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Abstract

Handwriting is one of the most natural ways for a human to record knowledge. In

recent years this type of human-computer interaction has received increasing attention

due to the rapid evolution of digital ink hardware. This thesis contributes to the art

of efficient recognition of handwriting and compact storage of digital ink.

In the first part of the thesis, we focus on the development of algorithms for

transformation-invariant recognition of handwritten mathematical characters. We

first implement a rotation-independent classification method based on the theory

of integral invariants of parametric curves. We then extend this method to shear-

invariant recognition. Presence of affine transformations creates difficulties in param-

eterization of coordinate functions and size normalization of handwritten samples.

We therefore present an affine-invariant size normalization approach and develop a

mixed parameterization, which is insensitive to large affine transformations and yields

a relatively high recognition rate.

In the second part of the thesis, we develop digital ink compression algorithms tak-

ing advantage of the theory of approximation of curves with orthogonal polynomial

series. We then test the compression rate for Chebyshev, Legendre and Legendre-

Sobolev orthogonal polynomials, as well as for Fourier series. By studying the com-

pression ratio for representing coefficients in Unicode and binary formats, we show

that Chebyshev polynomials give the best compression rate and can be successfully

used in related applications.
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Chapter 1

Introduction

With the well-established popularity of hand-held mobile and digital tablet devices,

online recognition of handwritten mathematics has received increasing attention in

recent years. This subarea of handwriting recognition allows two-dimensional input

of mathematical expressions in a more natural way than other alternatives. This is

preferable in some settings, in which a keyboard is not accessible or is intentionally

avoided, e.g. during a lecture or online scientific collaboration [34].

Although considerable work has been done in the field of handwriting recogni-

tion, the classification of mathematical symbols requires special attention. Among

the factors that give classification of mathematics additional challenges beyond those

of normal text recognition, is the relatively large “alphabet” of similar looking few-

stroke symbols that can be subjected to transformations, such as scale, rotation and

shear. The absence of a fixed dictionary of multi-symbol “words” creates limita-

tions for syntactic verification of recognized formulas. The two-dimensional nature

of mathematical expressions requires an accurate differentiation between fluctuations

in positioning and intentional super- or sub-scripting over a baseline. In this con-

text, character classification algorithms for handwritten mathematics require special

consideration.
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Online recognition deals with assigning a sample, given by a vector of coordinates,

to a particular class based on a dataset of training samples. It is important to note

that online classification, as opposed to offline pattern matching, aims to minimize

the amount of computation after pen-up, even if it increases computations after a

sample is being written.

In an online classification environment, a curve is given as an ordered set of points

in a Euclidean plane. Tablet devices are capable of capturing coordinates of a stylus

as functions of time. Therefore, the input to an online classification algorithm is

typically given as a vector of pen coordinates represented as real numbers and spaced

on a fixed time interval. In addition, some devices can collect other information, such

as the degree of pressure or pen angle, as well as coordinates of pen-up points, i.e.

when a stylus does not touch the screen. We however do not consider this information

to maintain independence of certain hardware features and devices.

A curve is given as a sequence of tuples

(x0, y0, t0), (x1, y1, t1), ..., (xn, yn, tn)

where xi, yi, ti ∈ R, i = 0..n, and t0 < t1 < ... < tn.

Points are usually considered equally spaced in time and therefore ti can be

omitted. Therefore, a sample character can be represented as shown in Figure 1.1.

Stroke 1: [(7515, -7870), (7516, -7877), (7515, -7900), (7517, -7937), (7520, -7964), (7518, -7989), (7520, -8022),

(7520, -8054), (7522, -8088), (7522, -8119), (7525, -8144), (7526, -8163), (7532, -8188), (7541, -8196),

(7555, -8199), (7589, -8184), (7612, -8177), (7640, -8167), (7668, -8157), (7697, -8137), (7730, -8130),

(7753, -8120), (7780, -8118), (7803, -8115), (7819, -8113)]

Stroke 2: [(7754, -7870), (7748, -7900), (7742, -7938), (7737, -7982), (7739, -8040), (7740, -8096), (7747, -8152),

(7761, -8210), (7774, -8263), (7784, -8305), (7795, -8344)]

Coordinates are most often given as integers, and indeed that is how the dataset

that we use in our experiments is stored.

The rest of the thesis is organized as follows. In Chapter 2 we discuss some of

2



Figure 1.1: An example of a 2-stroke sample

the previous work and preliminaries. We look at the method called “elastic match-

ing” and at the theory of approximation of curves with orthogonal polynomials. We

explain the method of recognition based on support vector machines (SVMs) and

distance to convex hulls of nearest neighbours. We present a possible extension of

this theory to recognition of multi-stroke characters. In the same chapter we show

that the method developed by Golubitsky and Watt [14] is not capable of recogniz-

ing characters subjected to distortions. We then study some existing techniques for

classification of transformed samples: geometric moments for rotated samples; and

several methods for affine-invariant recognition: stroke-based affine transformations,

minimax classification with hidden Markov models (HMM) and affine moment invari-

ants. The basic ideas of our methodology and experimental settings are presented in

the end of the Chapter.

In Chapter 3 we outline the major concepts of the theory of integral invariants of

parametric curves and measure the quality of approximation of invariants.

In Chapter 4 we study rotation invariant recognition. We first show how to com-

3



pute coefficients of coordinate functions and integral invariants in a time-efficient

manner. We then develop algorithms for rotation invariant recognition based on the

coefficients of approximation of integral invariants with Legendre-Sobolev orthogonal

polynomials. We show that performance of integral invariants is significantly higher

than that of geometric moment invariants.

In Chapter 5 we develop a recognition approach, invariant with respect to shear

transformations. We study some of the size normalization and coordinate functions

parameterization methods. We propose a new method to normalize handwritten

characters when affine distortions take place. Moreover, we propose a mixed param-

eterization that allows us to achieve a relative invariance to affine transformations

while keeping the recognition rate quite high. Evaluation of the results is given at

the end of the Chapter.

In Chapter 6 we develop a method for compact storage of online handwriting.

We test variations of concepts of curve parameterization, segmentation and segment

blending. We develop a binary packets format for storing a trace. We then compare

our results with one of the most popular methods available today – compression with

the second differences. The results show that our algorithm performs significantly

better.

Chapter 7 concludes this thesis.

4



Chapter 2

Previous Work and Preliminaries

This chapter presents background concepts used in this thesis. Some, such as the

theory of orthogonal series, are used throughout. Others, such as elastic matching,

are discussed for comparison.

2.1 Elastic Matching

Elastic matching is derived from dynamic programming algorithms initially used in

string matching problems. In such a setting, a string was represented as a vector.

The membership of the vector in one of given classes was evaluated based on the

squared Euclidean distance from the vector to corresponding training samples. In

vision, elastic matching has been actively used in handwriting recognition, as well as

in more sophisticated algorithms for image analysis [2, 39].

The elastic matching algorithm aims to minimize the total distance D(n,m; k)

between a test sample of n points and the training sample k of m points, as shown

5
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j-1

j-2

Figure 2.1: Elastic Matching

in Figure 2.1

D(i, j; k) = d(i, j; k)+


min {D(i− 1, j; k), D(i− 1, j − 1; k), D(i− 1, j − 2; k)} , j > 2

min {D(i− 1, j; k), D(i− 1, j − 1; k)} , j = 2

min {D(i− 1, j; k} , j = 1

where d(i, j; k) is the square Euclidean distance between points i and j (see [32] for

details). Several authors proposed to include additional attributes in the distance

formula to capture certain stroke features, i.e. curve orientation, defined as the dif-

ference between angles of slopes. Therefore, the distance formula between points i

and j may be written as [32]

d(i, j) = (xi − xj)2 + (yi − yj)2 + µ|αi − αj|

where (xi, yi) is i-th point of the test sample, (xj, yj) is j-th point of the training

6



sample, µ is a constant that can be found empirically and

αi = arccos

(
xi+1 − xi√

(xi+1 − xi)2 + (yi+1 − yi)2

)
.

Finding the minimum distance between two patterns is expensive, especially if a

character consists of hundreds of points. There have therefore been several attempts

to make the algorithm more efficient, such as iterative elastic matching [32]. However,

it still requires relatively many arithmetic operations when compared, for example, to

classification of curves approximated with truncated orthogonal series. The situation

becomes even worse in the case of handwritten mathematics because of the large

number of classes. As a result, this methodology may not be suitable for a deployment

on mobile devices with decent computational capabilities.

2.2 Approximation of Curves with Orthogonal

Series

To overcome the disadvantages of elastic matching, Char and Watt proposed to rep-

resent a character as a vector of coefficients of the approximation of the curve coor-

dinates with truncated orthogonal series [4]. This approach helped to decrease the

number of computations to the dimension of coefficient vectors, which is typically less

than 25. We summarise the basic ideas here.

Two functions f(t) and g(t) defined on the domain [a, b] are said to be orthogonal

on this interval with respect to a given continuous weight function w(t), if their inner

product

〈f, g〉 ≡
∫ b

a

f(t)g(t)w(t)dt = 0.

A well-known technique of approximation of a function f : R→ R is finding a linear

7



combination of functions from truncated basis P = {Pi : R→ R, i = 0, 1, ..., d}:

f(t) ≈
d∑
i=0

ciPi(t), ci ∈ R, Pi ∈ P

where polynomials Pi, i = 0, 1, ..., d are orthogonal with respect to an inner product

〈·, ·〉. The system of orthogonal polynomials {P0, P1, ...} with respect to a given inner

product can be obtained with Gram-Schmidt orthogonalization on the monomial basis

{1, t, t2, ...}. The coefficients ci can be computed as

ci =
〈f, Pi〉
〈Pi, Pi〉

.

Following this technique, one is able to obtain the following representation of coordi-

nate functions:

X(t) ≈
d∑
i=0

xiPi(t), Y (t) ≈
d∑
i=0

yiPi(t).

Note that X(t) and Y (t) can be parameterized by time, arc length, or other

parameterization choices. Parameterization by arc length is preferable over param-

eterization by time, since it provides independence of variations in speed of writing.

Depending on the setting, a potential problem is that parameterization by arc length

is not invariant under affine transformations. There is, however, parameterization by

special affine arc length, invariant under area preserving transformations [1]:

F (L) =

L∫
0

3
√
x′(t)y′′(t)− x′′(t)y′(t)dt.

It was proposed in [4] to approximate coordinate functions with Chebyshev poly-

nomials of the first kind

Tn(t) = cos(n arccos t).

These are orthogonal on the interval [−1, 1] for w(t) = 1/
√

1− t2. While Chebyshev

8



polynomials are easy to compute and allow accurate approximation of a curve with low

degree series, the form of its weight function creates difficulties for online computation

of approximation. Therefore Golubitsky and Watt [10] proposed to use Legendre

polynomials that perfectly fit into the model of recovering a function online from its

moments [35]. They showed how to compute the first d coefficients of the truncated

Legendre series for some function f(λ), normalized to a desired range and domain, in

online time OLn[O(d), O(d2)], where n is the number of known equally-spaced values

of f .

In later work, the authors showed that Legendre polynomials are outperformed

by Legendre-Sobolev polynomials. The latter polynomials have the inner product of

the form

〈f, g〉 =

∫ b

a

f(λ)g(λ)dλ+ µ

∫ b

a

f ′(λ)g′(λ)dλ.

Legendre-Sobolev polynomials still allow online computation of coefficients, while

providing a more accurate description of a curve for a lesser degree of approximation

(due to the presence of derivatives in the formula for inner product) [11]. Recognition

is based on Euclidean distance measure between coefficient vectors of subject and

training samples. In the same work, the authors showed that classification rates with

elastic matching and Legendre-Sobolev approximation are similar, while the latter is

more efficient.

2.3 Classification with SVMs

Once a curve is represented with coefficients of its approximation, it can be recognized

with the support vector machine (SVM) classifier. SVMs have been successfully used

in various areas of pattern recognition. The aim of SVM classification is to find the

separating boundary of two given classes that gives the maximal distance between

9



the boundary and each class. Such a boundary function can be expressed as [20]

f(x) =
∑
i

(aiyiK(x, xi)) + b

where xi represents subject sample, yi stands for a training sample and K(x, xi) is the

kernel function. Parameters ai and b are obtained by minimization of the function

with certain constraints [36].

2.4 Classification with Convex Hulls

This section is based on the paper “Orientation-independent recognition of handwrit-

ten characters with integral invariants” [28] co-authored with Golubitsky and Watt.

The technique of recognition via convex hulls represents classes by some fixed

number of nearest neighbours and is similar to the recognition with SVMs. However,

a subject sample is assigned to the class with a corresponding convex hull located

on the smallest distance to the sample. Nearest neighbours are selected with the

Manhattan distance, which is among the fastest distances known, requiring 2d − 1

arithmetic operations, where d is the dimension. Distance to convex hulls is evaluated

with the squared Euclidean distance, which takes 3d− 1 operations.

Computing the distance from a point to a convex hull is generally expensive.

However, one can represent a convex hull as a simplex if the number of nearest

neighbours is less than the dimension of the vector space and the points are in generic

position. If the points happen to not be in generic position, a slight perturbation is

done with a little affect on the distance. The algorithm is then recursively iterated

until the projection of the point on the smallest affine subspace containing the simplex

happens to be inside the simplex. This algorithm has complexity of O(N4), whereN is

the dimension of the vector space. However, since at each recursive call the dimension

often drops by more than one, in practice this algorithm is less expensive [13].

10



2.5 Classification of Multi-Stroke Characters

It was shown in [12] that classification of multi-stroke characters can be implemented

similarly to the classification of a single-stroke with functional approximation. In the

case of a multi-stroke sample, consecutive strokes are joined to obtain the function

to approximate, and the number of strokes is included in the class label.

2.6 Previous Work and Dependence on

Distortions

This section is based on the paper “Toward Affine Recognition of Handwritten Math-

ematical Characters” [29] co-authored with Golubitsky and Watt.

Some work has been done [4, 10, 14, 11] in recognition based on the approxi-

mation of coordinate functions by truncated polynomial series. Different bases have

been studied, including Chebyshev, Legendre and Legendre-Sobolev bases. Legendre-

Sobolev series were chosen as the most suitable, since these polynomials are easy to

compute and provide a constructive distance measure in the first jet space, taking

derivatives into account. Subject samples are assigned to training classes with dis-

tance measure from the sample to convex hulls in the space of Legendre-Sobolev

coefficients. Recognition rate of this method is 97.5% for a dataset of individual

symbols in our collection. Although the samples do exhibit a certain amount of

affine distortions, it is expected that characters written in real-life, as a part of a

mathematical formula, are likely to be much more affected by such transformations.

Indeed, most users of pen-based devices tend to write symbols with a certain degree

of rotation and/or shear. These transformations create difficulties for classification of

samples. To measure the dependence of the algorithm developed in [4, 10, 14, 11] to

distortions, characters were randomly rotated on some interval. In the experiment we
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Figure 2.2: Ambiguity introduced by shear and rotation

observed that the classification rate for the algorithm has approximately quadratic

dependence on the angle and decreases to 90% when the rotation angle ranges in the

interval of [−0.3, 0.3] radians. We conclude that this algorithm is quite sensitive to

transformations and remains no longer robust when affine distortions take place [29].

Rotation invariant classification is a more challenging task compared with the

problem of size and position normalization. However, it is not as advanced as shear

and, more generally, affine invariant recognition. The main difficulty is that different

characters may require different correction and the type and degree of such correction

is not known in advance. With mathematical handwriting, it is especially challenging

to detect the dominant distortion from symbol features, even when characters are

analyzed in a set. Another issue, specific to mathematical symbols, is the requirement

of careful analysis of transformation limits to avoid blending classes. For instance,

when a sample L is the subject to shear transformation, it can be easily misclassified

with ∠. If, in addition, we allow arbitrary rotation and scaling of the character, the

set of matching candidates will include <, >, 7, V ,
∧

, e,
√

, Γ and ∧, as shown in

Figure 2.2 [28].

Another challenge with shear and affine transformations is the size normalization,

since the regular techniques are no longer suitable. Curve parameterization becomes

not as trivial either, since the arc length – the most common parameterization choice

– is not invariant under affine transformations.
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2.7 Rotation Invariance with Geometric Moments

This section is based on the paper “Orientation-independent recognition of handwrit-

ten characters with integral invariants” [28] co-authored with Golubitsky and Watt.

Moment invariants are a widely used toolset to describe curves independently

of orientation. Among moment functions one can select geometric, Zernike, radial

and Legendre moments [30]. For the purpose of online character recognition under

pressure of computational constraints, geometric moments appear to be the most

attractive, since they are easy to calculate and provide invariance under scaling,

translation and rotation [16]. Geometric moments have been widely used in pattern

classification [7, 23, 30]. A (p + q)-th order moment of a function f(x, y) can be

expressed as

mpq =
∑
x

∑
y

xpyqf(x, y).

As it was originally defined, translation invariance is achieved by computing central

moments

µpq =
∑
x

∑
y

(x− x0)p(y − y0)qf(x, y), x0 =
m10

m00

and y0 =
m01

m00

while scale normalization is performed as

ηpq = µpq/(µ00)
(p+q+2)/2

There is an infinite family of moment invariants, derived from algebraic invariants,

and the first three can be represented as

M1 = η20 + η02,

M2 = (η20 − η02)2 + 4η211,

M3 = η20η02 − η211.
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The independence of orientation of the above expressions can be verified by substi-

tution with the geometric moments obtained after rotational transformation

m′20 =
1 + cos 2α

2
m20 − sin 2α m11 +

1− cos 2α

2
m02,

m′11 =
sin 2α

2
m20 + cos 2α m11 −

sin 2α

2
m02,

m′02 =
1− cos 2α

2
m20 + sin 2α m11 +

1 + cos 2α

2
m02.

One can omit translation and scale normalization of moments by, first, normalizing

a sample’s coordinates. In this case, the moment invariants are derived in terms of

moments mpq.

2.8 Affine-Invariant Recognition

This section explores existing approaches to affine-invariant recognition and is based

on the paper “Toward Affine Recognition of Handwritten Mathematical Charac-

ters” [29] co-authored with Golubitsky and Watt.

2.8.1 Stroke-Based Affine Transformation

If a sample is subjected to an arbitrary affine transformation, one could estimate the

transformation matrix by solving a minimization problem. This idea was implemented

in [37], where it was proposed that stroke-based affine transformations should be

applied to a character in order to find the distortion of a test sample that gives the

minimal distance to each training class. The algorithm denotes stroke-wise uniform

affine transformation for a stroke i with Ai and bi, where Ai is a 2 × 2 matrix for

shear, rotation and scale and bi is a 2-dimensional translation vector. The objective

function for the minimization problem for a character of N strokes is constructed in
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the form of least-squares data fitting to determine the optimal Ai and bi

Fi =
∑
k

‖Aitk + bi − rk‖2 → min for Ai, bi, (1 ≤ i ≤ N)

where tk and rk are the k-th feature points of the sample to be classified and a reference

sample respectively, and ‖·‖ is the Euclidean norm. The solution to this problem gives

the affine transformation that yields the least distance between corresponding strokes

of the test and a training sample. This procedure is performed for each training

sample before distance based classification takes place.

This idea was extended to recognition of handwritten characters as grayscale im-

ages [38]. Due to the computationally intensive nature of the algorithm, it may be

applicable for such offline pattern classification.

2.8.2 Minimax Classification with HMM

An online method, robust to affine distortions, was developed in [18] and is based

on continuous-density hidden Markov models (CDHMM). Let N be the number of

character classes Ci, i = 1, ..., N , each containing Mi CDHMMs

{
λ
(m)
i ,m = 1, ...,Mi

}
.

In the non-affine method, input symbol I is classified as a member of class Ci by

representing it as

i = arg max
j

{
max
m

[
max
S

log p(I, S|λ(m)
j )

]}
.

where p(I, S|λ(m)
j ) denotes the joint likelihood of the observation O and the associated

hidden state sequence S with given CDHMM λ
(m)
j . To eliminate affine distortions
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between the input and training samples, it is proposed to evaluate

i = arg max
j

{
max
m

[
max
S

log p(I, S|ΓÂ(λ
(m)
j ))

]}
,

where ΓA is a specific transformation of λ
(m)
j with parameters A, and

Â = arg max
A

p(I,ΓA(λ
(m)
j )).

The authors solve this problem with three iterations of the EM algorithm described

in [21].

2.8.3 Affine Moment Invariants

Geometric moment invariants are a useful tool for rotation-independent recognition.

An extension of this theory, proposed in [9], is called affine moment invariants (AMIs).

AMIs are defined in terms of moments and independent of actions of the general affine

group. Therefore, they have been successfully applied in recognition of handwritten

samples. A central moment of order p+ q for a 2-dimensional object O is defined as

µpq =

∫∫
O

(x− xc)p(y − yc)qdxdy

where (xc, yc) is the center of gravity of the considered object O. In [9] an affine

invariant description of a symbol is obtained in the form of a 4-dimensional vector of

real numbers. This vector is composed of the first four AMIs. Classification is based

on computing the Euclidean distance to classes with training symbols. Performance

of AMIs is compared to the performance of regular geometric moment invariants for

distorted handwritten samples, even though the latter is invariant under rotation,

scale and translation. The results provided in this paper support the fact that AMIs
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yield a better recognition rate than geometric moments for samples subjected to affine

distortions.

2.8.4 Our Methodology

As opposed to the methods of stroke-based affine transformation and minimax clas-

sification with HMM, we propose a technique of classifying handwritten characters

with integral invariants. Our approach is similar to the classification with AMIs –

we calculate affine-invariant quantities from the original sample, without any a priori

transformations of the curve. The difference between AMIs and integral invariants is

that the former, as originally defined, provide curve-to-value correspondence, unlike

curve-to-curve correspondence with the integral invariants. That means that an AMI

is a value, while an integral invariant is a function. Integral invariants allow one to

obtain a richer description of coordinate functions without excessive computations.

In fact, we deploy only two invariants and find them sufficient for an acceptable classi-

fication accuracy of characters under different transforms. To increase the recognition

rate even further, we still perform an analysis of a sample to obtain a numerical mea-

sure of the distortion (e.g. the angle of rotation or shear). However, we perform this

analysis on a minor subset of classes, closest to the test sample in the space of coef-

ficients of approximation of integral invariants. Such analysis is not computationally

intensive.

2.9 Compression of Digital Ink

This section is based on the paper “Digital Ink Compression via Functional Approx-

imation” accepted to the 12th International Conference on Frontiers in Handwriting

Recognition, (ICFHR 2010), co-authored with Watt [25].
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2.9.1 Ink Representation

A variety of digital ink standards are in use today. Among others, it is worth men-

tioning the vendor-specific or special-purpose formats: Jot [33], Unipen [15], Ink

Serialized Format (ISF) [26] or Scalable Vector Graphics (SVG) [8]. In 2003, W3C

introduced a first public draft of an XML-based markup language for digital trace

description, InkML. This evolved into the current standard definition in 2006 [6].

InkML has received an increasing attention due to its vendor neutrality and XML

based properties: simplicity, extendability, compatibility with other technologies and

standards, platform-independence, portability, and wide support from software ven-

dors. In addition, InkML, as an up-to-date standard, reflects most of the features

provided by modern pen-based devices, e.g. pen tip pressure, pen tilt, etc.

An example of a trace, encoded in InkML, is given on the Listing 2.1. A digital

trace is given as a sequence of points in the form (x, y, p), where (x, y) are coordinates

of the point and p may stand for the pen pressure. In the general case, a trace is

given in InkML as a sequence of n-dimensional entries (v1, v2, ..., vn). Each coordinate

gives the value of a particular channel at that point. Assuming a character consists

of 50 points and each value ti requires 2 bytes of storage, it would require ≈ 100n

bytes to store the set of points representing a symbol. Interchange and storage of

such arrays becomes cumbersome, particularly when compared, for example, with 2

byte representation of a 16-bit Unicode character. It follows that techniques for ink

data compression are worth detailed investigation.

2.9.2 Other Ink Compression Methods

One of the earliest ink compression methods was proposed in the JOT standard in

1993 and was based on the approximation with Bezier curves. The last available JOT

standard [33] has a brief description of “compacted point format” that allows a storing

application to skip a number of points and a reading application is supposed to insert
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<traceFormat >

<channel name="X" type="integer"/>

<channel name="Y" type="integer"/>

<channel name="F" type="integer"/>

</traceFormat >

<trace >

3145 12112 176, 3147 12116 178, 3149 12119 175,

3153 12124 174

</trace >

Listing 2.1: Example a trace in InkML format

the missing coordinates interpolating existing points. Since the interpolated values

are obtained from the limited subset of original points, a noticeable approximation

error is unavoidable.

A lossy algorithm was presented in [22], based on stroke simplification. It suggests

elimination of excessive points to form a skeleton of the original curve. The algorithm

is based on iterative computation of chordal deviation (the distance between the

original curve and the simplified one) and elimination of the point with the minimum

distance, until the minimum distance becomes larger than a pre-defined threshold.

Intuitively, such simplification may lead to jaggy curves. The authors address this

issue and propose to interpolate strokes on the decompression stage with Hermite

splines. They also address the question of avoiding smoothing cusp segments of the

original curve, which are identified by comparing the angle between adjacent points to

the prescribed value. This method has disadvantages similar to those of the algorithm

described above. Moreover since the interpolated values are obtained from a subset

of original points, noticeable approximation error is unavoidable.

A lossless compression scheme was proposed in [26] and similarly in [5], in which

the authors assume that difference between consecutive points varies by a factor not

greater than three. The algorithm computes the second order differences of data items

in each data channel. On the example of X coordinates, first order difference of X is

computed as Xi41 = Xi+1 − Xi and is expected to change very little. Similar com-
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putations are performed for Y coordinates. The next assumption is that the second

order difference is even more correlated. Therefore, computing Xi42 = Xi+141−Xi41

gives a sequence of values with lower variance. The second differences are well-suited

for compression with an entropy encoding algorithm, and the authors propose to use

the Huffman encoder. As a result, the compressed data occupies approximately six

times less memory than the original points. This result is indeed promising (espe-

cially considering the lossless nature of the compression). Yet, we discovered that

the difference between consecutive coordinates in our dataset of samples 2.10 ranges

between 0 and several hundreds. In fact, there are some samples in the LaViola [19]

dataset with the difference of more than 500. Therefore, we expect the second differ-

ences algorithm, in general, to have a more decent compression rate than reported in

the patent [5].

Another method, proposed in [5], is called “substantially lossless” which allows

compression error’s magnitude not to exceed the sampling error magnitude. In this

approach the original curve is split in segments and each segment is represented by

some predefined shape, such as a polygon, ellipse, rectangle or Bezier curve. It is not,

however, mentioned how the shapes are obtained from the curve or the compression

rate produced by this approach.

A preferable alternative is piecewise functional approximation of a curve. Our

approach allows flexible approximation with a desired level of precision. This is

achieved either by increasing the degree of approximation or decreasing the segment

arc length. In addition, this approach yields high compression, as shown in the

experimental part of this section.

20



2.9.3 Orthogonal Bases

Polynomial bases have been extensively used in previous work. For details see,

e.g., [14] and works cited there. Here we summarize a few basic facts relevant to

stroke compression.

Since the interval of orthogonality in the definition of most of the classical orthog-

onal series is τ ∈ [−1, 1], for the purpose of compression a mapping to a more general

interval is required. If f(λ) is defined on [a, b], coefficients of the mapping function

can be obtained by taking λ = (b− a)τ/2 + (a+ b)/2

ĉi =
1

hii

∫ 1

−1
f̂(τ)Bi(τ)w(τ)dτ

= Ki

∫ b

a

f(λ)Bi(
2λ− a− b
b− a

)w(
2λ− a− b
b− a

)dλ

where Ki = 2
hii(b−a) . Then coefficients of the degree d approximation of the original

stroke can be found as

f(λ) ≈
d∑
i=0

ĉiBi(
2λ− a− b
b− a

).

Such approximation is performed for X(λ) and Y (λ) coordinate function of the curve.

2.9.4 Bases for Approximation

We wish to determine which bases will be useful for compression. We have investigated

the following.

Chebyshev polynomials of the first kind, defined as Tn(λ) = cos(n arccosλ), have

the weight function w(λ) = 1√
1−λ2 . Chebyshev polynomials are widely used as the

basis for functional approximation. In [4] it was shown that Chebyshev polynomials

are suitable for succinct approximation of character strokes and perform better than
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Bernstein polynomials. Therefore, we consider implementing a stroke compression

algorithm with this kind of orthogonal polynomial series.

Legendre Polynomials are defined as

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n

and have the weight function w(λ) = 1.

Legendre-Sobolev polynomials are constructed by applying the Gram-Schmidt

orthogonalization to the monomial basis {λi} using the inner product

〈f, g〉 =

∫ b

a

f(λ)g(λ)dλ+ µ

∫ b

a

f ′(λ)g′(λ)dλ

where µ = 1/8 as described in [14].

A property of Legendre and Legendre-Sobolev orthogonal bases, as applied to

online stroke modeling, is the ability to recover a curve from its moments. Moments

may be computed in real time, while the stroke is being written, and the coefficients

of the stroke are calculated on pen-up in constant time dependent only on the degree

of approximation [10].

The Fourier Series on [−L,L] is provided for comparison, since we are not re-

stricted in our selection of approximation basis. Consider the function defined on

[a, b]. We can approximate this function on the interval [−L,L] with Fourier series

for periodic functions

f(x) ≈ α0

2
+

d∑
n=1

(αn cos(
nπx

L
) + βn sin(

nπx

L
))
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where  αn

βn

 =
1

2L

∫ L

−L
f(x)

 cos

sin

 (
nπx

L
)dx.

2.10 Experimental Setting

This section is based on the paper “Toward Affine Recognition of Handwritten Math-

ematical Characters” [29] co-authored with Golubitsky and Watt.

Our dataset of handwritten mathematical characters currently comprises 50,703

samples from 242 classes. These samples have been collected from several sources:

26,139 characters were gathered at the Ontario Research Center for Computer Algebra

(special mathematical characters, Latin letters and digits), 9,762 samples (digits,

Latin letters and mathematical symbols) from the LaViola database [19], and 14,802

samples (mostly digits) from UNIPEN handwriting database [15].

All the samples are stored in a single file in InkML format. The number of strokes

is included in the class labels. Thus, if a character, such as “7” is written with

different number of strokes, it will be placed in different classes, even if the shape of

the character is identical. Although this raises the total number of classes to 378,

we have found it to give better recognition rates compared to when the number of

strokes is included in the feature vector [12].

To avoid confusion, all gathered characters had been visually inspected to discard

symbols unrecognizable by a human. Symbols that look ambiguous to a human

reader (those that may belong to more than one class) were labelled with all the

corresponding classes. Classes that appear indistinguishable without context analysis

were merged, such as x and ×; o, 0 and O. If there was at least one sample in the

class that could be recognized by a human with confidence, we retained the label of

the class. As a result, we obtained 38,493 samples assigned to single classes, 10,224

to 2 classes, 1,954 to 3 classes, 19 to 4 classes, and 13 samples to 5 classes. Additional
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details of the experimental setting are given in [14]. To increase the precision of the

approximation of integral invariants, we precomputed some terms in the formulas for

I1 and I2 in Maple [24] using rational arithmetic.

All tests are implemented in the 10-fold cross-validation setting. To conduct this

process, symbols were split randomly in 10 parts, preserving the proportional sizes of

the sets. The normalized Legendre-Sobolev coefficients of coordinate functions, inte-

gral invariants and moment invariants were precomputed for all symbols and stored in

separate files. We attempted to increase precision of computations by precomputing

some coefficients in Maple [24], mostly using rational arithmetic [14].
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Part I

Recognition of Handwritten

Characters
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Chapter 3

Integral Invariants in Character

Recognition

Integral invariants is an elegant theory for planar and spatial curves description under

affine distortions.

3.1 Integral Invariants

This section is based on the paper “Orientation-independent recognition of handwrit-

ten characters with integral invariants” [28] co-authored with Golubitsky and Watt.

In terms of handwriting recognition, a symbol is given as a parameterized piecewise

continuous curve defined by a discrete sequence of points (for details, see Chapter 1).

For a symbol we compute certain integral quantities from the coordinate functions,

which are then also functions of the curve parameterization. Exposing the sample to

transformations results in the same invariant functions. As opposed to differential

invariants, such integral invariants are relatively insensitive to small perturbations,

and are therefore applicable to classification of handwritten characters with sampling

noise.

As the name suggests, integral invariants are given in terms of integration. Out
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Figure 3.1: Geometric representation of the first order integral invariant

of the infinite family of invariants we study the first three [31], which we define in

terms of the coordinate functions X(λ) and Y (λ):

I0(λ) =
√
X2(λ) + Y 2(λ) = R(λ),

I1(λ) =

∫ λ

0

X(τ)dY (τ)− 1

2
X(λ)Y (λ),

I2(λ) = X(λ)

∫ λ

0

X(τ)Y (τ)dY (τ)− 1

2
Y (λ)

∫ λ

0

X2(τ)dY (τ)− 1

6
X2(λ)Y 2(λ).

Functions X(λ), Y (λ) can be of any desired parameterization. The function I1(λ) can

be geometrically represented as the area between the curve and its secant (Figure 3.1).

Function I0(λ) is independent of transformations of the special orthogonal group

SO(2), while I1(λ) and I2(λ) are invariant under the group of special linear transfor-

mations, SL(2). Full affine invariant can be obtained as the quotient

Ii(λ)

I i1(λ)
, i = 2, 3, ...

We find it, however, to be less stable to compute than I0, I1 and I2. Without loss

of generality, by translating the origin and normalizing the size of a sample we focus

our attention on the SL(2) invariants.
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Figure 3.2: I1 of a linear symbol

3.2 Approximation of Invariants

This section is based on the paper “Toward Affine Recognition of Handwritten Math-

ematical Characters” [29] co-authored with Golubitsky and Watt. Coordinate func-

tions are represented by the truncated sum of Legendre-Sobolev orthogonal series

(for details, see Section 2.2). Therefore, we can write the approximation of invariants

introduced in the previous section as

I0(λ) ≈

√√√√( d∑
i=1

x̄iPi(λ)

)2

+

(
d∑
i=1

ȳiPi(λ)

)2

I1(λ) ≈
d∑

i,j=1

x̄iȳj

[∫ λ

0

Pi(τ)P ′j(τ)dτ − 1

2
Pi(λ)Pj(λ)

]

I2(λ) ≈
d∑

i,j,k,l=1

xixjykylµijkl

where

µijkl = Pi(λ)

∫ λ

0

Pj(τ)Pk(τ)P ′l (τ)dτ

− 1

2
Pl(λ)

∫ λ

0

Pi(τ)Pj(τ)P ′k(τ)dτ − 1

6
Pi(λ)Pj(λ)Pk(λ)Pl(λ).

Here Pi denotes the i-th Legendre-Sobolev polynomial.

In our algorithms, these functions are, in turn, approximated with the orthogonal
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series. Therefore, it is reasonable to estimate how well the invariants can be

approximated. To evaluate the quality of approximation, we compare coefficients of

an original sample and the same sample sheared by 1 radian. Results are summarized

in Table 3.1 in terms of the maximum error and the average relative error, defined

as the quotient of the sum of absolute errors and the sum of absolute values, where

degree is the degree of approximation.

Table 3.1: Maximum absolute and average relative errors in coefficients of invariants
I1 I2

Degree Abs. Err. Rel. Err. Abs. Err. Rel. Err.
2 9× 10−12 3× 10−19 3× 10−11 9× 10−20

3 1× 10−11 4× 10−19 8× 10−10 2× 10−19

4 5× 10−11 9× 10−19 1× 10−9 4× 10−19

5 6× 10−11 3× 10−18 3× 10−9 1× 10−18

6 3× 10−10 1× 10−17 9× 10−9 5× 10−18

7 2× 10−9 5× 10−17 7× 10−8 2× 10−17

8 3× 10−8 2× 10−16 1× 10−7 1× 10−16

9 2× 10−7 1× 10−15 6× 10−7 5× 10−16

10 2× 10−6 6× 10−15 4× 10−6 2× 10−15

11 5× 10−6 3× 10−14 2× 10−5 1× 10−14

12 1× 10−5 1× 10−13 7× 10−5 6× 10−14

13 4× 10−5 7× 10−13 5× 10−4 3× 10−13

14 3× 10−4 4× 10−12 3× 10−3 1× 10−12

15 1× 10−3 2× 10−11 7× 10−3 8× 10−12

16 1× 10−2 1× 10−10 2× 10−2 5× 10−11

17 5× 10−2 5× 10−10 3× 10−2 6× 10−10

18 4× 10−1 3× 10−9 3× 10−1 4× 10−9

We found that the 12-th degree approximation provides sufficient accuracy for

our algorithms and such invariants can be successfully deployed for our purposes.

We however came across some symbols that after normalization exhibit a substantial

maximum absolute error. These are linear characters, such as “-”, “/”, “l”, etc. Inte-

gral invariant of the first order of these symbols is close to identical zero (Figure 3.2).

Therefore, normalization and approximation are not stable.

These kinds of samples tends to behave unpredictably under affine transforma-
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tions. They can, essentially, be transformed into anything if stretched in the direction

orthogonal to the line. Small symbols are affected by scale normalization in a similar

way (a resized period or comma can also look like a different character).
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Chapter 4

Rotation-Invariant Recognition

Rotation transformations are very common in handwriting, as it is shown in Fig-

ure 4.1. This chapter is based on the paper “Orientation-independent recognition

of handwritten characters with integral invariants” [28] co-authored with Golubit-

sky and Watt. We propose a rotation-invariant classification algorithm and test its

performance on our dataset of handwritten samples.

4.1 Coefficients of Coordinate Functions and

Integral Invariants

Curve parameterization and moments are computed online, while the curve is being

written. Approximation of the stroke is recovered from its moments [35] in a small

overhead that is quadratic in the degree of approximation. We observed that the

12-th degree Legendre-Sobolev series gives an approximation that is almost indistin-

guishable from the original curve.

Having computed coefficients of approximation of coordinate functions X(λ) and

Y (λ):

(x0, x1, ..., xd, y0, y1, ..., yd),
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Figure 4.1: Rotation of a symbol

invariants are written as in Section 3.2. Taking advantage of orthogonality of

Legendre-Sobolev polynomials, approximation of these invariants is calculated as

Ik,i =
〈Ik(λ), Pi(λ)〉
〈Pi(λ), Pi(λ)〉

i = 1..d, k = 0..2.

These coefficients represent a sample in a compact and descriptive way and also serve

as the basis for possible transformations of the character, such as morphing.

We represent the formula for I1 as in Section 3.2 to be able to precompute the sec-

ond term for corresponding polynomials and store it in a file to accommodate for the

frequent use. This way, it takes cubic time to approximate I1. Similarly, we compute

each coefficient of I2 in O(d4) operations. Since approximation with polynomials

of degree 12 gives sufficient accuracy, coefficients of invariants are computed fairly

quickly. If desired, approximation of invariants of higher degrees can be calculated.

However, we expect those to improve recognition only slightly, while considerably in-

creasing the computational overhead. For example, it would require O(d7) operations

to compute coefficients of I3.

4.2 Classification with Integral Invariants

We assume to have computed and normalized the coefficients of invariants of a given

character

(Ī0,1, ..., Ī0,d, Ī1,1, ..., Ī1,d).

The sample is classified based on the distance to convex hulls of nearest neighbours
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in the space of Legendre-Sobolev coefficients of integral invariants, as described in

Section 2.4. Even though this method has high invariance to rotation, we expect it to

perform poorly, because invariants are not as good curve descriptors as the coordinate

functions.

4.3 Classification with Coordinate Functions and

Integral Invariants

An improved version of CII is the classification with coordinate functions and integral

invariants (CCFII). In this algorithm, coefficients of approximation of invariants are

computed to select N classes with convex hulls located on the closest distance to

the subject sample. The value of N is determined experimentally to ensure a high

probability of including the correct class. For each of the N classes, we evaluate the

minimal distance with respect to the sample rotation. In other words, for each of the

classes, we solve the minimization problem to find the angle of rotation and correct

class

min
α

(∑
k

(Xk − (xk cosα + yk sinα))2 +
∑
k

(Yk − (−xk sinα + yk cosα))2

)

where xk, yk are the coefficients of approximation of coordinate functions of the test

sample, and Xk, Yk are that of a training symbol.

The solution to the problem is selected among the values of the function at bound-

ary points of the closed interval of rotation and at the stationary point

α = arctan

(∑
k(Xkyk − Ykxk)∑
k(Xkxk + Ykyk)

)
.
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4.4 Classification with Coordinate Functions and

Moment Invariants

Moment invariants were described in Section 2.7. Classification with Coordinate

Functions and Moment Invariants (CCFMI) is similar to CCFII, except for the rota-

tion invariant function. We represent the (p+ q)-th order moment as

mpq(λ`) =
∑̀
i=1

∑̀
j=1

X(λi)
pY (λj)

qf
(
X(λi), Y (λj)

)

where X(λi) and Y (λi) are coordinates of the i-th point of the sample.

We take f of the form f
(
X(λi), Y (λj)

)
=
√
X(λi)2 + Y (λj)2. Considering that

the size and position of a sample are already normalized in our algorithms, we work

with moments directly to build the following rotation invariants

M0(λ) = m00(λ),

M1(λ) = m20(λ) +m02(λ),

M2(λ) = (m20(λ)−m02(λ))2 + 4m11(λ)2.

Similar to the method described in the previous section, this algorithm selects top N

candidates with the moment invariants.

4.5 Evaluation of Results

We evaluated performance of the algorithms for two combinations of integral in-

variants: I0(λ), I1(λ) and I0(λ), I1(λ), I2(λ), and similarly for moment invariants.

Presence of the second-order invariant in the classification algorithm gives only a mi-

nor improvement in recognition rate – about 1% – while introducing the complexity

of computing coefficients of approximation of O(d5), where d is the dimension of the
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Table 4.1: Presence of the correct class within the top N classes, CCFII

N = 1 2 3 4 5 6 7 10 15 20 25

87.9 95.1 96.8 97.7 98.3 98.7 98.9 99.4 99.5 99.5 99.5

Table 4.2: Error rate (%) for different numbers of nearest neighbours, CCFII

angle K = 8 10 12 14 16 18 19 20 21 22
(radians)

0 4.4 3.9 4.2 4.0 3.9 3.9 3.8 3.7 3.8 3.8
0.3 6.2 5.7 5.7 5.4 5.4 5.4 5.3 5.3 5.4 5.4
0.5 7.4 6.9 6.8 6.7 6.6 6.5 6.4 6.4 6.5 6.5
0.7 8.5 7.9 7.7 7.6 7.4 7.4 7.2 7.2 7.3 7.4
0.9 9.3 8.8 8.6 8.3 8.2 8.2 8.2 8.1 8.2 8.2
1.1 9.6 9.0 8.7 8.6 8.4 8.4 8.2 8.2 8.4 8.4

average 7.5 7.0 7.0 6.8 6.6 6.6 6.5 6.5 6.6 6.6

vector space. Therefore, for the purpose of rotation invariant recognition, we focus

on I0(λ) and I1(λ).

Difference in classification results for moments M0 and M1 vs. M0,M1 and M2 is

similar to integral invariants. Therefore, for the fair comparison of performance, we

chose to classify samples with I0, I1 vs. M0, M1 for different combinations of number

of classes (N) and number of nearest neighbours (K).

Recognition rate of CII is 88%. The performance of the algorithm does not depend

on the angle to which test samples are rotated, since coefficients of approximation

of invariants are almost identical. The frequency of occurrence of the correct class

in the top N classes is also independent of rotation angle. The classification rate of

88% is relatively low and can be explained, perhaps, by the fact that the first integral

invariant do not conclusively describe a curve.

We observed recognition rate of CCFII to be significantly higher, since this algo-

rithm includes coordinate functions analysis. To estimate the best classification rate

of this algorithm, we first empirically found the number N of top classes that has
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Table 4.3: Presence (%) of the correct class within the top N classes, CCFMI

N = 1 2 3 4 5 10 20 30 40 50 55

51.5 68.3 77.2 82.2 85.9 95.3 98.8 98.9 99.0 99.0 99.0

high probability of containment of the correct class. Presence of the correct class in

N for different N is given in Table 4.5. We take N = 20 as the appropriate balance

between accuracy and time complexity introduced by integral invariants.

With fixed N , the relationship between the number of nearest neighbours K and

error rate for different angles is shown in Table 4.5. The value of K which yields

the highest recognition rate, was determined to be 20. With fixed K and N , the

classification rate of CCFII is 96.3% for non-rotated samples. The rate has a minor

decrease with the increase of rotation angle, but never approaches CII (see Table 4.5).

Classification rate of CCFMI was estimated in a similar way, although we had to

take a relatively large number of classes, N = 50, to achieve an acceptable presence

of the correct class. Classification error for this N is given in Table 4.5. Overall

performance of moment invariants is worse than that of integral invariants, even when

they require more computations (greater amount of classes and nearest neighbours

in each class). The results of experiments to select the value of N for CCFII and

CCFMI are plotted in Figure 4.3. Error rate for different K is shown in Figure 4.4.

For the purpose of comparison, overall classification results are presented in Table 4.5

and in Figure 4.2. From the obtained results, we conclude that integral invariants are

a suitable instrument for classification of handwritten characters when a deviation in

orientation takes place and they outperform moment invariants.
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Table 4.4: Error rate (%) for different numbers of nearest neighbours, CCFMI

angle K = 8 10 12 14 16 18 20 21 22 23
(radians)

0 7.0 6.6 6.4 6.2 6.1 6.1 5.9 5.8 5.8 6.0
0.3 8.0 7.8 7.6 7.4 7.2 7.1 7.0 7.2 7.1 7.2
0.5 9.3 9.1 8.9 8.5 8.3 8.3 8.2 8.2 8.1 8.3
0.7 10.4 10.1 9.9 9.5 9.4 9.2 9.1 9.2 9.2 9.3
0.9 11.5 11.1 10.8 10.4 10.2 10.2 10.1 10.0 10.0 10.0
1.1 11.4 11.1 10.7 10.4 10.2 10.1 10.1 10.0 10.0 10.0

average 9.6 9.3 9.1 8.7 8.6 8.5 8.4 8.4 8.4 8.5

Table 4.5: Error rates of CII, CCFII and CCFMI

α, rad. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0 1.1

CII 12 12 12 12 12 12 12 12 12 12
CCFII 3.7 3.9 4.5 5.3 5.9 6.4 6.6 7.2 8.2 8.2
CCFMI 5.8 5.9 6.5 7.1 7.7 8.1 8.7 9.2 10 10

Figure 4.2: Error rates of CII, CCFII, CCFMI
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Figure 4.3: Presence of the correct class within N for CCFII (top) and CCFMI
(bottom)
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Figure 4.4: Error rate for different K for CCFII (top) and CCFMI (bottom)

4.6 Summary

We presented methods to classify handwritten characters, independently of orienta-

tion, based on integral invariants. We compared performance of integral invariants

with geometric moment invariants. We observed that integral invariants perform bet-

ter and require less computation. We therefore conclude that integral invariants are

a suitable instrument in the recognition of handwritten characters when orientation

is uncertain.
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As expected, we noticed an increase in error rate with the rotation angle for CCFII

and CCFMI. The typical misclassification is when distinct symbols have similar shape

and are normally distinguished by their orientation, for example “1” and “/”, “+”

and “×”, “U” and “⊂”. As a possible solution, a system could consider a tendency

to write characters in a similar orientation and restrict the range of angles for nearby

symbols. A technique similar to CCFII can be applied to classify symbols as part of

an expression with small adjustments to the minimization function.
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Chapter 5

Shear-Invariant Recognition

This chapter addresses other form of transformation that commonly occurs in hand-

writing: shear or skew transformations. The chapter is based on the paper “Toward

Affine Recognition of Handwritten Mathematical Characters” [29] co-authored with

Golubitsky and Watt. In simple terms, shear invariance can be described as the pro-

cess of “de-slanting” handwritten samples. In addition, we observed that the maximal

shear angle, to which a character can be transformed and still remain recognizable

by a human, can be relatively large (Figure 5.1), compared to the corresponding

maximal rotation angle. We therefore consider shear as the transformation that may

happen very frequently in practice and find shear invariance as a valuable addition

to our classification algorithm. At the same time, shear is harder to treat than ro-

tation. Due to the fact that shear does not preserve the length of strokes, the arc

length parameterization is no longer suitable. Scale normalization should be handled

differently as well. We address these issues and other related aspects in this chapter.
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Figure 5.1: Different levels of skew of samples, from 0.0 to 0.8 radians with step of
0.2

5.1 Size Normalization

In most of the algorithms analyzed, size normalization is implemented by rescaling

a character to achieve standard values of certain parameters, such as the Euclidean

norm of the vector of Legendre-Sobolev coefficients of the coordinate functions [14].

While this approach can still be used in the case of rotated symbols [28], it is not

applicable if samples are subjected to shear and affine transformations in general, since

the arc length is not invariant under these distortions. To overcome this problem, we

compute the norm ‖I1‖ of the Legendre-Sobolev coefficient vector of I1. Coefficients

of the coordinate functions are normalized by multiplying them by 1/
√
‖I1‖. Then,

I2 and its approximation can be computed from the normalized coefficients of the

coordinate functions. Computing the norm of I1 allows to extend the invariance of I1

and I2 from the special linear group, SL(2, R), to the general linear group, GL(2, R).

Invariance under the general affine group, Aff(2, R), is obtained by dropping the first

(order-0) coefficients from the coefficient vectors of the coordinate functions [14].

Other approaches exist for scale normalization of objects in pattern recognition,

e.g. normalization by height and by aspect ratio [3]. Most of such techniques have

certain drawbacks, however. To consider the normalization by height, it is invariant

under horizontal shear, but dependent on rotation. The aspect ratio parameterization
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Figure 5.2: Aspect ratio size normalization

is robust under rotation, but inefficient for a noticeable degree of shear (Figure 5.2).

To objectively evaluate the performance of our approach, we compare these techniques

with the proposed normalization of taking the norm of ‖I1‖ .

5.2 Parameterization of Coordinate Functions

Algorithms for online pattern recognition commonly deploy time or arc length as a

parameterization of the coordinate functions because of its robustness and simplicity.

The parameterization by arc length is of special interest in handwriting recognition,

since it is not dependent on the local variations in speed of writing and is invariant

under the group of Euclidean transformations. It may be expressed as

AL(λ) =

∫ λ

0

√
(X ′(τ))2 + (Y ′(τ))2dτ.

Even though Euclidean transformations represent an important group of transforma-

tions that need to be considered, arc length does not perform that well for general

affine transformations. Arc length, by definition, is not invariant under those trans-

forms. Instead, we consider special affine arc length, which is invariant under the

transformations we study and has been shown to perform well in pattern recogni-

tion [27]. We take the special affine arc length as

AAL(λ) =

∫ λ

0

3
√
|X ′(τ)Y ′′(τ)−X ′′(τ)Y ′(τ)|dτ.
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In our experiments, we study recognition rate using each of the three parameteriza-

tions to evaluate performance empirically for different levels of distortion.

5.3 Shear-Invariant Algorithm

We assume to have computed coefficients of approximation of the coordinate and

invariant functions. The proposed algorithm first selects N classes that are close to

the test sample in the space of Legendre-Sobolev coefficients of integral invariants of

the second and third order. Coefficients of the invariant and coordinate functions are

computed as it was discussed in Section 4.1. Selection of the nearest neighbours and

classes, based on the distance to convex hulls, is performed as described in Section 2.4.

Similar to the algorithm described in Section 4.3, we take N equal to 20. To select

the correct class among the closest 20 classes, for each of these classes Ci, we solve

the following minimization problem:

min
φ

CHNNk(X(φ), Ci),

where X(φ) is the sheared image of the test sample X and CHNNk(X,C) is the

distance from a point X to the convex hull of k nearest neighbours in class C.

Considering the small amount of candidate classes, the minimization problem can

be solved by computing the distance for all possible angles with the step of 1 degree.

This is the approach we used in our experiments. Nevertheless, there are more efficient

ways. One could represent a class C as a single point (X0, . . . , Xd, Y0, . . . , Yd) in

the Legendre-Sobolev space of the coordinate functions, and then find the minimum

distance values at the boundary points of the interval of shear and the stationary

point

ϕ = arctan

∑
k(Xk − xk)∑

k yk
.
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Furthermore, as the curve is sheared by different angles, the corresponding point in

the Legendre-Sobolev space traces a straight line segment. This follows from the fact

that, for each order i, the Legendre-Sobolev coefficient xi remains unchanged, while yi

is multiplied by t = tan(φ), which spans the interval [tan(φmin), tan(φmax)]. Therefore,

we are looking at the problem of finding the point in the segment with the smallest

CHNN distance. Furthermore, the task can be considered as finding the distance

between two convex polyhedra. Taking into account that one of the polyhedra is just

a segment, a number of consecutive optimizations can be considered.

5.4 Evaluation of Results

Classification rate of the algorithms has been evaluated for the discussed choices of

parameterization of the coordinate functions: arc length (AL), time and affine arc

length (AAL). Performance of the size normalization techniques has been tested as

well (Figure 5.3 and Figure 5.4).

The parameterization by affine arc length makes the classification algorithm per-

form relatively poorly. A possible explanation is the presence of the second or-

der derivative in the definition, which makes it sensitive to sampling perturbations.

Therefore, the curve description becomes fuzzy, even though this parameterization is

invariant under special affine transformations. The parameterization by arc length

traditionally performs well on non-distorted samples. When an affine transformation

(other than orthogonal) takes place, the classification ate drops considerably. Never-

theless, for shear up to 0.45 radians (≈25 degrees) the parameterization by arc length

gives noticeably better classification rate than time due to the intrinsic property of

arc length being independent of speed of writing.

Higher invariance of the parameterization by time, compared to the parameter-

ization by arc length, for large affine transformations is quite predictable. It can
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be explained by time being invariant under any transformations of sampling points,

while arc length is independent only under actions of rotation, scaling and translation

(among the transformations that we are interested in). On the example of vertical

shear, horizontal parts of a curve get stretched, while vertical parts remain unaltered.

Therefore, arc length is subjected to considerable distortion.

Previous results showed [14] that arc length performs better when affine noise is

of minor degree. We obtained similar results in our experiments, as it is presented

in Tables 5.1(a)–5.1(d). However, we also see that time becomes more robust for

bigger transformations. This can be explained by the fact that the timing of points

on the curve is noisy in general, since various users typically write the same sample

with different speed. In summary, the arc length signal is invariant with respect

to variations in speed, but gets blurred by affine distortions; and it is opposite for

the time parameterization. This leads us to the question of whether time and arc

length can be combined in a parameterization that would inherit the advantages and,

simultaneously, avoid the drawbacks of both.

Since time is mainly affected by local variations in speed of writing, one should

expect that the effect of these variations, accumulated over longer time periods, will

be close to neutral. The situation is opposite for arc length: large distortions become

noticeable on bigger intervals. Essentially, parameterization by arc length is more

accurate locally, while parameterization by time is more reliable globally. This allows

us to combine these parameterizations as follows: divide the curve in N equal time

intervals, and parameterize each interval by arc length. However, if this algorithm is

implemented directly, an unexpected behaviour may occur at the end points of the

time intervals. This can be prevented by smoothing the transition from time to arc

length inside the subintervals with this form of mixed metric

kdt2 + dx2 + dy2.
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In the above formula, pure arc length would correspond to k = 0. To make the

classification rate of the algorithm even higher, we take the number of classes selected

by invariants to be 50 and find the optimal values of the mixed metric parameters

N = 2 and k = 2 by cross-validation (see Table 5.2). We perform a similar experiment

on the subset of LaViola dataset [19], with the results shown in Table 5.3. The

obtained results are plotted in Figures 5.5. Therefore, we were able to make the

parameterization just as invariant under transformations as time, which allows to

describe the curve as well as arc length.

Our results show that the size normalization by height yields the best classifica-

tion rate under shear transformation (Table 5.1(a)). This can be explained by the

fact that horizontal shear preserves the height of samples. Height however is not an

appropriate norm for some other affine transformations, e.g. rotation. Aspect ratio

normalization (Table 5.1(b)) gives an acceptable performance rate for small degrees

of shear distortion. However, the rate starts to decrease significantly for degrees of

shear greater than 0.7 radians for parameterization by time and affine arc length.

The proposed normalization by I1 performs approximately as well as normalization

by height (Table 5.1(c)), but has an advantage of being invariant under the full group

of affine deformations. Therefore, we find the normalization of a character by the

norm of I1 to be the most robust method in the presence of transformations. How-

ever, in some cases I1 can not be used as the norm. If a character has linear shape, the

invariant of the first-order will be close to being identically zero, since it is the area

between a curve and its secant, as in Figure 3.2. Taking the norm of I1 in this case

can make the symbol look like any other symbol, causing partial misclassification.

We call such samples linear symbols and notice that they perform unpredictably with

most of the techniques designed for two-dimensional curves. Essentially, under affine

distortions, these samples can be transformed into anything, if stretched in the direc-

tion orthogonal to the line. A similar effect can be seen on small symbols subjected
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Table 5.1: Recognition rate (%) for shear from 0.0 to 0.9 radians and for parameter-
ization by affine arc length (AAL), arc length (AL) and time

(a) Size normalization by height

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AAL 82.2 82.2 82.2 82.1 82.1 82.1 82.1 82.1 82.1 82
AL 96.4 96.4 96.1 95.6 95 94.1 93 91.9 90.2 88

Time 94.8 94.9 94.9 94.7 94.5 94.4 94.4 94.4 94.4 94.3

(b) Aspect ratio size normalization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AAL 81.9 81.8 81.6 81.4 81.2 81 80.8 80.2 79.4 77.4
AL 96.3 96.4 96.1 95.5 94.7 93.7 92.3 90.1 85.7 77.5

Time 94.7 94.7 94.6 94.3 94.1 93.9 93.7 93.2 91.9 89.

(c) Size normalization by I1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AAL 83 83.1 83 82.9 82.9 82.8 82.8 82.8 82.8 82.7
AL 96.3 96.3 96.1 95.7 95.1 94.4 93.3 91.9 90.2 87.9

Time 94.6 94.7 94.6 94.5 94.5 94.5 94.5 94.5 94.5 94.4

(d) Size normalization by I1, without linear symbols

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AL 96.7 96.7 96.5 96.2 95.7 95.0 94.1 92.7 91.2 88.9

to size normalization – a bloated dot or comma can also appear as a completely dif-

ferent character. To prove this hypothesis, we performed experiments without linear

symbols. We excluded 1,442 samples, or 3% of the total number of samples, such

as “-”, “\”, “/”, “l”, “.”. As the result, performance improved by about 0.6% for

corresponding degrees of skew (Figure 5.4). The obtained improvement leads us to

the conclusion that a robust classification method should be able to detect such linear

symbols and treat them in a special way.

5.5 Toward Unified Affine-Invariant Classification

We have shown in Section 4 how to recognize symbols independently of rotation. To

achieve the best classification rate, one could apply both of these techniques to a
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Figure 5.3: Error rate for size normalization by height (left) and with aspect ratio
(right)

Table 5.2: Recognition rate (%) for mixed parameterization for corresponding values
of N and k

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N = 2, k = 1 96.1 96.2 96 95.9 95.8 95.7 95.6 95.3 95.2 94.9
N = 2, k = 2 95.8 95.9 96 95.8 95.7 95.7 95.7 95.6 95.5 95.5
N = 3, k = 0.5 96.1 96.2 96 95.9 95.9 95.7 95.5 95.6 95.3 95
N = 3, k = 1 95.9 96.2 96 95.8 96 95.8 95.7 95.6 95.5 95.2
N = 4, k = 1 95.9 96.1 95.9 95.7 95.8 95.6 95.6 95.7 95.6 95.4
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Figure 5.4: Error rate for size normalization with I1 (left) and comparison of perfor-
mance without linear samples (parameterization by arc length and size normalization
with I1 (right)

Table 5.3: Recognition rate (%) for mixed parameterization for LaViola component.
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N = 2, k = 1 98.4 98.5 98.5 98.4 98.3 98.4 98.3 98.3 98.2 98.0
N = 2, k = 2 98.4 98.5 98.4 98.3 98.4 98.3 98.3 98.3 98.2 98.2
N = 3, k = 0.5 98.3 98.3 98.3 98.2 98.3 98.2 98.3 98.2 98.1 98.0
N = 3, k = 1 98.4 98.4 98.4 98.4 98.4 98.4 98.3 98.3 98.3 98.2
N = 4, k = 1 98.4 98.5 98.4 98.4 98.3 98.3 98.3 98.3 98.2 98.2
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Figure 5.5: Error (%) for the mixed parameterization for different values of skew

sample. Such a minimization problem includes two parameters: degree of horizontal

shear and degree of rotation. The vertical shear can be omitted from the analysis,

since it is not common in handwriting. This algorithm will be invariant with respect

to shear, rotation, scale and translation and should yield classification rates similar

to those presented in Table 5.1(c) for parameterization by time and arc length or as

in Table 5.2 for the mixed parameterization.

There is, however, an alternative to make an algorithm stable under transforma-

tions from the general affine group. Since I1 performs poorly as a norm when it is

close to zero, i.e., on linear and small symbols, the appropriate representation should

combine normalized and non-normalized features. Perhaps one could put the size of a
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sample, the Legendre-Sobolev coefficients of the coordinate functions, and Legendre-

Sobolev coefficients of the invariants together in a feature vector. Each of these three

parts should be scaled by weight.

The weights can be symbol-dependent, such that for a small symbol, size should

be weighted more, while the rest of the vector would weight less. For a linear symbol,

size and Legendre-Sobolev coefficients of the affine invariants should weight less, while

coefficients of the coordinate functions should be weighted more. For regular non-

linear and non-small symbols, size should be weighted less, and the Legendre-Sobolev

coefficients of the coordinate functions and invariants can be weighted similarly.

The question of how to calculate the weights prior to classification is important. If

one doubles the size of a period or a comma, it may not appear as such anymore. But

if size of a sample, such as “O”, is doubled, it would still clearly be “O”. Similarly,

if a non-linear symbol is stretched in any direction by some factor, in most cases,

it would be classified as the same symbol. Therefore, we can consider a measure of

“affinity” of a symbol with respect to a transformation group, as the degree to which

the symbol can be transformed while still appearing as the same symbol.

5.6 Summary

We have presented a classification algorithm that is invariant under shear, rotation,

scaling and translation, the subset of the most important affine transformations in

recognition of handwriting.

To achieve independence of scale, we evaluated popular size normalization meth-

ods, but concluded that they are not suitable for the affine case. Instead, we perform

size normalization by normalizing the coefficient vector of the integral invariant of

the first order.

Another challenge was parameterization of coordinate functions. Parameterization
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by time gives stable recognition rate for different levels of distortion, while arc length

performs noticeably better for small transformations. To take advantage of both of

these parameterizations we constructed a new mixed parameterization, by dividing

the curve into equal time intervals and parameterizing each interval by the combined

metric. We experimentally evaluated the parameters, finding those that make the

mixed parameterization close to the results of parameterization by arc length, while

being almost as invariant under distortions as parameterization by time. We have

explained how to change the minimization problem to include rotation invariance.

Finally, we have laid out a more general approach of extending the robustness to the

full affine group for unified affine-invariant classification.
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Part II

Compression of Digital Ink
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Chapter 6

Compressed Storage of

Handwriting

Näıve representation of digital handwriting suffers from excessive demand of storage,

since every point of a curve is represented by a vector. Such a vector is at least of two

dimensions, if only X and Y coordinates of a sample are stored. In a general case,

every point may store other associated values, such as pen pressure, tilt, time, etc.

In the work on symbol recognition, presented in Chapters 4 and 5, we found it

useful to represent digital strokes in a functional form, as coefficients of truncated

a orthogonal series. This form, described in more detail in this chapter, represents

curves quite succinctly. It is natural to ask whether this form may be used in compres-

sion. A great advantage of such representation, besides significant saving on storage

space, is the ability to use compressed samples directly in the recognition algorithms.

This chapter is based on the paper “Digital Ink Compression via Functional Approx-

imation” accepted to the 12th International Conference on Frontiers in Handwriting

Recognition, (ICFHR 2010), co-authored with Watt [25].

We take the view that lossless compression at time of ink capture is not a mean-

ingful concept as each ink capture device has a resolution limit and sampling accu-
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racy. As long as the reconstructed curve lies within these limits, lossy and lossless

compression are equivalent. For our own applications involving recognition, lossless

compression has no benefit. Small perturbations in strokes result in symbols that a

human reader would recognize as indistinguishable.

This chapter studies how functional approximation techniques may be used for

digital ink compression. We compare the compression rates obtained using a vari-

ety of functional bases, and find that a quite satisfactory compression rate may be

achieved. Indeed, we see that lossy compression with functional approximation at de-

vice resolution gives about twice the compression rate obtained by the lossless method

of compressing second differences of sample point coordinates.

The rest of the chapter is organized as follows. Section 6.1 explains the prob-

lem we solve and gives an example of approximation of curves with different error

limits. Section 6.2 describes the compression method. The experiments to evaluate

the compression method are described in Section 6.3. Compression results for repre-

senting coefficients in text and binary formats are given in Sections 6.3.2 and 6.3.3

respectively. Evaluation of the second differences method and comparison with our

approach is presented in Section 6.3.4. Section 6.4 concludes the chapter.

6.1 Problem Statement

The question asked is whether it is feasible to apply the theory of functional approxi-

mation to describe a stroke up to some given threshold of the maximal absolute error

and root mean square error. If so, what is the compression one could expect as the

result of such approximation?

We empirically investigate different approaches to obtain the minimal overall size

of coefficients of an approximation that satisfies the given error constraints. We con-

sider compression of handwritten regular text, since it commonly occurs in pen-based
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Table 6.1: Approximation thresholds

O R C C A
Max. abs. error, % 1 2 3 4 5
RMSE, % 0.33 0.67 1 1.33 1.67

computing and incorporates different kinds of patterns. An example of a word and its

approximation with different thresholds are shown in Table 6.1 and the corresponding

figure. We take RMSE as a third of the maximum error and consider both thresholds

to define the quality of approximation. To measure the quality of approximation in-

dependently of application and device, we compute errors as the percent of the height

of characters in a stroke.

6.2 Algorithms

6.2.1 Overview

At a high level, our compression method takes the following steps for each stroke:

1. Segment the stroke using one of the methods described below. Ensure the

segments overlap by an amount at segmentation points.

2. For each segment, compute the orthogonal series coefficients for each coordinate

function (e.g. x, y, p)

3. Deflate the stream of coefficients.

To reconstruct a stroke, the process is reversed:
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1. Inflate the coefficient stream to obtain the curve segments.

2. Blend the curves on the overlaps to obtain the piecewise coordinate functions.

3. Obtain traces by evaluating the coordinate functions with the desired sample

frequency.

For a given segment, the series coefficients are computed by numerical integration of

the required inner products.

To obtain a more compact form for the coefficient stream, it may be compressed

with a deflation tool. In the experiments below we use gzip, which implements a

combination of LZ77 [40] and Huffman coding [17]. This is for convenience only – a

more specialized method would be used in a production setting.

6.2.2 Parameterization Choice

We tested the two choices for parameterization of coordinate functions widely used

in pen-based computing: time and arc length. We observed that parameterization by

time, while being more efficient, gives better compression. Comparison of the results

is presented in the Fig. 6.2 for approximation with Chebyshev polynomials with 0

size of the fractional part in coefficients.

6.2.3 Segmentation

We cannot expect long, complex strokes to be well approximated by low degree poly-

nomials. Instead of varying the degree to suit any stroke, we segment strokes into

parts that we can separately approximate. As described below, we explored the three

methods to segment traces.

Fixed Degree Segmentation We fix the degree of the approximating functions.

Intervals of approximation are constructed to allow the maximal length within the
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given error threshold. If the available interval can be approximated with a lower

degree (e.g. the end of the curve has been reached), it is handled appropriately.

Fixed Size Segmentation We fix the size of intervals and approximate each inter-

val with the minimal degree possible, but not greater than 20 (to keep the algorithm

computationally feasible).

Adaptive Segmentation The most comprehensive variant is to fix a maximum

permissible degree and maximum permissible coefficient size (digits for text, bits for

binary), and segment the curve with all combinations. Then the combination of

degree and coefficient size that gives the smallest resulting total size is selected. The

degree and coefficient size are saved together with the coefficient data.

6.2.4 Segment Blending

If we allow a large error threshold (e.g. 4%), then it becomes possible to notice

näıve segmentation because we do not match derivatives at the segmentation points.

This can be observed in Table 6.1. To make the stroke smooth, and to improve the

approximation, we blend the transition from one piece to another by overlapping

the segments slightly and transitioning linearly from one segment to the next on the

overlap. Therefore, the approximation is given in segments, fj, and takes form

f(λ) =
N∑
j=1

Wj(λ)fj(λ) ≈
N∑
j=1

Wj(λ)
d∑
i=0

cijPi(λ)
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Figure 6.1: Example of blending

with the weight function

Wj(λ) =



0, λ ≤ λj − a
λ−(λj−a)

a
, λj − a < λ ≤ λj

1, λj < λ ≤ λj+1 − a
−λ+λj+1

a
, λj+1 − a < λ ≤ λj+1

0, λ > λj+1

where a is a proportion of approximation pieces and λj are the segment transition

points. The value of a may be estimated empirically, but different types of curves

may have its own portion of overlap necessary for smooth transition. An example of

a blended sample is given in the Fig. 6.1.

6.3 Experiments

We have performed two sets of experiments using our compression method for both

text and binary representations of curves. Before describing the experiments in detail,

we describe the setting.
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6.3.1 Experimental Setting

The dataset of handwritten samples was collected in the Ontario Research Center for

Computer Algebra with various tablet devices. Specifications of the device are: 512

pressure levels, 2540 dpi resolution and 133 pps max data rate. The sampling error

of the device was ±.02 in and the resolution of the monitor was 94 dpi. Therefore,

the absolute sampling error, as the stroke is rendered on the screen, is ≈ ±2 pixels.

The error, relative to the height of writing, is ≈ 2.5%.

Several individuals were asked to write various parts of regular text to ensure

variations in the length of strokes and writing styles. Overall, we obtained 108,094

points split in 1,389 strokes.

Compressed size reported for the experiments is obtained by comparing the com-

pressed size of the entire database to the original size, reporting it as a fraction

between 0% and 100%.

6.3.2 Compression of Textual Traces

Representation One set of experiments used a textual representation of trace data.

It may seem odd to explore methods to represent text more compactly, but this is

relevant for standard XML representations.

For these tests we stored coefficients in UTF 8 format and define approximation

packets as

λ0; c
1
00, c

1
01, ..., c

1
0d01

; ...; cN00, c
N
01, ..., c

N
0d0N

λ1; c
1
10, c

1
11, ..., c

1
1d11

; ...; cN10, c
N
11, ..., c

N
1d1N

...

λD

where λi is the initial parameterization value of piece i in the stream, N is the number
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of channels and dij is the degree of approximation of the piece i for j-th channel.

Pen-based devices typically provide three channels: x, y coordinates of points and

pen pressure p. In the example, the stream consists of D approximation pieces and

the last packet defines the final value of parameterization. These packets define the

approximation functions f ji (λ), i = 0..(D − 1), j = 0..N for corresponding intervals

[λi, λi+1]. The end of a stroke can be defined with a special character, such as “&”.

The proposed model is independent of the choice of parameterization, which can be

time, arc length, etc.

In the experiments below, we find the combination of size of coefficients and degree

that gives the best compression for error of 3%. Fixing these parameters, we estimate

compression for other error values.

Size of Coefficients The next question is how dependent the compression on the

size of the fractional part of coefficients. The result of the experiment for Chebyshev

polynomials for the fixed degree method for different fractional sizes is presented

in Table 6.2 for different degrees of approximation for the maximal error of 3%.

Taking the combination of the size of fractional part of 1 and degree 7, we find

compressed size for other error thresholds. The same procedure was performed for

other approximation methods (Fig. 6.3).

A similar experiment for Chebyshev polynomials has been performed for the fixed

length method. Results are shown in Table 6.3, in which “–” denotes the case, when

an interval exists, that can not be approximated, even with the orthogonal series of

degree 20.

We observed that the fixed degree method performs significantly better and elim-

inates the risk associated with fixed length – the existence of an interval that can not

be approximated. Therefore, all the consecutive experiments were performed with

variations of the fixed degree method.
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Table 6.2: Compressed size (%) by degree of approximation (D) and fractional size
of coefficients (F) for Chebyshev polynomials and max. error of 3%, fixed degree
method

F\D 3 5 7 9 11 13 15

0 2.62 2.49 2.53 2.79 3.05 3.31 3.59

1 3.91 3.69 3.62 3.70 3.69 3.70 3.64

2 5.36 5.18 5.10 5.29 5.24 5.27 5.21

3 6.82 6.65 6.58 6.87 6.81 6.84 6.80

4 8.29 8.13 8.07 8.45 8.37 8.42 8.38

Table 6.3: Compressed size (%) by length of intervals (L) and fractional size of
coefficients (F) for Chebyshev polynomials and max. error of 3%, fixed length method

F\L 10 20 30 40 50 60

0 4.67 – – – – –

1 6.79 5.01 4.29 4.09 3.87 –

2 9.10 6.81 5.94 5.74 5.45 –

3 11.22 8.63 7.59 7.37 7.04 –

4 13.43 10.44 9.23 9.01 8.63 –

Fixing the Size of Coefficients In the next experiment we ask whether compres-

sion will change if we take coefficients as real numbers with fixed amount of digits.

Similar to the previous experiment, we look at the rates for different degrees and the

number of digits to find the optimal combination for maximal error of 3%. Taking

this combination, we then find compression for other values of maximal and RMS

errors. We however observed that applying this algorithm literally is not a preferred

solution, since the coefficient of the 0-th degree polynomial usually significantly ex-

ceed the rest coefficients. This can be explained by the fact that the 0-th degree

polynomial is 1 and its coefficient serves as a position translator. We therefore allow

this coefficient to be twice of the size of coefficients of higher degree. In Table 6.4

results are shown for different degrees of approximation and the size of coefficients of

degree > 0 for Chebyshev polynomials. Compression for other error threshold for all

methods is given on the Fig. 6.4.
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Table 6.4: Compressed size (%) for different approximation degrees (D) and coefficient
sizes (S) for Chebyshev polynomials with max. error of 3%, fixed degree method

S\D 3 5 7 9 11 13 15

2 2.95 2.99 3.00 3.15 3.20 3.19 3.35

3 4.39 4.44 4.48 4.71 4.71 4.76 4.76

4 5.85 5.92 5.96 6.30 6.26 6.32 6.32

5 7.31 7.39 7.46 7.88 7.82 7.90 7.92

Figure 6.2: Compression for parameterization by time (dot) vs. arc length (dash) for
different degrees of approximation, fractional part of size 0

Figure 6.3: Compressed size for different values of error for Chebyshev (solid), Legen-
dre (dash), Legendre-Sobolev (dot) and Fourier (space dot): coefficients with 1 digit
fractional part

Table 6.5: Conversion matrix condition numbers for different degrees (D) for Legendre
(L) and Legendre-Sobolev (L-S) bases

B\D 4 5 6 7 8 9 11 12
L 2.9 4 4.5 5.6 6 7 8.3 8.7

L-S 100 350.8 1394.1 5422.6 20064.3 71597.4 1042702.43 3942541.38
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Figure 6.4: Compressed size for different values of error for Chebyshev (solid), Leg-
endre (dash), Legendre-Sobolev (dot) and Fourier (space dot): coefficients with fixed
coefficient size

Figure 6.5: Compressed size for different values of error for Chebyshev (solid), Legen-
dre (dash), Legendre-Sobolev (dot) and Fourier (space dot): coefficients with binary
representation

6.3.3 Compression of Binary Traces

We now explore how to compress data for applications that can store ink data in

binary form. To do this we store the sequence of approximation coefficients compactly

in an exponential format as ab where a and b are two’s complement binary integers,

standing for significant and a power of 10 respectively. We fix the size of b to 3 bits

and change only the size of a.

We note that the fixed degree and fixed length segmentation schemes have pa-
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rameters which optimal choice depends on the application. Certain types of strokes

have their own optimal combination of parameters. It becomes especially notice-

able when curve patterns have completely different styles: from straight line to curly

handwriting.

Therefore, for our final experiment we use the adaptive segmentation scheme and

choose stroke-wise approximation parameters for each input channel separately. Es-

sentially, compression packets for each stroke i take the form

bi; di;λ1; c10, c11, ..., c1di

λ2; c20, c21, ..., c2di

...

λD

where bi is the number of bits, di degree, λj initial value of parameterization of

piece j and cj0, cj1, ..., cjdi are coefficients. This method gives significantly better

compression (Fig. 6.5, Tables 6.6 and 6.7): compression with Chebyshev polynomials

for 1% maximum error yields 2.6% compressed size, for 2.5% (sampling error of the

device) it yields 1.9% size. Maximum error < 2.5% is indistinguishable by a human

and such compression can be accepted as lossless for most of the applications in

pen-based computing.

6.3.4 Comparison with Second Differences

The second differences method yields high compression for low-resolution devices and

vice versa, assuming that sampling rate remains the same. A stroke is represented by

the values of the first two points and a sequence of second differences, since xi42 =

xi − 2xi−1 + xi−2. We store these values as binary numbers of fixed size, similar to

the way it is described in Section 6.3.3. The size for the first two values is different
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Table 6.6: Compressed size (%) for different errors (E) for representing coefficients in
binary format for the lossless method of second differences (42) and lossy compression
with the following bases (B): Chebyshev (C), Legendre (L) and Legendre-Sobolev (L-
S)

B\E,% 0.0 0.6 1.1 1.5 2.0 2.5 3.1 3.5
42 23.35 – – – – – – –
C – 7.50 6.22 5.93 5.26 5.14 4.87 4.65
L – 9.22 6.97 6.32 5.64 5.25 5.20 5.04

L-S – 12.64 11.21 10.19 8.67 8.55 8.26 7.51

Table 6.7: Compressed size (%) for different errors (E) for representing coefficients
in binary deflated format for the lossless method of the second differences method
(42) and lossy compression with the following bases (B): Chebyshev (C), Legendre
(L) and Legendre-Sobolev (L-S)

B\E,% 0.0 0.6 1.1 1.5 2.0 2.5 3.1 3.5

42 8.64 – – – – – – –

C – 3.07 2.61 2.31 2.05 1.90 1.80 1.72

L – 3.41 2.86 2.53 2.26 2.08 2.00 1.91

L-S – 9.36 7.27 6.25 5.51 4.98 4.64 4.49

from the size of second differences. In contrast with Section 6.3.3, we choose the

number of bits to be able to store the maximum value, because of the nature of

lossless compression. We then perform gzip encoding on this binary stream to model

the compression algorithm described in [26]. For the handwriting collected with our

device (Sec. 6.3), this method yields 8.64% compression.

The approach of representing handwriting by its approximation has an important

advantage, other than better compression. It allows to build the database of hand-

written samples and use it in recognition algorithms [14] without recomputing the

coefficients. It does not restrict classification method to a specific orthogonal basis,

since the basis can be changed by one matrix multiplication.
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6.4 Summary

We have presented an approach to compression of digital strokes using functional

approximation. We have shown that Chebyshev polynomials give very high compres-

sion and allow flexible approximation with desired accuracy. The compressed format

of written samples serves as a suitable input for the character classification algo-

rithms [14] and allows to integrate compression and recognition in a unified efficient

infrastructure.

Certain other algorithms may prefer to use Legendre and Legendre-Sobolev bases

as they allow online moment computation and function recovery [10]. One can gain

the most advantage by storing compressed strokes represented by Chebyshev coeffi-

cients and converting them to Legendre or Legendre-Sobolev format by multiplication

with the corresponding basis transformation matrix. The relationship between pre-

cision of coefficients of different bases is affected by the condition number of the

conversion matrix. For conversion from Chebyshev to Legendre basis in the range of

degrees of interest, the condition number is approximately 0.15+0.73d. The condition

number for conversion to Legendre-Sobolev basis is approximately 3.74d−0.40.

For future work, an interesting topic is to estimate the relationship between com-

pression and recognition for considered orthogonal bases. Another important aspect

is to consider a different error measure – computing the Legendre-Sobolev distance

allows us to estimate quality of approximation in the first jet space.
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Chapter 7

Conclusion

7.1 Summary

The theory and experiments presented in this work contribute to the art of online

recognition of handwritten characters and compression of digital ink. We represent

written characters by coefficients of approximation of coordinate and invariant func-

tions with orthogonal polynomials. This approach creates an opportunity to consider

compression and recognition in a unified architecture for pen-based computing. The

succinct representation of characters serves directly as a training input for classifica-

tion algorithms.

We explored the recognition of handwritten characters subjected to rotation. To

achieve invariance under this type of transformation, we deploy the theory of inte-

gral invariants. We represent a character by the coefficients of integral invariants

of the coordinate functions. Since the invariants are chosen to be independent of

area-preserving transformations, coefficients of the character remain the same when

the sample undergoes arbitrary rotation. Classification is based on computing the

distance to convex hulls of nearest neighbours in the space of coefficients of approxi-

mation of invariants. We observed, however, that coefficients of invariants alone have
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relatively low recognition due to integral invariants being poor curve descriptors com-

pared to coordinate functions. Therefore we perform additional analysis of subject

samples by rotating them and evaluating the distance in the space of coefficients of

coordinate functions. This algorithm has high recognition rate for both rotated and

non-rotated samples.

To extend invariance of the method to general affine transformations, we had to

solve the problem of size normalization and parameterization of coordinate functions.

The robust size normalization approach introduced in our work involves taking the

norm of coefficients of the integral invariant of the first order. This method allows

extension of the first and second invariants from the special linear to the general linear

group. Invariance with respect to translation is achieved by omitting the order-0

coefficient of approximation of the coordinate functions.

To implement an efficient parameterization of coordinate functions, we test the

methods widely used in online pattern-recognition: time, arc length and affine arc

length. We find these, however, to be either not invariant to affine transformations

or to perform poorly. We propose a parameterization as a combination of time and

arc length to inherit advantages and avoid drawbacks of both.

The proposed shear-invariant classification algorithm is similar to the rotation-

invariant method – it selects a fixed number of candidate classes with coefficients

of invariants and then analyses the selected classes with coefficients of coordinate

functions. These methods result in high recognition rates and essentially insensitive

to the most common transformations in handwriting.

To overcome the cumbersome representation of written samples by the coordinates

of points, we propose to store coefficients of approximation instead. We develop

a lossy compression scheme that allows us to compress handwriting with desired

accuracy. We measure accuracy by the relative error, computed as the relation of

the absolute error to the height of written samples. We note that lossy compression
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is appropriate for our purposes, since digital handwriting is lossy by definition –

points are collected at certain time intervals and traditional devices have sampling

errors. We test different orthogonal bases for robust compression and find Chebyshev

polynomials to be the most efficient choice. Examining the parameterization by time

and arc length, we found the parameterization by time to perform slightly better and

requiring less computations. We then propose a format of binary packets for compact

representation of coefficients, in which the curve is split in segments. Each segment is

represented by the combination of coefficients of corresponding coordinate functions.

We study different ways of splitting a curve: Fixed Degree Segmentation, Fixed

Size Segmentation and Adaptive Segmentation. The segment-wise approximation of

a curve can leave strokes jaggy, especially for high error thresholds. We therefore

propose a method of blending segments to avoid sharp edges at the boundaries of

approximation. We highlight that the compression algorithm, presented in the work,

has a higher deflation rate than the widely-adopted algorithm of compression with

second differences of coordinates.

7.2 Future Work

For future work, we recognize the importance of developing an algorithm for affine

invariant recognition of characters. Several such algorithms have already been pro-

posed in this thesis, but are missing the necessary experimental verification. The next

step is integration of the symbol classification techniques into a formula recognition

framework. This task is not trivial, because of the 2-dimensional nature of math-

ematical characters. The key issue is careful differentiation between fluctuations in

the positioning of written samples vs. intentional super- or sub-scripting.

The next interesting aspect is syntactic and semantic verification of recognized

formulas. The main problem encountered is the absence of a fixed dictionary of
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“words” or “set” of rules that controls the evolution of existing words. Therefore,

algorithms based on learning from a given set of formulas are necessary for consecutive

verification with logical programming or, possibly, with the theories of unification and

anti-unification.

A possible future study regarding compression of a digital curve would consist of

more detailed analysis of the tradeoff between the compression and recognition rates

for a given orthogonal basis. We discovered that Chebyshev polynomials yield the

best compression rate. Storing a stroke in Chebyshev coefficients and converting them

to Legendre-Sobolev for the purpose of classification is computationally expensive

and unreliable, since the condition number of a conversion matrix is exponentially

dependent on the degree of approximation.

Integrating compression and recognition in one framework allows storage of hand-

written samples compactly and can be efficiently used in recognition methods.
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