro extension. We find that XSL draft recommendation of Dec. 16, 1998 [5],
with minor extensions, could be a suitable basis for mathematical macro processing.

In this thesis, we first give an overview of XML, and then we systematically
describe the ideas and methods of OpenMath and MathML in dealing with the com­
munication of mathematical objects. Then we discuss the relationship between them.
Finally, and most importantly, after introducing XSL, we discuss our development of a
macro mechanism for MathML, from presenting the problems to the implementation
of a solution.

Chapter 2

An Overview of XML

2.1 What Is XML?

XML, Extensible Markup Language, is a publishing and document interchange format
developed by the World Wide Web Consortium(W3C) [2]. Since it was released on
10 February 1998, it has gained widespread acceptance.

XML is a data format for storing structured and semi-structured text intended
for communication or publication in a variety of media. An XML document con­
tains special instructions, called tags, which usually enclose identifiable parts of the
document. The sample below is a fragment of an XML document:

<COURSE>
<TITLE>Software Engineering</TITLE>
<ID>CS307</ID>
<CREDIT>3</CREDIT>

</COURSE>

As a simplification of SGML (Standard General Markup Language), the XML format
is similar to HTML (Hypertext Markup Language). The difference, however, is that
HTML has a fixed set of tags, whereas XML allows the creation and utilization of
user-defined tags. This gives individuals the ability to describe the information in
a document with meaningful tags. This extensibility of self-description makes XML
suitable for not only the world of publishing but also for describing complex data
structures.

XML is a simplified subset of SGML that inherits SGML's three main features,
which are that it is:

1. Generalized and descriptive;
2. Extensible;

3

3. Validated.
These features make XML quite flexible and powerful. Its simplicity compared to

SGML makes XML easier to learn and process. We will discuss the relationship of
XML, HTML and SGML in more detail in Section 2.

To get a basic understanding of XML quickly, we quote the design goals for XML
here from the recommendation [2]:

"The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall be supporting a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features is to be kept to the absolute minimum, ideally
zero.

6. XML documents shall be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance."

We note that a consequence of these goals is that XML markup tends to be rather
verbose, but it compresses very efficiently.

2.1.1 Logical Structure and Physical Structure

An XML-based document has both a logical and a physical structure.
The logical structure means that a document can be broken down into named

units and sub-units, called elements. An element can contain other elements and it
can also contain data, e.g. the words and sentences that are the text of a document.
For example, a book is broken down into chapters, each chapter is an element which
may contain further elements such as paragraph, table and image.

5

In other words, the logical structure is actually a tree structure of a document.
The root is the element that contains all of the others (e.g. book). The other elements
are either branches or leaves: the branches are the elements that do contain other
elements; the leaves are the elements that do not contain other elements.

Elements can also have extra information attached to them called attributes. At­
tributes describe properties of elements. For example, we can store the condition of
a product as an attribute in a <PRODUCT> tag:

<PRODUCT CONDITION = "Excellent">

The physical structure means that components of the document, which are called
entities, can be named and stored separately, sometimes in other data files so that
information can be re-used and non-XML data (such as image data) can be included
by reference. One may insert an reference somewhere in a document to make use
of an "entity". The processor replaces the reference with the entity itself, which is
called the replacement of text. For example, in a book on XML the name "Extensible
Markup Language" may appear often. An entity, perhaps named "XML", may be
created to hold this text. This entity would then be referred to using the notation
"&XML;"

Generally, we may wish to use an entity in the following cases:

1. The same information is used in several places, and duplication would be both
error-prone and time-consuming.

2. The information may be represented differently by an incompatible system.

3. The information is part of a large document that requires splitting into man­
ageable units.

4. The information involves data that conforms to a format other than XML.

2.1.2 DTD, Valid Document and Well-formed Document

As we mentioned above, a structured document is composed of a tree of elements.
Each element can contain other elements or data. Taking a book as an example: the
entire document (book) is a single element containing smaller elements (chapters)
and they contain even smaller ones, until the individual leaves (book's text).

Obviously, those elements cannot be put in the tree randomly: chapters cannot
contain books and footnotes can not contain chapters. Determining whether or not

6

a document is a valid book requires rules stating which elements can be contained in
other element. Those rules form the Book type. The elements and the rules restricting
them define the document type. So if two documents have very different elements or
allow elements to be combined in very different ways, then they may probably do not
conform to the same document type.

Formally, a document type definition (or DTD) is a series of definitions for element
types, attributes, entities and notations. It declares which of these are legal within
the document and in what places they are legal. A document can claim to conform
to a particular DTD in its document type declaration.

Here is a DTD for a document of student registration records:

<?XML version = "1. 0" ?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT (STUDENT)*>
<!ELEMENT STUDENT (NAME,ID,REGISTRATION)>
<!ELEMENT NAME (LASTNAME,FIRSTNAME)>
<!ELEMENT LASTNAME (#PCDATA)>
<!ELEMENT FIRSTNAME (#PCDATA)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT REGISTRATION (COURSE)*>
<!ELEMENT COURSE (TITLE,NUMBER,CREDIT)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT NUMBER (#PCDATA)>
<!ELEMENT CREDIT (#PCDATA)>
]>

where #PCDATA m means character data.
Having a DTD in a document is optional. For a small document, one may just

remember the simple DTD and write the document directly according to the DTD.
For a large, complex document, however, it is very difficult to concentrate on every
required rule, and therefore a DTD becomes crucial since the computer (validated
parser) can check the rule requirement automatically. It is worthwhile to indicate
that, by applying the same reasoning, some XML documents do not have a document
type declaration. That does not mean that they do not conform to a document type
- it just means that they do not claim to conform to some formally defined document
type definition.

The XML recommendation describes two levels of conformance: valid and well­
formed. A valid XML document must have a DTD and adhere to it. A valid XML
document must also be well-formed. A well-formed document can be used without

7

a DTD, but it must follow some simple rules to enable a browser to parse the file
correctly.

These simple rules are specified in Section 2.1 of the XML recommendation[l].
The most important one among them is that an element cannot be partially enclosed
by another element. For example, a section may not belong to two chapters. So,
roughly speaking, any XML document that consists of properly nested elements is
called a well-formed document.

As an example, the following XML document is both valid and well-formed:

<?XML version = 11 1. 0" ?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT (STUDENT)*>
<!ELEMENT STUDENT (NAME,ID,REGISTRATION)>
<!ELEMENT NAME (LASTNAME,FIRSTNAME)>
<!ELEMENT LASTNAME (#PCDATA)>
<!ELEMENT FIRSTNAME (#PCDATA)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT REGISTRATION (COURSE)*>
<!ELEMENT COURSE (TITLE,NUMBER,CREDIT)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT NUMBER (#PCDATA)>
<!ELEMENT CREDIT (#PCDATA)>
]>
<DOCUMENT>

<STUDENT>
<NAME>

<LASTNAME>Edwards</LASTNAME>
<FIRSTNAME>Britta</FIRSTNAME>

</NAME>
<ID>3171998</ID>
<REGISTRATION>

<COURSE>
<TITLE>Sof tware Engineering</TITLE>
<NUMBER>CS307</NUMBER>
<CREDIT>3</CREDIT>

</COURSE>
<COURSE>

<TITLE>Computer Network</TITLE>
<NUMBER>cs357</NUMBER>

<CREDIT>3</CREDIT>
<COURSE>

</REGISTRATION>
</STUDENT>

</DOCUMENT>

Next we show a document that is well-formed but not valid (no DTD):

<?XML version = "1.0"?>
<greeting>Hello, world!</greeting>

8

Finally, here is a document that contains a nesting error and so is neither well formed
nor valid:

<?XML version = "1. 0" ?>
<greeting>
Hello, world!

<farewell>
</greeting>
Bye, world!

</farewell>

2.2 The Origins of XML

After introducing the basic concepts of XML in the first section, now we will discuss
the relationship of XML with other two existing languages SGML (Standard General
Markup Language) and HTML (Hypertext Markup Language). Simply speaking,
XML is primarily based on SGML, but inherits some characteristics from HTML and
so contains additional features that are aimed at its use on the Internet.

The General Markup concept appeared in early 1960s. When IBM asked Charles
Goldfarb to build a system for storing, finding, managing, and publishing legal docu­
ments, Goldfarb found that many systems in IBM could not talk to each other and the
main problem was that they had different representations for the information. In the
late sixties, Goldfarb had a team to solve this problem. They realized three key issues
to be addressed: first, support a common representation; second, the representation
should be specific to legal documents; third, markup is rule-based. In addressing
the first issue, they got the idea to abstract the formatted rendition to a "General
Markup" for an alternative to either the formatting markup or WYSIWYG (What

You See Is What You Get). The idea of General Markup is to allow the authors
to say what they mean not just what they look like. When the format is needed, a
style sheet can be attached to the document to tell the computer how to generate a
formatted rendition from the General Markup. The second issue "specific to" derived
the concept of "extensibility". That is, it can be extensible to specific problem do­
main to markup different documents. Third issue is validation according to the DTD.
The General Markup Language evolved nearly for two decades, until 1986, when the
Standard General Markup Language (SGML) was set by ISO. However, with many
other features, SGML is too big and complex, or perhaps too advanced, to become
fully utilized and widespread.

HTML was invented by Tim Berners-Lee about 1990. Along with URLs and
HTTP, HTML allowed CERN scientists to write physics papers and link them to­
gether, and today it has evolved as the most diverse, popular hypertext information
system in existence. Its simplicity is widely believed to be an important part of its
success. The simplicity and the other Web specifications allowed programmers around
the world to quickly build systems and tools to work with the Web.

HTML inherited some important strength from SGML. Most of its element types
were generalized and descriptive, not formatting constructs like Tex. HTML docu­
ment uses bracketing in the same way as SGML. However, HTML only uses a fixed
set of element types, which makes it simple and easy to learn, but the cost is, on the
other hand, that its application is severely limited. This limitation manifests itself
mainly in three respects, as pointed out by Jon Bosak in [6]:

1) Extensibility: HTML dos not allows users to specify their own tags or
attributes in order to parameterize or otherwise semantically qualify their
data.

2) Structure: HTML does not support the specification of deep structures
needed to represent database schemas or objected-oriented hierarchies.

3) Validation. HTML does not support the kind of language specification
that allows consuming applications to check data for structural validation
on importation.

As the World Wide Web went worldwide and was used by more people, more and more
different flavors of documents began to appear on the Web. Some of these had deep
complex data structure; some may be a long, needing a check of the requirement for
validation. Therefore, HTML, with the above stated limitations, cannot serve for all
these document types. The process of extending HTML tags may save this situation

partially but cannot completely solve this problem, as new applications may force
this extension in an endless process.

XML is intended to rescue this problem. Instead of having a fixed set of tags,
XML inherits all three important features of SGML: Generalized and Descriptive
element type, Self-description and Validation, and more importantly, Extensibility.
By removing many of the more complex and less-used features of SGML, XML is a
simplified subset of SGML. The simplicity makes XML's tool implementation easier
than SGML's and the three good features give XML more power than HTML.

With XML, you can write any flavor of document with your own descriptive
element type and attribute name. If printing or publishing is desired, you can design
a style sheet and attach to the document and tell the computer whatever format you
want.

With XML, you can describe any deep level and/or nested structure of data.
With XML, you could give an optional structure grammar of the document and

check that the document conforms to the structural requirements.
It is these beneficial features together with the simplicity that makes XML effec­

tive, powerful and increasingly popular.

2.3 The Applications of XML

2.3.1 Data Exchange Applications

When complex data must be exchanged between two programs, XML is a suitable
format for making the data self-describing. XML has certain potential in a number
of already identified domains, such as EDI (Electronic Data Interchange) and general
meta-data (XML-Data and RDF (Resource Description Framework)). Also, in this
context, OpenMath can be viewed as such an application. XML is used to encode
OpenMath CDs and OpenMath objects so that they may be exchanged between
various software tools. We will address this in detail in Chapter 3.

2.3.2 Document Publishing Applications

XML is a data language for markup of semi-structured documents. The examples
of such semi-structured documents include reference works, training guides, technical
manuals, academic journals and reports. XML tags can represent all the features of
a typical document and data stream.

11

Markup with XML can result in a long-term cost benefit. Once the core data
is held in a controlled and structured format, a high level of automation can be
achievable; in some cases, even allowing fully automated publication, in appropriate
formats, to paper, CDROM and the Internet. When published on the Internet,
different formats are possible by attaching different style sheets.

Some areas, like mathematics and chemistry, have more complexly structured data
and documents. To publish such documents on the Web definitely needs more work,
and specific markup languages based on XML are perhaps needed for these domains.
MathML is an application of XML to be used in publishing mathematical documents
on the Web. In Chapter 4, we will address this work in detail.

More and more applications shall appear in the future. As far as XML acceptance is
concerned, Microsoft has embraced XML for future releases of Internet Explorer, and
Netscape is considering doing the same for its browser. XML will most likely gain
widespread acceptance as the power of XML-enabled applications is realized.

According to Jon Bosak of the XML Working Group [6], the applications that will
drive the acceptance of XML can be divided into four broad categories:

1. Applications that require the Web client to mediate between two or
more heterogeneous databases.

2. Applications that attempt to distribute a significant proportion of
the processing load from the Web server to the Web client.

3. Applications that require the Web client to present different views of
the dame data to different users.

4. Applications in which intelligent Web agents attempt to tailor infor­
mation discovery to the needs of individual users.

Chapter 3

OpenMath

3.1 What Is OpenMath?

OpenMath defines a platform-independent standard for the representation of math­
ematical objects so that they may be communicated in a meaningful way, between
various software tools, through various media [1]. Some examples of such tools are
general purpose or specialized computer algebra systems, document preparation sys­
tems, Web browsers displaying formulas, equation editors, and databases containing
mathematical information. Some examples of the communication media are regular
files, electronic mail, cut and paste, internet sockets, and CORBA applications.

3.2 Why OpenMath?

With the increase of the number of programs that do symbolic or numeric compu­
tation, and programs that display or typeset mathematical information, the need
for a standard computer representation for communicating mathematical objects has
become apparent. No one computer application does everything and each one has
its own virtues and deficiencies. For example, many general purpose computer al­
gebra systems implement algorithms, limiting the complexity of the problems they
can handle, or do not have the data types available to implement an algorithm in an
efficient way. Special purpose systems, on the other hand, often implement selected
algorithms in an efficient way but are restricted to a small mathematical field. N atu­
rally, when doing some mathematical work, one may want to use a specific application
for one particular task and use another application for other tasks. Thus, switching
the job between the two applications and sharing the information becomes neces­
sary. If information can be shared between two applications, the user can optimize

12

13

the strengths of both. Moreover, being able to share data between two applications
supports modular problem solving by having specific applications performing specific
subtasks. This eliminates the need to re-implement existing techniques and allows for
integration of already existing software components. However, since each application
may have different internal data structures, without a standard computer representa­
tion for communicating mathematical objects, we may need to write over 100 different
protocols to make 15 different mathematics programs talk to each other. If with a
standard, this situation improves to only require 15 programs to translate between
their internal representation of mathematical data and the common representation of

. the corresponding mathematical data, the advantage becomes apparent. A possible
question may be raised: "Why not use Tex as the standard?" The answer is that
Tex is only for formatting and does not carry semantic meaning for mathematical
objects. Since no existing program can do the job discussed above, a new design for
a standard becomes necessary.

3.3 How Was OpenMath Developed?

3.3.1 The History of OpenMath

The origin of OpenMath dates to 1992, when Maple developers began to discuss how
best to organize communication between mathematical software packages. At that
time, Maple developers had already obtained some experience from fashioning bridges
between Maple and Matlab, and between Maple and Mathcad. When they had further
need to also communicate with other mathematical software packages, they felt that
the mechanism of continuously building on special, proprietary software packages was
not a good approach. This problem was also encountered by developers of various
other computer algebra systems, and therefore it was realized that an open standard
for communication of mathematical objects was needed. To this end, Professor Gaston
Gonnet organized a workshop at the ETH Zurich in December 1993, seeking the
participation of potentially interested members of the computer algebra community.
He proposed defining a standard for the communication of mathematical objects: the
OpenMath protocol. Since then many individuals have contributed their time and
effort to this goal of achieving an open standard. The workshops continue to be held
frequently, once every six months. Meanwhile, a group of European researchers has
launched a collaborat on the design and implementation of OpenMath standards and
tools. This group, the OpenMath consortium, intends that OpenMath become an
international de-facto industrial standard.

14

Meanwhile, the North American OpenMath Initiative was lunched as a North
American counterpart to the European group. The direction of OpenMath effort has
been guided by OpenMath Steering Committee (renamed as Board of the OpenMath
Society in 1998), consisting of A. Cohen, G. Gannet, M. Seppala, R. Sutor and S.
Watt.

Much work has been. done in the past several years. The first proposal of the
standard [7] has evolved into the first official version of OpenMath, released on De­
cember 15, 1996 [1]. After that, S. Dalmas, M. Gaetano and S. Watt presented the
first implementation of the standard in the form of a C library [8], which has been
embedded in experimental versions of two major computer algebra systems, Maple
and Reduce, so that they can communicate each other. This demonstrates a proof
of concept of OpenMath. Similar activities appeared in other forms, e.g. an API
for Aldar to allow Aldar to communicate with other computer algebra systems [8],
and a Java library for OpenMath created by the PolyMath group at Simon Fraser
University [9].

3.3.2 Design Goals of OpenMath

The general goal of OpenMath is to define a platform-independent standard for the
representation of mathematical objects so that they may be exchanged in a meaningful
way between various software tools.

To effectively achieve this general goal, the OpenMath Steering Committee sets
the following objectives:

• OpenMath must preserve all important or costly information during transmis­
sion. Here "important" means that the information is indispensable for correct inter­
pretation and "costly" means expensive in terms of computation costs.

• OpenMath must be suitable for transmitting data from many different areas of
mathematics. Ideally, any mathematical object that can be represented in a computer
can be transmitted using OpenMath.

• OpenMath must be able to handle floating point numbers and other data. Exam­
ples of the latter are mathematical formulae, a variety of finite discrete mathematical
objects, formal proofs, algorithms, and integers of unlimited size. In addition, it must
be able to transmit large amounts of machine precision numerical data reasonably ef­
ficiently.

• The ability to extend the standardized core of OpenMath is vital since new areas
of mathematics will continually be implemented and applied. Moreover, the mech­
anism for extending OpenMath should be simple and well documented. Extensions

15

must be able to be produced by reasonably competent people outside the group of
original OpenMath implementers. Efficiency is important but must be tempered with
concerns for flexibility and extensibility.

• One must be able to use OpenMath to transmit data using at least these forms
of transmission: email, cut-and-paste, local and non-local interprocess links (for ex­
ample, UNIX sockets, OLE Automation, OLE Data Transfer), and saving to and
retrieving from files.

• OpenMath must permit fairly straight-forward implementation of compliant
senders and receivers, so that authors of mathematical (or other) packages can easily
supply their own OpenMath interfaces.

16 .

3.3.3 Mathematical Object Representations in OpenMath

The architecture of OpenMath can be described in the following figure:

Program A ProgramB

A-Specific B-Specific

Representation Representation

Phrasebook A Phrasebook B
+CDs +CDs

OpenMath OpenMath

Object Possible Object Shortcut Object

.

OM Encoding OM Encoding

Encoded Encoded

Object General Transport Layer Object

(XML or Bmary)

where OM means OpenMath and CD means Content Dictionary.
From the picture, we can see that there are three layers of representations for

17

a mathematical object. The first layer is a private layer that is the internal repre­
sentation used by an application. The second layer is an abstract layer that is the
representation as an OpenMath object. The third layer is a communication layer that
translates the OpenMath object representation to a stream of bytes that is used as the
external form (the low-level form that is actually exchanged). The hierarchy of these
layers corresponds to the way OpenMath is normally integrated into an application.
The application dependent program manipulates the mathematical objects using its
internal representation. It can convert them to OpenMath objects and communicate
them by using XML encoding of OpenMath objects.

The inverse process of the above conversions can be done after transmission.
The second layer is called the abstract layer because the OpenMath object can be

considered abstract: it is not necessary for an OpenMath-compliant application to
actually build the OpenMath object: it is sufficient to create a valid encoding from
an internal form or vice-versa.

Phrasebook

The conversion from/to the internal representation of an application to/from Open­
Math object representation is done via a Phrasebook corresponding to this appli­
cation. A phrasebook is software that performs this conversion. This is the only
software that should contain system-specific knowledge about representations and
the implementation is generally up to the application programmer. The phrasebooks
establish the correspondence to objects defined in CDs. A content dictionary (CD)
maps the semantics level to the OpenMath level and describes which mathematical
objects the corresponding OpenMath object denotes.

OpenMath Objects

An OpenMath object can be viewed as a tree and is also referred as a term.
The objects at the leaves of OpenMath trees are called basic mathematical objects.

The basic mathematical objects supported by OpenMath are integers, symbols,
variables, floating-point numbers, character strings and bytearrays.

Integers are integers in the mathematical sense, with no predefined range.
Symbols are at the heart of OpenMath. Each symbol has a name and is a member

of a content dictionary. Each symbol has a prescribed, defined meaning. Each symbol
has no more than one definition in a Content Dictionary. Other Content Dictionaries
may define differently a symbol with the same name.

18

Variables are meant to denote parameters, variables or indeterminates. Variable
names obey the same lexical rules as symbol names.

Floating-point numbers can be both single and double precision and follow
IEEE formats.

Character strings are sequences of characters. These characters come form the
Unicode standard.

Bytearrays are sequences of bytes. A bytearray is used to exchange arbitrary
binary data.

The nodes of the trees representing OpenMath objects are made of applications,
error and attribution. They are called constructor objects because they can be

. used to build compound OpenMath objects.
Application constructs an OpenMath object from a sequence of OpenMath ob­

jects. The first argument of application is called the "root" while the remaining
objects will be called the arguments.

Error is made of an OpenMath symbol and a sequence of arguments (arbitrary
OpenMath expression).

Attribution decorates an object with a sequence of pairs. Each pair consists of
an OpenMath symbol as the attribute name and an associated OpenMath object as
the attribute value.

Content Dictionaries

Content dictionaries play a central role in the OpenMath philosophy of communica­
tion of mathematical objects. It is the OpenMath content dictionary which actually
holds the meanings of the mathematical objects to be communicated. For example,
when two applications want to talk to each other about matrix multiplication, they
must agree the same definition of matrix and matrix operations. These meanings are
contained in a Content dictionary both agree upon.

The primary use of Content Dictionary is for a designer of phrasebooks. Therefore
it should be as readable and precise as possible, to enable a phrasebook designer to
effectively state which objects translate to which. Another possible use for OpenMath
Content Dictionaries could rely on their automatic comprehension by a machine, in
which case CD may have to be passed as data. In other words, it should be possible
that CDs may passed in the same way as the OpenMath mathematical objects.

These goals guide the design of CDs, their structure and their relationships:
A content dictionary defines a set of related mathematical concepts and operations

as a set of symbols. Each symbol has a name and has some information attached. Such

19

a symbol, for example, could be a constant pi, or an operation plus or a function sin.
A symbol can also be used to define a representation for some mathematical objects.
For example a polynomial can be built out of a set of constructors.

A mathematical object has a relatively complex structure. As we mentioned in
Chapter 2, XML is suitable for describing complex data structures and is a power­
ful markup language for data communication. Therefore it naturally becomes the
candidate in choosing the syntax for writing CDs.

Content Dictionaries are written in an XML encoding so that CDs can also be
viewed as OpenMath objects and the structure of CDs can be described as precisely
possible.

A special CD, called Meta, is written to specify the tags used in a CD, and a DTD
has been written for validation of CDs.

Content Dictionaries have been designed to hold two types of information: that
belonging to the whole CD, and that which is restricted to a particular symbol defi­
nition.

Information that belongs to the whole CD includes: the CD's name and descrip­
tion, expiry date, the status (official, experimental, private or obsolete), an optional
URL and an optional list of CD's which this CD depends on.

Information that is restricted to a particular symbol includes: the symbol's name,
description, an optional signature, optional examples, optional properties and default
presentation information. ,

The following are two piece definitions for symbols infinity and plus respectively
from the CD Basic:

<CDDefinition>
<Name> infinity </Name>
<Description>

A value greater than any computable value.
Infinity characterizes the positive real infinity.
Negative infinity is represented as -infinity.

</Description>
<FunctorClass> Constant </FunctorClass>

<CMP> a &:it; infinity, "for any a which is not infinity itself" </CMP>
<CMP> a &:it;= infinity, "for any a which is not infinity itself" </CMP>

</CDDefinition>

<CDDefinition>
<Name> + plus </Name>

<Description> The addition operator of any group </Description>
<FunctorClass> Binary, Operator </FunctorClass>
<CDAttributes> Associative, Commutative,

Error ("invalid cancellation of infinity")
</CDAttributes>
<Signature> (complex complex) -> complex </Signature>
<Signature> (real real) -> real </Signature>
<Signature> (rational rational) -> rational </Signature>
<Signature> (integer integer) -> integer </Signature>
<Signature> (symbolic symbolic) -> symbolic </Signature>
<CMP> a+b=b+a, commutativity </CMP>
<CMP> a+(b+c)=(a+b)+c, associativity </CMP>
<CMP> a+O=a, identity </CMP>
<CMP> O+a=a, identity </CMP>
<CDExamples>
<.TeX> a+(b+c)=(a+b)+c </TeX>
<equal>

<plus>a
<Parenthesize>
<plus> b c </plus>

</Parenthesize>
</plus>
<plus>

<Parenthesize>·:
<plus> a b </plus>

</Parenthesize>
c

</plus>
</equal>
</CDExamples>

</CDDefinition>

20

Most element meanings can be conceived from the tag names themselves. The CMP
element contains a "commented mathematical property" , in the form of an equation
or formula and an associated description.

Currently, there are three CD's with official status: they are Meta, Basic and Poly.
There are four CD's with experimental status: they are NonComm, Inert, LinAlg

and Programming. With the increasing acceptance of OpenMath, there will be more
CD's coming, and ideally one for each mathematical area.

21

Since the Basic CD covers basic concepts in many mathematical areas, a set of
different CDs, see [10], have been formed by splitting the Basic CD. These are

alg.ocd A cd of basic algebraic concepts
arith.ocd A cd of arithmetic functions
calculus.ocd A cd of calculus functions
comm. ocd A cd of commutative arithmetic functions
fns.ocd A cd of function functions
integer.ocd A cd of integer functions
interval.ocd A cd of interval functions
limit.ocd A cd of limit functions
linalg.ocd A cd of linear algebra functions
list.ocd A cd of list functions
logic.ocd A cd of logic functions
quant.ocd A cd of quantifier functions
relation.ocd A cd of relations
set.ocd A cd of set functions
stats.ocd A cd of basic statistical functions
sumprod.ocd A cd of sum and product functions
transc.ocd a cd of transcendental functions

The XML Encoding of OpenMath
c

XML is used in OpenMath in two places: one is for the encoding of CDs as we
have seen above; the other is in mapping OpenMath objects to byte streams in the
communication layer. Concretely, XML encodes OpenMath objects to byte streams.
These byte streams constitute a low level representation that can be easily exchanged
between processes via e-mail, cut-and-paste, sockets etc. or stored and retrieved from
files.

Using XML encoding has the following two benefits:

1. Since the usual character set is used, it can be easily included in most documents
and transport protocols. Also, it is both readable and writable by a human.

2. The text produced by this encoding can be included in XML document, which
could employ widely existing XML process tools.

S. Dalmas et al have supplied a grammar for XML encoding in [11], with which the
OpenMath objects can be easily encoded. The following simple example shows some
encoded OpenMath objects:

<OMOBJ>
<OMA>

<OMS cd = "transc" name = "cos"/>
<OMV name = "x"/>

</OMA>
</OMOBJ>

22

Symbols are encoded using the OMS element. This element has two attributes: cd
and name. The value of cd is the name of the Content Dictionary in which the

symbol is defined and the value of name is the name of the symbol. For example,
<OMS cd = "transc" name = "cos"/> is the encoding of the symbol named cos in
the Content Dictionary named transc.

Variables are encoded using the OMV element, with only one attribute name

whose value is the variable name. <OMV name = "x"/> is the encoding of a variable
named x. If a variable is specified as bounded, the element <OMBVAR> is generally
needed and the whole encoding will be:

<OMBVAR>
<OMV name="x"/>

</OMBVAR>

Integers are encoded using the OMI element, e.g. <OMI>1</0MI>.
Applications are e.ncoded using ~he OMA element. The application whose root

is the OpenMath object eo and whose arguments are the OpenMath objects e1 ... en
is encoded as

<OMA> Co C1 Cn </OMA>

where Ci is the encoding of ei.
Binding is encoded using OMBIND element. The binding by the OpenMath

object e0 of the OpenMath variable e1 in the object e2 is encoded as

<OMBIND> Co C1 C2 </OMBIND>

where Ci is the encoding of ei.
The following is somewhat complicated example:

<OMOBJ>
<OMBIND>

<OMS cd="sumprod" name="sum"/>
<OMBVAR>

<OMV name="x"/>
</OMBVAR>
<OMA>

<OMS cd="basic" name="tuple"/>
<OMA>

<OMS cd="interval" name="discrete-interval"/>
<OM!> 1 </OM!>
<OMV name="n"/>

</OMA>
<OMA>

<OMS cd="arith" name="power"/>
<OMV name="x"/>
<OM!> 2 </OM!>

</OMA>
</OMA>

</OMBIND>
</OMOBJ>

23

Chapter 4

MathML

4.1 What is MathML?

Mat.\iML, or Mathematical Markup Language, is a low-level format for describing
mathematics as a basis for machine-to-machine communication. It provides a much­
needed solution to including mathematical expressions in Web pages.

MathML was released as a W3C (World Wide Web Consortium) recommendation
on April 7th, 1998. MathML is the first application of XML to be issued as a W3C
Recommendation [3].

MathML is intended to facilitate the use and re-use of mathematical and scien­
tific content on the Web and for other applications such as computer algebra systems,

' print typesetters, and voice synthesisers. MathML can be used to encode both math-
ematical notations for high-quality visual display, and mathematical content for more
semantic applications such as scientific software or voice synthesis.

4.2 Why MathML?

Encoding mathematics for computer processing or electronic communication is much
older than the web. Several kinds of markup methods for mathematics, in particu­
lar Tex, had been widely used before the Web became a prominent communication
medium. It was and remains very common for researchers to write papers containing
encoded-form based on ASCII character set, and then e-mail the papers to each other.

Since the Web made the communication of information more effective it quickly
became very popular. Naturally, mathematicians want to make their research work
available on the Web. However, HTML, a language initially designed by scientists for
scientists, has proven to be limited in helping mathematicians do their jobs. Most

24

25

complex mathematical notation or formula cannot be formatted simply by HTML
tags and the mathematicians have to find a way to solve this problem.

One possibility is to include Tex in HTML to markup the mathematical nota­
tion. This idea may work in some contexts if the commercial browsers can support
these Tex tags. The problem is that it will not satisfy many important requirements
of publishing on the Web: it cannot markup mathematical contents and therefore
manipulation of the mathematical materials interactively is impossible; and it will
not allow reformatting when the window size is changed. Also, Tex normally groups
expressions and subexpressions too coarsely. All these problems make the commercial

. browser companies lose interest in this idea.
Currently a common way to show math is to use GIF images of these notations

and formulas and insert them into an appropriate tag. This "image-based" solusion
work well in many cases. However, it has an obvious disadvantage: it is too image
primitive. The primitive can result in poor document quality, be difficult to create,
be slow in loading. Furthermore, mathematical information contained in images is
not available for searching, indexing, or reuse in other applications.

2

For example we can use an image to hold the equation [33" = 20] in a mathe-
matical document. We can first give a suitable size to match the surrounding text.
Later when a different system is used to display the document using different fonts,
the image could be either too big or too small, destroying the professional appearance
of the document. In addition, if we want to searcl;i all documents containing "= 20 ",
because of the. primitive of the image, this equation will be missed. Furthermore, if
we want to copy the equation and paste it to a computer algebra system, the image
property will not allow this action.

The World Wide Web Consortium observed the seriousness of these kinds of prob­
lems. Several proposals for HTML Math were then raised, and a working group (W3C
Math Working group) was constituted aiming to address these problems.

As we have discussed in the previous chapter, similar problems have also appeared
in other disciplines and may appear in the future disciplines. Ultimately the extension
schema can not solve key weakness of HTML. XML, with "extensibility", will become
popular for the Web. Considering the advantages of XML and its wide acceptance
(which will make XML be supported by many tools) the W3C decided to base HTML
Math on XML and call it MathML.

26

4.3 How Does MathML Work?

4.3.1 Mathematical Notations and Content

An important feature of mathematics is the use of a complex and highly evolved
system of two-dimensional symbolic notations. Although mathematical ideas exist
independently of the notations that represent them (some philosophers of mathemat­
ics may argue this point), part of the power of mathematics to describe and analyze
derives from its ability to represent and manipulate ideas in symbolic form. So, the
relation between meaning and notation is subtle. How to effectively capture both
mathematical notation and the content on the Web is really a challenging job.

Marking up mathematical notation is relatively easy compared to marking up
mathematical content since several typesetting languages, such as Tex and part of
HTML, already exist. Parts or principles of these can be borrowed by MathML.
However, marking up mathematical content on the Web is a completely new area and
obviously more effort is needed on that part.

Furthermore, mathematical research continuously produces new notations to rep­
resent new mathematical ideas as well as existing ideas. Therefore an extension
mechanism must also be taken into consideration in the design of MathML.

Several years since its inception, MathML has evolved from a "proposal" to a
formal recommendation of the W3C. The MathML group proposed a language con­
taining the following three groups of elements.

1. Presentation elements, which are concerned with layout and rendering of the
mathematical notation.

2. Content elements, which encode the mathematical constructs or 'meaning' of
an expression.

3. Interface elements, which provide a mechanism for embedding MathML expres­
sions within an HTML page, and for passing the necessary information between
an HTML browser and a MathML helper application doing the MathML pro­
cessing.

In addition to these elements, MathML also has attributes for describing properties
of some elements.

27

4.3.2 MathML Presentation Elements

Presentation elements describe the structure of mathematical notation structure.
There are currently 28 presentation elements that accept over 50 attributes. Pre­
sentation elements are divided into two classes:

1. Tokens, which have only #PCDATA as content.

2. Layout schema, which have only other MathML elements as content, or are
canonically empty.

Expressions in traditional math notation are recursively built out oflayout schema.
The recursion terminates with tokens or empty layout schema.

Tokens

All tokens (in the syntactic sense) in a mathematical expression are enclosed by token
tags. The primary token types are identifiers (variables, function names, ...) numbers,
operators, fences (e.g. parentheses), and string literals. There are also token elements
for text or whitespace having no mathematical meaning. The following is the Token
element table:

<mi> identifier
<mn> number
<mo> operator, fence, or separator

<ms> string literal
<mt ext> text
<mspace/> space

Since mi, mn and mo are the most important presentation elements, we give more
detailed uses here:
mi elements indicate that their contents should be displayed as identifiers. This
means that single character identifiers like x and h should appear in italics, while
multi-character identifiers like 'sin' and 'log' should be in an upright font. E.g.

<mi> x </mi>
Attributes include font properties like fontweight, fontfamily and fontslant as well

as general properties like fontcolor and background.
mn elements indicate that their contents should be rendered as numbers, which gen­
erally means in an upright font. E.g. <mn>123</mn>

28

Attributes are like those for mi.
mo elements are the most complex token schema. They indicate that their contents
should be displayed as operators, but how operators are displayed is often quite
complicated. For example, the spacing around different operators can vary. Operators
like sums and products have special conventions for displaying limits as scripts. Still
other operators such as vertical rules stretch to match the size of the expression that
they enclose.

In MathML, rendering software is expected to contain an "operator dictionary",
which contains information about how different operators are conventionally rendered.
However, everything about how an operator should be displayed can be controlled
directly by using attributes. Attributes include properties like !space, rspace, stretchy,
and movablelimits.

The mo element is also used to mark-up other symbols which are only operators
in a very general sense, but whose layout properties are like those of an operator.
Thus, mo elements are used to mark-up delimiter characters like parentheses (which
stretch), punctuation (which has uneven spacing around it) and accents (which also
stretch). One can use attributes to indicate that the contents of a mo should be
treated as one of these related types.

The following list gives some examples of using <mo>:

<mo> + </mo>
<mo> < </mo>
<mo>, and </mo>
<mo> ⁢ </mo>
<mo>(</mo>

Layout Schemata

The layout schemata fall into four classes:

1. General layout schemata

2. Script and limit schemata

3. Tables and matrices

4. Enlivening expressions

1. General layout schemata

These include

<mrow>
<mfrac>
<msqrt>
<mroot>
<mstyle>
<merror>

group any number of sub-expressions horizontally
form a fraction from two sub-expressions
form a square root sign (radical without an index)
form a radical with specified index
style change
enclose a syntax error message from a
preprocessor

<mpadded> adjust space around content
<mphantom> make content invisible but preserve its size
<mfenced> surround content with a pair of fences

29

The most common and important general purpose layout schema is the mrow
element. We will describe mrow and some other common elements in more detail:

<mrow> child1 ... </mrow>

An mrow element can contain any number of child elements. These child elements are
displayed along the baseline in a horizontal row. In addition to positioning schemata
in a row, the mrow can also be used to group together any number of terms so that
this group can ,be viewed as a single unit, for example, for displaying as a subscript,

' or supscript.

<mfrac> numerator denominator </mfrac>

The mfrac element expects exactly two children, the first of which will be positioned
as the numerator of a fraction, and the second as the denominator. By setting the
linethickness attribute to 0, the mfrac element can also be used for binomial coeffi­
cients.

<msqrt> child1 . . . </msqrt>

The msqrt element accepts any number of children, and displays them under a radical
sign.

<mroot> base index</mroot>

The mroot element is nearly identical to the msqrt element, except it expects a
second child, which is displayed above the radical in the location of the n in an nth
root.

<mfenced> child ... </mfenced>

The mfenced element is like an mrow, except that it displays the enclosed in paren­
theses. Using attributes, one can set the beginning and ending delimiter character,
as well as internal separator characters like commas.

<mstyle> child ... </mstyle>

The mstyle element is also like an mrow except that it handles attributes differently.
The mrow element has almost no attributes of its own, while the mstyle elements can
be used to set any MathML attribute.

2. Script and Limit Schemata

This includes the following element tags:

<msub>
<ms up>
<msubsup>

<munder>
<mover>
<munderover>

attach a subscript to a base
attach a superscript to a base
attach a subscript-superscript
pair to a base
attach an underscript to a base
attach an overscript to a base
attach an underscript-overscript
pair to a base

<mmultiscripts> attach prescripts and tensor
indices to a base

These tags are used to position one or more scripts around a base. Saying that
mathematical notations are two-dimensional symbols mainly means sub- or super­
script.

Their syntaxes are quite natural and the only thing to remember is the order of
their augments. We give some of them here:

The syntax for msub is

<msub> base subscript</msub>

31

The attribute is subscriptshift, which specifies the minimum amount to shift the
baseline of subscript down.

The syntax for msubsup is

<msubsup> base subscript supscript</msubsup>

The attributes are subscriptshift and supscriptshift. Supscriptshift specifies the min­
imum amount to shift the baseline of superscript up.

The syntax for mover is

<mover> base overscript </mover>

The attribute is accent, which controls whether overscript is drawn as an "accent"
(diacritical mark) or as limit. The main difference between an accent and a limit is
that the limit is reduced in size whereas an accent is the same size as the base.

3. Tables and Matrices

Table and matrix schemata include

<mtable>
<mtr>
<mtd>
<maligngroup/>
<malignmark/>

table or matrix
row in a table or matrix
one entry in a table or matrix
alignment group marker
alignment point marker

Matrices, arrays and other like mathematical notations are marked up using <mat able>,
<mtr> and <mtd> elements. These elements are similar to the <table>, <tr> and
<td> elements in HTML, except that they provide specialized attributes, in order to
provide the fine layout control necessary for, for example, commutative diagrams or
block matrices.

4. Enlivening expressions

This category
1
contains only one element tag:

<maction>

This element provides a mechanism for binding actions to expressions. For example,
in lengthy mathematical expressions, a render might allow a reader to toggle between
an ellipsis and a much longer expression that it represents.

4.3.3 MathML Content Elements

Content elements describe mathematical objects directly, as opposed to describing
the notation that represents them.

Providing a specific encoding to describe mathematical objects directly is abso­
lutely necessary. Even a disciplined and systematic use of presentation tags cannot
properly capture the semantic information. This is because, without additional infor­
mation, it is impossible to decide if a particular presentation was chosen deliberately
to encode the mathematical structure or simply to achieve a particular visual or aural
effect. Furthermore, an author using the same encoding to deal with both the pre­
sentation and mathematical structure might find a particular presentation encoding
unavailable simply because convention had reserved it for a different semantic mean­
ing. By encoding the underlying mathematical structure explicitly, without regard to
how it is presented aurally or visually, we are able to interchange information more
precisely with those systems that are able to manipulate the mathematics.

Mathematics consists of a large number of disciplines, however. Designing an
encoding language to capture all of the meaning for each discipline will take too
much work and is practically impossible. MathML takes care of only some commonly
used disciplines and materials at a relatively simple level. The W3C Working group
chose the following subject areas to be included in MathML:

Arithmetic, Algebra, Logic and Relations
Calculus
Set theory
Sequences and series
Trigonometry
Statistics
Linear Algebra

Also, as the specification said, "it is not claimed, or even suggested, that the proposed
element set is complete for these areas, but the provision for author extensibility
greatly alleviates any problem which omissions from this finite list might cause."

Content markup consists of about 75 elements accepting roughly a dozen at-
tributes. These can be grouped into the following categories based on their usage:

Containers
Operators
Qualifiers
Relations

Conditions
Semantics

33

These are the building blocks from which MathML content expressions are con­
structed. We will give examples for each category.

Containers: containers provide a means for the construction of mathematical objects
of a given type.

Tokens: ci, en (corresponding to presentation tokens mi and mn)
ci is used to construct variables, or symbols. For example,

<ci>v</ci>

encodes a scalar symbol v.

<ci type = "vector">v</ci>

encodes a vector variable.
en is used to represent numbers. For example,

<cn>1234</cn>

encodes the number 1234.

<en base = "8">1234</cn>

encodes the number with base "8".

Constructors: constructors produce a new type by combining elements into familiar
compound objects, e.g. intervals and lists. Some of these constructors are interval,
list, matrix vector, apply, fn and rein. For example,

to produce an "open-closed" interval, the encoding is

<interval closure = "open-closed">
<ci>a</ci>
<ci>b</ci>

</interval>

The apply element is used to apply a function or operator to its arguments to produce
an expression representing an element of the range of the function. This is one of the
commonly used elements. As an example, sin(x) is encoded as

<apply>
<sin/>
<ci>x</ci>

</apply>

34

The fn element is used to identify an expression as a user-defined function or operator.
e.g. if f and g are two functions, the new function f+g is encoded as

<f n>
<apply>

<plus/>
<ci>f</ci>
<ci>g</ci>

</apply>
</fn>

Operators : We have already seen some examples of this category, such as <sin/>
and <plus/> from the above.

Some examples of other operators are:

minus, times, over, power, min, max: mathematical operators
and constructors.

ln, log, int, diff:

mean, median, mode:

There are two features in this category:

logarithms, integral
and differentials.
statistics

1. From the point of view of usage, MathML regards functions (e.g. sin, cos) and
operators (e.g. plus, minus) in the same way.

2. MathML predefined functions and operators are all canonically empty elements.

Qualifier: qualifiers are used to specify some operator's meaning more fully.

Qualifiers: lowlimit, uplimit, bvar, degree, logbase, interval, and condi­
tion.

Operators taking qualifiers: int, sum, product, diff, limit, log, and moment.
A typical example is:

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>O</cn></lowlimit>
<uplimt><cn>1</cn></uplimit>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>

for J~ x2 dx
Relations: The content elements dealing with relations are:

neq
implies
in, notin,
notsubset, notpresubset
tends to
eq, leq, lt, geq, gt
subset, presubset

binary relation
binary logical relation

binary set relation
binary series relation
n-ary relation
n-ary set relation

35

Relations are characterised by the fact that, if an external application were to evaluate
them, they would typically return a truth value that is true or false.

A typical example is

<reln>
<lt/>
<ci>a</ci>
<ci>b</ci>

</reln>

By using the container reln, we construct an expression a < b.

Conditions: this category contains one element: condition which is used to define
the "such that" construct in mathematical expression: for example to encode "x such
that x2 > 4", we write

<bvar><ci>x</ci></bvar>
<condition>

<reln><gt/>
<apply><power/>

<ci>x</ci>
<cn>2</cn>

</apply>
<cn>4</cn>

</reln>
</condition>

36

Semantics: this category contains three elements: semantics, annotations and
annotation-xml.

Sometimes the mathematical structure described by content elements may not
be sufficient for specific applications. These content elements are used to encapsu­
late additional information required for some applications such as computer algebra
systems.

Semantics is the container element for a MathML construct together with its
semantic mapping information,

Annotation encapsulates this information in non-XML form.
Annotation-xml encapsulates this information in well-formed XML.

4.3.4 The Top-level Interface Element

The third category contains a single element: math. MathML specifies this element
with two points of view.

With "inward looking", the math element is the top-level element. All other
MathML content must be contained in a math element; equivalently, every valid,
complete MathML expression must be contained in <math> tags. The math element
must always be the outermost element in a MathML expression. It is an error for one
math element to contain another and so, applications which return sub-expressions of
other MathML expressions, (for example as the result of a cut-and-paste operation)
should always wrap them up in <math> tags. Similarly, applications which insert
MathML expressions into other MathML expressions must take care to remove the
<math> tags from the inner expressions.

When embedding MathML in HTML, the math element encapsulates each in­
stance of MathML markup within an HTML page. As such, the math element
provides an attachment point for information, which affects a MathML expression as
a whole. For example, the math element is the logical place to attach a style sheet
by using the corresponding attributes.

37

From an outward looking perspective, the math element may serve as an interface
for embedding MathML in HTML. This means it must be aware of its surrounding
environment, and provide a mechanism for assigning information between the browser
and the MathML renderer so that MathML can be integrated properly in the HTML
document. Obviously this problem is actually the same as embedding XML into
HTML and designing a solution is a cooperative activity of several W3C groups.

Chapter 5

The Relationship Between
MathML and OpenMath

5.1 General Concepts

Aii we discussed in the previous chapters, we know that MathML will be the stan­
dard for representing mathematics on the Web, while OpenMath defines a platform­
independent standard for the representation of mathematical objects so that they
may be exchanged in a semantically meaningful way between various computational
tools. Due to these different purposes, MathML is primarily for presentation, with
less semantics than OpenMath, and OpenMath is primarily for semantics, with less
presentation than MathML. They basically represent two different aspects of math­
ematical objects: they are not opposite but complementary. Each of them has the
provision to incorporate adding elements into the other. When there is such a need
to represent a mathematical object with both the presentation and semantics, it is
possible to add elements in one aspect to another aspect.

5.2 Using OpenMath Annotation in MathML

MathML contains Semantic Mapping Elements: <annotation>, <annotation-xml>
and <semantics> for adding semantic meaning. For example, these can be used to
represent sin x with both presentation and semantics:

<semantics>
<mrow>

<mi>sin</mi>

38

<mo> ⁡</mo>
<mi>x</mi>

</mrow>
<annotation-xml encoding = "OpenMath">

<OMA>
<OMS cd = "Basic" name = "sin"/>
<OMV name = "x"/>

</OMA>
</annotation-xml>

</semantics>

39

This procedure can be used to represent any composite mathematical object. That is,
a mathematical object expression tree with any depth, so long as the corresponding
semantic unit can be found in OpenMath.

For example, to use OpenMath annotation in MathML for the expression ~~=o sin(ih),
we can have:

<mrow>
<mover>

<munder>
<mo> ∑</mo>
<mrow>

<mi>i</mi>
<mo> &equal;</mo>
<mn>O</mn>

<mrow>
</munder>
<mi>n</mi>

</mover>
<semantics>

<mi>sin</mi>
<mfenced>

<mrow>
<mi>i</mi>
<mo>×</mo>
<mi>h</mi>

</mrow>
</mf enced>
<annotation-xml encoding = "OpenMath">

<OMA>

<OMS cd = "Basic" name="sin"/>
<OMA>

<OMS cd = "Basic" name="times"/>
<OMV name = "i"/>
<OMV name = "h"/>

</OMA>
</OMA>

</annotation-xml>
</semantics>

</nrrow>

40

Since <OMS cd = "sumprod" name = "sum"/> in OpenMath needs the function to be
summed as its argument, we can not give the semantic meaning for the summation
part of <mover> ... </mover>

If we want to add semantic meaning to the whole object, this would become the
first case, that is

<semantics>
<nrrow>

<mover>
<munder>

<mo>∑</mo>
<nrrow>

<mi>i</mi>
<mo>&equal;</mo>
<mn>O</mn>

</nrrow>
</munder>
<mi>n</mi>

</mover>
<mt ext>

<mi>sin</mi>
<mfenced>

<nrrow>
<mi>i</mi>
<mo>×</mo>
<mi>h</mi>

</nrrow>
</mf enced>

</mtext>

</mrow>
<annotation-xml encoding = "OpenMath">

<OMBIND>
<OMS cd = "sumprod" name = "sum"/>
<OMBVAR>

<OMV name = "i"/>
</OMBVAR>
<OMA>

<OMS cd="basic" name="tuple"/>
<OMA>

<OMS cd="interval" name="discrete-interval"/>
<OMI> 0 </OMI>
<OMV name= "n">

</OMA>
<OMA>

<OMS cd= 11basic 11 name= 11 sin11 />
<OMA>

<OMS cd="basic" name="times"/>
<OMV name = "i"/>
<OMV name = "h"/>

</OMA>
</OMA>

</OMBIND>
</annotation-xml>

</semantics>

5.3 Using MathML Annotation in OpenMath

41

What we discussed in the previous section was how to add semantic meaning from
OpenMath in a MathML document. It is possible to introduce similar Presentation
Mapping Elements in OpenMath, say <OMPRESENTATION> and <OMANNOTATION> for
adding presentation in OpenMath. Then we can have

<OMPRESENTATION>
<OMA>

<OMS cd = "Basic" name = "sin"/>
<OMV name = "x"/>

</OMA>
<OMANNOTATION encoding = "MathML">

I

1''

<mrow>
<mi>sin</mi>
<mo> ⁡</mo>
<mi>x</mi>

</mrow>
</OMANNOTATIDN>

</OMPRESENTATION>

42

It is worthwhile to indicate that even though MathML has its content markup ele­
ments and currently they are similar to OpenMath, OpenMath will be easily extended
to include much more semantic mathematical objects than MathML content markup.
The ideal situation will be that every math areas will have its own CD, e.g. topology,
geometry and stochastic processes, etc. The complementary relationship between
MathML and OpenMath will thereby be kept, at all times.

Chapter 6

An Overview of XSL

As we have already discussed in the previous chapters, HTML is used to write web
pages with each tag's meaning well-defined and understood: <H1> makes a heading,
<p> makes a paragraph, <!MG> loads a graphic and so on. The browser can directly
understand each tag's meaning and give the corresponding presentation, but the
deficiency is that HTML has a fixed set of tags and is not extensible. With XML,
we can write whatever tags we want and therefore we could create meaningful tags
according to the context we want to describe. The browsers or other media can
not, however, directly understand what meanings the tags want to express in a XML
document and so they do not know how to give suitable presentations. XSL fills this
gap. It translates the tags in a general XML document to the vocabularies that those
devices can understand.

XSL, or Extensible Stylesheet Language, is a language for expressing stylesheets
for XML [4],[5]. Since there is no underlying semantics to augment for XML, XSL
must specify how each element should be presented and what the element is. For this
reason, XSL defines not only a language for expressing the style sheets, but also a
vocabulary of "formatting objects" that have the necessary base semantics.

We informally describe the presentation process:
Two concepts will be used very often:

The source tree: parsed by an XML parser from the source document
The result tree: the product from the XSL processor.

There are two parts to the presentation process. First, the result tree is constructed
from the source tree. Second, the result tree is interpreted to produce the formatted
output on a display, on paper, in speech or other medium.

The first part, constructing the result tree, is achieved by associating patterns with

43

44

templates. A pattern is matched against elements in the source tree. A template is
instantiated to create part of the result tree and guide the processor to the further
activity, e.g., to choose another element to process. The result tree is separate from
the source tree. The structure of the result tree can be completely different from the
structure of the source tree. In constructing the result tree, the source tree can be
filtered and reordered, and arbitrary structure can be added.

The second part, formatting, is achieved by using the formatting vocabulary spec­
ified in XSL to construct the result tree.

However, XSL does not require the result trees to use the formatting vocabulary
and thus can be used for general XML transformations. This feature is what we want
in the realization of our macro mechanism in Chapter 7. So, for our purpose, we will
not care about formatting vocabulary and just focus on how XSL specifies the rule
for a style sheet to do transformations.

To the end of transformation, we need to know three things:

1. The structure of a style sheet.
2. How to form a template in XSL?
3. What are the patterns in XSL?

6.1 The Structure of A Style Sheet

A style sheet is an XML document, and so it begins with the XML version information

<?xml version= "1.0" ?>

After that is the xsl: style sheet element, which may contain the following types of
XSL elements:

1. xsl:import
2. xsl:include
3. xsl:id
4. xsl:strip-space
5. xsl:preserve-space
6. xsl:macro
7. xsl:attribute-set
8. xsl:constant
9. xsl:template

45

These elements may appear zero or more times. Most stylesheets contain xsl: template
in the xsl: stylesheet. Here is a simple example:

<?xml verson= 11 1.0 11 ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match = "apply">
<xsl: apply-template select="* [first-of-any()]"/>

</xsl:template>
<xsl:template match = "apply/sin">

<mrow>
<mi>sin</mi>
<mo>&InvisibleApply;</mo>

<mrow>
<xsl: apply-templates select = "ancestor(apply) /*[not (first-of-any())]"/>

</mrow>
</mrow>

</xsl:template>

<xsl:template match = "ci">
<mi>
<xsl:apply-templates/>

</mi>
</xsl:template>

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

6.2 How to Form a Template?

An XSL template is defined using a small set of XSL elements and a set of literal
result elements.

XSL elements are those with the xsl namespace prefix. Result elements are the
others.

The XSL elements used most often in our work are as follows :

46

1. xsl:template

Specify a template rule for a specific matched pattern. The content of the
xsl:template element is the template.

2. xsl:apply-templates

Guides the XSL processor to find the appropriate templates to apply based on
the results of the pattern. If no pattern is supplied, the results will be all child
elements of the current node

3. xsl:attribute

Used to add attributes to result elements

4. xsl:if

provides a simple conditional processing within a template.

5. xsl:choose

Provides multiple conditional testing; used with the xsl:otherwise and xsl:when
elements.

6. xsl:copy

Copies a node from the source to the result.

7. xsl:otherwise

Provides multiple conditional testing; used with the xsl:choose and xsl:when

The literal result elements in our work are, naturally, those elements in MathML and
OpenMath.

A template contains two parts: the matching part and the processing part. Match­
ing part is the attribute part and processing part is the content of a template.

6.3 What Are the Patterns in XSL?

A pattern is a string, which selects or matches a set of nodes in a source document.
XSL divides patterns into two kinds by their functionality: select patterns and match
patterns.

Patterns generally appear in templates. As we have stated in the above section,
a template contains two parts: the matching part and the processing part.

47

The match patterns are the patterns appearing in the matching part. If a node
matches a match pattern, the corresponding template is the candidate chosen.

The select pattern appears in the processing part of the template. The selection
is relative to the current node, which means with the current node as context. The
select patterns are used to guide the processor to further processing in a template,
based on the result of the selection.

In other words, they are used in different directions: match patterns are used
for a node to find a matched template, while select patterns are used to find the
corresponding nodes or test their existence for further processing. Their syntaxes,
however, have little difference.

We will next have a look at the patterns used most often in our work.

Matching on name

<xsl:template match= "apply">

matches all apply elements in the source document.

Matching on ancestry

<xsl:template match = "apply/sin">

matches all sin elements with the parent element apply.

<xsl:apply-templates select = "ancestor(apply)/ci"/>

selects all ci elements with apply element as parent and this apply element is also
the ancestor of the current node.

Matching the root·

<xsl:template match = "/">

would select the root pattern

Wildcard matches

<xsl:template match = "*"> ... </xsl:template>

would match every node in the source document.

<xsl:template match= "apply/*> ... </xsl:template>

would match every element with apply element as parent

Built in template rule

48

There is a built-in template rule to allow processing to continue in the absence of a
successful pattern match by an explicit rule in the stylesheet. This rule applies to
both element nodes and the root node:

<xsl:template match = "*I/">
<xsl:apply-templates/>

</xsl:template>

A built-in rule can be overridden by an explicit rule.

Matching on attributes

<xsl:template match= "cn[©type ="constant"]">

would match the en element with "type" attribute with value "constant". Here @

represents attribute.

Matching on child

<xsl: template match=" apply [sum)">

would match the apply element with a child sum.

Matching on position

The position of a node relative to its siblings can be tested. XSL supplies the following
position qualifiers:

first-of-any()
succeeds if the node being tested is the first element child
last-of-any()
succeeds if the node being tested is the last element child
first-of-type()
succeeds if the node being tested is the first element of its element type
last-of-type()
succeeds if the node being tested is the last element of its element type
not()
used to negate a test
e.g.

<xsl: apply-templates select = "*[first-of-any() J ">

49

would select the first child of the current element.

<xsl: apply-template select = "ci [not (last-of-type())]">

would select all child elements of ci except the last one for the current element.

A pattern "." selects the current node and " .. " selects the parent of the current
node.

<xsl: apply-templates select = " .. /bvar">

would select the bvar sibling elements of the current node.

Specificity of patterns

When a source element is matched against patterns, it is possible for it to match more
than one distinct pattern. In this situation, XSL defines which pattern or patterns
are the most specific.

We just give a simple example to show the specificity in decreasing order:

1. employee[@type= 'contract' @country= 'USA']
2. employee[@type= 'contract']
3. employee

4. *

6.4 Examples

In this section, we will give several examples. These examples will show that, for the
same source document, we can obtain different result trees (for different presentations)
by attaching different stylesheets.

Example 6.1.
Consider the following source fragment:

<?XML version = "1.0" ?>
<math>

<combination>
<all> 10 </all>
<choose> 3 </choose>

</combination>
</math>

With the stylesheet shown in Figure 6.1, the result is

<mfenced>
<mfrac thickness="O">

<mn> 10 </mn>
<mn> 3 </mn>

</mfrac>
</mf enced>

which will be rendered as

(~o)

50

(Note: this is LaTex simulating an XML rendering. The same for other mathematical
formulas appeared hereafter.)

With another stylesheet shown in Figure 6.2, the result is:

<nnnultiscripts>
<mi>C</mi>
<mn> 3 </mn>
<none/>
<mprescripts/>
<mn> 10 </mn>
<none/>

</nnnultiscripts>

which will be rendered as

Example 6.2.
Consider the following source fragment:

<continued-fraction>
<cf-elem> 3 </cf-elem>
<cf-elem> 5 </cf-elem>
<cf-elem> 6 </cf-elem>
<cf-elem> 7 </cf-elem>

</continued-fraction>

With the stylesheet shown in Figure 6.3, the result is:

<mfenced open="[" close="]">
<mn> 3 </mn>
<mn> 5 </mn>
<mn> 6 </mn>
<mn> 7 </mn>

</mf enced>

which will be rendered as

[3,5,6, 7].

With another stylesheet shown in Figure 6.4, the result is:

<mrow>
<mn> 3 </mn>
<mo> + </mo>
<mfrac>

<mn> 1 </mn>
<mrow>

<mn> 5 </mn>
<mo> + </mo>
<mfrac>

<mn> 1 </mn>
<mrow>

<mn> 6 </mn>
<mo> + </mo>
<mfrac>

<mn> 1 </mn>
<mn> 7 </mn>

</mf rac>
</mrow>

</mrow>
</mfrac>

</mrow>

This will be rendered as

51

<?xml verson="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match= "combination">
<mfenced>

<mfrac thickness="O">
<xsl:apply-templates/>

</mfrac>
</mf enced>

</xsl:template>

<xsl:template match = "alllchoose">
<mn>

<xsl:apply-templates/>
</mn>

</xsl:template>

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Figure 6.1: Stylesheet 1 in Example 6.1

<?xml verson="1.0 11 ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match = "combination">
<mmultiscripts>

<mi> C </mi>
<xsl: apply-templates select="* [last-of-any()] "/>
<none/>
<mprescripts/>
<xsl: apply-templates select="* [first-of-any()] "/>
<none/>

</mmultiscripts>
</xsl:template>

<xsl:template match = "alllchoose">
<mn>

<xsl:apply-templates/>
</mn>

</xsl:template>

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Figure 6.2: Stylesheet 2 for Example 6.1

53

<?xml verson="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl :template match = "continued-fraction">
<mfenced open="[" close="]">

<xsl:apply-templates/>
</mfenced>

</xsl:template>

<xsl:template match = "cf-elem">
<mn>
<xsl:apply-templates/>

</mn>
</xsl:template>

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Figure 6.3: Stylesheet 1 in Example 6.2

54

<?xml verson= 11 1.0 11 ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match = "continued-fraction">
<xsl: apply-templates select="* [first-of-any()]"/>

</xsl:template>

<xsl:template match = "cf-elem">
<xsl:choose>

<xsl: when test=". [last-of-any()] "
<xsl:apply-templates/>

</xsl:when>
<xsl:otherwise>

<mrow>
<mn>

<xsl:apply-templates/>
</mn>
<mo> + </mo>
<mfrac>

<mn>1</mn>
<xsl: apply-templates select="next () "/>

</mfrac>
</mrow>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

where next() is a pattern extension to XSL, see section 8.3.2.

Figure 6.4: Stylesheet 2 in Example 6.2

55

Chapter 7

A Macro Mechanism for MathML

From the discussion of the previous chapters, we have seen that OpenMath and
MathML are playing important roles in the communication of mathematical objects.
Each of them emphasizes a different aspect: OpenMath is primarily for semantic
meaning. MathML is primarily for presentation. They are complementary.

One of the most significant gaps with MathML is the lack of a macro mechanism
to handle abbreviations and to abstract new concepts. Writing a MathML document
becomes, sometimes, a verbose job: authors may have the occasion to repeat some
complicated but constant notation. They may also, sometimes, find that MathML
lacks pre-defined content elements for encoding their objects and operators. In par­
ticular, when a semantic meaning from OpenMath is needed to bind their objects,
the authors may have to write it themselves.

All these situations seriously impair efficiency in the communication of mathemat­
ical objects. Therefore, it is necessary to develop a macro mechanism for MathML.
Basically, this macro mechanism should include the following three applications:

1. Macros for abstracting different notational styles.
2. Macros for expanding abbreviations.
3. Macros for combined presentation-semantics markup.

In this chapter, we will present a prototype of such a macro mechanism. First we will
describe the three macro application areas by examples. Then we will examine the
suitability of XSL for the realization of the macro mechanism. Finally, we will give
more examples to show that this macro mechanism is meaningful and powerful.

56

57

7.1 Macros for Abstracting Different Notational
Styles

Many concepts in mathematics can be presented in different notational styles. For
example, the number of combinations for choosing n elements from m elements can
be expressed as (';.'), C;::' or mCn; a continued fraction can be expressed as [n1 , ... n;]

or ni + 1
1 ; in some literature tg(x) is used for the tangent ofx, while in other

n2+-
literature tan(x) is used.

In MathML, we need to use different presentation markups to give the different
renderings.

For example, we have

<mfenced>
<mfrac thickness="O">

<mn> m </mn>
<mn> n </mn>

</mfrac>
</mf enced>

for (';.'),and we have

<mmultiscripts>
<mi>C</mi>
<mn> n </mn>
<none/>
<mprescripts/>
<mn> m </mn>
<none/>

</mmultiscripts>

for mC3• These two different presentation markups have the same correspondence in
the content markup, i.e.

<?XML version = "1. 0" ?>
<math>

<combination>
<all> m </all>
<choose> n </choose>

</combination>
</math>

58

Macros for abstracting different notational styles means to obtain the different pre­
sentation markups from the same content markup.

7 .2 Macros for Expanding Abbreviations

In order to markup rank(UTV) = 1 in content elements, we have the following
.MathML fragment:

<reln>
<eq/>
<apply>
<fn>
<semantics>

<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">

<OMS cd = "linalg", name= "matrix-rank"/>
</annotation-xml>

</semantics>
</fn>
<apply>
<times/>
<apply>
<transpose/>
<ci>U</ci>

</apply>
<ci>V</ci>

</apply>
</apply>

<cn>1</cn>
</reln>

Since the concept "rank" from the linear algebra was not included in MathML
as a pre-defined content element, we use the element mo to contain this symbol and
insert it to ci with binding semantic meaning from OpenMath.

Suppose that the part

<fn>
<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding="DpenMath">

<OMS cd = "linalg", name = "matrix-rank"/>
</annotation-xml>

</semantics>
</fn>

can be represented by a macro <rank/>, and the part

<apply>
<transpose/>
<ci>U</ci>

</apply>

can be represented by the macro tags <tr>u</tr>.
Then the whole document would be condensed to

<reln>
<eq/>
<apply>
<rank/>
<apply>
<times/>
<tr>U</tr>
<ci>V</ci>

</apply>
<cn>1</cn>

</reln>

which is much simpler and easier to write.

59

We call this kind of macro application Macros for Expanding Abbreviations. It
is clear that this macro not only handles abbreviations but also provides a way to
abstract new concepts. Once we have a macro tag library, we can use the macro tags
to write relatively simpler condensed documents and we can abstract new concepts
from other sources. With the help of some tools and the library we can expand the
condensed document to the desired document.

60

7.3 Macros for Combined Presentation-Semantics
Markup

As we have seen in Chapter 5, the combination of presentation-semantics markup
could appear at different levels: it can be partially in some branches of the document
tree or can be fully combined at the root of the document tree. Generally, it is
preferable to have combinations at each node, rather than just at the root so that
selection of subexpression retains semantic meanings.

General speaking, when a new concept is abstracted from OpenMath, the com­
bination appeares as a part in an expression. For example, "rank" in the previous
section is this case. We give more examples here:

Example 7.1 inverse matrix

To abstract the new concept "inverse matrix" from OpenMath to MathML content
markup, we use the following binding:

<f n>
<semantics>

<ci><mo>mtrx-inverse</mo></ci>
<annotation-xml encoding = 11 OpenMath 11 >

<OMS cd= 11 linalg11 name= 11matrix-inverse 11 />
</annotation-xml>

</semantics>
</fn>

and abbreviated it as a macro: <mtrx-inverse/>.

Example 7 .2 group

To abstract the new concept "group" to MathML content markup, we could use the
binding:

<semantics>
<mi fontweight= 11bold11 > G </mi>
<annotation-xml encoding = 11 OpenMath 11 >

<OMS cd= 11 absalg.ocd11 name= 11 group 11 />
</annotation-xml>

</semantics>

61

and abbreviated it as a macro: <Group> G </Group>

When we want a mathematical expression on the Web to be able to be transferred to
different computer algebra systems to be evaluated, we may need the full combination.
This section addresses the macro application for this case.

If we want to write a MathML document to markup a mathematical object with
both presentation and semantic meaning added from OpenMath, we will have to write
both parts. For example, to represent sin(x) with both presentation and semantic
meaning from OpenMath, we have:

<semantics>
<mrow>
<mi>sin</mi>
<mo>⁡</mo>
<mi>x</mi>

</mrow>
<annotation-xml encoding="OpenMath">

<OMA>
<OMS cd = "basic" name="sin"/>
<OMV name = "x"/>

</OMA>
</annotation-xml>

</semantics>

However these two parts are just different aspects of the same mathematical object.
In other words, they are images of different mappings from the same source. The
source is

<apply>
<sin/>
<ci>x</ci>

</apply>

So, if we would have such mappings previously, then we could just need to write the
source. And with the help of some tools we can obtain the images of the mappings
from the source. This is the idea of Macro for combined presentation-semantics
markup.

62

7 .4 Realization of the Macro Mechanism

From the discussion of the above chapter we see that the realization of the macro
mechanism for MathML is essentially to find a transformation from an XML source
tree to an XML result tree. Since XSL can be used for general XML transformations,
therefore it is possible to form the desired transformations with XSL. To do this, we
need an XML parser to parse XML documents to XML trees and we need an XSL
processor to do the transformations. We have written a validating XML parser and
an XSL processor, in which we have implemented most of the specifications based on
our needs. These tools are heavily used in our program "macroProcessor". This is
the main program that is used to test and experiment with macro extension.

In the following we first give a simple description about our XML parser and XSL
processor, then we investigate how to construct the desired mapping in our macro
mechanism with XSL and whether or not the current XSL is powerful enough for the
macro extension.

The XML Parser

Our XML parser accepts one argument, the filename of the XML document, and
parses the data to an XML tree. The tree can be as an input to the XSL processor
and could also be displayed with the proper indentation.

The parser has two options: it can either first parse the document completely
and then check the validation against the requirements of the DTD, or check the
validation during parsing.

Since this parser is for an experimental purpose, namely parsing MathML docu­
ments (documents comforming to the MathML DTD), we have made some assump­
tions in order to simplify the implementation:

1. Elements and #PCDATA cannot be siblings in the document type.
2. The number of appearance allowed for an element's children are the same.
3. The entities in the document can not be replaced.

Our XML parser is implemented with C++. We have designed 5 basic classes, which
represent the concepts of element, entity, attribute, symbol and parser. With a
template list, we have obtained four aggregation classes: element list, entity list,
attribute list and symbol list. In addition, we have a class tree. These lists and
tree hold the data in class parser. The total code is about 3500 lines.

63

The XSL Processor

Our XSL processor accepts one or two arguments. If only one argument appears,
the transformation is an identity transformation for this argument. Otherwise, the
first argument is the filename for the source tree and the second is the filename
for the stylesheet (also an XML tree). The result tree can be transformed to the
corresponding document or displayed with proper indentation.

We have implemented most of the patterns of the XSL specification.
The matching patterns include:

matching on name
matching on parent (not any ancestor)
matching on root
wildcard match
matching on an attribute
matching on child
matching on position
matching on sibling (not in the specification)

The select patterns include:

specific type child with position qualifier.
any child with position qualifier.
any node with the specific ancestor.

We have implemented most of the instructions in a template such as xsl:apply­
templates, xsl:if, xsl:copy, xsl:choose, and so on.

It consists of a new class transformer and several other classes built in the XML
parser. The code, not including the classes of the XML parser, is about 1500 lines. It
is worthwhile to mention that we started our implementation in late October 1998,
based on the XSL W3C Working Draft 18-August-1998 [4]. Some of the features
that we found needed to be added to XSL for our work were later supplied in the
new Draft of 16-December-1998. In January 1999, we modified our XSL processor
according to the new draft.

64

7.5 Realization of Macros for Abstracting Differ­
ent Notational Style

This case is straightforward - we simply use different stylesheets for the different
notations. We have seen this situation in Section 6.4.

7.6 Realization of Macros for Expanding Abbrevi­
ations

What we need to do for expanding abbreviations is to write a stylesheet containing
the templates to expand the macro tags and the template to copy the other general
elements.

Example 7.3.

In order to markup rank(UTV) = 1, we write the source document

<reln>
<eq/>
<apply>

<rank/>
<apply>

<times/>
<tr>U</tr>
<ci>V</ci>

</apply>
</apply>
<cn>1</cn>

</reln>

where the "rank" tag and ''tr" tag are macro tags and the others are general tags.
Now the stylesheet for expansion transformation would be

<?XML version = "1. 0" ?>
<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl" >

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match = "rank" >
<fn>

<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding = "OpenMath">

<OMS cd="linalg" name="matrix-rank"/>
</annotation-xml>

</semantics>
</fn>

</xsl:template>

<xsl:template match = "tr" >
<apply>

<transpose/>
<ci>

<xsl:apply-templates />
</ci>

</apply>
</xsl:template>

<xsl:template match = "*I/">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

65

With this stylesheet, the XSL processor will first find the template for the root node.
By initiating this template, the processor is directed by xml:apply-templates to find
all the children of the root node which, in this case, has just one rein . Since rein
does not have explicit match, the built-in rule is chosen, and first, rein is copied
to the result tree; after that the processor is directed by xml:apply-template to find
rein's children; this procedure goes recursively until the rank element is chosen.
Since rank has an explicit match, the matched template is initiated and the content
(all are literal result elements) are copied to the result tree. The processor keeps on
following the stylesheet until all guided things are processed. So we have the following

result document:

<reln>
<eq/>
<apply>

<fn>
<semantics>

<ci><mo>rank</mo></ci>
<annotation-xml encoding = "OpenMath">

<OMS cd="linalg" name="matrix-rank"/>
</annotation-xml>

</semantics>
</fn>
<apply>

<times/>
<apply>

<transpose/>
<ci>U</ci>

</apply>
<ci>V</ci>

</apply>
</apply>
<cn>1</cn>

</reln>

66

From the above examples, we can see that once we have a library for this kind of
macro, that is, stylesheets containing suitable template rules for the macro tags, then
we can write a simpler document. This shows the power of the macro mechanism.
More examples can be seen in section 7.10.

7.7 Realization of the Macros for Combined Markup

There is a little bit more work to do for full combined markup. Since combined
markup contains two parts: the presentation part and the semantic part (in Open­
Math),, we need to write two stylesheets to transform the source document to its
presentation part and OpenMath semantic part respectively. The final result tree
can be formed as the concatenation of the two parts with some "decoration". This
procedure can be expressed by the following figure:

source tree

Example 7.4

stylesheet 1
------------> presentation part

+ ---> result tree
------------> OM semantic part
stylesheet 2

67

In order to markup sin(x) with presentation and OpenMath semantic meaning, we
first write the source document

<?XML version = "1. 0" ?>
<math>

<apply>
<sin/>
<ci>x</ci>

</apply>
</math>

and stylesheet 1 for presentation transformation

<xsl:stylesheet xmlns:xsl = "http://llllll.ll3.org/TR/WO-xsl">

<xsl:template match= "apply">
<xsl: apply-templates select="* [first-of-any()] "/>

</xsl :template>

<xsl:template match = "apply/sin">
<mroll>
<mi>sin</mi>
<mo>&InvisibleApply;</mo>
<mroll>
<xsl: apply-templates select="ancestor(apply) /*[not (first-of-any())]"/>

</mroll>
</mroll>

</xsl:template>

<xsl:template match = "ci">

<mi>
<xsl:apply-templates/>

</mi>
</xsl:template>

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

This gives the presentation part:

<mrow>
<mi>sin</mi>
<mo>⁡</mo>
<mi>x</mi>

</mrow>

Stylesheet 2 for OpenMath semantic part transformation:

<?XML version = "1. 0" ?>
<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WO-xsl">

<xsl :template match = "apply">
<OMA>

<xsl: apply-templates select="* [first-of-any()]"/>
</OMA>

</xsl:template>

<xsl:template match = "sin">
<OMS cd = "transc" name = "sin"/>

<xsl: apply-templates select=" . .f* [not (first-of-any())] "/>
</xsl:template>

<xsl:template match = "ci">
<OMV name={.}/>

</xsl:template>

<xsl:template match = "/">

68

<annotation-xml encoding = "OpenMath">
<xsl:apply-templates/>

</annotation-xml>
</xsl:template>

</xsl:stylesheet>

This gives the OpenMath semantic part:

<annotation-xml encoding = "OpenMath">
<OMA>

<OMS cd = 11 transc 11 name= 11 sin 11 />
<OMV name = "x"/>

</OMA>
</annotation-xml>

And therefore, the final result tree is

<semantics>
<mrow>

<mi>sin</mi>
<mo>⁡</mo>
<mi>x</mi>

</mrow>
<annotation-xml encoding = "OpenMath">

<OMA>
<OMS cd = "transc" name = "sin"/>
<OMV name = "x"/>

</OMA>
</annotation-xml>

</semantics>

69

where <semantics> and </semantics> are decorated to the beginning and the end.

Remark: At the first glance, we probably have the conclusion that the macro mech­
anism does not save time for writing MathML document since writing a stylesheet
takes more time than writing the desired document directly. However, when we have
previously written many stylesheets and carefully classified them based on their con­
tent to form a library for reuse, we could just include the desired existing stylesheets
to make a simple stylesheet. This technique can no doubt save a lot of time. And
that is the power of the macro mechanism.

70

7.8 Remarks in Writing Stylesheets

From the above discussion, we see that an important issue for macro mechanism is
to write the stylesheets. And, to examine if XSL is powerful enough for the macro
extension, we need many stylesheets to test different cases.

We have written many stylesheets, especially stylesheets for transforming from
MathML content to OM semantics symbols. For each OpenMath CD we have devel­
oped a corresponding stylesheet. These stylesheets are collected in the Appendix.

Writing a stylesheet for the abbreviation case is not too hard. Writing a stylesheet
for the combined markup case, however, is not a trivial task since MathML content
structure and presentation structure are generally different, and MathML content
structure and OpenMath semantic structure may also have significant differences.
Some differences even make the transformation from one structure to another impos­
sible within the current XSL working draft. Some extensions are therefore necessary
in order to get the job done or to do it in a more natural way.

In this section we discuss some considerations we took, and some valuable expe­
rience and techniques in writing our stylesheets. In the next section, we will describe
extensions we introduced in our work.

Considerations, Experience and Skills

1. For some mathematical objects, their encoding structures of MathML con­
tent and OpenMath or MathML presentation have no difference and therefore the
stylesheet can be written in the way of one-to-one correspondence, e.g.

- MathML-

<apply>
<sin/>
<cn>5</cn>

</apply>

- template rules -

<xsl :template match=" apply">
<OMA>
<xsl:apply-templates/>

</OMA>
</xsl:template>

-OpenMath-

<OMA>
<OMS cd="transc" name="sin"/>
<OMI>5</0MI>

</OMA>

<xsl:template match="sin">
<OMS cd = "transc" name = "sin"/>

</xsl:template>

<xsl:template match="cn">
<OMI>

<xsl:apply-templates/>
</OMI>

</xsl:template>

However, the stylesheet can be also written in the second way of "selection":

- template rules -

<xsl:template match="apply">
<OMA>

<xsl :apply-templates select="* [first-of-any()]"/>
</OMA>

</xsl:template>

<xsl:template match="sin">
<OMS cd = 11 transc 11 name = 11 sin 11 />

<xsl: apply-templates select=" . .I* [not (first-of-any()] "/>
</xsl:template>

<xsl:template match="cn">
<OMI>

<xsl:apply-templates/>
</OMI>

</xsl:template>

where the rule for apply just picks off the first child and the process instruction from
the rule for sin directs the processor to process en.

Which way should we choose? Well, both are adequate if they are used alone.
However, there are many mathematical objects, which do have different encoding
structures in MathML and OpenMath. For them, we can only use the second way,
that is, use the rule for the first child to control the process for other children.

When these two ways are mixed in one stylesheet, conflicts will result in wrong
results. So our first decision is to choose the second method.

72

2. For the elements "forall" and "exists", there is a big difference between MathML
and OpenMath encoding structures. In OpenMath, these two quantifiers take only
two arguments. The first argument is the bound variable (placed within OMBVAR),
and the second is an expression. In MathML they may also have an optional condition
argument, in addition to the same two arguments as in OpenMath. Our treatment
when the condition argument appears in MathML is to transform it to be within the
second argument in OpenMath, which is then a tuple with a combination of condition
and expression. See Quant.xsl in the Appendix.

Similar situations appear in "list" and "set" in the opposite direction. In Open­
Math, three arguments are needed: the first is a bound variable, the second is a range
for this variable, and the third is an expression to be evaluated over this range. In
MathML, the third argument is optional if the expression is the variable itself. Fortu­
nately, XSL allows us to repeat processing any part in the source tree. So when this
happens we can process that variable a second time as the expression in OpenMath.
See List.xsl and Set.xsl in the Appendix.

3. For elements "partialdiff" in MathML and "diff" in OpenMath, the variables
and the degree are structured in different ways:

- MathML-

<apply>
<partialdiff/>
<bvar>

<ci>x</ci>
<degree>2</degree>

</bvar>
<bvar>

<ci>y</ci>
</bvar>

- OpenMath -

<OMA>
<OMS cd="calculus" name="diff"/>
<OMA>

<OMS cd="list" name="list"
<OMV name="x"/>
<OMV name="y"/>

</OMA>
<OMA>

<OMS cd="list" name="list"/>
<OMI>2</0MI>
<OMI>1</0MI>

</OMA>

XSL is sufficiently powerful to allow us to change the order. To perform this trans­
formation, the template rule for partialdiff contains

<OMA>

<OMS cd="list" name="list"/>
<xsl:apply-templates select=" .. /bvar/ci"/>

</OMA>
<OMA>

<OMS cd="list" name="list"/>
<xsl:apply-templates select=" .. /bvar"/>

</OMA>

and the template rule for bvar contains

<xsl:choose>
<xsl:when test="degree">
<xsl:apply-templates/>

</xsl:when>
<xsl:otherwise>

<OMI>1</0MI>
</xsl:otherwise>

</xsl:choose>

7.9 Extension of XSL

73

Here we summarize the extensions we made to XSL to allow us to write the stylesheets
for the set of OpenMath CDs.

pattern extensions

1. fromto(n,m), fromto(n)
XSL supplies position qualifiers to test the position of a node relative to siblings:

first-of-any()
last-of-any()
first-of-type()
last-of-type()
not()

However these qualifiers and their combinations can not be used to select some range
of siblings, for example from third to last or third to fifth. For our need, we add a
qualifier

74

('I fromto(n,m) and fromto(n)

where n :::; m :::; total (type or any) with any violation of the above inequality yielding
the empty set.

These function-like qualifiers select siblings from n-th to m-th or to the final one

An example using these qualifiers can be found in Sumprod.xsl of the Appendix.

2. next()

We have mentioned in section 6.4 that an extension of next() is needed in order
to select the next sibling of the current node. If the current node is the last sibling,
this selection will return null. See Example 6.2.

3. Match on the number of children

There are some cases (e.g. integral, summation, product and limit) where unary
functions and expressions are dealt with in different ways in OpenMath:

For example, in OpenMath, int is used in this way:

Indefinite integration of unary functions takes only one argument: the unary function.
e.g.:

<OMOBJ>
<OMA>

<OMS cd="calculus" name="int"/>
<OMS cd= 11 transc 11 name="sin 11 />

</OMA>
</OMOBJ>

Indefinite integration of expressions takes two arguments, the first is the variable of
integration, and the second the expression. For example:

<OMOBJ>
<OMA>

<OMS cd="calculus" name="int"/>
<OMV name="x"/>
<OMA>

<OMS cd="arith" name="times"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>

</OMA>
</OMOBJ>

75

However, MathML content markup does not use different structures to distinguish
this difference:

<apply>
<int/>
<apply>

<sin/>
<ci>x</ci>

</apply>
</apply>

<apply>
<int/>
<apply>

<times/>
<ci>x</ci>
<ci>y</ci>

</apply>
</apply>

and so we have to enumerate all the unary functions in the select pattern in the
template for "int" and then initialize different parts according to the test result.

<xsl:template match = "int">

<xsl :when test = " .. /apply [sin or cos or ln] ">

<xsl:otherwise>

</xsl:template>

Since apply has 2 children in the unary functions case, and has more than 2 children
in the expression case, we can add a match on the number of children #n and make
the pattern simpler:

<xsl:when test=" .. /apply[#2]">

7.10 More Examples

This section gives some more complex examples

Example 7.5 (macro for expanding abbreviation)

-xml-in-

(< <?XML version = "1. 0" ?>
<math>

<reln>
<eq/>
<apply>
<mtrx-inverse/>
<apply>

<id-mtrx/>
<cn>n</cn>

</apply>
</apply>
<apply>

<id-mtrx/>
<cn>n</cn>

</apply>
</reln>

<reln>
<eq/>
<det>

<apply>
<mtrx-inverse/>
<ci>A</ci>

</apply>
</det>
<det>A</det>

</reln>
</math>

-xml-xsl-

<?XML version = "1.0" ?>
<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl" >

76

<xsl:template match= "mtrx-inverse" >
<fn>

<semantics>
<ci><mo>mtrx-inverse</mo></ci>
<annotation-xml encoding = " OpenMath ">

<OMS cd="linalg" name="matrix-inverse"/>
</annotation-xml>

</semantics>
</fn>

</xsl:template>

<xsl:template match = "id-mtrx" >
<fn>

<semantics>
<ci><mo>id-mtrx</mo></ci>
<annotation-xml encoding = " OpenMath ">

<OMS cd="linalg" name="identity-matrix"/>
</annotation-xml>

</semantics>
</fn>

</xsl:template>

<xsl:template match = "det" >
<apply>

<determinant/>
<ci type = 11matrix 11 >

<xsl:apply-templates />
</ci>

</apply>
</xsl:template>

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match = "*">
<xsl:copy>
<xsl:apply-templates/>

</xsl:copy>

77

</xsl:template>

</xsl:stylesheet>

-xml-out-

<?XML version = "1. 0" ?>
<reln>

<eq/>
<apply>

<fn>
<semantics>

<ci><mo>matrix-inverse</mo></ci>
<annotation-xml encoding = " OpenMath ">

<OMS cd="linalg" name="matrix-inverse"/>
</annotation-xml>

</semantics>
</fn>
<apply>

<fn>
<semantics>

<ci><mo>id-matrix</mo></ci>
<annotation-xml encoding = " OpenMath ">

<OMS cd="linalg" name="identity-matrix"/>
</annotation-xml>

</semantics>
</fn>
<cn>n</cn>

</apply>
</apply>
<apply>

<fn>
<semantics>

<ci><mo>id-matrix</mo></ci>
<annotation-xml encoding = " OpenMath ">

<OMS cd="linalg" name="identity-matrix"/>
</annotation-xml>

</semantics>
</fn>
<cn>n</cn>

78

</apply>
</reln>

<reln>
<eq/>
<apply>

<determinant/>
<apply>

<fn>
<semantics>

<ci><mo>matrix-inverse</mo></ci>
<annotation-xml encoding = " OpenMath ">

<OMS cd="linalg" name="matrix-inverse"/>
</annotation-xml>

</semantics>
</fn>
<ci type = "matrix"> A </ci>

</apply>
</apply>
<apply>

<determinant/>
<ci type = "matrix"> A </ci>

</apply>
</reln>

Example 7.6 (combined markup)

-xml-in-

<math>
<apply>

<power/>
<apply>

<sin/>
<ci>x</ci>

</apply>
<cn>2</cn>

</apply>
</math>

- xml-xsl-1 -

79

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WO-xsl">

<xsl :template match = "apply">
<xsl: apply-templates select = "*[first-of-any()]"/>

</xsl:template>

<xsl:template match = "apply/power">
<mrow>

<msup>

80

<xsl: apply-templates select="ancestor(apply)/* [not (first-of-any())]"/>
</msup>
<xsl:if test = "ancestor(apply)/apply/sin">

<mo>⁡</mo>
<xsl:apply-templates select = "ancestor(apply)/ci"/>

</xsl:if>
</mrow>

</xsl:template>

<xsl:template match = "sin">
<mi>sin</mi>

</xsl:template>

<xsl:template match = "en">
<mn>

<xsl:apply-templates/>
</mn>

</xsl:template>

<xsl:template match = "ci">
<mi>
<xsl:apply-templates/>

</mi>
</xsl:template>

<xsl:template match = "/">
<xsl:apply-templates/>

</xsl: template>

</xsl:stylesheet>

- xml-xsl-2 -

<?XML version = "1. 0" ?>
<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WO-xsl">

<xsl:template match = "apply">
<OMA>
<xsl:apply-templates/>

</OMA>
</xsl:template>

<xsl: template match = "power">
<OMS cd = "Basic" name = "power"/>

</xsl:template>

<xsl:template match = "sin">
<OMS cd= 11 transc 11 name= 11 sin 11 />

<' </xsl:template>

<xsl:template match = "en">
<OMI>

<xsl:apply-templates/>
</OMI>

</xsl:template>

<xsl:template match = "ci">
<OMV name={.}/>

</xsl:template>

<xsl:template match = "/">
<annotation-xml encoding = "OpenMath">
<xsl:apply-templates/>

</annotation-xml>
</xsl:template>

</xsl:stylesheet>

-xml-out-

<semantics>

81

,)

<mrow>
<ms up>

<mi>sin</mi>
<mn>2</mn>

</msup>
<mo> ⁡</mo>
<mi>x</mi>

</mrow>
<annotation-xml encoding="OpenMath">

<OMA>
<OMS cd = "arith" name = "power"/>
<OMA>

<OMS cd = "transc" name = "sin"/>
<OMV name="x"/>

</OMA>
</OMA>

</annotation-xml>
</semantics>

7.11 Future Work

82

In our realization of macros for combined markup, we have considered so far the com­
bination of presentation markup and content markup at the root only. Generally, it
is preferable to have combined markup at each node so that the selection of subex­
pressions retains semantic meaning. To realize this case, multiple passes are needed.
We discuss a possible approach here, but leave implementation for future work.

Consider an example: to markup the expression

sin tan(x + y) - tansin(x - y)

with both presentation markup from MathML and semantic markup from OpenMath
at each node. The result tree is shown in figure 7.1. It is a relatively huge document,
which would be obtained from the source document:

<apply>
<minus/>
<apply>

<sin/>
<apply>

<tan/>
<apply>

<plus/><ci>x</ci><ci>y</ci>
</apply>

</apply>
</apply>
<apply>

<tan/>
<apply>

<sin/>
<apply>

<minus/><ci>x</ci><ci>y</ci>
</apply>

</apply>
</apply>

</apply>

83

One could obtain the result tree as follows: We transform the source document to the
1lcorresponding presentation markup, at each code, attached with the entire subtree

from the source. These subtrees supply the information for a further pass to obtain
the semantic meaning from OpenMath for each node.

Now we consider the intermediate file. Conceptually, we can use an "attachment"
tree to represent this file (See Figure 7.2), where each rectangle represents the corre­
sponding entire subtree.

Clearly, the attachment of the entire subtree takes a lot of storage space. We claim
that if the source tree has n nodes, after the first pass stated above, the number of
nodes in the "attachment" tree will be 0 (n2).

We explain the idea of the proof here:
If the tree is binary tree, the depth of the tree is roughly log2 (n). At each depth

i, there are 2i nodes; for each node, the attached entire subtree has I:;~r 2i and
therefore the number of total nodes is I:l~on 2i I:;~r 2i, which is O(n2).

Since the intermediate document must be traversed in a further pass, we would
have a time complexity of at least this order.

To achieve both efficiency and storage saving, we need to reduce O(n2) to O(n).
From our experience in writing stylesheets for the transformation from MathML

content markup to presentation markup, as well as OpenMath semantic meaning,
we found that in most cases, the selection of which transformation to apply is based
on a limited depth match against each tree node. Suppose that for an entire set of

84

stylesheets, the maximal depth required for matching is h. Then the initial transfor­
mation can place on each node a clipped control subtree which retains only the top h
levels. This bounds the expansion at each node, and all intermediate documents are
then of size O(n).

A suitable value of h can be determined by examining the stylesheets. How to
best write the stylesheets so as to minimize h without making any loss of the semantic
meaning is a request for future work.

Figure 7.1: result tree

<semantics>
<mrow>

<semantics>
<mrow>

<mi>sin</mi>
<mo>⁡</mo>
<sematics>

<mrow>
<mi>tan</mi>
<mo>⁡</mo>
<semantics>

<mfence>
<mi>x</mi><mo>plus</mo><mi>y</mi>

</mfence>
<annotation-xml>

<OMA>
<OMS cd ="arith" name="plus"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</annotation-xml>

</semantics>
</mrow>
<annotation-xml>

<OMA>
<OMS cd = "transc" name="tan"/>
<OMA>

<OMS cd ="arith" name="plus"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</OMA>

</annotation-xml>
</semantics>

</mrow>
<annotation-xml>

<OMA>
<OMS cd = "transc" name="sin"/>
<OMA>

<OMS cd = "transc" name="tan"/>
<OMA>

<OMS cd ="arith" name="plus"/>
<OMV name="x"/>
<OMV name="y" />

</OMA>
</OMA>

</OMA>
</annotation-sml>

</semantics>
<mo>minus</mo>

::, <semantics>
<mrow>

<mi>tan</mi>
<mo>⁡</mo>
<semantics>

<mrow>
<mi>sin</mi>
<mo>⁡</mo>
<semantics>

<mfence>
<mi>x</mi><mo>minus</mo><mi>y</mi>

</mf ence>
<annotation-xml>

<OMA>
<OMS cd ="arith" name="minus"/>
<OMV name="x"/>

<OMV name="y"/>
</OMA>

</annotation-xml>
</semantics>

</mroTN>
<annotation-xml>

<OMA>
<OMS cd = "transc" name="sin"/>
<OMA>

<OMS cd = 11 arith11 name= 11minus 11 />
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</OMA>

</annotation-xml>
</semantics>

</mroTN>
<annotation-xml>

<OMA>
<OMS cd = "transc" name="tan"/>
<OMA>

<OMS cd = "transc" name="sin"/>
<OMA>

<OMS cd ="arith" name="minus"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</OMA>

</OMA>
</annotation-sml>

</semantics>
</mroTN>
<annotation-xml encoding ="OpenMath">

<OMA>
<OMS cd = "arith" name="minus"/>
<OMA>

<OMS cd = "transc" name="sin"/>
<OMA>

<OMS cd = "transc" name="tan"/>

86

<OMA>
<OMS cd ="arith" name="plus"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</OMA>

</OMA>
<OMA>

<OMS cd = "transc" name="tan"/>
<OMA>

<OMS cd = 11 transc 11 name= 11 sin 11 />
<OMA>

<OMS cd ="arith" name="minus"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</OMA>

</OMA>
</OMA>

</annotation-xml>
</semantics>

87

I
I

88

- : j sin tan(x+y) - tan sin(x-y) j

apply: j sin tan(x+y)j apply: j tan sin(x-y) j

i·i

/\ /\
tan:[§"] +: j x+y j sin:~ -: B

/\ /\
x:GJ yGJ x: 0 y: W

Figure 7.2: "attachment" tree

Chapter 8

Conclusion

OpenMath and MathML are playing increasingly important roles in the communica­
tion of mathematical objects. Each of them have a different emphasis. OpenMath
is primarily for semantic meaning. MathML is primarily for presentation. They are
complementary.

One of the most significant gaps is the lack of a macro mechanism for MathML to
handle abbreviation and to abstract new concepts, especially when MathML needs
to use semantic meanings from OpenMath. Therefore, it is necessary to develop a
macro mechanism for MathML.

A prototype of such a macro mechanism for MathML has been developed in this
thesis. We have experimented many examples, and the result shows the efficiency
and power of this macro mechanism. On the basis of these experiments, we conclude
that XSL draft recommendation of December 16, 1998, with minor extensions, could
be suitable basis for mathematical macro processing. The extensions are detailed in
Section 7. 9.

We believe that the prototype we presented here is a meaningful step in the
development of mathematical macro processing. The stylesheets we have written can
provide meaningful guidance for a future library for a macro mechanism.

89

Appendix A

Stylesheets for OpenMath CDs

A.1 Limit.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match= "apply">
<xsl:choose>

<xsl:when test="apply[#2] ">

<OMA>
<xsl: apply-templates select="* [first-of-any()] "/>

</OMA>
</xsl:when>
<xsl:otherwise>

<xsl: apply-templates select="* [first-of-any()]"/>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match = "apply/apply">
<xsl:choose>

If <xsl:when test=". [#2]">
<xsl: apply-templates select="* [first-of-any()]"/>

</xsl:when>
<xsl:otherwise>

<OMA>
<xsl: apply-templates select="* [first-of-any()]"/>

</OMA>

90

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match = "limit">
<xsl:choose>

<xsl:when test=" .. /apply[#2] ">
<OMS cd = "limit" name = "limit"/>
<xsl:choose>

<xsl:when test=" .. /lowlimit">
<xsl:apply-templates select=" .. /lowlimit/cn"/>
<OMS cd="limit" name="above"/>

</xsl:when>
<xsl:when test=" .. /condition">
<xsl:apply-templates select=" .. /condition/reln/tendsto"/>

</xsl:when>
</xsl:choose>
<xsl:apply-templates select=" .. /apply"/>

</xsl:when>

<xsl:otherwise>
<OMBIND>

<OMS cd="limit" name="limit"/>
<OMBVAR>
<xsl:apply-templates select=" .. /bvar/ci"/>

</OMBVAR>
<OMA>

<OMS cd="basic" name="tuple"/>
<OMA>
<xsl:choose>

<xsl:when test=" .. /lowlimit">
<OMS cd="limit" name="tendsto"/>
<xsl:apply-templates select=" .. /bvar/ci"/>
<xsl :apply-templates select=" . ./lowlimit/cn"/>
<OMS cd="limit" name="above"/>

</xsl:when>
<xsl: when test=" .. I condition">
<xsl: apply-templates select=" . ./condi tion/reln/tendsto" />

</xsl:when>

91

</xsl:choose>
</OMA>
<xsl: apply-templates select=" .. /apply"/>

</OMA>
</OMBIND>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl :template match = "tendsto [liltype='above '] ">
<xsl:choose>
<xsl:when test="ancestor(apply)/apply[#2]">
<xsl: apply-templates select=" .. /*[last-of-any()] "/>

</xsl:when>
<xsl:otherwise>

<OMS cd = "limit" name = "tendsto"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())] "/>

</xsl:otherwise>
</xsl:choose>
<OMS cd = "limit" name = "above"/>

</xsl:template>

<xsl:template match= "tendsto[©type='below']">
<xsl:choose>
<xsl:when test="ancestor(apply)/apply[#2]">
<xsl: apply-templates select=" .. /*[last-of-any()]"/>

</xsl:when>
<xsl:otherwise>

<OMS cd = "limit" name = "tendsto"/>
<xsl: apply-templates select=" . ./*[not (first-of-any())]"/>

</xsl:otherwise>
</xsl:choose>
<OMS cd = "limit" name = "below"/>

</xsl:template>

<xsl:template match= "tendsto[©type='two-sided']">
<xsl:choose>
<xsl:when test="ancestor(apply)/apply[#2]">
<xsl: apply-templates select=" .. /*[last-of-any()] "/>

92

</xsl:when>
<xsl:otherwise>

<OMS cd = "limit" name = "tendsto"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())] "/>

</xsl:otherwise>
</xsl:choose>
<OMS cd = "limit" name = "both-sides"/>

</xsl:template>

<xsl:template match = "tendsto">
<xsl:choose>

<xsl:when test="ancestor(apply)/apply[#2]">
<xsl: apply-templates select=" .. /*[last-of-any()]"/>

</xsl:when>
<xsl:otherwise>

<OMS cd = "limit" name = "tendsto"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>

</xsl:otherwise>
</xsl:choose>
<OMS cd = "limit" name = "above"/>

</xsl:template>

</xsl:stylesheet>

A.2 Sumprod.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "apply">
<xsl:choose>
<xsl:when test="apply[#2]">

<OMA>
<xsl :apply-templates select="* [first-of-any()]"/>

(\ </OMA>
</xsl:when>
<xsl:otherwise>
<xsl: apply-templates select="* [first-of-any 0] "/>

</xsl:otherwise>
</xsl:choose>

93

</xsl:template>

<xsl:template match = "apply/apply">
<xsl:choose>
<xsl :when test=". [#2] ">
<xsl :apply-templates select="* [first-of-any()]"/>

</xsl:when>
<xsl:otherwise>

<OMA>
<xsl: apply-templates select="* [first-of-any()]"/>

</OMA>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match = "sum">
<xsl:choose>
<xsl: when test=" . ./apply [#2] ">

<OMS cd = "sumprod" name = "sum"/>
<xsl:choose>
<xsl:when test=" .. /lowlimit">

<OMA>
<OMS cd = "interval" name="discrete-interval"/>
<xsl: apply-templates select=" .. I* [fromto (3, 4)] "/>

</OMA>
<xsl: apply-templates select=" .. /apply [#2] "/>

</xsl:when>
<xsl:when test=" .. /condition">
<xsl:apply-templates select=" . ./condition/reln"/>

</xsl:when>
</xsl:choose>

</xsl:when>
<xsl:otherwise>

<OMBIND>
<OMS cd="sumprod" name="sum"/>
<OMBVAR>
<xsl:apply-templates select=" .. /bvar/ci"/>

</OMBVAR>
<OMA>

94

<OMS cd="basic" name="tuple"/>
<xsl:choose>
<xsl:when test=" .. /lowlimit">

<OMA>
<OMS cd="inerval" name="discrete-interval"/>
<xsl: apply-templates select=" .. /* [fromto (3, 4)] "/>

</OMA>
</xsl:when>
<xsl:when test=" .. /condition">
<xsl:apply-templates select=" .. /condition"/>

</xsl:when>
</xsl:choose>
<xsl:apply-templates select=" .. /apply"/>

</OMA>
</OMBIND>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match = "product">
<xsl:choose>

<xsl:when test=" .. /apply[#2] ">
<OMS cd = "sumprod" name = "product"/>
<xsl:choose>

<xsl:when test=" .. /lowlimit">
<OMA>

<OMS cd = "interval" name="discrete-interval"/>
<xsl :apply-templates select=" .. /* [fromto(3 ,4)] "/>

</OMA>
</xsl:when>
<xsl:when test=" .. /condition">
<xsl:apply-templates select=" .. /condition/reln"/>

</xsl:when>
</xsl:choose>
<xsl: apply-templates select=" . ./apply [#2] "/>

</xsl:when>

<xsl:otherwise>

95

<OMBIND>
<OMS cd="sumprod" name="product"/>
<OMBVAR>
<xsl:apply-templates select=" .. /bvar/ci"/>

</OMBVAR>
<OMA>

<OMS cd="basic" name="tuple"/>
<xsl:choose>
<xsl:when test=" . ./lowlimit">

<OMA>
<OMS cd="inerval" name="discrete-interval"/>
<xsl: apply-templates select=" . .f* [fromto(3 ,4)] "/>

</OMA>
</xsl:when>
<xsl:when test=" . ./condition">
<xsl:apply-templates select=" .. /condition"/>

</xsl:when>
</xsl:choose>
<xsl: apply-templates select=" . ./apply"/>

</OMA>
</OMBIND>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

</xsl:stylesheet>

A.3 Calculus.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "apply">
<OMA>
<xsl: apply-templates select="* [first-of-any()]"/>

</OMA>
</xsl:template>

<xsl:template match= "apply/apply[#2]">

96

<xsl: apply-templates select="* [first-of-any()]"/>
</xsl:template>

<xsl:template match = "partialdiff ldiff">
<OMS cd = "calculus" name = "diff"/>
<OMA>

<OMS cd="list" name="list"/>
<xsl:apply-templates select=" .. /bvar/ci"/>

</OMA>
<OMA>

<OMS cd="list" name="list"/>
<xsl: apply-templates select=" . ./bvar" />

</OMA>
<xsl: apply-templates select=" .. /*[last-of-any()]"/>

</xsl:template>

<xsl:template match = "int">
<xsl:choose>

<xsl:when test =" .. /apply[#2] ">
<xsl:choose>

<xsl:when test= "· ./bvar">
<OMS cd = "calculus" name = "int"/>
<xsl:choose>

<xsl:when test =" .. /lowlimit">
<OMA>

<OMS cd="interval" name="continuous-interval"/>
<xsl :apply-templates select=" .. /* [fromto(3 ,4)] "/>

</OMA>
<xsl: apply-templates select=" .. /*[last-of-any()]"/>

</xsl:when>
<xsl:when test=" .. /condition I . ./interval">
<xsl: apply-templates select=" .. I condition I .. /interval"/>
<xsl: apply-templates seclect=" .. /*[last-of-any()]"/>

</xsl:when>
<xsl:otherwise>
<xsl: apply-templates seclect=" . .f *[last-of-any()]"/>

</xsl:otherwise>
</xsl:choose>

</xsl:when>

97

<xsl:otherwise>
<OMS cd = "calculus" name = "int"/>
<xsl:apply-templates select=" .. /apply[#2]"/>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>

<xsl:choose>
<xsl :when test = " .. /bvar">

<OMBIND>
<OMS cd = "calculus" name = "int"/>
<OMBVAR>
<xsl: apply-templates select=" . ./bvar I ci "/>

</OMBVAR>
<xsl:choose>
<xsl:when test=" . ./lowlimit">

<OMA>
<OMS cd = "basic" name="tuple"/>
<OMA>

<OMS cd="interval" name="continuous-interval"/>
<xsl: apply-templates select=" .. /* [fromto (3, 4)] "/>

</OMA>
<xsl: apply-templates select=" .. I* [last-of-any()]"/>

</OMA>
</xsl:when>
<xsl:when test=" .. /condition! . ./interval">

<OMA>
<OMS cd = "basic" name="tuple"/>
<xsl: apply-templates select=" .. I condition I . ./interval"/>
<xsl: apply-templates select=" .. /*[last-of-any()]"/>

</OMA>
</xsl:when>
<xsl:otherwise>
<xsl: apply-templates seclect=" .. /*[last-of-any()]"/>

</xsl:otherwise>
</xsl:choose>

</OMBIND>
</xsl:when>
<xsl:otherwise>

98

<OMS cd = "calculus" name = "int"/>
<xsl:apply-templates select=" .. //ci"/>
<xsl: apply-templates select=" . ./•[not (first-of-any())]"/>

</xsl:otherwise>
</xsl:choose>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match = "interval">
<OMA>

<OMS cd = "interval" name = "continuous-interval-cl-cl"/>
<xsl:apply-templates/>

</OMA>
</xsl:template>

<xsl:template match= "reln">
<OMA>
<xsl: apply-templates select="* [first-of-any()]"/>

</OMA>
</xsl:template>

<xsl:template match= "in">
<OMS cd= 11 set 11 name= 11 in 11 />
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>

</xsl :template>

<xsl:template match ="bvar">
<xsl:choose>
<xsl:when test="degree">
<xsl:apply-templates select="degree"/>

</xsl:when>
<xsl:otherwise>

<OMI>1</0MI>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

\)!, <xsl:template match= "conditionllowlimitluplimitldegree">

99

<xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

A.4 Transc.xsl

<xsl: style sheet xrnlns :xsl = "http: I /,1ww. w3 .org/TR/WD-xsl">

<xsl:ternplate match = "ln">
<OMS cd = "transc" name = "ln"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match= "log">
<OMS cd = "transc" name = "log"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "exp">
<OMS cd = "transc" name = "exp"/>
<xsl: apply-templates select=" . ./ * [not (first-of-any())] "/>

</xsl:template>

<xsl:template match = "sin">
<OMS cd = "transc" name = "sin"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "cos">
<OMS cd = "transc" name = "cos"/>
<xsl: apply-templates select=" . .I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "tan">
<OMS cd = "transc" name = "tan"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl: template>

100

<xsl:template match = "sec">
<OMS cd = "transc" name = "sec"/>
<xsl: apply-templates select=" .. /*[not (first-of-any{))] "/>

</xsl:template>

<xsl:template match = "csc">
<OMS cd = "transc" name = "csc"/>
<xsl: apply-templates select=" .. /*[not (first-of-any{))]"/>

</xsl:template>

<xsl:template match = "cot">
<OMS cd = "transc" name = "cot"/>
<xsl: apply-templates select=" . .f *[not (first-of-any{))]"/>

</xsl:template>

<xsl:template match = "sinh">
<OMS cd = "transc" name = "sinh"/>
<xsl: apply-templates select=" .. /* [not (first-of-any{))]"/>

</xsl:template>

<xsl:template match = "cosh">
<OMS cd = "transc" name = "cosh"/>
<xsl: apply-templates select=" .. /*[not (first-of-any{))]"/>

</xsl:template>

<xsl:template match = "tanh">
<OMS cd = "transc" name = "tanh"/>
<xsl: apply-templates select=" .. /* [not (first-of-any{))]"/>

</xsl:template>

<xsl:template match = "sech">
<OMS cd = "transc" name = "sech"/>
<xsl: apply-templates select=" . .f* [not (first-of-any{))]"/>

</xsl:template>

<xsl :template match = "csch">
<OMS cd = "transc" name = "csch"/>
<xsl: apply-templates select=" .. /* [not (first-of-any{))]"/>

</xsl:template>

101

<xsl:template match = "coth">
<OMS cd = "transc" name = "coth"/>
<xsl: apply-templates select=" .. I* [not(first-of-any())] "/>

</xsl:template>

<xsl:template match = "arcsin">
<OMS cd = "transc" name = "arcsin"/>
<xsl: apply-templates select=" . .I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "arccos">
<OMS cd = "transc" name = "arccos"/>
<xsl :apply-templates select=" . .I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "arctan">
<OMS cd = "transc" name = "arctan"/>
<xsl: apply-templates select=" . .I* [not (first-of-any())]"/>

</xsl:template>

</xsl:stylesheet>

A.5 Quant.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "apply">
<OMBIND>
<xsl: apply-templates select="* [first-of-any{)]"/>

</OMBIND>
</xsl:template>

<xsl:template match = "forall">
<OMS cd = "quant" name = "forall"/>
<OMBVAR>
<xsl: apply-templates select=" .. /bvar/ ci" />

<fl!lMBVAR>
<xsl:choose>

<xsl:when test=" .. /condition">
<OMA>

<OMS cd="basic" name="tuple" />
<xsl: apply-templates select=" . ./condition"/>
<xsl :apply-templates select=" .. /* [last-of-any()]"/>

</OMA>
</xsl:when>
<xsl:otherwise>
<xsl: apply-templates select=" .. /*[last-of-any()] "/>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match = "exist">
<OMS cd = "quant" name = "exist"/>
<OMBVAR>
<xsl: apply-templates select=" . ./bvar/ ci" />

</OMBVAR>
<xsl:choose>
<xsl :when test=" . ./condition">

<OMA>
<OMS cd="basic" name="tuple"/>
<xsl:apply-templates select=" .. /condition"/>
<xsl: apply-templates select=" .. I* [last-of-any()] "/>

</OMA>
</xsl:when>
<xsl:otherwise>
<xsl: apply-templates select=" .. /*[last-of-any()] "/>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

</xsl:stylesheet>

A.6 Interval.xsl

<xsl:s~ylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "apply">

103

<OMA>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl:template match= "interval[©closure='open']">
<OMA>
<OMS cd = "interval" name = "continuous-interval-op-op"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl:template match= "interval[©closure='closed']">
<OMA>
<OMS cd = "interval" name = "continuous-interval-cl-cl"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl:template match= "interval[©closure='open-closed']">
<OMA>
<OMS cd = "interval" name = "continuous-interval-op-cl"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl :template match = "interval [©closure=' closed-open']">
<OMA>
<OMS cd = "interval" name = "continuous-interval-cl-op"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl:template match = "interval">
<OMA>
<OMS cd = "interval" name = "continuous-interval-cl-cl"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

</xsl:stylesheet>

A.7 Arith.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "apply">
<OMA>
<xsl: apply-templates select="* [first-of-any()]"/>
</OMA>
</xsl:template>

<xsl:template match = "power">
<OMS cd = "arith" name = "power"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "minus">
<OMS cd = "arith" name = "minus"/>
<xsl: apply-templates select=" . .I* [not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "plus">
<OMS cd = "arith" name = "plus"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())] "/>
</xsl:template>

<xsl:template match = "times">
<OMS cd = "arith" name = "times"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "devide">
<OMS cd = "arith" name = "devide"/>
<xsl: apply-templates select=" .. /* [not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "abs">

105

<OMS cd = "arith" name = "abs"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>
</xsl:template>

<xsl:template match= "root">
<OMS cd = "arith" name = "root"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "conjugate">
<OMS cd = "arith" name = "conjugate"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>
</xsl:template>

</xsl:stylesheet>

A.8 List.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match - "list">
<OMA>
<OMS cd = "list" name = "list"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl:template match = "list/ci">
<OMS TR>
<xsl:apply-templates/>
</OMSTR>
</xsl:template>

<xsl:template match= "list[bvar]">
<OMBIND>

<OMS ,€.d = "list" name = "list"/>
<xsl:apply-templates select="bvar"/>
<OMA>

<OMS cd = "basic" name="tuple"/>
<xsl:apply-templates select="condition"/>
<xsl:choose>

<xsl:when test="apply">
<xsl:apply-templates select="apply"/>

</xsl:when>
<xsl:otherwise>

<xsl: apply-templates select="bvar" />
</xsl:otherwise>

</xsl:choose>
</OMA>

</OMBIND>
</xsl:template>

</xsl:stylesheet>

A.9 Logic.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "not">
<OMS cd = "logic" name = "not"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "and">
<OMS cd = "logic" name = "and"/>
<xsl :apply-templates select =" . .I* [not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "or">
<OMS cd = "logic" name = "or"/>
<xsl: apply-templates select =" .. /*[not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "xor">
<OMS Qll. = "logic" name = "xor"/>
<xsl: apply-templates select =" .. /*[not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "implies">
<OMS cd = "logic" name = "implies"/>
<xsl :apply-templates select =" .. /*[not (first-of-any())]"/>
</xsl:template>

</xsl:stylesheet>

A.10 Integer .xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">.

<xsl:template match = "gcd">
<OMS cd = "integer" name = "gcd"/>
</xsl:template>

<xsl:template match = "factorial">
<OMS cd = "integer" name = "factorial"/>
</xsl:template>

<xsl:template match = "quotient">
<OMS cd = "integer" name = "quotient"/>
</xsl:template>

<xsl:template match = "rem">
<OMS cd = "integer" name = "rem"/>
</xsl:template>

</xsl:stylesheet>

A.11 Set.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match= "set">
<OMA>

<OMS:ccd = "set" name = "set"/>
<xsl:apply-templates/>

</OMA>

108

</xsl:template>

<xsl:template match = "set [bvar] ">
<OMA>

<OMS cd = "set" name = "set"/>
<OMBIND>

<OMS cd = "basic" name="elements"/>
<xsl:apply-templates select="bvar"/>
<OMA>

<OMS cd ="basic" name="tuple"/>
<xsl:apply-templates select="condition"/>
<xsl:choose>

<xsl:when test="apply">
<xsl:apply-templates select=" .. /apply"/>
</xsl:when>
<xsl:otherwise>
<xsl:apply-templates select="bvar"/>
</xsl:otherwise>

</xsl:choose>
</OMA>

</OMBIND>
</OMA>
</xsl:template>

<xsl:template match = "union">
<OMS cd = "set" name = "union"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())] "/>

</xsl:template>

<xsl:template match= "intersect">
<OMS cd = "set" name = "intersect"/>
<xsl: apply-templates select=" . .f* [not(first-of-any())] "/>

</xsl:template>

<xsl:template match = "setdiff">
<OMS cd = "set" name = "set di ff"/>
<xs].; apply-templates select=" . .f* [not (first-of-any())]"/>

</xsl :template>

<xsl:template match = "subset">
<OMS cd = "set" name = "subset"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "prsubset">
<OMS cd = "set" name = "prsubset"/>
<xsl :apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "notsubset">
<OMS cd = "set" name = "notsubset"/>
<xsl: apply-templates select=" . .f *[not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "notprsubset">
<OMS cd = "set" name = "notprsubset"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "in">
<OMS cd = "set" name = "in"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "notin">
<OMS cd = "set" name = "notin"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</xsl:template>

</xsl:stylesheet>

A.12 Relation.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:€~mplate match = "apply">
<OMA>
<xsl:apply-templates/>

110

</OMA>
</xsl:template>

<xsl:template match = "eq">

<OMS cd = "relation" name = "eq" />
<xsl: apply-templates select=" .. I* [not(first-of-any())] "/>

</xsl:template>

<xsl:template match = "lt">

<OMS cd = "relation" name = "lt"/>
<xsl: apply-templates select=" . .I* [not (first-of-any())] "/>

</xsl:template>

<xsl:template match = "gt">

<OMS cd = "relation" name = "gt"/>
<xsl :apply-templates select=" . .I* [not(first-of-any())] "/>

</xsl:template>

<xsl:template match = "neq">

<OMS cd = "relation" name = "neq"/>
<xsl :apply-templates select=" .. I* [not(first-of-any())] "/>

</xsl:template>

<xsl:template match = "leq">
<OMS cd = "relation" name = "leq"/>
<xsl: apply-templates select=" . .I* [not (first-of-any())]"/>

</xsl :template>

<xsl:template match= "geq">
<OMS cd = "relation" name = "geq"/>
<xsl: apply-templates select=" . .I* [not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "minimax">
<xsl:choose>

<xsl:when test=" .. /condition">
<xsl:choose>
~sl :when test=" .. /min">

<OMS cd = "relation" name = "min"/>

</xsl:when>
<xsl:otherwise>

<OMS cd = "relation" name = "max"/>
</xsl:otherwise>

</xsl:choose>
<OMBIND>

<OMS cd="basic" name="elements"/>
<OMBVAR>
<xsl:apply-templates select=" .. //ci"/>

</OMBVAR>
<OMA>

<OMS cd="basic" name="tuple"/>
<xsl: apply-templates select=" .. // ci[first-of-type ()] "/>
<OMA>
<xsl:apply-templates select=" .. /condition"/>

</OMA>
<xsl:choose>

<xsl :when test=" .. /apply">
<xsl: apply-templates select=" .. /apply"/>

</xsl:when>
<xsl:otherwise>

<xsl: apply-templates select=" .. //ci [first-of-type()]"/>
</xsl:otherwise>

</xsl:choose>
</OMA>

</OMBIND>
</xsl:when>

<xsl:otherwise>
<xsl:choose>

<xsl :when test=" .. /min">
<OMS cd = "relation" name = 11min 11 />

</xsl:when>
<xsl:otherwise>

<OMS cd = "relation" name = "max"/>
</xsl:otherwise>

</xsl:choose>
<xsl: apply-templates select=" .. /* [not (first-of-any())]"/>

</xsl:otherwise>

112

</xsl:choose>
</xsl:template>

</xsl:stylesheet>

A.13 Stat.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "mean">
<OMS cd = "stats" name = "mean"/>
<xsl: apply-templates select=" . ./* [not(first-of-any())] "/>

</xsl:template>

<xsl:template match = "sdev">
<OMS cd = "stats" name = "sdev"/>
<xsl: apply-templates select=" . ./*[not (first-of-any())]"/>

</xsl:template>

<xsl:template match = "var">
<OMS cd = "stats" name = "var"/>
<xsl:apply-templates select=" . .f*[not(first-of-any())] "/>

</xsl:template>

<xsl:template match = "median">
<OMS cd = "stats" name = "median"/>
<xsl: apply-templates select=" .. I* [not (first-of-any())]"/>

</ xsl: template>

<xsl:template match = "mode">
<OMS cd = "stats" name = "mode"/>
<xsl: apply-templates select=" . ./* [not(first-of-any())] "/>

</xsl:template>

<xsl:template match = "moment">
<OMS cd = "stats" name = "moment"/>
<xsl';-apply-templates select=" .. /degree"/>

113

<xsl :apply-templates select=" . ./* [not (first-of-any() or last-of-any())]"/>

</xsl:template>

<xsl:template match = "degree">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

A.14 Fns.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "ident">
<OMS cd = "fns" name = "identity"/>
<xsl :apply-templates select=" .. /* [not(first-of-any())] "/>
</xsl: template>

<xsl:template match = "inverse">
<OMS cd = "fns" name = "inverse"/>
<xsl: apply-templates select=" .. f* [not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "compose">
<OMS cd = "fns" name = "compose"/>
<xsl: apply-templates select=" .. /* [not (first-of-any())]"/>
</xsl:template>

<xsl:template match = "lambda">
<OMS cd = "fns" name = "lambda"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>
</xsl:template>

</xsl:stylesheet>

A.15 La-mml.xsl

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "matrix">
<OMA>

<OMS cd = "la-mml" name = "matrix"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl:template match = "matrixrow">
<OMA>
<OMS cd = "la-mml" name = "matrixrow"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl:template match= "vector">
<OMA>
<OMS cd = "la-mml" name = "vector"/>
<xsl:apply-templates/>
</OMA>
</xsl:template>

<xsl:template match= "transpose">
<OMS cd = "la-mml" name = "transpose"/>
<xsl: apply-templates select=" .. /*[not (first-of-any())]"/>
</xsl:template>

<xsl:template match= "determinant">
<OMS cd = "la-mml" name = "determinant"/>
<xsl: apply-templates select=" .. /* [not (first-of-any())]"/>
</xsl:template>

</xsl:stylesheet>

A.16 A Stylesheet for Common Elements

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

<xsl:template match = "apply">
<OMA>
<xsl: apply-templates select="* [first-of-any()]"/>
</OMA>

115

</xsl:template>

<xsl:template match= "cn[©type='real']">
<OMF dee="{.}"/>

</xsl:template>

<xsl:template match= "cn[©type='constant']">
<OMF dee="{.}"/>

</xsl:template>

<xsl:template match= "en">
<OMI>
<xsl:apply-templates>

</OMI>
</xsl:template>

<xsl:template match= "ci">
<OMV name="{.}"/>

</xsl:template>

<xsl:template match = "/">
<annotation-xml encoding = "OpenMath">
<xsl:apply-templates/>
</annotation-xml>
</xsl:template>

</xsl:stylesheet>

Bibliography

[1] The OpenMath Steering Committee OpenMath Version 1.0 released, Dec., 1996.
http://www.openmath.org

[2] W3C Recommendation 10-February-1998 Extensible Markup Language (XML)
1.0 http://www.w3.org/TR/1998/Rec-xml-19980210

[3] W3C Recommendation Mathematical Markup Language (MathML} 1.0 Specifi­
cation 07-April-1998

[4] W3C Working Draft Extensible Stylesheet Language (XSL) version 1.0 18-
August-1998

[5] W3C Working Draft Extensible Stylesheet Language (XSL} version 1.0 16-
December-1998

[6] J. Bosak XML, Java, and the future of the Web Oct. 02, 1997
http://www.xml.com/xml/pub/w3j/s3.bosak.html

[7] S. Vorkoetter Proposed OpenMath specification: Draft version 1.1, july 1995.
http://www.w3.org/OpenMath/History /reports/prototypeO-spec. ps.gz.

[8] S. Dalmas, M. Gaetano, and S. Watt. An OpenMath 1.0 Implementation. page
241-248. ACM Press, 1997

[9] PolyMath group Java OpenMath Library, version 0.5,

http://pdg.cecm.sfu.ca/openmath

[10] N. Howgrave-Graham OpenMath CDs

http://www.bath.ac. uk/-mapnahg/ om/ eds

[11] S. J!almas et al A Draft of the OpenMath Standard ESPRIT project 24969:
OpenMath

117

	Part 1
	Part 2
	Part 3
	Part 4

